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The dynamics of a charged spinning test particle in general relativity is studied in the context of gravito-
electromagnetism. Various families of test observers and supplementary conditions are examined. The spin-
gravity-electromagnetism coupling is investigated for motion in the background of a Reissner-Norblstck
hole both in the exact spacetime and in the weak-field approximation. Results are compared with those of the
theory.

PACS numbs(s): 04.20.Cv

[. INTRODUCTION curve [6-8]. The cutoff at successive multipole orders de-
fines a hierarchy of elementary multipole partic(sse, e.g.,

In this paper we consider a charged massive test particlgs,15—17). The first cutoff yields a point particléor single
in the Dixon-Souriau model1-9], which is a first order pole) governed by the geodesic equation of motion.
cutoff in the multipole expansion of the equations of motion The next cutoff leads to the dipoléspinning”) particle
of a small extended body. The model includes spin-which interests us here. The equations of motion for such a
electromagnetism and spin-gravity coupling terms, but it re-particle were first derived in the purely gravitational case by
quires the assumption of additional supplementary condiPapapetroil5] as
tions to be completed. For uncharged particles it reduces to
the well-known Papapetrou model.

Here we briefly review the model and the different possi- -— “=§ p,,B“SP”UB,

bilities for the supplementary conditions, with their corre- dry
sponding meaning in terms of the center-of-mass world line
definition. We then provide the splitting of the equations of D
p p g q _SaB: pauﬁ_ pﬁua, (1)

motion with respect to a frame associated with a generic dr,
four-velocity fieldu, and then specialize the results for cer-
tain preferred families of observers. . . . .

As an example, we consider the Reissner-Nordstro WhereR,,, is the Riemann tensop® is the (generalized

ap i i i i
background and study the evolution of a particle with respecﬁ%ﬂigtumis\/?ﬁ;ofnit tlzna é?]?t'vsggg:&gg SB'E SncS););’rL]Je
to the family of static observers. We thus incorporate into g, Tu > 9 e :
center line” |, used to make the multipole reduction, and

single framework the exact generalization of earlier results hereX—X is th i int wh Id line i
belonging to the purely electromagnetic cg$6—12 and to %’Vh erf(_e Id_ (LU) 'Sd € cende][_ po(;n V\i osle wor Ulr']te 15 -

the purely gravitational cagd.1,13,14. We also discuss the e fieldsS U, andp are defined on y_aongu - Cnis aré -
weak field slow motion approximation and somewhat Com_chosen here so that the speed of light in empty space satisfies

. ! . . . =1.
lete and generalize the picture given in the literature. c=4. . .
P g P g It is well known that the number of independent equations

in Eq. (1) is less than that of the unknown quantities; three
Il. THE PAPAPETROU EQUATIONS OF MOTION additional scalar supplementary conditigf8C) are needed

In general relativity, an extended body is described by it{;r the scheme to be completed. Once a suitable choice has

associated energy-momentum tensor. A small body can b .
studied by a multipole expansion method enabling it to be"e comple_te set of equations. - . .
equivalently described by a set of multipokenergy- The various supplementary condmpns which are consid-
momentun) moments defined a|0ng a central ||['@_3’1a ered in the Iiteratu':\e are all of the fOI’mISaﬁZO for some

An analogous scheme is obtained by considering a singuldimelike unit vectoru along the world lind ;. According to
energy-momentum tensor distribution defined along a singléhe special relativistic analogy18], p. 163, this is equiva-

een madel, p, andS can in principle be determined by

0556-2821/2000/686)/06401310)/$15.00 61 064013-1 ©2000 The American Physical Society



DONATO BINI, GIANLUCA GEMELLI, AND REMO RUFFINI PHYSICAL REVIEW D 61 064013

lent to defining the central ling, as the world line of the S=ub ASE) + gM) )
. . . . (u) (u) »
centroid of the body with respect to an observer family with

four-velocity u. L _ _ _ where the completely covariaftontravariantform of a ge-

The supplementary conditions discussed in the literaturg o i tensorX is denoted by (XH).
are the following:CP u=u (Corinaldesi-Papapetrou condi-  For a generic two-forns the component notation for this
tion: see, e.g[14,19), whereu is a(known) preferred fam-  decomposition is
ily of observers usually suggested by the backgrou‘hcﬁ
=p/||p||=u (Tulkzyjew’'s condition: see, e.g[1,5,20,23); Sus=2U[aS(E) 51+ S wp=2U0aS(E) 51+ Twyap” Sty o
andP u=U (Pirani’s condition: see, e.¢q.11,22,23).

Clearly the fieldsx, U, p, andS all depend on the choice
of supplementary conditiorf21] so a more precise notation wheres%) , denotes the spatial dual @%) ap-
would beXsg, Usg, Pisg.  Sso. Where the index According to the measurement process, the spatial and
values SG-CP,T,P correspond to these choices. This cum-temporal projection of spacetime derivative operators gives
bersome notation will be avoided when possible, but it isrise to the corresponding spatial and temporal counterparts.
essgntlal to clarify certain relationships between differentas described if28], the spatial covariant derivative is de-
choices. _ _ fined asV .= PwPw) 2V, (the first projection operator

The existence and uniqueness of the center line of thgcis on the tensorial indices of the field after the derivative is
body under different supplementary conditions has beegnyjieg and the spatial Lie derivative along a generic figld
studied by many authorsee, e.g.[21,24-217). Clearly,U g Ly, =PLx. Similarly one can construct temporal de-
andu are the two four-velocities most naturally associated.,atv/ac- ; At -
with the particle. Consequently, often in the Ii}t/erature th fivatives; the Lie temporal derivative e, = PyLu and

: ' » N€he Fermi-Walker temporal derivativé s, ,y=P,Vy. The

associated centers, tRecenter and th@ center respectively, coyariant derivative ofi has the following decomposition:
are both referred to as the center of mass of the particle

[21,27]. The P center has also recently been renamed the
“center of trace”[23].

The case in which both gravitational and electromagnetic
fields are present was studied by Dixon and Souria8l. In  wherea,,=V x4 u e LRS, is the acceleration vectos,
the following we will work with the Dixon-Souriau equa- LRS,®LRS, is the (symmetrig deformation two-tensor
tions of motion(see Sec. IY which reduce to the classic and o, € LRS, is the vorticity vector of the observer con-

Vo UP= 0P wo ) + 0wy — Usd 4

Papapetrou ones in the purely gravitational case. gruence.
If X'is a tensor field defined only along the lihg (pa-
Ill. THE SPLITTING OF THE SPACETIME AND rametrized by the proper timg, and having unit tangert),
GRAVITOELECTROMAGNETISM then the “measurement” oD X/dry, the intrinsic deriva-

o ) ) tive alongU, by a family of observers with four-velocityis
In general relativity a reference frame is defined by a

congruence of timelike curves, the set of world lines of a D
family of observers. We denote hythe unit tangent vector (wUu) g

yol ; y : 9 T XV awn T Vg o 0% (5
(u-u=—1) of the world lines of a generic reference frame, T(U,u)
namely the observer four-velocity field. The splitting of the
spacetime along and its ortho'gonal local rest spa@ERSU) whereU =y ylu+ vyl d7u.m=Yw.wdy is the dif-
gives the measurement relative uoof any tensor field de- ferential of the standard relative time parametrization along
fined on a domain of the spacetime; similarly one can obtaifhe |ine U, and the fieldX on the right hand side is some
the formulation relative ta of any tensor equation. For no- smooth extension oX to a neighborhood of the line.

tations and conventions we follol@8] with a slight change; It is convenient to introduce the composition of projection
the subscript notation for spatial projections and relative obmaps from the local rest space of one observer onto that of
server quantities is adopted. another*

The measurement of the spacetime metric gives rise to the
spatial metricP ),s=0.51U.Ug, i.€., the spatial projec-
tion operator with respect to; the temporal projection op-
erator alonglis —u,Ug. Analogouslynyage=U" 1,00 1S
the only spatial field resulting from the measurement of theNVe also introduce the relative gravitational fid?cﬁf?,v)’uvu)
unit (oriented volume four-form »; it defines the spatial (see[28]),
cross productX , as well as the spatial duality operation on
LRS,.

. From the measurement O_f mform S only two d'l\s,lt'nCt This subscript notation for the projectidh, y differs from the
fields result: the purely spatial or “magnetic” pag,) (a argument notatiorP , , of [28] by interchangings andU so that
p-form) and the “electric” pal’tSEE)) [a (p—1)-form], the  the second subscript of the pair of four-velocities always refers to
spatial projection of a contraction with a single factoruof  the space in which the result lives.

Pw,uy=Pw)Pu) 'LRS—LRSy.
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FIE) L = — Yk Py D prm IR, SR eF U I \SHYE
(w,u,u)~ ~ Y(U,u) W47, Ep =5 Roop eF 5 v
__p Du D
— Wdry msaﬁz peUP—pPUT+\[S*F F—SPLF 2], (9)
= +lv whereF“# is the electromagnetic field and is an electro-
Y(U’u)[g(u) I (U'U)H magnetic coupling scaldr.The spatial dual of the spin-

electromagnetism coupling ter®“F,#—SP*F ,* appear-
, (6) ing in the second of equation&) coincides with the
coupling term found by Bargman, Michel, and Tele§t0]
) o _ (see Sec. Y. The classic Papapetrou scheme is obtained
whereg,) = —a, represents the gravitoelectric field while from £q. (9) by assuming==0, i.e., by neglecting the elec-
H =20, is the gravitomagnetic field ariddenotes right-  yromagnetic field. An alternative scheme, considered by
contraction. The last equation of Ef) gives the gravita- khriplovich and Pomeranski ifil1], is obtained by neglect-
tional force a Lorentz-like form allowing the introduction of ing the spin-electromagnetism interaction terBteVeF
terms such as gravitoelectromagnetic force and gravitoeletandS,L[aFﬂg] (see Secs. VID and VIE "

tromagnetism. It is convenient to introduce the following notation for the

The electric, magnetic, and “mixed parts” of the Rie- gpin_gravity and spin-electromagnetism coupling terms:
mann tenso€ .z, Huyap: Fuyep are

X

1. .
S XuHw = 6’(u)'—”(uu))

1
Ewps=Rapysu“U”, Rap=75RapurS"",
! YH a 1
Hwps== 5 1w sRapyul”, Qu=55"VaF 4,
1 Yo N*f=SwE P—SPrE o (10
Fwyss=7 1w p7w" Rapyo - (7 o
Assume that(@) p=||p|lu=Myu, defined alongl, is
The Riemann tensor may then be represented as timelike: u”u,=—1, and thafb) U andu may be extended
in a regular way in a neighborhood of the lihg. We then
Ragpo™ — 2Hwy ol ulYp 7wy po = 2H [ p| Yol T(w)" ap have two timelike congruencesandU at our disposal. Both
+2uur & —2UaUr & u andU are associated with the particle in a natural way and
e ulglel = “EAT P (Wl alo] so are both candidates for defining the proper rest frame of
+ 0w M) poFiuyvé the particle, but there is no agreement in the literature about

which of them should be used for this purpose. This also
while the expressions for the Ricci tensor, the Einstein tenleads to the problem of the definition of the center-of-mass

sor, and the scalar curvature tensor are world line as either th& center or thel center, respectively.
In the following (see Sec. VI Cwe will assume that all the
Rgo=4UsHuyo)— Ew ot UgUauy — F(U) g P, T, and CP-center lines exist for our small test body in
order to compare the associated spin-gravity and spin-
+P(WgeF () s electromagnetism interaction terms in a given background.
Let us now consider a generic observer fialdrhe split-
R=2[ - &+ Fuwl ting of U andp alongu and LRS, is
Cap=AUHwp ~ Ewas™ P(Waplu) = Fwap U=rwultt rowl
FUalsFw) ® p=pl|u=Egpuu+p(W)=Moy@ulu+ vyl
11)
where
. , where Ep )= y(;u)||p||= YuuwMo. Let us introduce the
Ew=Ew sy Fu=Fuw e Hw* =310 Hupe- following notation for the electric and magnetic parts of the

IV. THE DIXON-SOURIAU EQUATIONS OF MOTION
2In the following (Sec. \J we will determine\ by comparison
The Dixon-Souriau equations of motion of a chargedwith the purely electromagnetic case in flat spacetime, i.e., the
spinning test particle of chargein a given gravitational and Bargman, Michel, and Telegdi model. A detailed discussion of the
electromagnetic backgrourj@—9] are given by choice of this factor can be found [8,9]. See alsd29].

064013-3



DONATO BINI, GIANLUCA GEMELLI, AND REMO RUFFINI

antisymmetric two- tensor fields F, N andR which appear
in the equatlonsL u)—S(u), S IV%_S(U) » B —F(u), B
— E

=F{) . Ny =N{Z, My=N{), Kuy=R( and T,
—R(u ), and extend the notation to the one-fo@ Q,

—Q(u) iQ(u)_Q(u) Q=QutdwY, duy=—Uu-Q. In par-
ticular, we have
Kw*==&uw%Lw” T Huw «Sw’

Tw*=Fuu"Sw" — Huu"Lw™
N “=[Ew X uSw+ B X ul I
M *=[B > uSw + Lw>XuEwl*

Qu*=Sw) VB«
TN X w0l 0w N,

LV Ewe

Adw=Lw"VwuEwe=SwV wuBwe

PHYSICAL REVIEW D 61 064013

Dtw,u,u)/d7w,0)=Vw,u) »
vu,w=0, Yuu=1,
so that we have
Viw,u) Ep,u) Ywu)]1= —Ep,uya) — Ky +€Euy=AQq).,
Vi, u)Ep,uy= —E(p,uy¥(u,u)- 8y~ My »

Viw,u)b )= —SuyXvaw) ~Ep,u)¥uu)

+)\N(U)v
V(fW,U)S(U): _a(U)XUL(U)-F)\M(U) . (17)

If we instead specialize the reference frame fielditoone
hasv ;=0 so that

The background is assumed to be completely known; in par-

ticular the electromagnetic field satisfies the Maxwell equa-
tions. It is also useful to write the following decomposition

for K(U) e LRS;:
Kwy=Pw,uKwtulvuw PuwyKwl,
where P(U,U)K(U): y(U,U)[K(U)+ V(U,U)XUT(U)]' With these

definitions, the equations of motidf) are equivalent to the
following set:

Y0P w,u,u) /70,0 Epu v uw]

=EuFimuw T Puwl—Kw T eEul—AQqu),
(13

Yu.u)Ptw,u,u) /d7U,wEp.u)
=Epur@w Flwuw T v Puwnl—Kut+eEy]

_)\q(u) ’ (14)
Yw,u)P tw,u,u) /A 70,0k )
=S X uF vyt YuwEeulPuwy~ Yaw]
+AN(u), (15

Y(u,uwD (fw,u,u) /A 7(U Sy

=F{fhu.0 <ok YU.0Eew e X urun T AM ).
(16)
The reference frame fieldlappearing in Eq9413)—(16) is

a generic one. If one specializes it th the following sim-
plifications occur:

MoF (e o5

= —Puol—Ku +eEu]+A\Qw ., (18)
Yw.uPw,u.u/d7unMo

=vuuw Puol—KuteEyl-Ay, 19

Yw,u) D tw,u,u/d7wulw

e @ e _
=S XuFwun T YuwEewruuntANG,

(20)
Yu,wD w,u,u /A7, wSw
_(©)
=FiwunXab@tAM @ . (21

Taking into account Eq(18), one can rewrite E¢.19) as an
energy theorem
MOV(U u)’ F

Yu.uPiwuu/d7uyMoe=— v

—MQuy vu,uyt dwl-
(22

The motion of the body relative ta can in principle be
described by either the spatial velocity, ,, or the general-
ized onevg ), the two descriptions being inequivalent.
From ordinary relativistic kinematics we have the following
“addition of velocity law”

Y(U,u)

v =P olv —vwl (23
YU U= Puwl?w.un ™ Yuu
or equivalently
Y(uu)” P _ 51 _
=YuwPunruw- (24)

1=y vy
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Analogously, a generalizeq acceleration of the particle Y. w.uw /70w Ep.u
relative tou can also be described by the Fermi-Walker spa- @
tial derivative of eithewy , or vy ) and, again, the two are =Ep.uw?uuw Fiwuuyterwu.u PuwEu =M,
inequivalent. The acceleration corresponding tg, is
given by Eq.(13), which includes terms corresponding to the  ¥(u,u)D (w,u.u) ld7w,ul)
gravitational field, the electromagnetic field, and a sum of -5 % E© | E o
spin-gravity-electromagnetism coupling terms. It is conve- WX uF w0 T YuwEeolPuw = Ve
nient to introduce the following notation for theelative +XN(y),
acceleration terms, due entirely to the spin of the particle:
Yu.wAuw=—Pu.unyKuy—AQu) Y(U’U)D((Z)'U’u)/dT(U’u)S(U)
— v 0.0P 0.0 970w Epu P in] =Fw,u,0 ol YunEepwru

X, v +AM i,
_E(p,u)FEf?N),U,u)_eP(U,u)E(U)- (25 utuw S

We also define an analogous teAy, ., the weak field and in the special case=U we have

approximation of which will be useful in Sec. VI, as Viw )l Ep.u) auw]

Yw.uAwu.w=YU,WD 6w u.u/d7u,unlEpuruw] =—Epuaw)teEu—AQu), (32
G
—EpuFimug—ePu.uEu) - (26) VimuEou)
From Eq.(15), we have the law which allows us to shift = E, v A —\ (33
from vy to vy u - Thus, by differentiation we have (P &V =)
Viwul o)

A(u,u):A(U,u)_D(fw,u,u)/dT(u,u)[Y(Ul,u)s(u)xu':gf?m),u,u)]
_ :_SU XUaU_E u Vﬁ,U +)\NU y (34)
_)\D(fw,u,u)/dT(u,u)[Y(ul,u)N(u)] ) @ =euHey) ©
2 2 \Y S
+ D(fW,U,U)/d T(U,U)L(U) . (27) (fw,U)=(U)

. . : . =—auyXuLwy+AM . 35
Clearly the relative acceleratiqi@6) leads to different spin- (V)7 U=) ) (39

gravity and spin-electromagnetism coupling terms than the The evolution of the spin is expressed by E@5). Its

acceleration(25). o right hand side includes the classic precession t&y)
The choice of the supplementary condition is fundamentak uS() (which comes out from the splitting of the Bargman-
for the fO”OWlng reaSOﬂS(l) |t deﬂnes the WOI’|d I|ndu y Miche|_Te|egdi Coup”ng ternNa,B)’ as We” as Other genera'

support for all the fields we are dealing with; af@ the  (gjativistic corrections. With the additional conditions:
equations are not formally invariant for different choices. In

fact, frqm Eqg.(11) in the P, T, and CP cases we have, p=||p/lU=MoU, (u=U, E(p.uy=Mo),
respectively,
=0, L=0, 36
(P): Lwy=SwyXu¥w,u)> (29) Q ) (36
the Bargman-Michel-Telegdi model holds exadthy:
(T) L(u):S(u)XuV(U’u) , (29)
Moaw)=eEu).
(CP):  Lyy=0. (30)
When substituted into Eqi13) or Eq. (27) these three Vtw,uyMo=0,
conditions lead to a total of six different expressions for the
sum of the spin-gravity and the spin-electromagnetism cou- Vitw,0)Suy =AMy = ABuy X u S - (37

plings. We will illustrate the situation in the special case of

the Reissner-Nordstno background in Sec. VI. From these relations we hake= —e/M. For the sake of

simplicity, we assume this value far in what follows.

V. MOTION IN FLAT SPACETIME .
VI. MOTION IN THE REISSNER-NORDSTRO M

Let us now consider the special case of the motion of an BACKGROUND

electron in flat spacetime wheteis a generic observer. The . ) o . o
evolution equations reduce to Now consider the motion of a spinning particle satisfying

Egs.(9) on the background of a static black hole of méés
YD w,u,u) /d7U,wl Ep,u) @)l and charge, described by the Reissner-Nordstrdine el-
©) ement(see, e.g.[18] p. 877 in Boyer-Lindquist coordinates
=EpuFiwuwtePuunEw=rQu:. 3D as
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ds?=—Ar2dt?+r2sirf0d e+ r2A - 1dr2+r2d6?,

where A=r?—2Mr+Q?. The associated electromagnetic

field is

A=— 9d'[, F= gdr/\d'[.
r r2

(38)

(39

PHYSICAL REVIEW D 61 064013

Mr—Q? 3Mr—4Q2 AQ JA
Aum=""7YumXmSm— T3S
r r yrer
Mr—Q? AQ VA
X[L(m).n]n+ r—4+ﬁr_2 L(m)
3Mr —2Q?
- —r4 [S(m) n]V(U’m)an, (44)

Next we choose the observer family to be the static obwhile the corresponding formul@7) for u=U becomes

servers with four-velocity, resulting im®=rA~25%,.
Then FEf(\;N),U,m): = Y(u,m@m, where
Mr—Q? - w0
am=———-n, nf=Ar
™= 2 & r

andn is the radial unit vector. Then we find

N2
Mr—Q s
4 (m) a

3Mr—4Q?
n

4 N’

5(m)a,6’:

r r

B B 2Q2 B B
Fimya"=—Em)a +r_4nan v Hmyo =0,

a Q a a
E(m) =—n-, B(m) =0,

(41
r2
and therefore
Mr—Q? 3Mr—4Q?
K(m):_—r4 L(m)+—r4 [L(m)'n]n,
Mr—Q? 3Mr—2Q?
T(m): - r4 S(m)+ r4 [S(m) . n]n,
Q Q
N(m):r_anmS(m), M(m):_r_znxml_(m),
QVA QVA
Qm=— v Lim+3 2 [Lim-nIn,  gm=0.
(42
A. Acceleration vectors
In the present context the acceleration form{2@),
Awm =D tw,u,m) /A7 m[ Ep.m Yu,m]
TEp.mam—eEm:, (43)

for u=u becomes explicitly

AQ
A(U,m):A(U,m)+_y2r2[D(fw,U,m) 1d7y,m) YINX mSim)

Mr—Q{PEEJK

2
4 ’yl’2 r_zl [I-(m)><mn]><mn

4
J’__
A r

2 2
+D(fw,U,m)/dT(U,m)L(m)+ ;

Mr—Q2 AQ VA
— t 2z

4 y2ox

2
r
XLJKEWNﬁVmeXmWUmﬂ

X mn+ S(m) X mV(U,m)]

3Mr—4Q2 (Mr—Q%2 \Q VA
+ +

r4 rA yr? r?

X[vw,m - NISum) X mn, (45)

where the abbreviated notatior= yy ) has been used. The
following relation is useful in obtaining Eq45):

VA

D(fW,U,m)n/dT(U,m):r_Q{V(U,m)_[V(U,m) -nin}. (46)

Next we must deal with the three supplementary condi-
tions (28), (29), and(30). Together with the two choices for
four-velocity, we thus have a total of six possibilities. The
situation will be clearer when the usual approximations are
made.

B. Weak field approximation
Let us introduce the following approximation assump-
tions: Al. Slow motion: squares ofym), Yum Lm),
Sim) are_negligible andE(p’m)Ais nearly _cc_)nstant in time. A2.
Large distance: factors af * are negligible.
Under these assumptions we have

Mr—Q2+£91§)E 3Mr—4Qj+(3£91§)

r4 ,yr2 r2 r4 ,yr2 r2

W~

M-+X\
= 3Q. (47

r
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Using the abbreviationsv=vy m, v=vGm, Mo
EE(p,m)v SES(m), LEL(m), ()'ED(fW,U,m)/dT(U,m)! we
have:

M
K(m)Er—3[_§L+(|—'n)n],

M
Tm= r—s[_§3+(5' nn],

3Q.
Q(m)Er_g[_EL+(|—'n)n]: (48)
and the two possible acceleration laws are then
. M+\Q M?-Q? . 1
v=— n— n+—aum-
r2 rd M “(4:m
M+AQ  M?-Q?
vE— n— n+—a , (49
r? ré M “m

PHYSICAL REVIEW D 61 064013

: M2-Q?| _ eQ
Mo=—Mg r_2+ 3 (v-n)+r—2(v-n)
~ S5+ (L@,
M+AQ M?-Q? —
= 2Q+ 3Q LXn+MgvXv.
r r
(52)
The approximate formulas
(n/r?) =(—3k3[—v/3+(v-n)n], (n/r) =0,
(53)

and the tensor algebra relatioiv]
(S'n)nXv=(v-nN)NXS+[S-(nXv)]n—v XS (54

are useful in these calculations.

C. Supplementary conditions: a comparative analysis

The discussion so far holds for a generic center-of-mass
world line. We now specialize it to a particular world line,
corresponding to one of the three choices of supplementary
conditions. To distinguish the spin-gravity-electromagnetism
coupling terms which occur for different supplementary con-

where we have introduced the approximate spin-gravityditions (corresponding to the different expressions lfoas a

electromagnetism coupling terms

—2pXS+[S-(nXv)]n+(v-n)n

A(u,m) :r_a

+¥[%L—(L~n)n],
.

1
X S+ §L—(L-n)n

3M
a(U,m):r—s[—vxSJr[S(n><v)]n+2(v -n)n

. 3ANQ_
XS+szL—(L-n)n]+ —3[—§u><S+(u-n)n
r

M+\ 2
XS+3L—(L-n)n]+ 5 Q—Q—3>
r r
XMo(vXv)Xn+L, (50)
such thaa g m=Aum » au,m=Awum and where
eyt M+)\Q+M2_Q2 “S——L. (51
TV M, 2 r3 : Mo~ ®)

As in Sec. V, we have set=—e/My.
The evolution laws for the mass and the spin are then

function of Sandv), the explicit SC subscript notation for
a(umy(sc) anday my(sc) iS NOw necessary.
The caseCP. HereL=0 so the picture is simplified as

_ M+\Q M2—Q?

nx S+ nxs (55)

Mr of

and

M
a(Em)(cp):3r_3{_%UXS‘i‘[S'(ﬂXU)]ﬂ‘F(U : n)nXS},

3M
a(U'm)(CP):r_3{_vXS+[S. (n><v)]n+2(v : n)nXS}

ANQ_
+—5[—30XS+(v-nnXxS§]. (56)
r
The mass and spin evolve according to
: M+AQ M2-Q?
Mo=—M, 2Q+ 3Q>(v'n),
r r
: — M+AQ M2-Q?
S=Mov Xv= 2Q+ 3Q (NXS)Xwv.
r r
(57)

The caseT. In this casel = Sxv and, consequently,

064013-7



DONATO BINI, GIANLUCA GEMELLI, AND REMO RUFFINI

_ 2\

v=v+ 2n><S

(58)
Or

and
3M
a(Em)(T)Zr—s{—vXS-FZ[S-(an)]n+(v~n)n><S}

AQ. |
=5 (30X SHS (nxv)In},

3m
aumm=—3 1" vXS+2[S-(nXv)]n+(v-n)nXS}
r

3\Q

+ r—a{—vXS-i-[S-(an)]n

+2(v-n)nXS}. (59

The mass and spin evolve according to

M+AQ M?-Q?
MOE_MO Q+ Q

2 r3

)(v-n),

r

M+AQ M?-Q?
2 + r3

)(SXU)XH-I—MOU_XU.
r

(60)
The caseP. HereL=SXv and so
_ M+AQ M?2—Q? 1.
v=v+ nXx S+ nxS——~L (61
M0r2 0r3 MO

and
3M
a(U’m)(p):r_S{_UXS+2[S'(nXU)]n+(U'n)nXS}

2o XS+[S-(nXv)]n}.

3\Q
+ r—3{— (62)

PHYSICAL REVIEW D 61 064013
M
a(U’m)(p):sr_S{_U X S+ 2[5 (nXU)]n+(U . n)n>< S}

3\Q
+ —3{—v><S+[S-(an)]n+2(v~n)n><S}.
r

(63

The same thing happens for the mass and spin evolution
equations, which are formally identical to E§O).

The formal identity of the equations for tlieandT cases
would suggest that

However, to make this relation consistent with the model we
have to introduce the following additional assumption:

A4. The variablesvl; andS can each be transported from
any SC center to another in such a way that the difference
between their values on one world line and the values trans-
ported to it from another are always negligible in the sense of
Al and A2.

We make the assumption A4 from now on so that we can
consistently drop the SC subscript notation for these vari-
ables. A3 and A4 were also implicitly assumed [iitv],
where the same relatidib4) was obtained in the special case
of the Schwarzschild background. According to Ey) and
A4, the P and T models can be considered completely
equivalent and therefore the six acceleration laws of our gen-
eral picture reduce to four.

We are also allowed to compare the spin-gravity-
electromagnetism coupling terms definedXat) (or Xp))
with those defined aKcp), provided we also introduce a
law for the shift of these centersve will do this for the
Schwarzschild case in Sec. V].E

Two of the acceleration vectors of the present description,
namelyay mycp) andag, mypy, Were previously calculated
for the purely gravitational cas@apapetrou’s equationby
Barker and O’Connell if14] where they were denoted by
agicp) and agpy, respectively. In the purely gravitational
case, it is interesting to note that the same expression for
aiamy(m) (Or 8 myp)) is the regult of a.completely 'different
approach, that of the post-Minkowskian calculation of the
spin-orbit interaction of the two-body problem, as carried out
by Damour in[31]; it suffices to consider the limiting case

Thus bothag mp) and ag mr) have the same formal de- when one of the bodies is very heavy.

pendence on the field§ n, r, v, but the latter are defined on

different world lines for the two cases. An expression for the

quantity aiy m) () Cannot be given without first solving the
differential equations, which in turn is related to the fact that

under the supplementary conditid® the full system of
equations is of second order, as was pointed o(i2(h30.

However, if by analogy with the@P) and(T) cases, we
“a priori” assume that A3ay mp) andSare of the same
order, then we find an expression &, ) Which is for-
mally identical to that ofyy, mym):

D. The further approximation of Khriplovich
and Pomeransky

Recently Khriplovich and Pomeransk§1] considered a
simplified (covariani model, which is obtained from Eq&)
by neglecting the spin-electromagnetism interaction terms
$*'VeF,, and S**F Al In the Reissner-Nordstmo back-
ground and under the same assumptions Al and A2, this
model leads to a different set of accelerations, which are
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M tivistic center of mass; that is, its evolution involves a spin-
aum {ep)=33{~ §uX S+ (v-NNXS+[S- (nxv)]n}, gravity coupling term formally identical tee) [14]. To this
r end we introduce

M 1
a(uym)%ggz3r—3{—v><s+2(v.n)n><S+[S.(n><v)]n}, XNRZX(CP)_Z_MOU(CP)XS (68)
Kp M and the associated evolution equati@nalogous to Egs.
aim ):3r—3{—v><s+(v.n)n><3+2[s-(n><u)]n}, (49)]
M Xnr=v =—M+)\Qn —Mz_an +ia
a(u,m)g$)P)=3r—3{—uxs+(v.n)nxs+2[s.(n><u)]n} NR™ZNR 2o 3 MR M TR
(69)
3\Q . . . _
+ —[iuXS—(v-n)nxS], (65)  Whereryg=|Xyg|. Equation(69) is in fact a definition for
rs anr- It leads toayg=2ag), provided one replacesandv in

the expressiori66) with ryg andvyg, respectively.
Moreover, in the Schwarzschild case, the following “shift

‘of the center of mass law” was found consistent with the

Papapetrou equations by Barker and O’Connell1i4]®

where the superscripd P is used to avoid further confusion
with the corresponding terms of the Dixon-Souriau model
Here theP case also reduces to thiecase provided we make
an assumption analogous to A3. In the original padl
only the P condition is implemented, and the corresponding 1

acceleratiofEq. (65)] is discussed only in the limiting cases Xem=Xm+ ovcp XS (70)

of vanishingM or Q. Of course in this latter case both the Mo

Dixon-Souriau and the Khriplovich-Pomeransky models re-_ ] ] S
duce to the Papapetrou one. Later Khriplovich and Pomeranthis relation allowsXyr to be interpreted as the midpoint
sky introduced a noncovariant model for the spin-gravity-0etween Xcp and Xe:  Xnp=(12) Xcp)+X()]-
electromagnetism interactiqi2] which they consider more Therefore Eq(68) can be written equivalently as
appropriate.

XNR:X(T)+ U(CP)XS. (71)

E. Nonrelativistic center of mass 2Mg

The classical interaction of spin with the gravitational
field is usually obtained from the spin-orbit interaction po-
tential

Unfortunately, in the Dixon-Souriau model, relatio(88),
(70), and (71 cannot be generalized to the Reissner-
Nordstran case.
3 M With the Khriplovich-Pomeransky simplified model, pro-
V(G):E_ZS'(nXU) V|de(_j one def_meS}(NR t_)y Eq. (71_) [and not by Eq.(69)],
r relation (49) still holds in the Reissner-Nordstrocase. As
an aside we remark that Khriplovich and Pomeransky hy-
pothesize that the true origin of Eq71) is a Foldy-
3M Wouthuysen transformation, which is necessary to obtain the
a(G)=—3{—v><S+%(n~v)n><S+%[S~(n><v)]n}. classical limit of a spin 1/2 Dirac fielfl11]. However, Eq.
r (70) again falls to be true except in the Schwarzschild case.
(66)  Therefore this midpoint interpretation in both the Dixon-
Souriau model and the Khriplovich-Pomeransky model is
only valid in the Schwarzschild case.
Finally in the purely gravitational case it is worth noting

(see, e.g.[13,14,11); the corresponding acceleration is

Similarly, for the interaction of spin with the electromagnetic
field, using the Thomas interaction potential

Q that under assumptions Al and A2 onBy mycp) is for-
Ve=-3 r—ZS' (nXv), mally identical(but for a numerical factorto a, i.e., we
have:

we have the following expression for the accelerafibil: o _2, 72
(u,m)(CP) ™ 3(G)

3\
a0 = (ho S n-onx S 1S (X Tn).

(67) 3The original law by Barker and O’Connell hatip) in place of
_ _ ) Xry (see[14]), which is equivalent if the identificatioX py=Xr)
We will compare the classic result§6) and(67) with those s assumed. However, the formulation in terms<e, is preferable
coming from relativistic models. for two reasons(a) it is the general relativistic analogue of Moller’s
In the Schwarzschild limitQ— 0) it is possible to define  exact special relativistic formul2]; (b) some calculations afp)
an auxiliary center poinKyg Which behaves like a nonrela- need the further hypothesis A3, while thosexa) do not.
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provided one replaces andv in the expression{66) with conditions; in the particular case of motion in the Schwarzs-
rcpy @andv cp), respectively. This relation does not seem tochild background, the pioneering work by Papapetrou and
have been considered previously in the literature. It carCorinaldesi was done by using the family of staidlling )
analogously be extended to the Reissner-Nordsttase as observers. In this paper thetB version of the equations of
follows: motion for a charged spinning test particle has been given for
a generic observer, generic observer-induced supplementary
a _ 2M [ +am] (73) conditions, and for various models for the gravity-
UmMEP) T3 —\Q (e T AB electromagnetism coupling studied in the literature.
As an application, the motion of a charged spinning test
We thus note that the result of the nonrelativistic theory iSpartic|e in the Reissner-Nordé[ﬂ)spacetime has been stud-
also recovered acp) modulo a factor, without the neces- jed. The general framework is helpful in understanding what
sity of introducing the auxiliary poinKyg; it suffices to  results can be extended from the well-known case of the
follow the evolution of the momentum vector instead of ~ Schwarzschild background. For example, one is interested in
that of U. A problem with this alternative approach is that in how the classical expression for the spin-orbit interaction
the limit M— 0 one obtaing; mcp)=0 instead o and  acceleration is modified. In the case of the Schwarzschild
that the singular caseM8=\Q is excluded. spacetime, as first shown by Barker and O’Connell, one can
introduce the midpoint between thie and theCP centers
and interpret it as a nonrelativistic center of mass. In the case
of Reissner-Nordstr it is shown here that only in the spe-
With the present study the motion of a charged spinningia| case of the Khriplovich and Pomeransky model for spin-
test particle has been given a generaBlformulation inthe  ning test particles is it still possible to introduce a point
framework of gravitoelectromagnetism, a language for displaying the role of a center of mass but where the midpoint
cussing the spacetime splitting itself, for any choice ofinterpretation is lost. For generic spacetimes and more gen-

supplementary conditions. The “center line” of the body eral models it is not even possible to introduce such a point.
with the associated timelike unit tangent vector as well as the

direction of the generalized momentum vector of the body
are quite natural to be considered as the four-velocity of
observers at rest with the body itself. Both of them are used
in the definition of supplementary conditions to be added to We are indebted to Professor H. Ohan{@harlotte, VT,
the equations of motion in order to determine a completd).S.A), to Professor I. B. KhriplovichNovosibirsk, Rus-
model. Of course any observer can be used either to descrilség), and to Professor R. T. Jantzévillanova, PA, U.S.A)

the motion of the body or to induce some supplementanfor their very helpful suggestions.

VII. CONCLUDING REMARKS
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