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Mode coupling in rotating gravitational collapse: Gravitational and electromagnetic perturbations
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We consider the late-time evolution gfavitational and electromagnetic perturbations in realistitating
Kerr spacetimes. We give a detailed analysis of the mode-coupling phenomena in rotating gravitational col-
lapse. A consequence of this phenomena is that the late-time tail is dominated by modes which, in general, may
have an angular distribution different from the original one. In addition, we show that different types of fields
have different decaying rates. This result turns over the traditional beligfich has been widely accepted
during the last three decadebat the late-time tail of gravitational collapse is universal.

PACS numbd(s): 04.70.Bw, 04.20.Ex, 04.20.Ha

[. INTRODUCTION enon of mode coupling in rotating spacetin{éss phenom-

The no-hair conjecture introduced by Ruffini and enon has been observed in numerical solutions of Teukol-
Wheeler in the early 19704 ], states that the external field sky’s equatior{17,18§)).
of a black hole relaxes to a Kerr-Newman field characterized The plan of the paper is as follows. In Sec. Il we give a
solely by the black-hole mass, charge and angular momershort description of the physical system and summarize the
tum. main analytical results presented in Rgf3]. In Sec. Ill we

Price[2] was the first to analyze the mechanism by whichdiscuss the effects of rotation and the mathematical tools
the spacetime outside (aearly spherica) star divests itself needed for the physical analysis are derived. In Sec. IV we
of all radiative multipole moments, and leaves behind aanalyze the active coupling of different gravitational and
Schwarzschild black hOle; it was demonstrated that all radiae|ectr0magnetic modes during a rotating gravitationa| COI'
tive perturbations decay asymptotically as an inverse powegpse with pure initial data. In Sec. V we consider the late-
of ime, the power indices equal 23 (in absolute valug  (ime evolution of realistic rotating gravitational collapse,
where | is the multipole order of the perturbation. These,,;in generic initial data. We conclude in Sec. VI with a

inverse power-law tails are a direct physical consequence of,\mary of our analytical results and their physical implica-
the backscattering of waves off the effective curvature PO%ions

tential at asymptotically far regioni8,2]. Leaver[4] demon-
strated that the late-time tail can be associated mathemati-
cally with the existence of a branch cut in the Green’s
function for the wave propagation problem.

The analysis of Price has been extended by many authors.
We shall not attempt to review the numerous works that have The dynamics of massless perturbations outside a realistic
been written addressing the problem of the late-time evolurotating Kerr black hole is governed by Teukolsky's master
tion of gravitational collapse. For a partial list of references,equation[24,25
see, e.g.[5-16].

The above-mentioned analyses were restricted, however,
to spherically symmetric backgrounds. It is well known, [(r®+a®* _ 15y 4Mar &y
however, that realistic stellar objects generally rotate about™ A~ & sirfo 2T A i
their axis, and are therefore not spherical. Thus, the nature of

Il. REVIEW OF RECENT ANALYTICAL RESULTS

the physical process of stellar core collapse to form a black a’ 1 1%y N

hole is essentiallynon§pheric, and an astrophysically realis- + A sirfe (9_(!)2_ ar A ar

tic model must take into account the angular momentum of

the background geometry. 1 o . J¢ a(r—m) icosl|dy
The corresponding problem of wave dynamics in realistic “singas\ SN03g) A sire s

rotating Kerr spacetimes is much more complicated due to

the lack of spherical symmetry. A first progress has been ) M(r?-a®) . I o, 2

achieved only recentlj17—22. Evidently, the most interest- —4S A —lacosd|—-+(scoti—s)y

ing situation from a physical point of view is the dynamics of

gravitational waves inrotating Kerr spacetimes. Recently, =0, 1)

we have begun an analytic study of this fascinating problem

[23]. This was done by analyzing the asymptotic late-time

solutions of Teukolsky’s master equatid@4,25, which  whereM anda are the mass and angular momentum per unit
governs the evolution of massless perturbations fields in Kenmass of the black hole, and=r?—2Mr+a?. (We use
spacetimes. In this paper we give a detailed analysis of thgravitational units in whichG=c=1.) The parametes is
problem. In particular, we give a full account of the phenom-called the spin weight of the field. For gravitational pertur-
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bationss= =2, while for electromagnetic perturbations: wherec is some positive constant ahg= max(m|,|s|). The
*+1. The field quantitieg/ which satisfy Teukolsky’s equa- functions ;S"(6,aw) are the spin-weighted spheroidal har-

tion are given in25]. monics which are solutions to the angular equafi@by
Resolving the field in the form

2

- L7 '0(7 ta2w2c00— — 2 6
J=A-S2(r24g?)12 S pmeime, @ sing 09| S0 gg) TA WCOSOT Gipg T cAWSCOS
m=—ow
2mscosé 2cof ml em_
wherem is the azimuthal number, one obtains a wave equa- T Taigg S CorOFSsTATS=0. 8)

tion for each value ofn (we suppress the index):

For theaw=0 case, the eigenfunctions"(#,aw) reduce

& q to the spin-weighted spherical harmonicgY["(6,¢)
DV= Bl_2+BZ___2+B3 ) ime . m
ot at ay =:§(0)e'"™?, and the separation constanid,"(aw) are
simply A"=(l1—s)(l+s+1) [26].
A 1 9( . 9 The Fourier transform is analytic in the upper halplane
T ?radZsing 99| 5" 05/ |¥Y=0, (3 and it satisfies the equatid@s]

where the tortoise radial coordinate is defined bydy

2 2__o; _ H _
—[(r2+a2)/A]dr. The coefficients;(r, ) are given by B(w)Gyz | 4 | S 2SUTT MK AT ws—A)
dy (re+a)
. Aa’sirg dH -
Bl(rﬁ)—l—m 4 —H2- d—y“G|(y,y’;a))
and =3(y-y"), ©)
4iMmar M(r?—a?) where K=(r?+a?)w—am, \=A+a?w?’-2amw, and H
Bar,0)=—3—~ AT =s(r—M)/(r2+a%) +rA/(r’+a?)?,
Define two auxiliary functiona?,; and¥, as solutions to
. ) A g  the homogeneous equatid(w)¥,=D(w)¥,=0, with the
1acos (r7+ az)z- ) physical boundary conditions of purely ingoing waves cross-

ing the event horizon and purely outgoing waves at spatial
[The explicit expression dBs(r,#) is not important for the  infinity, respectively. In terms o¥; and¥,, and henceforth

analysis] assumingy’' <y,
The time evolution of a wave field described by ES).is
given by
Gi(y,y ) =¥y 0)¥a(y,0)/W(w),
\I’(Z,t)=27rf Jo {B1(z')[G(z,2";)W(Z',0) where we have used the Wronskian relatioh(w)
=W(W, Vo) =W Wy, — WV ,.
+Gy(z,2';1)¥(2',0)] It is well known that the late-time behavior of massless

perturbations fields is determined by the backscattering from
+B,(2')G(z,2';t)¥(z',0)}sing’dg’dy’, (6) asymptoticallyfar regions[3,2]. Thus, the late-time behavior
is dominated by thelow-frequency contribution to the
for t>0, wherez stands for ¥, 6). The (retarded Green’s ~ Green’s function, for only low frequencies will be backscat-
function G(z,z';t) is defined by DG(z,z';t)=45(t)5(y  tered by the small effective curvature potemﬁat r=M).
—y")8(6—6')/27sin@, with G=0 for t<0. We express Iherefore, asmaltw approximation [or equivalently, a

the Green’s function in terms of the the Fourier transformlarges approximation of Eq.(9)] is sufficient in order to
study the asymptotidate-time behavior of the field§12].

Gily.y"sw): With this approximation, the two basic solutions required in
B order to build the Fourier transform afe;=r'"1e'“"M(I
oy L e~ +s+1-2ioM,2+2—2iwr) and V,=r'*leeru(l+s
C2250= 502 .;0 L YY) +1-2iwM, 2 +2,— 2i r), whereM (a,b,z) andU(a,b,2)

" ) it are the two standard solutions to the confluent hypergeomet-
X s§'(0,aw)sS (0", an)e”'"dw, (7)  ric equation[27]. Then
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W, T,)=i(— 1) 121+ 1)1 (20) " @+ D)1 +5)!. whgre, to leading order iaw, the coeffic.ients.C|k(aw) are
(100 w—independent[21,29. Equation (14) implies that the
black-hole rotation mixes (and ignite$ different spin-
In order to calculateG(z,z’;t) using Eq.(7), one may  weighted spherical harmonics.
close the contour of integration into the lower half of the  The coefficientsB,(r,6) and B,(r,6) appearing in the
complex frequency plane. Then, one identifies three distincime-evolution equatioii6) depend explicitly on the angular
contributions toG(z,z';t) [4]: prompt contribution, quasi- variable ¢ through therotation of the black hole(no such
normal mOdeS, and tail contribution. The late-time tail isdependence exist in the non_rotatiag:o Case‘ Therefore’
associated with the existence of a branch @ut¥,) in the  in order to elucidate the coupling between different modes
complex frequency planie!] (usually placed along the nega- we  should evaluate the integrals (slm|skm),

tive imaginarye axis). A little arithmetic leads t423] (sIm|sir?g|skm), and  (sIm|cos#|skn, where
(sImF(0)|skm= [ Y™ F(6)sY dQ [see Eqgs(4) and (5)

e To(y,we?™) oy, o). for the definition of.theBi(r,H) coefficients. I.n addition, the

Grlyy )= - vy, o) values of the coefficient§,, depend on the integral21,29

W(we®™) W(w) (slm|cog 6|skm) and(slmlcos&|skrp) [see Eq(13) for the
_1y-s _ 3 ST definition of the perturbation terrh~(6,aw), which is re-
= (z1) arMo(=9)! Waly,@)Waly ’w)_ sponsible for the mixing of modes in rotating backgrounds
(21+1)! W(w) The spin-weighted spherical harmonics are related to the
(11  rotation matrix elements of quantum mechari@s]. Hence,
standard formulas are available for integrating the product of
Taking cognizance of Eq-7), we obtain three such functionghese are given in terms of the Clebsch-
Gordan coefficient$28,21,29). In particular, the integrals
iM(—1)522+ 11 +5)1(1—s)! (sIO|sin2.9|skO> and (sl0|cog 6|sko) vanish unlessd =k,k
=2 +2, while the integral(slO|cos#|sk0) vanishes unless$
w21+ 1] =kx1. For non-axially symmetric nj#=0) modes,
e B (sIm|sir?g|skm)+0 for | =k,k+ 1 k=2 (the same holds for
XJ' iy, 0)V (Y, 0)sS(0,am) the integral(sl0|cog 6|sk0)), and(sIm|cosf|skmy#0 for
0 I=k, k=1 (all other matrix elements vanistNote also that
X S(60',a0)w? t2e 19w, (12) the complexcoefficientB, couples the real and imaginary
parts of '™,
We are now in a position to evaluate the late-time evolu-
tion of realistic rotating gravitational collapse. We shall con-
Ill. ROTATION EFFECTS: sider two kinds of initial data: pure initial data, which corre-
THE COUPLING OF DIFFERENT MODES sponds to the assumption that the initial angular distribution
The rotational dragging of reference frames, caused byiS characterized by a pure spin-weighted spherical harmonic
the rotation of the black holéor stay, produces an active function SY{T*' , and generic initial data where the initial pulse
coupling between modes oflifferent | (but the samam). consists of all allowed modegsll spherical harmonics func-
Mathematically, it is thed dependence of the spin-weighted tions with1=1).
spheroidal wave functionsS"(#,aw) and of the coefficients
B,(r,6) andB,(r,6) which is responsible for the interaction
between different modesjo coupling occurs in the non- IV. PURE INITIAL DATA
rotating @=0) case.
The angular equatioff8) is amenable to a perturbation
treatment for smalaw [28,29; we write it in the form (°

[

G%(z,z';t)= >,

I=To

A. Asymptotic behavior at timelike infinity

+LY) "= —A"S", where L°(6) is the w-independent As explained, the late-time behavior of the fields should
part of Eqg.(8), and follow from the low-frequency contribution to the Green’s
function. Actually, it is easy to verify that the effective con-
LY(6,a0)= (aw)2coL0— 2aws cosb, (13) tribution to the integral in Eq(12) should come fromw|

=0(1/t). Thus, we may use thies|r<1 limit of ¥(r,w)
and we use the spin-weighted spherical functigi§' as a  in order to obtain the asymptotic behavior of the fields at
representation. They satisfy®,Y,=— A%y, with A®  timelike infinity (wherey,y’<t). Using Eq. 13.5.5 of27]
=(I-s)(I+s+1) (we suppress the indem on (A, and one finds¥,(r,w)=Ar'*1. Substituting this into Eq(12),
sY1). For smallaw a standard perturbation theory yields and using the representation, Ef4), for the spin-weighted
(see, for exampld,30]) spheroidal wave functiongS;, together with the cited prop-
erties of the angular integrdlef the form{sIm|F(6)|skm],
o we find that the asymptotic late-time behavior of theode
S(0,aw)= E Clk(aw)“—k\syk( 6), (14) (where I=1,) is dominated by the following effective
k=lg Green'’s function:
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L * —g—
M(— 1) H1+270-292p2k+ 1k 4 )1 (k— )1 (1* +1+2—q)! ,
G.C(z,z’;t)szI A2k DI (YY) CChix —qY1(B)sY s (6
= !

Xa'*+|_2k_qt_(|*+|+3_q), (15)

where g=min(I* —1,,2). Here, L=1*—q for I=1*—1  for I=1*—1 modes, whereq;=min(I*—1,,2) and q,
modes, and_=| for I<I* -2 modes. Thus, the late-time =min(l—1*,2), and

behavior of the gravitational and electromagnetic fields at the
asymptotic region of timelike infinity, is dominated by the
lowest allowed mode, i.e., by thle=1, mode. The corre-
sponding damping exponent is(1* +1,+3—q). M(—1)0"#1=29/221 (| L g)1(|* —s—1)!

w21+ 1)!

G|C(z,z’ t)=

B. Asymptotic behavior at future null infinit _
ymp y Xy 7 4 oY (8)sY e _5(6)

We further consider the behavior of the fields at the
asymptotic region of future null infinitgcri, . It is easy to
verify that for this case the effective frequencies contributing
to the integral in Eq(12) are of orderO(1/u). Thus, fory
—y'<t<2y—y’' one may use thdw|y’'<1 asymptotic
limit of ¥,(y’,») and theM <|w| <y (Im w<0) asym-
ptotic limit of ¥,(y,w). Thus, ¥,(y',0)=Ay’' "1, and
\"I',l(y,w) ~ eiwy(2| + 1)!efiw(l+s+l)/2(2w)f(l +s+ 1)yfs/(|
—s)!, where we have used Eqgs. 13.5.5 and 13.5.124f, C. Asymptotic behavior along the black-hole outer horizon
respectively. Substituting this into E412), and using the
representation, Eq(14), for the spin-weighted spheroidal The asymptotic solution to the homogeneous equation
wave fur_lctionsSSI, togef[her with the cited p_roperties of the D(w)¥4(y,w)=0 at the black-hole outer horizoH, (y
angular integrals, one finds that the behavior of lttneode o) is [25] T4(y,w)=C(w)A 2610 M)Y where

(wherel=l,) along the asymptotic region of null infinity _ ? 2 o1 .
scri, is dominated by the following effective Green’s func- w,=a/(2Mr,) U+_M+(M —a)Tis Fhe location of
the black-hole outer horizdn In addition, we use

Xal*—l—zu—(l*—s)’ (17)

for I<I* —2 modes. The dominant modes at null infinity and
the corresponding damping exponents are given in Table I.

tions:
* i, T, (y',0)=Ay'' "1, Regularity of the solution requiré3to
Glc(z,zf;t)Z E be an analytic function ofv. We thus egpanc[:(w)=col
k=1%—qy +Ciw+ - - - for small w (as already explained, the late-time
behavior of the field is dominated by thewv-frequency con-
M (—1)(+k=25+2)20K K 4 g)1 (| —s+1)! tribution to the Green’s function

Substituting this into Eq(12), and using the representa-
tion Eq. (14) for the spin-weighted spheroidal wave func-
_ Tk o—(]— tions ¢S, we find that the asymptotic behavior of thmode
rk+1, —s * ¢ o1y ol =k~ (1-s+2) s
XY o CsYi(0)sYi (67)au : (where 1=1,) along the black-hole outer horizoH , is

(16) dominated by the following effective Green'’s function:

7(2k+1)!

TABLE |. Dominant modes and asymptotic damping exponents for gravitational and electromagnetic
fields: pure initial datal,=max(m],|s|), andl* is the initial mode of the perturbation.

Asymptotic region |* Dominant modés) Damping exponent
Timelike infinity lp=<I*<ly+1 lo —(215+3)
lot+2=<I* lo —(I*+1,+1)
Null infinity lp<I*<ly+1 lo —(lg—s+2)
lo+2<I* losI<I*-2 —(I*—s)
Outer horizon lp=<I*<ly+1 lo —(2lg+3+hb)
lo+2<I* lo —(I*+1p+1+b)
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L

C M(—l)(l* I+2-q 25)/222k 1(k+S)|(k—S)|(| +|+2—C|)!
Gy (z,2';t)= I
|( ) k2|03 k

[ (2k+1)!7?

A2y KL, Chpe _geY1(6)

v SYI**_q(0;)al*+|—2k—qeimw+yv—(|*+|+3—q+b), (18

whereq andL are defined as beforg]’, are constants, and VI. SUMMARY AND PHYSICAL IMPLICATIONS

b=0 generically except for the unique casa=0 with s We have analyzed the dynamics grfavitational (physi-

>0, in whichb=1 [32]. Hence, the late-time behavior of the ; . Lk .
gravitational and electromagnetic fields along the black-holecally’ the most interesting casand electromagnetic fields in

outer horizon is dominated by the lowest allowed mode. i erealistic rotating black-hole spacetimes. The main results
y ' “"and their physical implications are as follows:

liy lt D illzjroe)TOdbehe corresponding damping exponent is (1) We have shown that the late-time evolution of realistic
( 0 q+b). rotating gravitational collapse is characterized by inverse
power-law decaying tails at the three asymptotic regions:
timelike infinity i, , future null infinity scri,, and the
So far we have assumed that the initial pulse is made o?laCk'hOIe outer horizoh . (where the power-law behavior

puredata, characterized by one particular spherical harmoni€ multiplied by an oscillatory term, caused by the dragging

. m . ; : . of reference frames at the event horizohhe relaxation of
functpn sYpx - In this section we _c0n5|der the generic cas€he fields is in accordance with theo-hair conjecture[1].
That is, we assume that the initial pulse consists of a_II thernis work reveals thelynamicalphysical mechanism behind
allowed (=1o) modes(see also the most recent analysis of this conjecture in the context of rotating gravitational col-
Barack[33]). lapse.
The analysis here is very similar to the one presented in " The dominant modes at asymptotic late-times and the val-
Sec. IV: Using Eq.(12), together with the appropriate es of the corresponding damping exponents are summarized

V. GENERIC INITIAL DATA

asymptotic forms of¥,(y,») and ¥,(y’,») (as given in
Sec. IV for the various asymptotic regigngnd the repre-

sentation Eq(14) for the spheroidal wave functions, we find

that the asymptotic late-time behavior of thenode (where

[=1,) is dominated by the following effective Green'’s func-

tions:

GI(2,2';t)=MF1(yy")'o* LY, (0)sYf (0")a! ot~ (H1o+9),
(19

at timelike infinity i, , where
Fi=Fy(1,15,m,s)=(—1)(+lo*2s+2)/2p2p+1
X(I+1o+2)!(lg+9)!(Ig—=9)!Cy i /[ (2l
+1)!7%,

|
G|C<z,z';t>=k2I MFoy % 10 7SY (0) Y (8")
=10

Xal—ku—(l—s+2), (20)

at future null infinity scri,, where F,=F5(l,k,m,s)=
(— 1)U +k+2st2)29k(K 4 5)1(1 —s+1)!Cy /7(2k+1)!, and

G{(z,2';t) =l MF1A =52y 0 Ly, (0) Y (6')
x al ~logime.yy, —(I+1g+3+b)

(21)

at the black-hole outer horizoR ., where (['/ are con-
stants.

in Table | (for pure initial data and Table Il(for generic
initial datg). For reference we also include in Table Ill the
results for the scalar field toy model with pure initial data
(the s=0 caseé [21,22 (the results for generic initial data
coincide with those of gravitational and electromagnetic per-
turbationg. In these tables| is the multipole order of the
perturbation),=max(m|,|s|), andl* is the initial mode of
the perturbationfor pure initial data. For the scalar field
case 6=0), we havep=0 if | —|m| is even, ancp=1 oth-
erwise. Note that for pure initial data, the pulse with
=lg,lp+ 1 differs from initial data withly+2<I1*. This is
caused by the fact that thiy mode is not ignited(not
coupled to modes with smaller values of

The somewhat different character of the scalar field case
can be traced back to E¢b) for B,(r,6) and Eq.(13) for
L1(#,aw); it turns out thatB, is # independenin the s=0
case, and thus this term cannot couple different modes. To
this we should add the fact that for the scalar field case,
L1(6,aw) is proportional to &w)? (the term proportional to
awsvanishey and thus the coefficients,, in Eq. (14) van-
ish if || —k| is odd[21].

The damping exponents for generic initial data derived in
this paper agree with those derived most recently by Barack

TABLE Il. Dominant modes and asymptotic damping expo-
nents: generic initial data.

Asymptotic region Dominant mode Damping exponent

Timelike infinity lo —(2l4+3)
Null infinity lo —(lg—s+2)
Outer horizon lo —(2l3+3+b)
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TABLE Ill. Dominant modes and asymptotic damping exponents for scalar fields: pure initialplata.
=0 if | —|m| is even, ang=1 otherwise.

Asymptotic region I* Dominant modés) Damping exponent

Timelike infinity lp=sI*<ly+1 I* —(21*+3)
lopt+2<I* lo+p —(I*+lp+p+1)

Null infinity lo<I*<ly+1 [* —(1*+2)
lot+2=<I* loptpsI<I*-2 —1*

Outer horizon lp=<I*<ly+1 I* —(21*+3)
lo+2<I* lo+p —(I*+lp+p+1)

[33] using an independent analysis. Note, however, thaErom Eq.(19) it is easy to see that the time scaleat which
Barack’s analysis cannot yield the values of the dampinghe late-time tail of rotating gravitational collapse is consid-
exponents for pure initial data. _ _ erably different from the corresponding tail of non-rotating
(2) The uniqueand important feature abtating gravita-  collapse(for | >1, mode$ is t.=yy’/a, wherey’ is roughly
tional collapse(besides the oscillatory behavior along the the average location of the initial pulse.
black_—hole horizohis the activeqouplingof different mode;. (4) It has been widely accepted that the late-time tail of
Physically, this phenomenon is caused by the dragging Ofiravitational collapse igniversalin the sense that it isde-
reference frames, due to the black-hét star'y rotation  endentof the type of the massless field consideredy.,
(this phenomenon is absent_ in the non-rotatmg(_) 933& . scalar, neutrino, electromagnetic, and gravitatiprigtis be-
As a consequence, the late-time evolution of realistic rotating ¢ \vas based osphericallysymmetric analyses. Our analy-
gravitational collapse has an angular distribution which is ’

; . I .7 sis, however, turns over this point of view. In particular, the
generically different from the original angular distribution o . . h
(in the initial pulse power indiced +1,+ 3 at a fixed radius found in our analy-

(3) We emphasize that the power indices at a fixed radiu?is are genericalldifferentfrom those obtained in the _scalar
in rotating Kerr spacetimesl{|,+ 3 for generic initial data leld tpy model[21,22 I+|m|.+p+3 (where p=0 if I
andl* +1 +3—q for pure initial dataare genericallgmaller M| i even, and=1 otherwisg. Thus, different types of
than the corresponding power indicébe well-known 2 f|elds havecﬁfferent_decaymg rates. This is a_rather surpris-
+3) in spherically symmetric Schwarzschild spacetimes. N9 conclusion, which has been overlooked in the last three
(For generic initial data there is an equality only for the decades.

lowest allowed modé=1,, while for pure initial data there

is an equality only for thé=1, mode provided it character-

izes the initial pulse.This implies aslowerdecay of pertur- ACKNOWLEDGMENTS
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