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The dynamics of a charged spinning test particle in general relativity is studied in the context of gravito-
electromagnetism. Various families of test observers and supplementary conditions are examined. The spin-
gravity-electromagnetism coupling is investigated for motion in the background of a Reissner-Nordstro¨m black
hole both in the exact spacetime and in the weak-field approximation. Results are compared with those of the
theory.

PACS number~s!: 04.20.Cv
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I. INTRODUCTION

In this paper we consider a charged massive test par
in the Dixon-Souriau model@1–9#, which is a first order
cutoff in the multipole expansion of the equations of moti
of a small extended body. The model includes sp
electromagnetism and spin-gravity coupling terms, but it
quires the assumption of additional supplementary con
tions to be completed. For uncharged particles it reduce
the well-known Papapetrou model.

Here we briefly review the model and the different pos
bilities for the supplementary conditions, with their corr
sponding meaning in terms of the center-of-mass world
definition. We then provide the splitting of the equations
motion with respect to a frame associated with a gen
four-velocity fieldu, and then specialize the results for ce
tain preferred families of observers.

As an example, we consider the Reissner-Nordstr¨m
background and study the evolution of a particle with resp
to the family of static observers. We thus incorporate int
single framework the exact generalization of earlier res
belonging to the purely electromagnetic case@10–12# and to
the purely gravitational case@11,13,14#. We also discuss the
weak field slow motion approximation and somewhat co
plete and generalize the picture given in the literature.

II. THE PAPAPETROU EQUATIONS OF MOTION

In general relativity, an extended body is described by
associated energy-momentum tensor. A small body can
studied by a multipole expansion method enabling it to
equivalently described by a set of multipole~energy-
momentum! moments defined along a central line@1–3,15#.
An analogous scheme is obtained by considering a sing
energy-momentum tensor distribution defined along a sin
0556-2821/2000/61~6!/064013~10!/$15.00 61 0640
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curve @6–8#. The cutoff at successive multipole orders d
fines a hierarchy of elementary multipole particles~see, e.g.,
@5,15–17#!. The first cutoff yields a point particle~or single
pole! governed by the geodesic equation of motion.

The next cutoff leads to the dipole~‘‘spinning’’ ! particle
which interests us here. The equations of motion for suc
particle were first derived in the purely gravitational case
Papapetrou@15# as

D

dtU
pa5

1

2
Rrsb

aSrsUb,

D

dtU
Sab5paUb2pbUa, ~1!

whereRabrs is the Riemann tensor,pa is the ~generalized!
momentum vector,Sab is a ~antisymmetric! spin tensor,U
5DX/dtU is the unit tangent vector (UaUa521) of the
‘‘center line’’ l U used to make the multipole reduction, an
whereX5X(tU) is the center point whose world line isl U .
The fieldsS, U, andp are defined only alongl U . Units are
chosen here so that the speed of light in empty space sati
c51.

It is well known that the number of independent equatio
in Eq. ~1! is less than that of the unknown quantities; thr
additional scalar supplementary conditions~SC! are needed
for the scheme to be completed. Once a suitable choice
been made,l U , p, andS can in principle be determined b
the complete set of equations.

The various supplementary conditions which are cons
ered in the literature are all of the formûaSab50 for some
timelike unit vectorû along the world linel U . According to
the special relativistic analogy~@18#, p. 161!, this is equiva-
©2000 The American Physical Society13-1
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lent to defining the central linel U as the world line of the
centroid of the body with respect to an observer family w
four-velocity û.

The supplementary conditions discussed in the litera
are the following:CP û5u ~Corinaldesi-Papapetrou cond
tion: see, e.g.,@14,19#!, whereu is a ~known! preferred fam-
ily of observers usually suggested by the background;T û

5p/uupuu5ū ~Tulkzyjew’s condition: see, e.g.,@1,5,20,21#!;
andP û5U ~Pirani’s condition: see, e.g.,@11,22,23#!.

Clearly the fieldsX, U, p, andS all depend on the choice
of supplementary conditions@21# so a more precise notatio
would beX~SC! , U ~SC! , p~SC! , S~SC! , where the index
values SC5CP,T,P correspond to these choices. This cu
bersome notation will be avoided when possible, but it
essential to clarify certain relationships between differ
choices.

The existence and uniqueness of the center line of
body under different supplementary conditions has b
studied by many authors~see, e.g.,@21,24–27#!. Clearly, U

and ū are the two four-velocities most naturally associa
with the particle. Consequently, often in the literature, t
associated centers, theP center and theT center respectively
are both referred to as the center of mass of the par
@21,27#. The P center has also recently been renamed
‘‘center of trace’’ @23#.

The case in which both gravitational and electromagn
fields are present was studied by Dixon and Souriau@5,9#. In
the following we will work with the Dixon-Souriau equa
tions of motion ~see Sec. IV! which reduce to the classi
Papapetrou ones in the purely gravitational case.

III. THE SPLITTING OF THE SPACETIME AND
GRAVITOELECTROMAGNETISM

In general relativity a reference frame is defined by
congruence of timelike curves, the set of world lines o
family of observers. We denote byu the unit tangent vecto
(u•u521) of the world lines of a generic reference fram
namely the observer four-velocity field. The splitting of th
spacetime alongu and its orthogonal local rest space~LRSu)
gives the measurement relative tou of any tensor field de-
fined on a domain of the spacetime; similarly one can ob
the formulation relative tou of any tensor equation. For no
tations and conventions we follow@28# with a slight change;
the subscript notation for spatial projections and relative
server quantities is adopted.

The measurement of the spacetime metric gives rise to
spatial metricP(u)ab5gab1uaub , i.e., the spatial projec
tion operator with respect tou; the temporal projection op
erator alongu is 2uaub . Analogouslyh (u)abs5urhrabs is
the only spatial field resulting from the measurement of
unit ~oriented! volume four-form h; it defines the spatia
cross product3u as well as the spatial duality operation o
LRSu .

From the measurement of ap-form S only two distinct
fields result: the purely spatial or ‘‘magnetic’’ partS(u)

(M ) ~a
p-form! and the ‘‘electric’’ partS(u)

(E) @a (p21)-form#, the
spatial projection of a contraction with a single factor ofu:
06401
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S5u[`S(u)
(E)1S(u)

(M ) , ~2!

where the completely covariant~contravariant! form of a ge-
neric tensorX is denoted byX[ (X]).

For a generic two-formS the component notation for thi
decomposition is

Sab52u[aS(u)
(E)

b]1S(u)
(M )

ab52u[aS(u)
(E)

b]1h (u)ab
sS(u)

(M )
s ,
~3!

whereS(u)
(M )

s denotes the spatial dual ofS(u)
(M )

ab .
According to the measurement process, the spatial

temporal projection of spacetime derivative operators gi
rise to the corresponding spatial and temporal counterpa
As described in@28#, the spatial covariant derivative is de
fined as¹ (u)a5P(u)P(u) a

b¹b ~the first projection operato
acts on the tensorial indices of the field after the derivative
applied! and the spatial Lie derivative along a generic fieldX
is L(u)X

5P(u)LX . Similarly one can construct temporal de

rivatives; the Lie temporal derivative¹ (lie,u)5P(u)Lu and
the Fermi-Walker temporal derivative¹ (fw,u)5P(u)¹u . The
covariant derivative ofu has the following decomposition:

¹aub5h (u)a
b

mv (u)
m1u (u)a

b2uaa(u)
b, ~4!

wherea(u)5¹ (fw,u)uPLRSu is the acceleration vector,u (u)
PLRSu^ LRSu is the ~symmetric! deformation two-tensor
andv (u)PLRSu is the vorticity vector of the observer con
gruence.

If X is a tensor field defined only along the linel U ~pa-
rametrized by the proper timetU and having unit tangentU),
then the ‘‘measurement’’ ofDX/dtU , the intrinsic deriva-
tive alongU, by a family of observers with four-velocityu is

D (fw,U,u)

dt (U,u)
X5@¹ (fw,u)1¹ (u)n(U,u)

#X, ~5!

whereU5g (U,u)@u1n (U,u)#, dt (U,u)5g (U,u)dtU is the dif-
ferential of the standard relative time parametrization alo
the line U, and the fieldX on the right hand side is som
smooth extension ofX to a neighborhood of the line.

It is convenient to introduce the composition of projecti
maps from the local rest space of one observer onto tha
another:1

P(u,U)5P(U)P(u) :LRSu→LRSU .

We also introduce the relative gravitational fieldF (fw,U,u)
(G)

~see@28#!,

1This subscript notation for the projectionP(u,U) differs from the
argument notationP(U,u) of @28# by interchangingu andU so that
the second subscript of the pair of four-velocities always refers
the space in which the result lives.
3-2
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F (fw,U,u)
(G) 52g (U,u)

21 P(u)

Du

dtU

52P(u)

Du

dt (U,u)

5g (U,u)Fg(u)1uun (U,u)uu

3S 1

2
n̂ (U,u)3uH (u)2u (u)Ln̂ (U,u)D G , ~6!

whereg(u)52a(u) represents the gravitoelectric field whi
H (u)52v (u) is the gravitomagnetic field andL denotes right-
contraction. The last equation of Eq.~6! gives the gravita-
tional force a Lorentz-like form allowing the introduction o
terms such as gravitoelectromagnetic force and gravitoe
tromagnetism.

The electric, magnetic, and ‘‘mixed parts’’ of the Rie
mann tensorE(u)ab , H(u)ab , F(u)ab are

E(u)bd5Rabgduaug,

H(u)bd52
1

2
h (u)

gm
dRabgmua,

F(u)bd5
1

4
h (u)

am
bh (u)

gs
dRamgs . ~7!

The Riemann tensor may then be represented as

Rabrs522H(u)[aumuub]h (u)
m

rs22H(u)[rumuus]h (u)
m

ab

12uau[rE(u)ubus]22ubu[rE(u)uaus]

1h (u)
n

abh (u)
j
rsF(u)nj ,

while the expressions for the Ricci tensor, the Einstein t
sor, and the scalar curvature tensor are

Rbs54u
„bH(u)s…2E(u)bs1ubusE(u)2F~u!bs

1P~u!bsF(u) ,

R52@2E(u)1F(u)#,

Gab54u
„aH(u)b…2E(u)ab2P~u!abE(u)2F(u)ab

1uaubF(u) , ~8!

where

E(u)5E(u)
m

m , F(u)5F(u)
m

m , H(u)
a5 1

2 h (u)
absH(u)bs .

IV. THE DIXON-SOURIAU EQUATIONS OF MOTION

The Dixon-Souriau equations of motion of a charg
spinning test particle of chargee in a given gravitational and
electromagnetic background@6–9# are given by
06401
c-

-

D

dtU
pa5

1

2
Rrsb

aSrsUb1eFa
bUb2

1

2
lSmn¹aFmn ,

D

dtU
Sab5paUb2pbUa1l@SamFm

b2SbmFm
a#, ~9!

whereFab is the electromagnetic field andl is an electro-
magnetic coupling scalar.2 The spatial dual of the spin
electromagnetism coupling termSamFm

b2SbmFm
a appear-

ing in the second of equations~9! coincides with the
coupling term found by Bargman, Michel, and Telegdi@10#
~see Sec. V!. The classic Papapetrou scheme is obtain
from Eq. ~9! by assumingF50, i.e., by neglecting the elec
tromagnetic field. An alternative scheme, considered
Khriplovich and Pomeranski in@11#, is obtained by neglect-
ing the spin-electromagnetism interaction termsSmn¹aFmn

andSm[aFm
b] ~see Secs. VI D and VI E!.

It is convenient to introduce the following notation for th
spin-gravity and spin-electromagnetism coupling terms:

Rab5
1

2
RabmnSmn,

Qa5
1

2
Smn¹aFmn ,

Nab5SamFm
b2SbmFm

a. ~10!

Assume that~a! p5uupuuū5M0ū, defined alongl U , is
timelike: ūaūa521, and that~b! U andū may be extended
in a regular way in a neighborhood of the linel U . We then
have two timelike congruencesū andU at our disposal. Both
ū andU are associated with the particle in a natural way a
so are both candidates for defining the proper rest frame
the particle, but there is no agreement in the literature ab
which of them should be used for this purpose. This a
leads to the problem of the definition of the center-of-ma
world line as either theP center or theT center, respectively
In the following ~see Sec. VI C! we will assume that all the
P, T, and CP-center lines exist for our small test body
order to compare the associated spin-gravity and s
electromagnetism interaction terms in a given backgroun

Let us now consider a generic observer fieldu. The split-
ting of U andp alongu and LRSu is

U5g (U,u)@u1n (U,u)#,

p5uupuuū5E(p,u)u1p~u!5M0g (ū,u)@u1n (ū,u)#,
~11!

where E(p,u)5g (ū,u)uupuu5g (ū,u)M0. Let us introduce the
following notation for the electric and magnetic parts of t

2In the following ~Sec. V! we will determinel by comparison
with the purely electromagnetic case in flat spacetime, i.e.,
Bargman, Michel, and Telegdi model. A detailed discussion of
choice of this factor can be found in@6,9#. See also@29#.
3-3
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antisymmetric two-tensor fieldsS, F, N, andR which appear
in the equationsL (u)5S(u)

(E) , S(u)5S(u)
(M ) , E(u)5F (u)

(E) , B(u)

5F (u)
(M ) , N(u)5N(u)

(E) , M (u)5N(u)
(M ) , K (u)5R (u)

(E) , and T(u)

5R (u)
(M ) , and extend the notation to the one-formQ, Q(u)

5Q(u)
(M ) ,q(u)5Q(u)

(E) : Q5Q(u)1q(u)u, q(u)52u•Q. In par-
ticular, we have

K (u)
a52E(u)

a
sL (u)

s1H(u)
a

sS(u)
s,

T(u)
a5F(u)m

aS(u)
m2H(u)m

aL (u)
m,

N(u)
a5@E(u)3uS(u)1B(u)3uL (u)#

a,

M (u)
a5@B(u)3uS(u)1L (u)3uE(u)#

a,

Q(u)
a5S(u)

s¹ (u)
aB(u) s2L (u)

s¹ (u)
aE(u) s

1@N(u)3uv (u)#
a1u (u)

a
mN(u)

m,

q(u)5L (u)
s¹ (fw,u)E(u)s2S(u)

s¹ (fw,u)B(u)s

2N(u)•a(u) . ~12!

The background is assumed to be completely known; in p
ticular the electromagnetic field satisfies the Maxwell eq
tions. It is also useful to write the following decompositio
for K(U)PLRSU :

K (U)5P(U,u)K (U)1u@n (U,u)•P(U,u)K (U)#,

where P(U,u)K (U)5g (U,u)@K (u)1n (U,u)3uT(u)#. With these
definitions, the equations of motion~9! are equivalent to the
following set:

g (U,u)D (fw,U,u) /dt (U,u)@E(p,u)n (ū,u)#

5E(p,u)F (fw,U,u)
(G) 1P(U,u)@2K (U)1eE(U)#2lQ(u) ,

~13!

g (U,u)D (fw,U,u) /dt (U,u)E(p,u)

5E(p,u)n (ū,u)•F (fw,U,u)
(G) 1n (U,u)•P(U,u)@2K (U)1eE(U)#

2lq(u) , ~14!

g (U,u)D (fw,U,u) /dt (U,u)L (u)

5S(u)3uF (fw,U,u)
(G) 1g (U,u)E(p,u)@n (U,u)2n (ū,u)#

1lN~u!, ~15!

g (U,u)D (fw,U,u) /dt (U,u)S(u)

5F (fw,U,u)
(G) 3uL (u)1g (U,u)E(p,u)n (ū,u)3un (U,u)1lM (u) .

~16!

The reference frame fieldu appearing in Eqs.~13!–~16! is
a generic one. If one specializes it toU, the following sim-
plifications occur:
06401
r-
-

D (fw,U,U) /dt (U,U)5¹ (fw,U) ,

n (U,U)50, g (U,U)51,

F (fw,U,U)
(G) 52a(U) ,

so that we have

¹ (fw,U)@E(p,U)n (ū,U)#52E(p,U)a(U)2K (U)1eE(U)2lQ(U) ,

¹ (fw,U)E(p,U)52E(p,U)n (ū,U)•a(U)2lq(U) ,

¹ (fw,U)L (U)52S(U)3Ua(U)2E(p,U)n (ū,U)

1lN(U) ,

¹ (fw,U)S(U)52a(U)3UL (U)1lM (U) . ~17!

If we instead specialize the reference frame field toū, one
hasn (ū,ū)50 so that

M0F (fw,U,ū)
(G)

52P(U,ū)@2K (U)1eE(U)#1lQ(ū) , ~18!

g (U,ū)D (fw,U,ū) /dt (U,ū)M0

5n (U,ū)•P(U,ū)@2K (U)1eE(U)#2lq(ū) , ~19!

g (U,ū)D (fw,U,ū) /dt (U,ū)L (ū)

5S(ū)3 ūF (fw,U,ū)
(G)

1g (U,ū)E(p,ū)n (U,ū)1lN(ū) ,

~20!

g (U,ū)D (fw,U,ū) /dt (U,ū)S(ū)

5F (fw,U,ū)
(G)

3 ūL (ū)1lM (ū) . ~21!

Taking into account Eq.~18!, one can rewrite Eq.~19! as an
energy theorem

g (U,ū)D (fw,U,ū) /dt (U,ū)M052M0n (U,ū)•F (fw,U,ū)
(G)

2l@Q(ū)•n (U,ū)1q(ū)#.

~22!

The motion of the body relative tou can in principle be
described by either the spatial velocityn (U,u) or the general-
ized one n (ū,u) , the two descriptions being inequivalen
From ordinary relativistic kinematics we have the followin
‘‘addition of velocity law’’

g (U,ū)

g (U,u)
n (U,ū)5P(u,ū)@n (U,u)2n (ū,u)# ~23!

or equivalently

n (U,u)2n (ū,u)

12n (U,u)•n (ū,u)

5g (ū,u)P(u,ū)
21

n (U,ū) . ~24!
3-4
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Analogously, a generalized acceleration of the parti
relative tou can also be described by the Fermi-Walker s
tial derivative of eithern (U,u) or n (ū,u) and, again, the two are
inequivalent. The acceleration corresponding ton (ū,u) is
given by Eq.~13!, which includes terms corresponding to th
gravitational field, the electromagnetic field, and a sum
spin-gravity-electromagnetism coupling terms. It is conv
nient to introduce the following notation for the~relative!
acceleration terms, due entirely to the spin of the particle

g (U,u)A(ū,u)52P(U,u)K (U)2lQ(u)

5g (U,u)D (fw,U,u) /dt (U,u)@E(p,u)n (ū,u)#

2E(p,u)F (fw,U,u)
(G) 2eP(U,u)E(U) . ~25!

We also define an analogous termA(U,u) , the weak field
approximation of which will be useful in Sec. VI, as

g (U,u)A(U,u)5g~U,u!D (fw,U,u) /dt (U,u)@E(p,u)n (U,u)#

2E(p,u)F (fw,U,u)
(G) 2eP(U,u)E(U) . ~26!

From Eq.~15!, we have the law which allows us to shi
from n (ū,u) to n (U,u) . Thus, by differentiation we have

A(U,u)5A(ū,u)2D (fw,U,u) /dt (U,u)@g (U,u)
21 S(u)3uF (fw,U,u)

(G) #

2lD (fw,U,u) /dt (U,u)@g (U,u)
21 N(u)#

1D (fw,U,u)
2 /dt (U,u)

2 L (u) . ~27!

Clearly the relative acceleration~26! leads to different spin-
gravity and spin-electromagnetism coupling terms than
acceleration~25!.

The choice of the supplementary condition is fundamen
for the following reasons:~1! it defines the world linel U ,
support for all the fields we are dealing with; and~2! the
equations are not formally invariant for different choices.
fact, from Eq. ~11! in the P, T, and CP cases we have
respectively,

~P!: L (u)5S(u)3un (U,u) , ~28!

~T!: L (u)5S(u)3un (ū,u) , ~29!

~CP!: L (u)50. ~30!

When substituted into Eq.~13! or Eq. ~27! these three
conditions lead to a total of six different expressions for
sum of the spin-gravity and the spin-electromagnetism c
plings. We will illustrate the situation in the special case
the Reissner-Nordstro¨m background in Sec. VI.

V. MOTION IN FLAT SPACETIME

Let us now consider the special case of the motion of
electron in flat spacetime whereu is a generic observer. Th
evolution equations reduce to

g (U,u)D (fw,U,u) /dt (U,u)@E(p,u)n (ū,u)#

5E(p,u)F (fw,U,u)
(G) 1eP(U,u)E(U)2lQ(u) , ~31!
06401
e
-

f
-

e

l

e
-

f

n

g (U,u)D (fw,U,u) /dt (U,u)E(p,u)

5E(p,u)n (ū,u)•F (fw,U,u)
(G) 1en (U,u)•P(U,u)E(U)2lq(u) ,

g (U,u)D (fw,U,u) /dt (U,u)L (u)

5S(u)3uF (fw,U,u)
(G) 1g (U,u)E(p,u)@n (U,u)2n (ū,u)#

1lN(u) ,

g (U,u)D (fw,U,u) /dt (U,u)S(u)

5F (fw,U,u)
(G) 3uL (u)1g (U,u)E(p,u)n (ū,u)

3un (U,u)1lM (u) ,

and in the special caseu5U we have

¹ (fw,U)@E(p,U)n (ū,U)#

52E(p,U)a(U)1eE(U)2lQ(U) , ~32!

¹ (fw,U)E(p,U)

52E(p,U)n (ū,U)•a(U)2lq(U) , ~33!

¹ (fw,U)L (U)

52S(U)3Ua(U)2E(p,U)n (ū,U)1lN(U) , ~34!

¹ (fw,U)S(U)

52a(U)3UL (U)1lM (U) . ~35!

The evolution of the spin is expressed by Eq.~35!. Its
right hand side includes the classic precession termB(U)
3US(U) ~which comes out from the splitting of the Bargma
Michel-Telegdi coupling termNab), as well as other genera
relativistic corrections. With the additional conditions:

p5uupuuU5M0U, ~ ū5U, E(p,U)5M0!,

Q50, L (U)50, ~36!

the Bargman-Michel-Telegdi model holds exactly@10#:

M0a(U)5eE(U) ,

¹ (fw,U)M050,

¹ (fw,U)S(U)5lM (U)5lB(U)3US(U) . ~37!

From these relations we havel52e/M0. For the sake of
simplicity, we assume this value forl in what follows.

VI. MOTION IN THE REISSNER-NORDSTRO¨ M
BACKGROUND

Now consider the motion of a spinning particle satisfyi
Eqs.~9! on the background of a static black hole of massM
and chargeQ, described by the Reissner-Nordstro¨m line el-
ement~see, e.g.,@18# p. 877! in Boyer-Lindquist coordinates
as
3-5
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ds252Dr 22dt21r 2 sin2udw21r 2D21dr21r 2du2,
~38!

where D5r 222Mr 1Q2. The associated electromagne
field is

A52
Q

r
dt, F5

Q

r 2
dr`dt. ~39!

Next we choose the observer family to be the static
servers with four-velocity, resulting inma5rD21/2da

t .
ThenF (fw,U,m)

(G) 52g (U,m)a(m) , where

a(m)5
Mr 2Q2

r 2AD
n, n]5ADr 21] r ~40!

andn is the radial unit vector. Then we find

E(m)a
b5

Mr 2Q2

r 4
P(m) a

b2
3Mr 24Q2

r 4
nanb,

F(m) a
b52E(m) a

b1
2Q2

r 4
nanb, H(m) a

b50,

E(m)
a5

Q

r 2
na, B(m)

a50, ~41!

and therefore

K (m)52
Mr 2Q2

r 4
L (m)1

3Mr 24Q2

r 4
@L (m)•n#n,

T(m)52
Mr 2Q2

r 4
S(m)1

3Mr 22Q2

r 4
@S(m)•n#n,

N(m)5
Q

r 2
n3mS(m) , M (m)52

Q

r 2
n3mL (m) ,

Q(m)52
QAD

r 4
L (m)13

QAD

r 4
@L (m)•n#n, q(m)50.

~42!

A. Acceleration vectors

In the present context the acceleration formula~26!,

A(u,m)5D (fw,U,m) /dt (U,m)@E(p,m)n (u,m)#

1E(p,m)a(m)2eE(m) , ~43!

for u5ū becomes explicitly
06401
-

A(ū,m)5
Mr 2Q2

r 4
n (U,m)3mS(m)2F3Mr 24Q2

r 4
13

lQ

gr 2

AD

r 2 G
3@L (m)•n#n1FMr 2Q2

r 4
1

lQ

gr 2

AD

r 2 GL (m)

2
3Mr 22Q2

r 4
@S(m)•n#n (U,m)3mn, ~44!

while the corresponding formula~27! for u5U becomes

A(U,m)5A(ū,m)1
lQ

g2r 2
@D (fw,U,m) /dt (U,m)g#n3mS(m)

1
r 4

D FMr 2Q2

r 4
1

lQ

gr 2

AD

r 2 G 2

@L (m)3mn#3mn

1D (fw,U,m)
2 /dt (U,m)

2 L (m)1FMr 2Q2

r 4
1

lQ

gr 2

AD

r 2 G
3H r 2

AD
E(p,m)@n (ū,m)3mn (U,m)#

3mn1S(m)3mn (U,m)J
2F3Mr 24Q2

r 4
1

~Mr 2Q2!2

r 4D
13

lQ

gr 2

AD

r 2 G
3@n (U,m)•n#S(m)3mn, ~45!

where the abbreviated notationg5g (U,m) has been used. Th
following relation is useful in obtaining Eq.~45!:

D (fw,U,m)n/dt (U,m)5
AD

r 2
$n (U,m)2@n (U,m)•n#n%. ~46!

Next we must deal with the three supplementary con
tions ~28!, ~29!, and~30!. Together with the two choices fo
four-velocity, we thus have a total of six possibilities. Th
situation will be clearer when the usual approximations
made.

B. Weak field approximation

Let us introduce the following approximation assum
tions: A1. Slow motion: squares ofn (U,m) , n (ū,m) , L (m) ,
S(m) are negligible andE(p,m) is nearly constant in time. A2
Large distance: factors ofr 24 are negligible.

Under these assumptions we have

S Mr 2Q2

r 4
1

lQ

gr 2

AD

r 2 D > 1
3 S 3Mr 24Q2

r 4 D 1S 3
lQ

gr 2

AD

r 2 D
>

M1lQ

r 3
. ~47!
3-6
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Using the abbreviationsv>n (U,m) , v̄>n (ū,m) , M0
>E(p,m) , S>S(m) , L>L (m) , ()•>D (fw,U,m) /dt (U,m) , we
have:

K (m)>
3M

r 3
@2 1

3 L1~L•n!n#,

T(m)>
3M

r 3
@2 1

3 S1~S•n!n#,

Q(m)>
3Q

r 3
@2 1

3 L1~L•n!n#, ~48!

and the two possible acceleration laws are then

vG >2
M1lQ

r 2
n2

M22Q2

r 3
n1

1

M0
a(ū,m) ,

v̇>2
M1lQ

r 2
n2

M22Q2

r 3
n1

1

M0
a(U,m) , ~49!

where we have introduced the approximate spin-grav
electromagnetism coupling terms

a(ū,m)5
3M

r 3 F2 2
3 v3S1@S•~n3v !#n1~v•n!n

3S1
1

3
L2~L•n!nG1

3lQ

r 3
@ 1

3 L2~L•n!n#,

a(U,m)5
3M

r 3
@2v3S1@S•~n3v !#n12~v•n!n

3S1 1
3 L2~L•n!n#1

3lQ

r 3
@2 1

3 v3S1~v•n!n

3S1 1
3 L2~L•n!n#1S M1lQ

r 2
2

Q2

r 3 D
3M0~ v̄3v !3n1L̈, ~50!

such thata(ū,m)>A(ū,m) , a(U,m)>A(U,m) and where

v̄>v1
1

M0
S M1lQ

r 2
1

M22Q2

r 3 D n3S2
1

M0
L̇. ~51!

As in Sec. V, we have setl52e/M0.
The evolution laws for the mass and the spin are then
06401
-

Ṁ0>2M0S M

r 2
1

M22Q2

r 3 D ~ v̄•n!1
eQ

r 2
~v•n!

2
3M

r3
@2 1

3 ~v•L !1~L•n!~v•n!#,

Ṡ>S M1lQ

r 2
1

M22Q2

r 3 D L3n1M0v̄3v.

~52!

The approximate formulas

~n/r 2!•>~23/r 3!@2v/31~v•n!n#, ~n/r 3!•>0,
~53!

and the tensor algebra relation@14#

~S•n!n3v5~v•n!n3S1@S•~n3v !#n2v3S ~54!

are useful in these calculations.

C. Supplementary conditions: a comparative analysis

The discussion so far holds for a generic center-of-m
world line. We now specialize it to a particular world line
corresponding to one of the three choices of supplemen
conditions. To distinguish the spin-gravity-electromagneti
coupling terms which occur for different supplementary co
ditions ~corresponding to the different expressions forL as a
function of S and v), the explicit SC subscript notation fo
a(ū,m)(SC) anda(U,m)(SC) is now necessary.

The caseCP. HereL[0 so the picture is simplified as

v̄>v1
M1lQ

M0r 2
n3S1

M22Q2

M0r 3
n3S ~55!

and

a(ū,m)(CP)53
M

r 3
$2 2

3 v3S1@S•~n3v !#n1~v•n!n3S%,

a(U,m)(CP)5
3M

r 3
$2v3S1@S•~n3v !#n12~v•n!n3S%

1
3lQ

r 3
@2 1

3 v3S1~v•n!n3S#. ~56!

The mass and spin evolve according to

Ṁ0>2M0S M1lQ

r 2
1

M22Q2

r 3 D ~v•n!,

Ṡ>M0v̄3v>S M1lQ

r 2
1

M22Q2

r 3 D ~n3S!3v.

~57!

The caseT. In this caseL5S3 v̄ and, consequently,
3-7
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v̄>v1
2lQ

M0r 2
n3S ~58!

and

a(ū,m)(T)5
3M

r 3
$2v3S12@S•~n3v !#n1~v•n!n3S%

1
3lQ

r 3
$2 1

3 v3S1@S•~n3v !#n%,

a(U,m)(T)5
3M

r 3
$2v3S12@S•~n3v !#n1~v•n!n3S%

1
3lQ

r 3
$2v3S1@S•~n3v !#n

12~v•n!n3S%. ~59!

The mass and spin evolve according to

Ṁ0>2M0S M1lQ

r 2
1

M22Q2

r 3 D ~v•n!,

Ṡ>S M1lQ

r 2
1

M22Q2

r 3 D ~S3v !3n1M0v̄3v.

~60!

The caseP. HereL5S3v and so

v̄>v1
M1lQ

M0r 2
n3S1

M22Q2

M0r 3
n3S2

1

M0
L̇ ~61!

and

a(ū,m)(P)5
3M

r 3
$2v3S12@S•~n3v !#n1~v•n!n3S%

1
3lQ

r 3
$2 1

3 v3S1@S•~n3v !#n%. ~62!

Thus botha(ū,m)(P) and a(ū,m)(T) have the same formal de
pendence on the fieldsS, n, r, v, but the latter are defined o
different world lines for the two cases. An expression for t
quantity a(U,m) (P) cannot be given without first solving th
differential equations, which in turn is related to the fact th
under the supplementary conditionP, the full system of
equations is of second order, as was pointed out in@20,30#.

However, if by analogy with the (CP) and~T! cases, we
‘‘ a priori’’ assume that A3.a(U,m)(P) andS are of the same
order, then we find an expression fora(U,m)(P) which is for-
mally identical to that ofa(U,m)(T) :
06401
e

t

a(U,m)(P)53
M

r 3
$2v3S12@S•~n3v !#n1~v•n!n3S%

1
3lQ

r 3
$2v3S1@S•~n3v !#n12~v•n!n3S%.

~63!

The same thing happens for the mass and spin evolu
equations, which are formally identical to Eq.~60!.

The formal identity of the equations for theP andT cases
would suggest that

X(T)>X(P) . ~64!

However, to make this relation consistent with the model
have to introduce the following additional assumption:

A4. The variablesM0 andScan each be transported from
any SC center to another in such a way that the differe
between their values on one world line and the values tra
ported to it from another are always negligible in the sense
A1 and A2.

We make the assumption A4 from now on so that we c
consistently drop the SC subscript notation for these v
ables. A3 and A4 were also implicitly assumed in@14#,
where the same relation~64! was obtained in the special cas
of the Schwarzschild background. According to Eq.~64! and
A4, the P and T models can be considered complete
equivalent and therefore the six acceleration laws of our g
eral picture reduce to four.

We are also allowed to compare the spin-gravi
electromagnetism coupling terms defined atX(T) ~or X(P))
with those defined atX(CP) , provided we also introduce a
law for the shift of these centers~we will do this for the
Schwarzschild case in Sec. VI E!.

Two of the acceleration vectors of the present descripti
namelya(U,m)(CP) anda(ū,m)(P) , were previously calculated
for the purely gravitational case~Papapetrou’s equations! by
Barker and O’Connell in@14# where they were denoted b
aS(CP) and aS(P) , respectively. In the purely gravitationa
case, it is interesting to note that the same expression
a(ū,m)(T) ~or a(ū,m)(P)) is the result of a completely differen
approach, that of the post-Minkowskian calculation of t
spin-orbit interaction of the two-body problem, as carried o
by Damour in@31#; it suffices to consider the limiting cas
when one of the bodies is very heavy.

D. The further approximation of Khriplovich
and Pomeransky

Recently Khriplovich and Pomeransky@11# considered a
simplified~covariant! model, which is obtained from Eqs.~9!
by neglecting the spin-electromagnetism interaction ter
Smn¹aFmn and Sm[aFm

b] . In the Reissner-Nordstro¨m back-
ground and under the same assumptions A1 and A2,
model leads to a different set of accelerations, which are
3-8
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a(ū,m) (CP)
(KP)53

M

r 3
$2 2

3 v3S1~v•n!n3S1@S•~n3v !#n%,

a(U,m) (CP)
(KP)53

M

r 3
$2v3S12~v•n!n3S1@S•~n3v !#n%,

a(ū,m) (T)
(KP)53

M

r 3
$2v3S1~v•n!n3S12@S•~n3v !#n%,

a(U,m) (T)
(KP)53

M

r 3
$2v3S1~v•n!n3S12@S•~n3v !#n%

1
3lQ

r 3
@ 1

3 v3S2~v•n!n3S#, ~65!

where the superscriptKP is used to avoid further confusio
with the corresponding terms of the Dixon-Souriau mod
Here theP case also reduces to theT case provided we mak
an assumption analogous to A3. In the original paper@11#
only theP condition is implemented, and the correspondi
acceleration@Eq. ~65!# is discussed only in the limiting case
of vanishingM or Q. Of course in this latter case both th
Dixon-Souriau and the Khriplovich-Pomeransky models
duce to the Papapetrou one. Later Khriplovich and Pome
sky introduced a noncovariant model for the spin-gravi
electromagnetism interaction@12# which they consider more
appropriate.

E. Nonrelativistic center of mass

The classical interaction of spin with the gravitation
field is usually obtained from the spin-orbit interaction p
tential

V(G)5
3

2

M

r 2
S•~n3v !

~see, e.g.,@13,14,11#!; the corresponding acceleration is

a(G)5
3M

r 3
$2v3S1 3

2 ~n•v !n3S1 3
2 @S•~n3v !#n%.

~66!

Similarly, for the interaction of spin with the electromagne
field, using the Thomas interaction potential

V(E)52
1

2

lQ

r 2
S•~n3v !,

we have the following expression for the acceleration@11#:

a(E)5
3lQ

r 3
$ 1

3 v3S2 1
2 ~n•v !n3S2 1

2 @S•~n3v !#n%.

~67!

We will compare the classic results~66! and~67! with those
coming from relativistic models.

In the Schwarzschild limit (Q→0) it is possible to define
an auxiliary center pointXNR which behaves like a nonrela
06401
l.

-
n-
-

l

tivistic center of mass; that is, its evolution involves a sp
gravity coupling term formally identical toa(G) @14#. To this
end we introduce

XNR5X(CP)2
1

2M0
v (CP)3S ~68!

and the associated evolution equation@analogous to Eqs
~49!#

ẌNR5 v̇NR>2
M1lQ

r NR
2

nNR2
M22Q2

r NR
3

nNR1
1

M0
aNR,

~69!

where r NR5uXNRu. Equation~69! is in fact a definition for
aNR. It leads toaNR>a(G) , provided one replacesr andv in
the expression~66! with r NR andvNR, respectively.

Moreover, in the Schwarzschild case, the following ‘‘sh
of the center of mass law’’ was found consistent with t
Papapetrou equations by Barker and O’Connell in@14#3

X(CP)>X(T)1
1

M0
v (CP)3S. ~70!

This relation allowsXNR to be interpreted as the midpoin
between X(CP) and X(T) : XNR>(1/2)@X(CP)1X(T)#.
Therefore Eq.~68! can be written equivalently as

XNR5X(T)1
1

2M0
v (CP)3S. ~71!

Unfortunately, in the Dixon-Souriau model, relations~68!,
~70!, and ~71! cannot be generalized to the Reissn
Nordström case.

With the Khriplovich-Pomeransky simplified model, pro
vided one definesXNR by Eq. ~71! @and not by Eq.~69!#,
relation ~49! still holds in the Reissner-Nordstro¨m case. As
an aside we remark that Khriplovich and Pomeransky
pothesize that the true origin of Eq.~71! is a Foldy-
Wouthuysen transformation, which is necessary to obtain
classical limit of a spin 1/2 Dirac field@11#. However, Eq.
~70! again fails to be true except in the Schwarzschild ca
Therefore this midpoint interpretation in both the Dixo
Souriau model and the Khriplovich-Pomeransky model
only valid in the Schwarzschild case.

Finally in the purely gravitational case it is worth notin
that under assumptions A1 and A2 only,a(ū,m)(CP) is for-
mally identical~but for a numerical factor! to a(G) , i.e., we
have:

a(ū,m)(CP)5
2
3 a(G) , ~72!

3The original law by Barker and O’Connell hadX(P) in place of
X(T) ~see@14#!, which is equivalent if the identificationX(P)>X(T)

is assumed. However, the formulation in terms ofX(T) is preferable
for two reasons:~a! it is the general relativistic analogue of Moller’
exact special relativistic formula@32#; ~b! some calculations atX(P)

need the further hypothesis A3, while those atX(T) do not.
3-9
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provided one replacesr and v in the expression~66! with
r (CP) andv (CP), respectively. This relation does not seem
have been considered previously in the literature. It c
analogously be extended to the Reissner-Nordstro¨m case as
follows:

a(ū,m)(CP)5
2M

3M2lQ
@a(G)1a(E)#. ~73!

We thus note that the result of the nonrelativistic theory
also recovered atX(CP) modulo a factor, without the neces
sity of introducing the auxiliary pointXNR; it suffices to
follow the evolution of the momentum vectorū instead of
that ofU. A problem with this alternative approach is that
the limit M→0 one obtainsa(ū,m)(CP)50 instead ofa(E) and
that the singular case 3M5lQ is excluded.

VII. CONCLUDING REMARKS

With the present study the motion of a charged spinn
test particle has been given a general 113 formulation in the
framework of gravitoelectromagnetism, a language for d
cussing the spacetime splitting itself, for any choice
supplementary conditions. The ‘‘center line’’ of the bod
with the associated timelike unit tangent vector as well as
direction of the generalized momentum vector of the bo
are quite natural to be considered as the four-velocity
observers at rest with the body itself. Both of them are u
in the definition of supplementary conditions to be added
the equations of motion in order to determine a compl
model. Of course any observer can be used either to des
the motion of the body or to induce some supplement
s.
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conditions; in the particular case of motion in the Schwar
child background, the pioneering work by Papapetrou a
Corinaldesi was done by using the family of static~Killing !
observers. In this paper the 113 version of the equations o
motion for a charged spinning test particle has been given
a generic observer, generic observer-induced supplemen
conditions, and for various models for the gravit
electromagnetism coupling studied in the literature.

As an application, the motion of a charged spinning t
particle in the Reissner-Nordstro¨m spacetime has been stu
ied. The general framework is helpful in understanding w
results can be extended from the well-known case of
Schwarzschild background. For example, one is intereste
how the classical expression for the spin-orbit interact
acceleration is modified. In the case of the Schwarzsc
spacetime, as first shown by Barker and O’Connell, one
introduce the midpoint between theT and theCP centers
and interpret it as a nonrelativistic center of mass. In the c
of Reissner-Nordstro¨m it is shown here that only in the spe
cial case of the Khriplovich and Pomeransky model for sp
ning test particles is it still possible to introduce a po
playing the role of a center of mass but where the midpo
interpretation is lost. For generic spacetimes and more g
eral models it is not even possible to introduce such a po
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