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Pure-radiation gravitational fields with a simple twist and a Killing vector
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Pure-radiation solutions are found exploiting the analogy with the Euler-Darboux equation for aligned
colliding plane waves and the Euler-Tricomi eqution in hydrodynamics of two-dimensional flow. They do not
depend on one of the spacelike coordinates and comprise the Hauser solution as a special subcase.

PACS numbsd(s): 04.20.Jb

[. INTRODUCTION It has been noticed in different contexts that the condition
M =0 simplifies the equatiorgl-6,8,9. In a previous paper
There exist many papers dealing with algebraically spef10] we explored this condition with the help of Stephani’s
cial, expanding and twisting pure-radiation solutions of themethod[2] for some algebraically special, axisymmetric, ex-
Einstein equations. An extensive bibliography up to 1980panding and twisting gravitational fields. They dependuon
exists in Ref[1]. Further results on pure-radiation fields canand o= ¢¢ intrinsically; i.e., theu dependence cannot be
be found in Refs[2—7] The standard form of the metric is taken away by app|y|ng the gauge transformati&ﬁ_Z?)

[1] from Ref. [1]. In the present paper we find solutions
_ for fields which depend omu and the real part off, x
dSz:Zd_mg —2Q[dr+WdZ+WdZ+HOT, =(1//2)(£+¢) and have the simplest possible twist. Many
ppP? of the well known algebraically special exact solutions pos-
sess this kind of symmetify,3,4]. Among them are the only
Q=du+ Ld§+fdz (1) known seed vacuum Robinson-Trautman solution of type lll,

the staticC metric and the only known expanding vacuum
Herer is the coordinate along the null congruence of geo-solution of typeN with twist, namely the Hauser solution,
desics, u is the retarded time, while/,{ span a two- given respectively by Eq$24.19, (24.23 and(25.71 from
dimensional surface. The metric components are determingdef. [1].
by ther-independent real functior®,m,M and the complex  In Sec. Il Egs.(7)-(9) are reformulated in terms of an
function L: invariant potential which leads to tHe,=0 gauge. In Sec.
L [l solutions with separated variablesand x are found. In
2i%=P?(gL—dL), (20  Sec. IV the main Eq(8) for simplest twist is shown to be
equivalent to a case of the Euler-Darboux equation, some-
1 what different from the equation derived in RE0]. On its
P @ wmitis a complex version of the central equation in the
theory of aligned colliding plane waved€PW). Three new
W=p 1L, +id3, (4) solutions are found. In Sec. V a homogenous hypergeometric
solution is derived, exploiting the similarity between E8).

— K and the Euler-Tricomi equation. It contains as a special case
H=-r(InP),—(mr+MX)pp+ =, (5 the Hauser solution of typ&l. Section VI contains some
conclusions.
K=2P2Rdd(dnP—L,)], (6)

Il. FIELD EQUATIONS IN THE L,=0 GAUGE
whered=d,—Ld, andX is the twist. The functions men-

tioned above satisfy the system of equations Following [2,10] we introduce the invariant complex po-

tential ¢ which solves Eq(7):

(9—3Ly)(M+iM)=0, (7) e iM = g2 10
u?
P~ 3M=1m d3adV, (8) .
X
n2=—2P3 P 3(m+iM)], RNCT (1D
3 S _ 2 PN
+2P%(9999V)y=2P(99V)u(99V)y, WhenM =0 we can apply the transformation
C)
whereV,=P, n is the energy density of pure radiation and u’="f(u,x), (12)
the Newton constant is set to 1. Equati@ris-(9) are in fact s )
Egs.(26.32 and(26.33 from Ref.[1]. (m+iM)"=f,*(m+iM) (13
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to makem a positive or a negative constamy, so that where c is an arbitrary constant. There are three types of
solutions, depending on the sign @flf c=0 we have
¢=mgu+ig(x)], (14)
P=ux, (24
i
L=— 15 6mg 9
\/qu ( ) n2= TO — §U2X4. (25)

with real g. ObviouslyL,=0. This gauge differs from the
usual gaugeP ,=0 but is very suitable when the Newman-
Unti-Tamburino(NUT) parameteM vanishes. Equation$)
and (9) simplify

Type Il solutions have negative energy while type Il solu-
tions have negative energy density for>c. If ¢>0, P
contains Bessel functions, e.g.,

93N =9IV, (16) P= &31,4(%5%) e ey (26)

2_ -1 3
—6moP 1P, +2P P -
n“=6meP Py 9999 4n2=—24\Jcmy— 2¢(3+ 4cx) Fée~4Tu

2 -
—2P%99PdoP 17 _2CP2(F+ 2xF,)%e 2, 27)
with a=(1/\/§)(ax—iqx&u). The second equation is in fact
an inequality. WherP,#0, n? can be made positive by the
choice ofm, at least for some region of spacetirfig4,8.
The expressions for the metric components simplify too, e.g
the gauge invariant® andK become

The first term can be made positive when<0, but the
second has a negative pole when-« because XF)*~x2.
There are no solutions with positive’ everywhere. The
third casec<0 gives a generic solution with modified Bessel
functions like

1 J
= — 2 —C
2 2qxxP ) (18) P=&K1,4<Tx2)sin —Cu, (28
_ P2/, Y
K=P?(9d+ dd)In P. (19 4n?=24.\/— cmycot( \/— cu) — 2¢(3+ 4cx?) Fsinty/—cu
Whenm+iM =0 (Petrov types lll anidN) Eq. (7) is an +2cP?(F+2xF,)%cog\—cu. (29

identity but still a potentialp may be introduced with the

propertyd¢$=0 and the subclass of solutions satisfying Eq.The first term changes sign and has polesi,ithus type I

(14) (with my=1) can be studied. One should pug=0 in  solutions are unphysical. Type Il solutions have negati¥e

all other equations. when, e.g.,u==/+/—c, although the second term doesn't
The main equatior(16), which is of fourth order with have poles iru.

respect toV, become_s in both cases a linear second order Equations(24) and (26) have been obtained by another

equation forP. Equation(18) shows thatg must be at least method in a more general form in Ré#] but the energy

quadratic inx for a non-trivial twist. Let us choose the sim- density has not been discussed in detail.

plest possibility,q=x?/2, L=(i/y2)x. Then Eqs(16) and If we separate the variables like=F(x)+ G(u) then
(17) read
cu?
X2Pyu+ Py =0, (20) G=——-+cutcy, (30)
2n2=12m,P~!P,—3P%P,,— 4x*P?P3, o
F=——+cz+c¢y, 31
— P2(Py+ 2xPyy)>. (21) 2 = (31

The last two terms in Eq21) are definitely negative, so the Where?i are constants. Numerous negatiye terms arise and
first term must be necessarily positive for a type Il solutionthe region of positivity oh? is rather complicated due to the

and the second term must be positive for a type Il solutionmany arbitrary constants. A more detailed discussion in a
general setting of this type of separation of variables may be

lll. SOLUTION WITH SEPARATED VARIABLES found in Ref.[11].
Suppose thal =F (x)G(u). Equation(20) splits into tWo |y REPUCTION TO THE EULER-DARBOUX EQUATION

parts,
Equation(20) with x? replaced by' wherel is an integer

G, ,=¢G, (220 has been studied in the pgst2,13. Green functions for
different boundary problems have been found. The basis of
Fyxt CX2F =0, (23)  these results is the change of variables which transforms Eq.
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(20) into the Euler-Darboux equation 2

X

1 K=-— prerl (40)
4P¢w+ QD"’_CU(P(’D_I— Pw):O, (32)
The same is true for the Weyl scaldrk,15] with leading
i terms given by
e=u+ §X2,
- 3

(33) \PZ_mOP ' (41)
wherew = — ¢. This equation is similar to Eq24) from Ref. W3=—p®P331+0(p°), (42)

[10] and the main equation for aligned colliding plane waves ) ,
[14]—one needs only to replace the multiplier 4 by 2. This, W ,4=pP?ly+0(p%), (43

however, is not a trivial change and can't be achieved by

scaling the variables oP. Nevertheless, one may use the I=P T99P. (44)

numerous techniques developed in the search for CPW solu-
tions and applied in Ref.10] for axisymmetric fields. We  An exception is¥, which approaches m,/r3 asu— .
shall find analogues of these solutions. As pointed out in Ref. Let us present next an ana|ogue of the ¢dskolution
[10] the reality of P must be ensured because the variablegound in Ref.[10]. We substitute the ansaB=P(a),
¢, are complex.

The simplest solution i((PJr;) 2u

a= —=—, 45
P=i"Y¢+w)?=x (39 o=@ x2 “9

is a time-independent vacuum solution of Kerr-Schild type. into Eq.(32). The result is an elliptic integral of the first kind
A solution with separated variabl€s=F(¢)G(w) exists.  F(y, «):

Replacement in Eq32) yields

— 1
P=A[(oc+¢)(o+¢)] ™, (35 P=\/5F(¢,E), (46)
where A and o are constantsA is ignorable andr can be
hidden inu to obtain a real solution: =arcco$l+a?) V4 (47)
—_p-1/4
P=B"" (36 Pa=(1+a2) ¥ (48)
B=u2+ EX4_ (37)  The functionP is bounded: 8 P<\2F (7/2,1/y2). The so-
4 lution possesses regular characteristics like the previous one:
This solution is analogous to the solution given by HGS) 3 _—
and (28) from Ref.[10] and has a number of nice features. n2— 12mo|x|  18u[x|P®  9x°P (49)
The energy density is P(4B)%4  (4B)™4  4B32’
3mg
2_ _ a2 1
n BS/ZU 16B 3(X 6u ) E: EPZ, (50)
46ul—xH2+u?(9x*—4u??]. (38 2
( )24 U )2]. (39) (o2 51
Bl/2

In the following we suppose that the retarded time satisfies

the conditionu>u,>0 for some constant,. Equation(38)  All terms in Eq.(49) are regular. The first term is positive for
is regular inx unlike many other solutions, plagued by sin- Mp>0 and type Il solutions with positive? exist for big
gular pipes forx=0 or x=* [1]. Whenm<O0 the first €noughm,. The second term is positive too but does not
term dominates over the others|if| is big enough and always dominate over the third one. The Weyl scalars are
consequently? is positive. Unfortunately, type Ill solutions also regular andV 3, ¥, vanish wheru—co.

are not with positiven? for any x because the second term  Let us transform now the Euler-Darboux equati@®)
changes sign. The gauge invariafi8) and(19) are regular  into its canonical form. Introducing the new variables

in x and vanish whemi— oo: =X, \=2u we obtain

1 1
3= EPZ, (39 P+ 5-P+Pu=0. (52
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This is an analogue of Eq25) from Ref.[10] and its solu-  which leads to a homogeneous hypergeometric solution. It is
tion is given by the Bessel functions from Sec. lll. We candiscussed at length in Rdf17]. In our case Eq(20) is in-
go further, utilizing the coordinates for the first Yurtsever variant undeu— c?u, x—cx and we can try a homogenous

solution[10,14,16: solution
T=vsiny, (53 P=u*F(z), (63)
\=vC0s7, (54) x4
== —, (64)
v2=4B, (55) 4u
4| 12 wherek is the degree of homogeneity. Then EQ0) be-
cosp=| 1+-— (56) ~ comes
4u
3 3 k(k—1)
Then Eq.(52) becomes 2(z=1)Fgt|| 5 —k|z= 7|Fet —,—F=0. (69
1 1(3 1 _ Once again this is a hypergeometric equation and one of its
P+ ;Pmﬁ' 5| 5Pt ﬁCOt” P,|=0. (57 fundamental solutions leads to
; ; [ ; k 1-k 3
It has a separable solution of the kiRd=»'Y (7). Y, instead P=ukp| — = gl (66)
of being a Legendre function of the first or second kind, 2° 24

satisfies the equation ) o
In fact, the hypergeometric function in E(6) degenerates
to a Legendre function for anly

5 5| Y=0, (59)

3 1
(1-W?)Yyu— —WYW+I(I+—

3
] ) ) ) P:271/4I~ _ uk —7 1/8 1—-7 k/271/8P1/4 1—7 —1/2 .
wherew=cosy. Its solution is a hypergeometric function 4 (=2)7X ) —k-ard( )]

and (67)
2 3 It becomes a rational function in some cases. Thus=if
P=(4B)"“F 8,0’,—Z,X , (59 s
N _ A\U21/4
wheres + o=—%, co=I(1+1) and P (2) [1+(1-2)"™ (68)
1 and ifk=—2
X=Z(1+uB 1?), (60) ¢
2 o\ 14
— -1/ 1/2q1/4
P is real because €X=<1. The hypergeometric function is P‘(E) (1-2)" "1+ (1-7)"7"~ (69)
reducible to a Legendre function:
3 3\ [ x4\ 78 Exploiting only Eq.(64) one finds the following identi-
Floo— > x| =T - 2| 2] P, (—uB ties:
Uy 41 4 4B —(1+g)/2 :
(6 kP=uP,+ ! P (70
=uP,+ =xPy,
If I=—3, eithere or o vanishes and formulés9) degener- 2
ates to the rational function given b 6).
given by EGO Puy=P1B; ", (7D

V. HYDRODYNAMICAL ANALOGY

1
— _ -1 _
Equation (20) has certain similarities with the Euler- Py+2xPy,=(4k=3)u (kP 2XPx>

Tricomi equation

—4uP,B,*, (72)

x®,,—d,,=0. (62
) o P,=4k(k—1)P—(4k—3)xP,,

It appears in hydrodynamics in the study of a two- (73)
dimensional flow of compressible fluid with velocity near the
velocity of sound 17]. It is a limiting case of the more com- whereBy=4B. They hold for any solution of Eq65). By
plex Chapligin equation which has integrals among the hyplugging Eqgs.(70)—(73) into Eg. (21) one can study the
pergeometric functiongl7,18. The Euler-Tricomi equation properties of the energy density. It simplifies drastically
is invariant under the transformation€—cu?, x>—cx®  whenk=23:
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P=u3’4F(—§,§,Z,z), (74)
mo ZF(%,%,%,Z)
—n?=myP~P,=——|3— (75)
6 ° ‘ 4u 2F(_%!%143_112)

When 0<|z|<1 it can be checked witmAPLEV that the
right-hand side of Eq(75) is positive formyg>0. In the
region 1<|z|<o an analytic continuation of the hypergeo-
metric functions should be performed. Thus

3 111)

B L3138 )
852’ M "5

e (1331
+A2(_Z) F g,g:zaz ’ (76)

Tre-3

Az 3 5.’
I'(=3)I'(s)
and similarly for the other hypergeometric function in Eq.
(75). A check withmAPLEV confirms again the positivity of
n2. The energy density is regular inandz. Whenm,=0 a
vacuum solution is obtained. It ha¥#,=0 and then the
higher terms in Eq(42) vanish[1]. From Eq.(44) it follows
that

I = > (77)

4(X%—2iu)

anddl =0, 1,#0. ThereforeW;=0, while ¥,#0 and the
solution is of typeN. In fact, this is the Hauser solution
[1,19] in theL,=0 gauge.

PHYSICAL REVIEW D 61 064011

P'=f,'P, (79

! f
V2
[see Eq(25.27 from Ref.[1]]. P’ is given by Eq(74) while
L' =ix/\2. Then the originaP andL are given by

L'=f,L— (80)

P=x"2F(u), (81)
2 .
L=—(u+i), (82
X
. _1A F 3 11 )
(U)—E ikl —g gV
+1A F 3w 83
2PUF g g5 Ut (83

We have used formulé76) to derive the expression for
F(u). Equations(81)—(83) give exactly the Hauser solution
[19] as written out in Refs[1] and[20]. Equation(83) is a
specific linear combination of the even and odd solutions
given in Ref.[20] which fixes the one-parameter freedom of
the Hauser solution. This ends the proof of our assertion.

VI. CONCLUSION

We have shown that when the NUT paraméfevanishes
and the gaugé ,=0 is used, the main equatiof20) for
expanding pure radiation fields with a simple twist and a
special symmetry becomes a tractable second order linear
equation forP. It is reducible to a case of the Euler-Darboux
equation, somewhat different from the central equation in the
theory of aligned colliding plane waves. We have found
regular solutions, separating the variables in different coor-
dinate systems. In some cases the regions of positivity of the
energy density were investigated. Another analogy with the
Euler-Tricomi equation, appearing in the hydrodynamics of

Let us show this in detail. We have used the transformatwo-dimensional fluid flow, has been exploited to find ho-

tion (13) to bring ¢ to the simple form(14) [with my=1

since the field is of typeN] and then have dropped the

primes. Restoring them, Eq&l2)—(14) show that
f=u’"=Cx, (79

where C is an arbitrary constant which we fix 6= 1/2.
Under transformatiof12) P andL change as

mogenous solutions. Interestingly enough, the Hauser
vacuum solution of typé is an exceptional member of the
family of type Il solutions with degree of homogenegy
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