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Mode coupling in rotating gravitational collapse: Gravitational and electromagnetic perturbations

Shahar Hod
The Racah Institute for Physics, The Hebrew University, Jerusalem 91904, Israel

~Received 1 February 1999; published 25 February 2000!

We consider the late-time evolution ofgravitational and electromagnetic perturbations in realisticrotating
Kerr spacetimes. We give a detailed analysis of the mode-coupling phenomena in rotating gravitational col-
lapse. A consequence of this phenomena is that the late-time tail is dominated by modes which, in general, may
have an angular distribution different from the original one. In addition, we show that different types of fields
havedifferent decaying rates. This result turns over the traditional belief~which has been widely accepted
during the last three decades! that the late-time tail of gravitational collapse is universal.

PACS number~s!: 04.70.Bw, 04.20.Ex, 04.20.Ha
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I. INTRODUCTION

The no-hair conjecture, introduced by Ruffini and
Wheeler in the early 1970s@1#, states that the external fiel
of a black hole relaxes to a Kerr-Newman field characteri
solely by the black-hole mass, charge and angular mom
tum.

Price@2# was the first to analyze the mechanism by wh
the spacetime outside a~nearly spherical! star divests itself
of all radiative multipole moments, and leaves behind
Schwarzschild black hole; it was demonstrated that all ra
tive perturbations decay asymptotically as an inverse po
of time, the power indices equal 2l 13 ~in absolute value!,
where l is the multipole order of the perturbation. The
inverse power-law tails are a direct physical consequenc
the backscattering of waves off the effective curvature
tential at asymptotically far regions@3,2#. Leaver@4# demon-
strated that the late-time tail can be associated mathem
cally with the existence of a branch cut in the Gree
function for the wave propagation problem.

The analysis of Price has been extended by many auth
We shall not attempt to review the numerous works that h
been written addressing the problem of the late-time evo
tion of gravitational collapse. For a partial list of referenc
see, e.g.,@5–16#.

The above-mentioned analyses were restricted, howe
to spherically symmetric backgrounds. It is well known
however, that realistic stellar objects generally rotate ab
their axis, and are therefore not spherical. Thus, the natur
the physical process of stellar core collapse to form a bl
hole is essentiallynon-spheric, and an astrophysically reali
tic model must take into account the angular momentum
the background geometry.

The corresponding problem of wave dynamics in realis
rotating Kerr spacetimes is much more complicated due
the lack of spherical symmetry. A first progress has be
achieved only recently@17–22#. Evidently, the most interest
ing situation from a physical point of view is the dynamics
gravitational waves inrotating Kerr spacetimes. Recently
we have begun an analytic study of this fascinating prob
@23#. This was done by analyzing the asymptotic late-tim
solutions of Teukolsky’s master equation@24,25#, which
governs the evolution of massless perturbations fields in K
spacetimes. In this paper we give a detailed analysis of
problem. In particular, we give a full account of the pheno
0556-2821/2000/61~6!/064018~7!/$15.00 61 0640
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enon of mode coupling in rotating spacetimes~this phenom-
enon has been observed in numerical solutions of Teu
sky’s equation@17,18#!.

The plan of the paper is as follows. In Sec. II we give
short description of the physical system and summarize
main analytical results presented in Ref.@23#. In Sec. III we
discuss the effects of rotation and the mathematical to
needed for the physical analysis are derived. In Sec. IV
analyze the active coupling of different gravitational a
electromagnetic modes during a rotating gravitational c
lapse, with pure initial data. In Sec. V we consider the la
time evolution of realistic rotating gravitational collaps
with generic initial data. We conclude in Sec. VI with
summary of our analytical results and their physical implic
tions.

II. REVIEW OF RECENT ANALYTICAL RESULTS

The dynamics of massless perturbations outside a real
rotating Kerr black hole is governed by Teukolsky’s mas
equation@24,25#

F ~r 21a2!2
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2a2sin2uG]2c

]t2 1
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]u S sinu
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]u D22sFa~r 2m!
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i cosu

sin2u G ]c

]w

22sFM ~r 22a2!

D
2r 2 ia cosuG ]c

]t
1~s2cot2u2s!c

50, ~1!

whereM anda are the mass and angular momentum per u
mass of the black hole, andD5r 222Mr 1a2 . ~We use
gravitational units in whichG5c51.! The parameters is
called the spin weight of the field. For gravitational pertu
©2000 The American Physical Society18-1
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bationss562, while for electromagnetic perturbationss5
61. The field quantitiesc which satisfy Teukolsky’s equa
tion are given in@25#.

Resolving the field in the form

c5D2s/2~r 21a2!21/2 (
m52`

`

Cmeimw, ~2!

wherem is the azimuthal number, one obtains a wave eq
tion for each value ofm ~we suppress the indexm!:

DC[FB1

]2

]t2 1B2

]

]t
2

]2

]y2 1B3

2
D

~r 21a2!2

1

sinu

]

]u S sinu
]

]u D GC50, ~3!

where the tortoise radial coordinatey is defined bydy
5@(r 21a2)/D#dr. The coefficientsBi(r ,u) are given by

B1~r ,u!512
Da2sin2u

~r 21a2!2 ~4!

and

B2~r ,u!5H 4iMmar

D
22sFM ~r 22a2!

D
2r

2 ia cosuG J D

~r 21a2!2 . ~5!

@The explicit expression ofB3(r ,u) is not important for the
analysis.#

The time evolution of a wave field described by Eq.~3! is
given by

C~z,t !52pE E
0

p

$B1~z8!@G~z,z8;t !C t~z8,0!

1Gt~z,z8;t !C~z8,0!#

1B2~z8!G~z,z8;t !C~z8,0!%sinu8du8dy8, ~6!

for t.0, wherez stands for (y,u). The ~retarded! Green’s
function G(z,z8;t) is defined by DG(z,z8;t)5d(t)d(y
2y8)d(u2u8)/2p sinu, with G50 for t,0. We express
the Green’s function in terms of the the Fourier transfo
G̃l(y,y8;v):

G~z,z8;t !5
1

~2p!2 (
l 5 l 0

` E
2`1 ic

`1 ic

G̃l~y,y8;v!

3 sSl
m~u,av!sSl

m~u8,av!e2 ivtdv, ~7!
06401
-

wherec is some positive constant andl 05max(umu,usu). The
functions sSl

m(u,av) are the spin-weighted spheroidal ha
monics which are solutions to the angular equation@25#

F 1

sinu

]

]u S sinu
]

]u D1a2v2cos2u2
m2

sin2u
22avs cosu

2
2mscosu

sin2u
2s2cot2u1s1sAl

mG sSl
m50. ~8!

For theav50 case, the eigenfunctionssSl
m(u,av) reduce

to the spin-weighted spherical harmonicssYl
m(u,f)

5sSl
m(u)eimw, and the separation constantssAl

m(av) are
simply sAl

m5( l 2s)( l 1s11) @26#.
The Fourier transform is analytic in the upper halfw plane

and it satisfies the equation@25#

D̃~v!G̃l[H d2

dy2 1FK222is~r 2M !K1D~4ir vs2l!

~r 21a2!2

2H22
dH

dy G J G̃l~y,y8;v!

5d~y2y8!, ~9!

where K5(r 21a2)v2am, l5A1a2v222amv, and H
5s(r 2M )/(r 21a2)1rD/(r 21a2)2 .

Define two auxiliary functionsC̃1 andC̃2 as solutions to
the homogeneous equationD̃(v)C̃15D̃(v)C̃250, with the
physical boundary conditions of purely ingoing waves cro
ing the event horizon and purely outgoing waves at spa
infinity, respectively. In terms ofC̃1 andC̃2, and henceforth
assumingy8,y,

G̃l~y,y8;v!52C̃1~y8,v!C̃2~y,v!/W~v!,

where we have used the Wronskian relationW(v)
5W(C̃1 ,C̃2)5C̃1C̃2,y2C̃2C̃1,y .

It is well known that the late-time behavior of massle
perturbations fields is determined by the backscattering fr
asymptoticallyfar regions@3,2#. Thus, the late-time behavio
is dominated by thelow-frequency contribution to the
Green’s function, for only low frequencies will be backsca
tered by the small effective curvature potential~at r @M ).
Therefore, a small-v approximation @or equivalently, a
large-r approximation of Eq.~9!# is sufficient in order to
study the asymptoticlate-time behavior of the fields@12#.
With this approximation, the two basic solutions required
order to build the Fourier transform areC̃15r l 11eivrM ( l
1s1122ivM ,2l 12,22ivr ) and C̃25r l 11eivrU( l 1s
1122iwM ,2l 12,22ivr ), whereM (a,b,z) andU(a,b,z)
are the two standard solutions to the confluent hypergeom
ric equation@27#. Then
8-2
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W~C̃1 ,C̃2!5 i ~21! l 11~2l 11!! ~2v!2(2l 11)/~ l 1s!!.
~10!

In order to calculateG(z,z8;t) using Eq.~7!, one may
close the contour of integration into the lower half of t
complex frequency plane. Then, one identifies three dist
contributions toG(z,z8;t) @4#: prompt contribution, quasi-
normal modes, and tail contribution. The late-time tail
associated with the existence of a branch cut~in C̃2) in the
complex frequency plane@4# ~usually placed along the nega
tive imaginaryv axis!. A little arithmetic leads to@23#

G̃l
C~y,y8;v!5F C̃2~y,ve2p i !

W~ve2p i !
2

C̃2~y,v!

W~v!
GC̃1~y8,v!

5
~21! l 2s4pMv~ l 2s!!

~2l 11!!

C̃1~y,v!C̃1~y8,v!

W~v!
.

~11!

Taking cognizance of Eq.~7!, we obtain

GC~z,z8;t !5 (
l 5 l 0

`
iM ~21!s22l 11~ l 1s!! ~ l 2s!!

p@~2l 11!! #2

3E
0

2 i`

C̃1~y,v!C̃1~y8,v!sSl~u,av!

3 sSl~u8,av!v2l 12e2 ivtdv. ~12!

III. ROTATION EFFECTS:
THE COUPLING OF DIFFERENT MODES

The rotational dragging of reference frames, caused
the rotation of the black hole~or star!, produces an active
coupling between modes ofdifferent l ~but the samem!.
Mathematically, it is theu dependence of the spin-weighte
spheroidal wave functionssSl

m(u,av) and of the coefficients
B1(r ,u) andB2(r ,u) which is responsible for the interactio
between different modes;no coupling occurs in the non
rotating (a50) case.

The angular equation~8! is amenable to a perturbatio
treatment for smallaw @28,29#; we write it in the form (L0

1L1)sSl
m52sAl

m
sSl

m , where L0(u) is the v-independent
part of Eq.~8!, and

L1~u,av!5~av!2cos2u22avs cosu, ~13!

and we use the spin-weighted spherical functionssYl
m as a

representation. They satisfyL0
sYl52sAl

(0)
sYl with sAl

(0)

5( l 2s)( l 1s11) ~we suppress the indexm on sAl and
sYl). For small av a standard perturbation theory yield
~see, for example,@30#!

sSl~u,av!5 (
k5 l 0

`

Clk~av! u l 2ku
sYk~u!, ~14!
06401
ct

where, to leading order inav, the coefficientsClk(av) are
v2independent@21,29#. Equation ~14! implies that the
black-hole rotation mixes ~and ignites! different spin-
weighted spherical harmonics.

The coefficientsB1(r ,u) and B2(r ,u) appearing in the
time-evolution equation~6! depend explicitly on the angula
variable u through therotation of the black hole~no such
dependence exist in the non-rotatinga50 case!. Therefore,
in order to elucidate the coupling between different mod
we should evaluate the integrals ^slmuskm&,
^slmusin2uuskm&, and ^slmucosuuskm&, where
^slmuF(u)uskm&[*sYl

m* F(u)sYk
mdV @see Eqs.~4! and ~5!

for the definition of theBi(r ,u) coefficients#. In addition, the
values of the coefficientsClk depend on the integrals@21,29#
^slmucos2 uuskm& and^slmucosuuskm& @see Eq.~13! for the
definition of the perturbation termL1(u,av), which is re-
sponsible for the mixing of modes in rotating background#.

The spin-weighted spherical harmonics are related to
rotation matrix elements of quantum mechanics@31#. Hence,
standard formulas are available for integrating the produc
three such functions~these are given in terms of the Clebsc
Gordan coefficients@28,21,29#!. In particular, the integrals
^sl0usin2uusk0& and ^sl0ucos2uusk0& vanish unlessl 5k,k
62, while the integral^sl0ucosuusk0& vanishes unlessl
5k61. For non-axially symmetric (mÞ0) modes,
^slmusin2uuskm&Þ0 for l 5k,k61,k62 ~the same holds for
the integral^sl0ucos2uusk0&), and ^slmucosuuskm&Þ0 for
l 5k, k61 ~all other matrix elements vanish!. Note also that
the complexcoefficient B2 couples the real and imaginar
parts ofCm .

We are now in a position to evaluate the late-time evo
tion of realistic rotating gravitational collapse. We shall co
sider two kinds of initial data: pure initial data, which corr
sponds to the assumption that the initial angular distribut
is characterized by a pure spin-weighted spherical harmo
function sYl*

m , and generic initial data where the initial puls
consists of all allowed modes~all spherical harmonics func
tions with l> l 0).

IV. PURE INITIAL DATA

A. Asymptotic behavior at timelike infinity

As explained, the late-time behavior of the fields shou
follow from the low-frequency contribution to the Green’
function. Actually, it is easy to verify that the effective con
tribution to the integral in Eq.~12! should come fromuvu
5O(1/t). Thus, we may use theuvur !1 limit of C̃1(r ,v)
in order to obtain the asymptotic behavior of the fields
timelike infinity ~wherey,y8!t). Using Eq. 13.5.5 of@27#

one findsC̃1(r ,v).Arl 11 . Substituting this into Eq.~12!,
and using the representation, Eq.~14!, for the spin-weighted
spheroidal wave functionssSl , together with the cited prop
erties of the angular integrals@of the form^slmuF(u)uskm&#,
we find that the asymptotic late-time behavior of thel mode
~where l> l 0) is dominated by the following effective
Green’s function:
8-3
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Gl
C~z,z8;t !5 (

k5 l 0

L
M ~21!( l* 1 l 122q22s)/222k11~k1s!! ~k2s!! ~ l * 1 l 122q!!

p@~2k11!! #2 ~yy8!k11CklCkl* 2qsYl~u!sYl* 2q
* ~u8!

3al* 1 l 22k2qt2( l* 1 l 132q), ~15!
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where q5min(l * 2 l 0,2). Here, L5 l * 2q for l> l * 21
modes, andL5 l for l< l * 22 modes. Thus, the late-tim
behavior of the gravitational and electromagnetic fields at
asymptotic region of timelike infinityi 1 is dominated by the
lowest allowed mode, i.e., by thel 5 l 0 mode. The corre-
sponding damping exponent is2( l * 1 l 0132q).

B. Asymptotic behavior at future null infinity

We further consider the behavior of the fields at t
asymptotic region of future null infinityscri1 . It is easy to
verify that for this case the effective frequencies contribut
to the integral in Eq.~12! are of orderO(1/u). Thus, fory
2y8!t!2y2y8 one may use theuvuy8!1 asymptotic
limit of C̃1(y8,v) and theM!uvu21!y (Im v,0) asym-
ptotic limit of C̃1(y,v). Thus, C̃1(y8,v).Ay8 l 11, and
C̃1(y,v) . eivy(2l 11)!e2 ip( l 1s11)/2(2v)2( l 1 s1 1)y2s/ ( l
2s)!, where we have used Eqs. 13.5.5 and 13.5.1 of@27#,
respectively. Substituting this into Eq.~12!, and using the
representation, Eq.~14!, for the spin-weighted spheroida
wave functionssSl , together with the cited properties of th
angular integrals, one finds that the behavior of thel mode
~where l> l 0) along the asymptotic region of null infinity
scri1 is dominated by the following effective Green’s fun
tions:

Gl
C~z,z8;t !5 (

k5 l* 2q1

l* 1q2

3
M ~21!( l 1k22s12)/22k~k1s!! ~ l 2s11!!

p~2k11!!

3y8k11v2sCklsYl~u!sYk* ~u8!al 2ku2( l 2s12),

~16!
06401
e

g

for l> l * 21 modes, whereq15min(l * 2 l 0,2) and q2

5min(l 2 l * ,2), and

Gl
C~z,z8;t !5

M ~21!( l* 1 l 22s)/22l~ l 1s!! ~ l * 2s21!!

p~2l 11!!

3y8 l 11v2sCll * 22sYl~u!sYl* 22
* ~u8!

3al* 2 l 22u2( l* 2s), ~17!

for l< l * 22 modes. The dominant modes at null infinity an
the corresponding damping exponents are given in Table

C. Asymptotic behavior along the black-hole outer horizon

The asymptotic solution to the homogeneous equa

D̃(v)C̃1(y,v)50 at the black-hole outer horizonH1 (y

→2`) is @25# C̃1(y,v)5C(v)D2s/2e2 i (v2mv1)y, where
v15a/(2Mr 1) @r 15M1(M22a2)1/2 is the location of
the black-hole outer horizon#. In addition, we use

C̃1(y8,v).Ay8 l 11 . Regularity of the solution requiresC to
be an analytic function ofv. We thus expandC(v)5C0

1C1v1••• for smallv ~as already explained, the late-tim
behavior of the field is dominated by thelow-frequency con-
tribution to the Green’s function!.

Substituting this into Eq.~12!, and using the representa
tion Eq. ~14! for the spin-weighted spheroidal wave fun
tions sSl , we find that the asymptotic behavior of thel mode
~where l> l 0) along the black-hole outer horizonH1 is
dominated by the following effective Green’s function:
gnetic
TABLE I. Dominant modes and asymptotic damping exponents for gravitational and electroma
fields: pure initial data.l 05max(umu,usu), and l * is the initial mode of the perturbation.

Asymptotic region l * Dominant mode~s! Damping exponent

Timelike infinity l 0< l * < l 011 l 0 2(2l 013)
l 012< l * l 0 2( l * 1 l 011)

Null infinity l 0< l * < l 011 l 0 2( l 02s12)
l 012< l * l 0< l< l * 22 2( l * 2s)

Outer horizon l 0< l * < l 011 l 0 2(2l 0131b)
l 012< l * l 0 2( l * 1 l 0111b)
8-4
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Gl
C~z,z8;t !5 (

k5 l 0

L

sGk

M ~21!( l* 1 l 122q22s)/222k11~k1s!! ~k2s!! ~ l * 1 l 122q!!

p@~2k11!! #2 D2s/2y8k11CklCkl* 2qsYl~u!

3 sYl* 2q
* ~u8!al* 1 l 22k2qeimw1yv2( l* 1 l 132q1b), ~18!
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whereq andL are defined as before,sGk are constants, and
b50 generically, except for the unique casem50 with s
.0, in whichb51 @32#. Hence, the late-time behavior of th
gravitational and electromagnetic fields along the black-h
outer horizon is dominated by the lowest allowed mode,
by the l 5 l 0 mode. The corresponding damping exponen
2( l * 1 l 0132q1b).

V. GENERIC INITIAL DATA

So far we have assumed that the initial pulse is made
puredata, characterized by one particular spherical harmo
function sYl*

m . In this section we consider the generic ca
That is, we assume that the initial pulse consists of all
allowed (l> l 0) modes~see also the most recent analysis
Barack@33#!.

The analysis here is very similar to the one presented
Sec. IV: Using Eq. ~12!, together with the appropriat
asymptotic forms ofC̃1(y,v) and C̃1(y8,v) ~as given in
Sec. IV for the various asymptotic regions!, and the repre-
sentation Eq.~14! for the spheroidal wave functions, we fin
that the asymptotic late-time behavior of thel mode~where
l> l 0) is dominated by the following effective Green’s fun
tions:

Gl
C~z,z8;t !5MF1~yy8! l 011

sYl~u!sYl 0
* ~u8!al 2 l 0t2( l 1 l 013),

~19!

at timelike infinity i1 , where

F15F1~ l ,l 0 ,m,s!5~21!( l 1 l 012s12)/222l 011

3~ l 1 l 012!! ~ l 01s!! ~ l 02s!!Cl 0l /p@~2l 0

11!! #2,

Gl
C~z,z8;t !5 (

k5 l 0

l

MF2y8k11v2s
sYl~u!sYk* ~u8!

3al 2ku2( l 2s12), ~20!

at future null infinity scri1 , where F25F2( l ,k,m,s)5
(21)( l 1k12s12)/22k(k1s)!( l 2s11)!Ckl /p(2k11)!, and

Gl
C~z,z8;t !5sG l8MF1D2s/2y8 l 011

sYl~u!sYl 0
* ~u8!

3al 2 l 0eimv1yv2( l 1 l 0131b), ~21!

at the black-hole outer horizonH1 , where sG l8 are con-
stants.
06401
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VI. SUMMARY AND PHYSICAL IMPLICATIONS

We have analyzed the dynamics ofgravitational ~physi-
cally, the most interesting case! and electromagnetic fields in
realistic rotating black-hole spacetimes. The main resu
and their physical implications are as follows:

~1! We have shown that the late-time evolution of realis
rotating gravitational collapse is characterized by inve
power-law decaying tails at the three asymptotic regio
timelike infinity i 1 , future null infinity scri1 , and the
black-hole outer horizonH1 ~where the power-law behavio
is multiplied by an oscillatory term, caused by the draggi
of reference frames at the event horizon!. The relaxation of
the fields is in accordance with theno-hair conjecture@1#.
This work reveals thedynamicalphysical mechanism behin
this conjecture in the context of rotating gravitational co
lapse.

The dominant modes at asymptotic late-times and the
ues of the corresponding damping exponents are summa
in Table I ~for pure initial data! and Table II~for generic
initial data!. For reference we also include in Table III th
results for the scalar field toy model with pure initial da
~the s50 case! @21,22# ~the results for generic initial data
coincide with those of gravitational and electromagnetic p
turbations!. In these tables,l is the multipole order of the
perturbation,l 05max(umu,usu), andl * is the initial mode of
the perturbation~for pure initial data!. For the scalar field
case (s50), we havep50 if l 2umu is even, andp51 oth-
erwise. Note that for pure initial data, the pulse withl *
5 l 0 ,l 011 differs from initial data withl 012< l * . This is
caused by the fact that thel 0 mode is not ignited~not
coupled! to modes with smaller values ofl.

The somewhat different character of the scalar field c
can be traced back to Eq.~5! for B2(r ,u) and Eq.~13! for
L1(u,av); it turns out thatB2 is u independentin the s50
case, and thus this term cannot couple different modes
this we should add the fact that for the scalar field ca
L1(u,av) is proportional to (av)2 ~the term proportional to
aws vanishes!, and thus the coefficientsClk in Eq. ~14! van-
ish if u l 2ku is odd @21#.

The damping exponents for generic initial data derived
this paper agree with those derived most recently by Bar

TABLE II. Dominant modes and asymptotic damping exp
nents: generic initial data.

Asymptotic region Dominant mode Damping exponen

Timelike infinity l 0 2(2l 013)
Null infinity l 0 2( l 02s12)
Outer horizon l 0 2(2l 0131b)
8-5
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TABLE III. Dominant modes and asymptotic damping exponents for scalar fields: pure initial dap
50 if l 2umu is even, andp51 otherwise.

Asymptotic region l * Dominant mode~s! Damping exponent

Timelike infinity l 0< l * < l 011 l * 2(2l * 13)
l 012< l * l 01p 2( l * 1 l 01p11)

Null infinity l 0< l * < l 011 l * 2( l * 12)
l 012< l * l 01p< l< l * 22 2 l *

Outer horizon l 0< l * < l 011 l * 2(2l * 13)
l 012< l * l 01p 2( l * 1 l 01p11)
h
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@33# using an independent analysis. Note, however, t
Barack’s analysis cannot yield the values of the damp
exponents for pure initial data.

~2! The uniqueand important feature ofrotating gravita-
tional collapse~besides the oscillatory behavior along t
black-hole horizon! is the activecouplingof different modes.
Physically, this phenomenon is caused by the dragging
reference frames, due to the black-hole~or star’s! rotation
~this phenomenon is absent in the non-rotatinga50 case!.
As a consequence, the late-time evolution of realistic rota
gravitational collapse has an angular distribution which
generically different from the original angular distributio
~in the initial pulse!.

~3! We emphasize that the power indices at a fixed rad
in rotating Kerr spacetimes (l 1 l 013 for generic initial data
andl * 1 l 132q for pure initial data! are genericallysmaller
than the corresponding power indices~the well-known 2l
13) in spherically symmetric Schwarzschild spacetime
~For generic initial data there is an equality only for t
lowest allowed model 5 l 0, while for pure initial data there
is an equality only for thel 5 l 0 mode provided it character
izes the initial pulse.! This implies aslowerdecay of pertur-
bations in rotating Kerr spacetimes. Stated in a more pic
rial way, a rotating Kerr black hole becomes ‘‘bald’’ slowe
than a spherically symmetric Schwarzschild black ho
ys

D

ois

06401
at
g

of

g
s

s

.

-

.

From Eq.~19! it is easy to see that the time scaletc at which
the late-time tail of rotating gravitational collapse is cons
erably different from the corresponding tail of non-rotatin
collapse~for l . l 0 modes! is tc5yy8/a, wherey8 is roughly
the average location of the initial pulse.

~4! It has been widely accepted that the late-time tail
gravitational collapse isuniversalin the sense that it isinde-
pendentof the type of the massless field considered~e.g.,
scalar, neutrino, electromagnetic, and gravitational!. This be-
lief was based onsphericallysymmetric analyses. Our analy
sis, however, turns over this point of view. In particular, t
power indicesl 1 l 013 at a fixed radius found in our analy
sis are genericallydifferentfrom those obtained in the scala
field toy model @21,22# l 1umu1p13 ~where p50 if l
2umu is even, andp51 otherwise!. Thus, different types of
fields havedifferentdecaying rates. This is a rather surpri
ing conclusion, which has been overlooked in the last th
decades.
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