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Pure-radiation gravitational fields with a simple twist and a Killing vector
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Pure-radiation solutions are found exploiting the analogy with the Euler-Darboux equation for aligned
colliding plane waves and the Euler-Tricomi eqution in hydrodynamics of two-dimensional flow. They do not
depend on one of the spacelike coordinates and comprise the Hauser solution as a special subcase.

PACS number~s!: 04.20.Jb
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I. INTRODUCTION

There exist many papers dealing with algebraically s
cial, expanding and twisting pure-radiation solutions of t
Einstein equations. An extensive bibliography up to 19
exists in Ref.@1#. Further results on pure-radiation fields c
be found in Refs.@2–7#. The standard form of the metric i
@1#

ds25
2dzdz̄

rr̄P2
22V@dr1Wdz1W̄dz̄1HV#,

V5du1Ldz1L̄dz̄. ~1!

Herer is the coordinate along the null congruence of ge
desics, u is the retarded time, whilez,z̄ span a two-
dimensional surface. The metric components are determ
by ther-independent real functionsP,m,M and the complex
function L:

2iS5P2~ ]̄L2]L̄ !, ~2!

r52
1

r 1 iS
, ~3!

W5r21Lu1 i ]S, ~4!

H52r ~ ln P!u2~mr1MS!rr̄1
K

2
, ~5!

K52P2Re@]~ ]̄ ln P2L̄u!#, ~6!

where ]5]z2L]u and S is the twist. The functions men
tioned above satisfy the system of equations

~]23Lu!~m1 iM !50, ~7!

P23M5Im ]]]̄]̄V, ~8!

n2522P3@P23~m1 iM !#u

12P3~]]]̄]̄V!u22P2~]]V!u~ ]̄ ]̄V!u ,
~9!

whereVu5P, n is the energy density of pure radiation an
the Newton constant is set to 1. Equations~7!–~9! are in fact
Eqs.~26.32! and ~26.33! from Ref. @1#.
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It has been noticed in different contexts that the condit
M50 simplifies the equations@4–6,8,9#. In a previous paper
@10# we explored this condition with the help of Stephan
method@2# for some algebraically special, axisymmetric, e
panding and twisting gravitational fields. They depend onu

and s5zz̄ intrinsically; i.e., theu dependence cannot b
taken away by applying the gauge transformations~25.27!
from Ref. @1#. In the present paper we find solution
for fields which depend onu and the real part ofz, x

5(1/A2)(z1 z̄) and have the simplest possible twist. Man
of the well known algebraically special exact solutions po
sess this kind of symmetry@1,3,4#. Among them are the only
known seed vacuum Robinson-Trautman solution of type
the staticC metric and the only known expanding vacuu
solution of typeN with twist, namely the Hauser solution
given respectively by Eqs.~24.15!, ~24.23! and~25.71! from
Ref. @1#.

In Sec. II Eqs.~7!–~9! are reformulated in terms of a
invariant potential which leads to theLu50 gauge. In Sec.
III solutions with separated variablesu and x are found. In
Sec. IV the main Eq.~8! for simplest twist is shown to be
equivalent to a case of the Euler-Darboux equation, so
what different from the equation derived in Ref.@10#. On its
turn it is a complex version of the central equation in t
theory of aligned colliding plane waves~CPW!. Three new
solutions are found. In Sec. V a homogenous hypergeome
solution is derived, exploiting the similarity between Eq.~8!
and the Euler-Tricomi equation. It contains as a special c
the Hauser solution of typeN. Section VI contains some
conclusions.

II. FIELD EQUATIONS IN THE L uÄ0 GAUGE

Following @2,10# we introduce the invariant complex po
tential f which solves Eq.~7!:

m1 iM 5fu
3 , ~10!

L5
fx

A2fu

. ~11!

WhenM50 we can apply the transformation

u85 f ~u,x!, ~12!

~m1 iM !85 f u
23~m1 iM ! ~13!
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to makem a positive or a negative constantm0, so that

f5m0
1/3@u1 iq~x!#, ~14!

L5
i

A2
qx ~15!

with real q. Obviously Lu50. This gauge differs from the
usual gaugePu50 but is very suitable when the Newma
Unti-Tamburino~NUT! parameterM vanishes. Equations~8!
and ~9! simplify

]]]̄]̄V5 ]̄ ]̄]]V, ~16!

n256m0P21Pu12P3]]]̄]̄P

22P2]]P]̄ ]̄P ~17!

with ]5(1/A2)(]x2 iqx]u). The second equation is in fac
an inequality. WhenPuÞ0, n2 can be made positive by th
choice ofm0 at least for some region of spacetime@1,4,8#.
The expressions for the metric components simplify too, e
the gauge invariantsS andK become

S5
1

2
qxxP

2, ~18!

K5P2~ ]̄]1]]̄ !ln P. ~19!

When m1 iM 50 ~Petrov types III andN) Eq. ~7! is an
identity but still a potentialf may be introduced with the
property]f50 and the subclass of solutions satisfying E
~14! ~with m051) can be studied. One should putm050 in
all other equations.

The main equation~16!, which is of fourth order with
respect toV, becomes in both cases a linear second or
equation forP. Equation~18! shows thatq must be at leas
quadratic inx for a non-trivial twist. Let us choose the sim
plest possibility,q5x2/2, L5( i /A2)x. Then Eqs.~16! and
~17! read

x2Puu1Pxx50, ~20!

2n2512m0P21Pu23P3Puu24x4P2Puu
2

2P2~Pu12xPux!
2. ~21!

The last two terms in Eq.~21! are definitely negative, so th
first term must be necessarily positive for a type II soluti
and the second term must be positive for a type III soluti

III. SOLUTION WITH SEPARATED VARIABLES

Suppose thatP5F(x)G(u). Equation~20! splits into two
parts,

Guu5cG, ~22!

Fxx1cx2F50, ~23!
06401
.,

.

er

.

where c is an arbitrary constant. There are three types
solutions, depending on the sign ofc. If c50 we have

P5ux, ~24!

n25
6m0

u
2

9

2
u2x4. ~25!

Type III solutions have negative energy while type II sol
tions have negative energy density forx→`. If c.0, P
contains Bessel functions, e.g.,

P5AxJ1/4SAc

2
x2D e2Acu, ~26!

4n25224Acm022c~314cx4!F4e24Acu

22cP2~F12xFx!
2e22Acu. ~27!

The first term can be made positive whenm0,0, but the
second has a negative pole whenx→` because (xF)4;x2.
There are no solutions with positiven2 everywhere. The
third casec,0 gives a generic solution with modified Bess
functions like

P5AxK1/4SA2c

2
x2D sinA2cu, ~28!

4n2524A2cm0cot~A2cu!22c~314cx4!F4sin4A2cu

12cP2~F12xFx!
2cos2A2cu. ~29!

The first term changes sign and has poles inu, thus type II
solutions are unphysical. Type III solutions have negativen2

when, e.g.,u5p/A2c, although the second term doesn
have poles inu.

Equations~24! and ~26! have been obtained by anoth
method in a more general form in Ref.@4# but the energy
density has not been discussed in detail.

If we separate the variables likeP5F(x)1G(u) then

G52
cu2

2
1c1u1c2 , ~30!

F5
cx4

12
1c31c4 , ~31!

whereci are constants. Numerous negative terms arise
the region of positivity ofn2 is rather complicated due to th
many arbitrary constants. A more detailed discussion i
general setting of this type of separation of variables may
found in Ref.@11#.

IV. REDUCTION TO THE EULER-DARBOUX EQUATION

Equation~20! with x2 replaced byxl wherel is an integer
has been studied in the past@12,13#. Green functions for
different boundary problems have been found. The basi
these results is the change of variables which transforms
1-2
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~20! into the Euler-Darboux equation

4Pwv1
1

w1v
~Pw1Pv!50, ~32!

w5u1
i

2
x2,

~33!

wherev52w̄. This equation is similar to Eq.~24! from Ref.
@10# and the main equation for aligned colliding plane wav
@14#—one needs only to replace the multiplier 4 by 2. Th
however, is not a trivial change and can’t be achieved
scaling the variables orP. Nevertheless, one may use th
numerous techniques developed in the search for CPW s
tions and applied in Ref.@10# for axisymmetric fields. We
shall find analogues of these solutions. As pointed out in R
@10# the reality ofP must be ensured because the variab
w,v are complex.

The simplest solution

P5 i 21/2~w1v!1/25x ~34!

is a time-independent vacuum solution of Kerr-Schild typ
A solution with separated variablesP5F(w)G(v) exists.

Replacement in Eq.~32! yields

P5A@~s1w!~s1w̄ !#21/4, ~35!

whereA and s are constants.A is ignorable ands can be
hidden inu to obtain a real solution:

P5B21/4, ~36!

B[u21
1

4
x4. ~37!

This solution is analogous to the solution given by Eqs.~27!
and ~28! from Ref. @10# and has a number of nice feature
The energy density is

n252
3m0

B3/2
u1

3

16B3
~x426u2!

2
1

128B5
@4x4~6u22x4!21u2~9x424u2!2#. ~38!

In the following we suppose that the retarded time satis
the conditionu.u0.0 for some constantu0. Equation~38!
is regular inx unlike many other solutions, plagued by si
gular pipes forx50 or x56` @1#. When m0,0 the first
term dominates over the others ifum0u is big enough and
consequentlyn2 is positive. Unfortunately, type III solution
are not with positiven2 for any x because the second ter
changes sign. The gauge invariants~18! and~19! are regular
in x and vanish whenu→`:

S5
1

2
P2, ~39!
06401
s
,
y

lu-

f.
s

.

.

s

K52
x2

4B3/2
. ~40!

The same is true for the Weyl scalars@1,15# with leading
terms given by

C25m0r3, ~41!

C352r2P3]I 1O~r3!, ~42!

C45rP2I u1O~r2!, ~43!

I 5P21]̄ ]̄P. ~44!

An exception isC2 which approaches2m0 /r 3 asu→`.
Let us present next an analogue of the cosh21 solution

found in Ref.@10#. We substitute the ansatzP5P(a),

a5
i ~w1w̄ !

w2w̄
5

2u

x2
, ~45!

into Eq.~32!. The result is an elliptic integral of the first kin
F(c,k):

P5A2FS c,
1

A2
D , ~46!

c5arccos~11a2!21/4, ~47!

Pa5~11a2!23/4. ~48!

The functionP is bounded: 0<P<A2F(p/2,1/A2). The so-
lution possesses regular characteristics like the previous

n25
12m0uxu

P~4B!3/4
1

18uuxuP3

~4B!7/4
2

9x2P2

4B3/2
, ~49!

S5
1

2
P2, ~50!

K52
2

B1/2
. ~51!

All terms in Eq.~49! are regular. The first term is positive fo
m0.0 and type II solutions with positiven2 exist for big
enoughm0. The second term is positive too but does n
always dominate over the third one. The Weyl scalars
also regular andC3 ,C4 vanish whenu→`.

Let us transform now the Euler-Darboux equation~32!
into its canonical form. Introducing the new variablest
5x2, l52u we obtain

Ptt1
1

2t
Pt1Pll50. ~52!
1-3
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This is an analogue of Eq.~25! from Ref. @10# and its solu-
tion is given by the Bessel functions from Sec. III. We c
go further, utilizing the coordinates for the first Yurtsev
solution @10,14,16#:

t5n sinh, ~53!

l5n cosh, ~54!

n254B, ~55!

cosh5S 11
x4

4u2D 21/2

. ~56!

Then Eq.~52! becomes

Pnn1
1

n2
Phh1

1

2 S 3

n
Pn1

1

n2
coth PhD 50. ~57!

It has a separable solution of the kindP5n lY(h). Y, instead
of being a Legendre function of the first or second kin
satisfies the equation

~12w2!Yww2
3

2
wYw1 l S l 1

1

2DY50, ~58!

where w5cosh. Its solution is a hypergeometric functio
and

P5~4B! l /2FS «,s,2
3

4
,XD , ~59!

where«1s52 5
2 , «s5 l ( l 1 1

2 ) and

X5
1

2
~11uB21/2!. ~60!

P is real because 0<X<1. The hypergeometric function i
reducible to a Legendre function:

FS «,s,2
3

4
,XD5GS 2

3

4D S x4

4BD 7/8

P2(11«)/2
7/4 ~2uB21/2!.

~61!

If l 52 1
2 , either« or s vanishes and formula~59! degener-

ates to the rational function given by Eq.~36!.

V. HYDRODYNAMICAL ANALOGY

Equation ~20! has certain similarities with the Euler
Tricomi equation

xFuu2Fxx50. ~62!

It appears in hydrodynamics in the study of a tw
dimensional flow of compressible fluid with velocity near t
velocity of sound@17#. It is a limiting case of the more com
plex Chapligin equation which has integrals among the
pergeometric functions@17,18#. The Euler-Tricomi equation
is invariant under the transformationsu2→cu2, x3→cx3
06401
,

-

which leads to a homogeneous hypergeometric solution.
discussed at length in Ref.@17#. In our case Eq.~20! is in-
variant underu→c2u, x→cx and we can try a homogenou
solution

P5ukF~z!, ~63!

z52
x4

4u2
, ~64!

where k is the degree of homogeneity. Then Eq.~20! be-
comes

z~z21!Fzz1F S 3

2
2kD z2

3

4GFz1
k~k21!

4
F50. ~65!

Once again this is a hypergeometric equation and one o
fundamental solutions leads to

P5ukFS 2
k

2
,
12k

2
,
3

4
,zD . ~66!

In fact, the hypergeometric function in Eq.~66! degenerates
to a Legendre function for anyk

P5221/4GS 3

4Duk~2z!1/8~12z!k/221/8P2k23/4
1/4 @~12z!21/2#.

~67!

It becomes a rational function in some cases. Thus ifk5 1
4

P5S u

2D 1/4

@11~12z!1/2#1/4, ~68!

and if k52 3
4

P5S 2

u3D 1/4

~12z!21/2@11~12z!1/2#1/4. ~69!

Exploiting only Eq.~64! one finds the following identi-
ties:

kP5uPu1
1

2
xPx , ~70!

Puu5P1B0
21 , ~71!

Pu12xPxu5~4k23!u21S kP2
1

2
xPxD

24uP1B0
21 , ~72!

P1[4k~k21!P2~4k23!xPx ,
~73!

whereB054B. They hold for any solution of Eq.~65!. By
plugging Eqs.~70!–~73! into Eq. ~21! one can study the
properties of the energy density. It simplifies drastica
whenk5 3

4 :
1-4
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P5u3/4FS 2
3

8
,
1

8
,
3

4
,zD , ~74!

1

6
n25m0P21Pu5

m0

4u F32
zF~ 5

8 , 9
8 , 7

4 ,z!

2F~2 3
8 , 1

8 , 3
4 ,z!

G . ~75!

When 0<uzu<1 it can be checked withMAPLEV that the
right-hand side of Eq.~75! is positive for m0.0. In the
region 1<uzu<` an analytic continuation of the hyperge
metric functions should be performed. Thus

FS 2
3

8
,
1

8
,
3

4
,zD5A1~2z!3/8FS 2

3

8
,2

1

8
,
1

2
,
1

zD
1A2~2z!21/8FS 1

8
,
3

8
,
3

2
,
1

zD , ~76!

A15
G~ 3

4 !G~ 1
2 !

G~ 1
8 !G~ 9

8 !
,

A25
G~ 3

4 !G~2 1
2 !

G~2 3
8 !G~ 5

8 !
,

and similarly for the other hypergeometric function in E
~75!. A check withMAPLEV confirms again the positivity o
n2. The energy density is regular inu andz. Whenm050 a
vacuum solution is obtained. It hasC250 and then the
higher terms in Eq.~42! vanish@1#. From Eq.~44! it follows
that

I 5
3

4~x222iu !
~77!

and ]I 50, I uÞ0. ThereforeC350, while C4Þ0 and the
solution is of typeN. In fact, this is the Hauser solutio
@1,19# in the Lu50 gauge.

Let us show this in detail. We have used the transform
tion ~13! to bring f to the simple form~14! @with m051
since the field is of typeN# and then have dropped th
primes. Restoring them, Eqs.~12!–~14! show that

f 5u85Cx2u, ~78!

where C is an arbitrary constant which we fix toC51/2.
Under transformation~12! P andL change as
um

um

06401
.

-

P85 f u
21P, ~79!

L85 f uL2
1

A2
f x , ~80!

@see Eq.~25.27! from Ref.@1##. P8 is given by Eq.~74! while
L85 ix/A2. Then the originalP andL are given by

P5x7/2F~u!, ~81!

L5
A2

x
~u1 i !, ~82!

F~u!5
1

2
A1FS 2

3

8
,2

1

8
,
1

2
,2u2D

1
1

4
A2uFS 1

8
,
3

8
,
3

2
,2u2D . ~83!

We have used formula~76! to derive the expression fo
F(u). Equations~81!–~83! give exactly the Hauser solutio
@19# as written out in Refs.@1# and @20#. Equation~83! is a
specific linear combination of the even and odd solutio
given in Ref.@20# which fixes the one-parameter freedom
the Hauser solution. This ends the proof of our assertion

VI. CONCLUSION

We have shown that when the NUT parameterM vanishes
and the gaugeLu50 is used, the main equation~20! for
expanding pure radiation fields with a simple twist and
special symmetry becomes a tractable second order li
equation forP. It is reducible to a case of the Euler-Darbou
equation, somewhat different from the central equation in
theory of aligned colliding plane waves. We have fou
regular solutions, separating the variables in different co
dinate systems. In some cases the regions of positivity of
energy density were investigated. Another analogy with
Euler-Tricomi equation, appearing in the hydrodynamics
two-dimensional fluid flow, has been exploited to find h
mogenous solutions. Interestingly enough, the Hau
vacuum solution of typeN is an exceptional member of th
family of type II solutions with degree of homogeneity3

4 .
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