PHYSICAL REVIEW D, VOLUME 61, 064009
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All cubic couplings in type IIB supergravity on AgS S° that involve two scalar fields' that are mixtures
of the five form field strength on®Sand the trace of the graviton or? &re derived by using the covariant
equations of motion and the quadratic action for type IIB supergravity onsA&3. All corresponding
three-point functions in SYIMare calculated in the supergravity approximation. It is pointed out that the
scalarss' correspond not to the chiral primary operators in Mfe 4 SYM but rather to a proper extension of
the operators.

PACS numbgs): 04.50-+h, 11.25.Hf

I. INTRODUCTION clude that the scalars used in[12] cannot correspond to
CPOs. Another way to come to the conclusion is that the
scalars from[12] do not coincide with the original scalars
that are mixtures of the five-form and the graviton but de-
pend nonlinearly on the original scalars and their derivatives.
Thus the scalars used|ibi2] do not transform with respect to

cides with the on-shell value of the type IIB supergravity .
. 5 . . the superconformal group in a proper way and cannot corre-
action on AdgXx S°. For this reason, to calculate arpoint spond to CPOs

Green function one has to know the supergravity action up to In this paper we show that a scadrused in[12] corre-

the nth order. In particular, the normalization constants of L
) : . sponds to an operator which is the sum of a CPO and non-
two- and three-point Green functiofé—25| are determined ) . .
chiral composite operators. The non-chiral operators are

by the quadratic and cubic actions for physical fields of SYhormal-ordered products of CPOs and their descendants, i.e.
pergravity. . . so-called double- and multi-trace operators.
The particle spectrum of type 1IB supergravity on AdS

S [262 . lar fieldg th ) fth The knowledge of correlation functions of the chiral pri-
X S”[26,27] contains scalar fields that are mixtures of the 51y onerators allows one to compute correlation functions

f"s’e form field strength on %and_ the trace of the graviton on ¢ 4| their descendants, in particular, the correlation func-
S°. The transformation properties of the scalars with respecfions of the stress energy tensor aRésymmetry currents.

to the superconformal group of SYMllow one to conclude  To compute four-point functiodf the chiral operators one
that they correspond to chiral primary operat@@0s of  has to know thes'-dependent quartic terms and all cubic
SYM,. In[12] the quadratic and cubic actions for the scalarsterms that involve two scalar fields. In the present paper,

s' have been found and used to calculate all three-point funcas the first step in this direction, we determine all such cubic
tions of normalized CPOs. These three-point functions apterms. It is sufficient to consider only the sector of type IIB
peared to coincide with the three-point functions of CPOssupergravity that depends on the graviton and the four-form
computed in free field theory for generic values of conformalpotential. There are four different types of vertices describ-
dimensions of CPOs. However, there is an apparent contraAg interaction of two scalars’ with symmetric tensor fields
diction. As was noted iri28] (see alsq25]) a three-point  of the second rank coming from the Agl€omponents of the
function of CPOs calculated in the AdS-CFT framework graviton, with vector fields, with scalar fields coming from
vanishes, if the sum of conformal dimensions of any of thethe S components of the graviton, and with scalar fiettls
two operators equals the conformal dimension of the thirdhat are mixtures of the trace of the graviton on the sphere
operator, because of the vanishing of the cubic couplings g#nd the five form field strength on the sphere.

the corresponding scalar fields. Thus we are forced to con- ° this end we apply an approach similar to the one used
in [12]. Namely, we use the quadratic action for type IIB

supergravity on AdSx S° recently obtained ifi40] and the
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According to the AdS-conformal field theofCFT) cor-
respondencgl—3], the generating functional of Green func-
tions in D=4, N=4 supersymmetric Yang-Mills theory
(SYM,) at largeN and at strong 't Hooft coupling coin-
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of higher-derivative terms we will have to redefine the origi- R _ . 1 Vk1koks(C'1C'2C'3)
nal gravity fields. Thus the fields entering the final action (O'l(x)O'Z(y)O'S(z)>=N S S5 So T Eoa
correspond not to descendants of CPOs but to extended op- |x—y[es]y —z|**|z—x]| "2

erators involving products of CPOs and their descendants. 3)
However, we expect that for generic values of conformal,, ..o ai=31(ki+k—k), j#I#i, and (C'1C'2C's) is the

dimensions of these operators, their three-point functions COL'miqueSO(G) invariant obtained by contracting, indices
incide with the three-point functions of the correspondingP(:J,wveenc|2 andC's, a, indices betweert's andlcll and

descendants of CPOs. Let us note in passing that the only . . | | :
way to find an action depending on the fFi)eIds tr?at corresponé{3 |pd|ces betweelC 2 andQ - Accordmg to the AdS_CFT-
directly to CPOs and their descendants seems to be to deriv onjecture, there should exist fields of type IIB supergravity
h ); tarting f th iant action [d#,45. | 6h AdS;x S that correspond to CPOs. The transformation
:hiGS E\i/\(/:f;;r:)r?eag:g%ag?;nshoeulgoggigg aa%(l)?wr:/anis’hir{g ncubi roperties of CPOs and supergravity fields with respect to
couplings of scalars' corresponding to CPOs whose con- he superconformal_ group of SY‘NB.hOW that thes_e fields
f b | g : ; hp | gom A—A. Th seem to be scalar fields, that are mixtures of the five form
C?ern;:te rlg;anszlgrr:]s tiagcsaf}cl)fttr?er?o?#‘ st;gezs;e @%ﬂ L?r?—e field strength on Sand the trace of the graviton or?.3To
fortunately, the lack of covariance of the gauge—fixéd actioncaICUIate the three-point functions of CPOs in the frame\_/vork
fra4.4 ’ kes th si A | licated of the AdS-CFT correspondence the quadratic and cubic ac-
of [44,49 ma €s e analysis extremely complicated. ions for the scalars' were found in[12]. Then, it was
The paper is organized as follows. In Sec. Il we sugges

hown that for generic values of conformal dimensions of
the operators that corre_spond to thg scasarsom [12.]' In CPOs the normalized three-point functions computed using
Sec. Il we recall equations of motion for the graviton and

the actions precisely coincide with the free field theory result

the four-form potential, and the quadratic actions for the ; :
fields under consideration, and introduce notations. In Sec(s)' On the other hand, as was pointed ouf28] the cubic

IV we obtain cubic couplings of two scalasswith a scalar touplings of scalars' satisfying one of the three relations:

t', and with scalarsp' coming from_ the graviton on _the ki+ko=Kg, Kotks=ky, Kgtki=ks, (4)
sphere, and calculate their three-point functions by using re-

sults obtained ifi7]. In Sec. V cubic couplings of two scalars vanish, and, therefore, the three-point functions of the opera-
s' with symmetric second rank tensor fields are derived andors corresponding to scalass vanish too. Thus, scalas

the corresponding three-point functions are found. In Sec. Vlsed in[12] do not correspond to CPOs. We can explain this
we obtain cubic vertices of two scalas'sand a vector field, by noting that the scalars from [12] differ from the origi-

and calculate their three-point functions. Note that threenal scalars that are mixtures of the graviton and the five-form
point functions of two scalars with a massive vector field, oron S. The original scalars' satisfy equations which depend

a massive symmetric second rank tensor, were not consién higher-derivative terms. To remove the derivative terms
ered in the literature before. In the Conclusion we discuss théhe following field redefinition was made [12]

results obtained, and open problems. In the Appendix we
recall the definitions of scalar, vector and tensor spherical
harmonics.

SIlZS,I1+|EI (J|1|2|SSIIZSII3+ L|1|2|3VaSI|2VaS,I3).
213
(5

ll. EXTENDED CHIRAL PRIMARY OPERATORS Namely for the scalars’' the cubic couplings mentioned
In this section we recall the definition of chiral primary a@bove vanish. Because of the redefiniti@hnew scalars’'
operators and introduce a notion of extended chiral primarfl© not transform with respect to the superconformal group in
operators. a proper way, and, therefore, cannot correspond to CPOs.
According to[12], CPOs have the form From the computational point of view these cubic cou-
plings have to vanish because if, s&y+k,=ks then the
K three-point function(3) is nonsingular ak=y, but gravity
- (2m) o N : : P ) : )
0'(x)= c! CrGR)-- HHX)), (1) ca}lculatlons with a nonvam;hmg_ on-shell bulk cubic cou
Jkak k pling always lead to a function singular aty, x=z and
y=z. By the same reason we expect thgioint functions of
operators corresponding to scalas [with an additional
field redefinition which is required to remove higher-

where C:r“ik are totally symmetric traceless ratkortho-
normal tensors 060(6): (C'C’)=C; .. C} ..; =6", &'
are scalars of SYlM and A;---A,: means the normal-

ordered product of the °Perat0“$; . 2Strictly speaking this correspondence between CPOs and scalars
The two- and three-point functions of CPOs computed ing' may be valid only at linear order in supergravity fields. The
free theory arg12] reason is that the local supersymmetry transformations of super-
gravity fields are nonlinear, and, one should expect that the induced
13 superconformal transformations are nonlinear too. Thus the original
<o|(§)QJ(§)>: _ 2) gravity fields seem to depend nonlinearly on fields with the linear
|x—y]| 2 transformation law.
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derivative terms from then— 1)th order equations of mo- 1
tion for '] would vanish if, sayk,=k;+ - - - +k,_;. Study Fmy Mg=578M, . My P
of the general scalar exchange performed28] seems to
confirm the conclusion. 1
Thus, scalars' (here and in what follows we omit the Run= yFMMl...Mf:’\uﬂlmMA- (8)
primes on redefined field€orrespond to properly extended '
CPOs which have vanishing three-point functions if E4.
is fulfilled. Indeed one can easily find such an extension 0§—|e

Mg .. Mo (7)

CPOs. Namely, we define the extended CPOs that corr<eti—or:§_M’N’ +--»=0.1,...9 and we use tiellowing nota-
spond to scalars' as '
Fumy o M= m,Am, . Mg =M, Awm, . v T4 terms,

-~ - - 1 - -
l1(x)=0'1(x) = — I112l3- )2 I3/ w)-
01 =010 2N |2+|23=|1 c 10209 0%():, i.e., all antisymmetrizations are with “weight”1. The dual
(6)  forms are defined as

where C'1213= \Jkkoks(C'1C'2C'3). It is not difficult to B A N S
verify that in the largeN limit these operators have the nor- o1...97 € - /-G
malized two-point function$2), the three-point function&)

if Eq. (4) is not satisfied, and vanishing three-point functions ~ _M1...Myo— gMiN;. | .GMloNlole Ngo

if Eq. (4) takes place. Indeed, for generic values of confor-
mal dimensions the second term on the right-hand side
(RHS) of Eq. (6) gives a contribution of order WP to a
three-point function. Only if one of the relations Ed) is

M FMk+l"'M10
fulfilled, e.g.k;=k,+k3 the correlator ++-Myg

Fmy o om =g emy

1

= NNy
k!8 OGMlNl GM

1 NN N
NCl1'2'3(0'1()2):O|2()7)O|3(37):>

In the units in which the radius of°3s set to be unity, the
AdS;x S° background solution looks as

does not vanish, and gives exactly the same function as in
Eq. (3).

However, these operators will require a further modifica-
tion to be consistent with ah-point functions computed in
the framework of the AdS-CFT correspondence. In general,
an extended CPO is the sum of a CPO and non-chiral com-
posite operators which are normal-ordered products of CPOs R, —_ n © Ra—_a
and their descendants. Nevertheless, we expect that in the abed™ ~9acObd™ Jaddbe:  Fab Jab
largeN limit an n-point function of extended CPOs coincides
with n-point functions of CPOs for generic values of confor- )
mal dimensions of the operators. As we will discuss in the Rapys=9ay985~9asdpy:  Rap=40ap
following sections a similar modification is required for op-
erators corresponding to other supergravity fields.

1 S
d§z;(dx§+ 7i;dXdx) +dQE=gyndxMdx"
0

Fabcde™ Eabcdes Faﬁyﬁe: EaByse 9
. EQUATIONS OF MOTION AND QUADRATIC where a,b,c, ... and a,B8,y, ... are the AdS and the
ACTIONS sphere indices respectively ang; is the 4-dimensional

Minkowski metric. We represent the gravitational field and

To obtain cubic couplings of two scalass with other ;
the 4-form potential as

type 1IB supergravity fields it is sufficient to consider only
the graviton and the four-form potential. To this end we ap-
ply the method of12], and use the covariant equations of

motion [41-43 and the quadratic action for type 1IB super- Gun=0gmnthun:  Aunpe=Auneqt auneq;
gravity on Ad$x S [40]. The equations of motion of the o
4-form potential and the graviton are F=F+f.
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Then the self-duality equatiaiT) decomposed up to the sec- 1
ond order looks as Ty () =501 g =5hiu, i, .. mak
f—f*+TO+T(h,f*)+T(h)=0. (10)

S k=
TMl...Ms(h)zzhh[MlFMz...Ms]K

Here we introduced the following notations: 1 1 B
_(ghz"' ZhMLhML> Fm, . vg

(1) —_hE. _chK _
Ty v ZhFMl...MS Shiv, Fwm, .. gk _10”'[K,\%1h522FM3M4M5]K1K2- (11)

K Decomposing the Einstein equati@) up to the second or-
h=hy der, we get

4 —MMoMg , L M. My T My...M
RGN+ R =~ 3|h Fumkm MM FRE 2t !(fMMl...M4FN1 HFum, ot

4 — =My MMy, 2X3 = EMM 4
+§hKLhEFMKM1M MSF 1M 31 hKlSlhKZSZFMKlKZMlM I2— hKS

NS 2 N§S, 3l
1
=MiMyM =MiMyM Mq...M
X (FmkmomomFrs - ot fukw M2M3FMS z 3)+ fam, o, fyt (12)
|
Here (15) implies that the components of the 4-form potential of

the forma,z,s anda,,g, can be represented as follows:

1
(1) - L
VKh ZVMVNhL aaﬁyﬁzsaﬁyﬁevsb; aaaﬁyzsaﬁyﬁsvﬁqb;' (16)
L 1 It is also convenient to introduce the dual 1- and 2-forms for
:_VK(thMN)+§VN(hKLVMhKL) Aabcd ANdAgpcy !

1 K L L LK Qabcd™ _SabcdeQe; Qabca™ _Sabcded’ie- (17)
+§hMNVKhL— hmkhn (13
Then the solution of the first-order self-duality equation can

and we introduce a notation be written as

Q*=Veb, ’=Vig]. (18
hiin= Z(VMh N+ Vahi—V<hun). (14 . . o
The quadratic action for physical fields of type 1IB super-
gravity was found irf40]. To write down the action we need
to expand fields in spherical harmonics, and make some
fields redefinition. We begin with the scalar fieldsand 7

In Egs.(10)—(14) and in what follows indices are raised and
lowered by means of the background metric, and the covari:
h h k
%not derivatives are with respect to the background metric —hg. Expanding them into a set of scalar spherical
The gauge symmetry of the equations of motion allowsharmon|c§
one to impose the de Donder gauge:

o o « 7(x,y) =2, m'(x)Y'(y);
\Y haa':V h(aﬁ):V aMlM2M3a:O;

(15)
R Py b(x,y)=2, b'i(x)Y'y(y);
(@®)=Nap™ 5YapNy-

This gauge choice does not remove all the gauge symmetry
of the theory, for a detailed discussion of the residual sym- Here and in what follows we suppose that the spherical harmon-
metry seg26]. As was shown if26], the gauge condition ics of all types are orthonormal.
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VEYk=—K(k+4)Y¥,
and making the fields redefinitidi.2]*
= 1G(Sk+ 1(Xk+ 4)tk )

bk:_sk+tk (19)

we write the quadratic actions for the scalarandt' in the
form

32k(k—1)(k+2)

S(s) dxV=0a2 — 7
1 L1 .
X —EVaskV sk—zk(k—4)sk , (20
32(k+2)(k+4)(k+5)
5. /_
(2 )SJ’ X E k+3
1 1 )
— 5 Vat VPt 5 (k+4) (k+8)tg . (21)

Now we expand the graviton on AgSn scalar spherical
harmonics

has(%,Y) =2 hL(x)Y'1(y)

and make the following shift of the gravitational fields:

1 3
hp= ¢I((ab)+V(aVb)§k+ggab( bex— 5 ks (22)
where
_ 4 4 23
G=prrSt gl (23

Then the zero mod&ngE ¢ap, describes a graviton on AgS
with the standard action

S(¢ab) j dSXV ( c¢abvc¢ab

(2m)°
1 abyc 1 c ba 1 aywc (b

+§Va¢ \ ¢cb_zva¢cvb¢ +Zvc¢av ¢b
1 1

+3 ¢ab¢>ab+§<¢:>2) (24

and the action for the traceless symmetric tensor fidiﬁ,%
has the form

“We often denoter't as, and a similar notation for other fields.

PHYSICAL REVIEW 61 064009

2
S(bfan) = (—)sf d\—g.> (— ZVCQSI((ab)VCd)(kab)

1
+ z Vad’(kab)Vc(ﬁl((cb)

1
— 7 (K 4k— 2>¢(kab)¢(k‘*b>) : (25)

As was shown ir{26] the fields¢¢, are nondynamical and
vanish on shell at the linearized level.

Expanding vector fieldd,, and ¢,, into a set of vector
spherical harmonics

haa(X,y) =2 hhS(X)Y'5(y);

Baa(X,Y) =2 E(X)Y'5(y);

(VZ—=4)Y5=—(k+1)(k+3)YK,
and making the change of variablgz6]
—4(k+3) k;

Ck=hk+4(k+1)pX (26)

we present the actions for the vector fields in the form

k+1 1
S(A)= d>V=0a2 535775 ~ 3 Fan(A)?
1 k
- §<k2—1>(Aa>2) (27)
4N? k+3 1
S0)= ] 0S| 5 Fa Y
1 k
— 5(k+3)(k+5)(Cy)? (28)

whereF ,,(A)=d,Ap— dpA, . Finally, expanding the gravi-
ton on the sphere in tensor harmonics

hap (X Y) =2 ¢'H00 Y (v);

(V2 10)Y'(‘aﬁ)= — (K2+4k+ 8)Y(kaﬁ) ,

we write the action for the scalag, in the form

4N?
(2 )5f V_gaz ( Va¢kva¢k
1 2
_Zk(k+4)¢k . (29
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IV. CUBIC COUPLINGS OF SCALARS A. Cubic couplings of t

The aim of this section is to find the cubic couplings of Sincet, appear as the mixture of fields, and b, we

the scalar field$, and ¢, with a pair of scalars, . This can - i : - :
be achieved by finding the quadratic contribution of the sca-begIn by considering the equations of motion for these fields.

lars s, to the equations of motion fdf and ¢, respectively Restricting in Eq.(13) indicesM and N fo the sphere and

with a subsequent reconstruction of the corresponding La{_ﬁklng.mtto_accountt. tgfz)))gaugeit cc_)ndmofisS), (16) we find
grangian vertex. at Einstein equatio results in

1 1 1 3 3

100V “

1 ab 1 ab a a, y 2 2 2 2 8 2
+ 7 VahapV gh**+ ShapV ,V gh**+ 8V VoDV Vb —4g 4| V, VDV 7V b+ ViV 3o+ o~ c wVib

1
~ 5557V |, (30)

where ¢p3=h3+ 7 in accordance with E¢22). Note that we have omitted all the linear terms that are projected out under
the projection onto the spherical harmonV:@VE)Y' or Y and accounted only for the quadratic terms that contain after the
field redefinition(19) and (22) two scalarss,. In particular the scalars, appear after redefinitiof22) for the gravitational
field hyy.

Equation(30) implies then the following two equations:

3 3 1
V(avﬁ)(ﬁ::S_OV(aWV,B)W—F 2—5’7TV(aVﬁ)7T+ EV(ahabVB)hab'i‘ habV(aVﬂ)hab'F 16V(avabVB)Vab (31)

and

13 8 1
(VuVM—32) 7480V, Vb +V,V¥ha=V,(h3V,m)+ £ VeV Tt eV VTt EVahabV“hab
+hapV,V*h3P— 24V V3V *V b —40V2bVib—167°+647V2h (32

that are obtained by decoupling from EO) the trace part. Projecting E¢31) ontoV ,V BY' one can solve it forpa and
substituting the result in Eq432) obtain the close equation far andb.

According to[26] the second equation involving the fields and b is found by considering the component of the
self-duality equatior{10) involving one sphere and four AdS indices, and the component with five AdS indices. In our case
these components read as

3
Va(aal...a4+8al...asvasb)zsal...a4a gﬂ'vavab"'habvbvab) (33
and
2 1 a 4 4 2 1 ab 37 2
5V[alaa2...a5]=8al...a5 Vyb+§¢a_§77_§ﬂvyb_zhabh +m’ﬂ . (34)

Projecting Eq(33) ontoV,Y' one findsa, .. . Substituting ther, ., as well as previously foune? into Eq.(34) one
obtains the equation for andb.
The required equation fdy, is then obtained by substituting the redefinitid®) in Eqgs.(32)—(34) and by eliminating all
the terms linear irs,. Skipping all the computational details we write down the equation!'ftivat is found to be of the form
(VaV2— (k3+4) (k3 +8))t'3=D 18152+ B4,V 251V ,8'2+ F 53V (,V stV BV P)gl2,
To remove the derivative terms we perform the appropriate redefinitiohsifmilar to Eq.(5):

064009-6
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t|3:t/|3+|§2 (JI1|2|35’|15’|2—|—L|1|2|3Va3’|1Va5/|2)_
Introducing the notatiom, ;= [ Y'1Y'2Y's we quote the final answer
(VaV2—(kgt+4)(kgt8))t'a= —t|1|2|35|25|3,

¢ A4Z+4)(a1+2)(ar+2)az(az—1)(az—2)(az—3)(az—4)
11215~ 8123 (K1+1)(Ko+1)(Kg+2)(Kg+4)(Kg+5) '

Wherea3= %(kl'f‘ kz_ k3), 2= k1+ k2+ k3.
Taking into account the normalization of the quadratic actiontfdields (21) we obtain the corresponding vertex

Stss™ (2w )5 '1'23f \/_S|13|2t|3
with
T 2/(2+4) (a1 +2)(apt2)az(as—1)(a3—2)(a3—3)(az— 4) 35
11215~ 4123 (ki t 1) (ko + 1) (Kot 3) (35)

B. Cubic couplings of ¢,

To find equations of motion for the fields, coming from the graviton on the sphere we again considerEg).for the
indicesM =a, N=:

3 3 1
(VM =2 =55V @V g7+ 55TV (oY oy T +5 V (ahapV h®*+ hapV (oY g+ 16V (. VbV ) V o,

where this time all the linear terms that are prolected out under the projectidi,gnwere omitted.
Introducing the notatlorp123—fV“Y'1VﬁY'2Y and projecting both sides of the last equation Yy we get an
equation fore¢:

(apB)
3 1
(V,Va—ky(kg+4))d's= p123(—%77'177'2 ShAhEP+ 16721V b2

Finally leaving on the RHS only the contribution of the scalsysve obtain

P123
5(k;+1)(k,+1)

X (48k1Ka(Ky+ 1) (ky+1)s'18'2—80(K; + 1) (ky+ 1)V ,8'1V35!2+ 40V (,V},)s'1V AV P)gl2).

(VaV2—ka(ks+4))p'3= —

Performing again a shift of' to get rid of the derivative terms one arrives at

8p1o32(2+2)

(VaV2-ka(ks+ ) ¢2= — =50~y

(az3—1)(az—2)s'1s'2,

Taking into account the normalization of the quadratic actiondfipwe can read off the corresponding vert®y,

4N? lialo 4l
SS%:—(ZW)E;(I)IlIZISJ —0aS152¢3, (36)
where
Apo2(Z+2)
D = az—1)(az—2).

wlals (k1+ 1)(ko+ 1)(
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C. Three-point functions

Recall that two- and three-point correlation functions of operatdysn a boundary conformal field theory corresponding
to scalar fields on AdS are given Ipy]

.2 gA-1)(A-2)?
<0A(X)0A(Y)>:?W

, (37

N123
|)'(’_§/’|A1+A27A3|)'(’_ Z|A1+A37A2|§/’_ £|A3+A27A1 !

(04,(0)04,(Y) 04 (2))= (38)
where\ ;o3 IS given by

1 _ _ _
r §(A1+A2+A3_4) FTAITTALIT[AS]

Nog= —
1237 P18 AT (A, 2)T(A,—2)T(As—2)

andK1= 3(A,+A3—A;). Hereg,,3 stands for the coupling of scalar fieltat is a doubled interaction vertex for the fields
we consider and ¢ denotes the normalization constant of their quadratic action. Taking into account that at'sc@fas)
corresponds to a YM operat@?y with the conformal weighi\;=k3+8 (Az=k;+4), we, therefore find correlation func-

tions of two extended CPOs with this operator. The constagyreads for both cases as follows:

IMNai+4)l(ar+4)(az+1)(a1+2)(ar+2)

1
Ml = T (Kt D) (ke D) (Kt DT (K~ 2T (K= 2)T (Kt 6) 128

and

1
AN2 24 2212

Mad P)= T o ot D) (Kt DT (k= 2)T (kp— 2)T(kp+ 2) P22

r T(ay+2)T (ay+2)T (as)

Taking into account the normalization of the two-point functions one can introduce the normalized extendetRCPO

(2)%7? T k+1 |2
Os=75N 8(k—1)(k—2) \ k(k+2) Os (39)
as well as the normalized gauge theory operator corresponding to scalar
(2m>? k+3 vz Ak
Os= "N 8(k+6) | (k+2)(k+a)(k+5)(k+7), Orr A=k+8
and to scalakpy :
(271_)5/2 aT
OA: A A:k+4

o
2N (k+3)Yqk+2)

With these formulas at hand we can finally write down the normalized constants:

)\norm(t)__(zw)*i’? 1 Kiko(ks+1)(ks+7) \¥2 T(ay+4)(a1+2) T(ap+4)(a+2)  kj! (chetacta
123 A N (2752 (k3+3)(k3+4)(k3+5) a;! a,! I'(k3+8)
and

vorme o« (2m)3% (ay+ 1) (ap+1) kiKsy 1/2P

ME (DTS TR T T g et Dk 2) (K3

064009-8
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Here we used explicit expressions for,; andp,; from the
Appendix.

V. CUBIC COUPLINGS OF SECOND RANK TENSORS
WITH &

A. Cubic couplings

Clearly the coupling of the symmetric second rank tensor

¢‘(‘ab) with a pair of scalars, can be found by studing the
corrected equation of motion fo:;b'(‘ab). The most simple

way consists however in finding the equations of motion for
the fields, corrected by the quadratic terms each containing

one field d)?ab) andsy. This is explained by noting that the
field ¢'{ab) is transverse on-shell and therefore the interactio

PHYSICAL REVIEW 61 064009

4N?

Ss6 8

ST f V=0Vos1V0s'2g3,

whereG, , is found to be

4(2+2)(2+4)az(az—1)
(ki +1)(k,+1)

GIII

1 a123-

=
B. Three-point functions

Denote byTi'J- the operator in SYM of the conformal
weight Ag=k+4 that corresponds to the AdS fietb| ,p, -

fro compute the three-point correlation function of this op-

term, being in the latter case a Lorentz scalar does not CoRsrator with extended CPOs in the boundary conformal field

. . . . k .
tain derivatives acting o,y . As a consequence the addi- theory one needs the bulk-to-boundary propagator for the

tional shift needed to get rid of derivative terms is not re-fijg|g

quired.

Since the fields, appear as the mixturel9) of 7 andb,
the equation fos, again follows from the systert81)—(34).
Clearly this time Eqs(31) and(32) read as

VoV 5 3a=V (ab@nV V2Vt danV V5 V2V

+V,VpiV (Vg @0 (40
and
(VyVM—32) 7+ 80V V7b+V, V2
=V @V, )+ V(ad’(ab)VB)Vang
+ dan)V oV 5 VAVPLH VL VLV (V560 (41)

where we have used representati@g) for the graviton field

¢>I(ab)- In principle this can be extracted from the mo-
mentum space results f24]. In the case of three-point cor-
relators it is however more convenient to deal directly with
the x-space propagator.

Recall that the linearized equations of motion ibkab)
read as

VVeian+ (2= k= 4K) ¢iapy =0, VPei,p,=0. s
44

Now one can easily check that the following function:

Ag+1

Gabij( @0, X) = § =7 @0Kag(@X)Ja( @) Jpi(w

- i)gij K (45)

ha, and left only the terms contributing to the vertex underis the bulk-to-boundary Green function for E@4). Here

consideration. By this reason the coefficiendg in ¢
=[{'Y" are reduced now td,=[4/(k+1)]s, in compari-
son with Eq.(23).

Again projecting Eq(40) ontoV ,V BYl one solves fokpa
and after substitution of the solution into E@1) one ob-
tains a closed form equation fer andb.

The second equation far andb follows from Egs.(33)
and (34) that now acquire the form

Va(aal .. .a4+ €a,.. _aSVaSb) TE€a, .. .a4a( d’(ab)vbvab)
(42)

and
2 1 a 4
5V[31aa2---as]:831---a5 Vyb‘f' E(ﬁa_ §7T

1 aypb
—§¢(ab)V VoL, (43

&ij i denotes the traceless symmetric projector:

1
4

1
=5

2(5ik5j|+5i|5kj)—

6ij Okl »

ICA(w,i) is a bulk-to-boundary propagator for a scalar field
corresponding to an operator of conformal dimenshon

A
o

03+ (0—x)D)N

Ir'cA)

- 7T (A—2)'
(46)

Ka(w,X)=c¢ Ca

andJp(X) = Sap— 2 (XaXp /X2).

Note that function(45) satisfies the transversality condi-
tion V&G,p,;j=0. The normalization constanfg+1)/(Ag
—1) in Eq.(45) is fixed by requiring the corresponding so-
lution of Eq.(44) to reproduce correctly the boundary data in

Omitting the straightforward but lengthy algebraic manipu-the limit wy— 0. In the case of vanishing AdS mass E4f)
lations we write down the final answer for the Lagrangianturns into the graviton bulk-to-boundary propagdi®}.
vertex describing the interaction of the symmetric second Having discussed the propagator #f,; we come back
rank tensorg ,p,, with scalarss': to the three-point correlator that now reads as

064009-9
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R R R 8N?2 d°w R R R
<<9'1<x><9'2<y>7!,-3<z)>=—(27)56.1.2.3 f w—gwa‘vavbiql(w,mz(w,y)G;?'b”w,z). (47)

By the conformal symmetry this correlator is defined up to the normalization con3iant

Il - |2 > |3 >, — ﬁ123
(O(x)0 (y)T”(z)> |)Z_)7|A1+A2—AG|)Z_2|A1+AG—A2|§_£|A2+AG—A1

7z, 1
22 d5I] ’

where

, _(x=2);  (y-2),

=== . (48
" (x-2? (y-2)?
This constant is then found by explicit evaluation of integ¥ad):
1
4N2 AG+1 F E(A1+A2+AG_2)
— 2
B123_ (277)5477 CAlCAZCAGGIZLIZISAG—l F(AG+2)
1 1 1
r §(A1+AG—A2+2) r E(A2+AG_A1+2) r §(A1+A2—AG+2)

(49)

(A r(4z)

Substituting here the normalization constants &g, we finally find

1
==+3

M2

AN? 64 I'a;+3)I'(a,+3)'(a3+1)

C2msat

kg+2
(ky+ 1) (ky+ 1)

123

T(ki—2)[(k,—2)T(kg+5) 1z
The two-point correlation function of the YM operat@; corresponding to the symmetric second rank tensor figlg)
was computed if24]
e . AN? 1 .- S
<T=j(X)Tﬂ|(Y)>: (ZT)S ?(AG—Z)Z(A(ﬁ‘ 1) mgiji 1 dind(X=y)djn(x=y).
Therefore, introducing the normalized operator
| _(277)5/2 o

- 7
2N (Ag-2) (At )M

one obtains the correlation function of two normalized CPO’s Bnawith the constani3]o;™:

norm__ (277)5/2 1 / (a1+1)(ay+2)(a+1)(ar+2)
Bizz =— Tm(klkz(keﬁ' 1)(kg+2)(k3+5))* Zx(k3+1)(k3+2)(k3+3)(k3+4)(k3+5

s(ehetet),

where the explicit expression far,;was used. Note that the the second order. The equations of motion for the vector
variable a3 completely dissappeared from the final answer. fields ¢; can be derived from the following components of
the self-duality equation:

VI. CUBIC COUPLINGS OF TWO SCALARS ¢

WITH VECTOR FIELDS fpabcd™ frabea™ Tombea™ T(N ) capea™ T(N) papcd= ?70)
5
A. Cubic couplings

To obtain cubic couplings of two scalas§ with vectors — f,ganc— 2 ganct Tohane T(N,F*) agabet T(h) agabec=0.
fields we need equations of motion for the vector fields up to (51

064009-10
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From the definition of we have 1
(V2+ V§—4)¢3—vaa¢g—h§+§hgvavab

fa,Babc: 2V[uza-ﬁ]abca 3
- 1—07rVaVab—habeVab=0. (53
fzﬁabc:gabcde(vdva¢%_vdvﬁ¢i)-
) Here we have omitted all terms that are projected out under
Here we omitted all terms dependent on the components Ghe projection ontdr,, . Expanding all the fields in spherical

the 4-form potentia[ of the form,p.g yvhich_ are not relevant “harmonics and using Eq&19)—(23), we obtain equations of
for the cubic couplings under consideration. From the defiyhotion for the vector fieldsp,

nition of the tensorg (11) we can easily see that 2.3 ob 3 3 .3
Viba— VoVady—(kz+1)(ks+3)pi—hy

T(l) :T h,f* :T h :0, 4k2(k2+2) 4
aBabc ( )a,BabC ( )a,BabC =—t kZT ) asl+k2T1VaVbSZVbsl ,

if we keep only terms which may give a contribution to the
cubic couplings. Thus Eq51) does not get relevant qua- (54)
dratic corrections, and, therefore, Wheret123EtI1I2I3:fVaYllleYlja b5 means¢'s and so

on, and summation over 1 and 2 is assumed.
(52) Now we proceed with the equations of motion fof .

These equations can be derived from #he components of

Taking into account Eq(52) and formulag(11) for the ten-  Eq. (12). Omitting all intermediate calculations, we present
sorsT, one can rewrite Eq50) in the form the equations in the form

— d e
Qgabc™ EabedeY D

V2h3— VPV h3— ((ks+1)(ks+3)+8)h3—16(k3+1)(k3+3) p3

8ti3

e byc
(K F D)k + 1) VaVpVs,VPVes,, (55

k2_ 5
=2t125f (K1,K2)$1 VS, — 16t123k1T1VaVb51V bs,+

where

Akq(16+ 4kq— 2K2+ 10k, + 4k, ko — 2kTk, — 2k3— k1 K3)
(ki +1)(ko+1) '

f(ky ko) =

The equations of motion for vector fieldsand C are linear combinations of the two above and can be written in the form
VaV3-VhV VE—miV3=V V34 D 1,5 V.So+ E103V P51V VS + F 123V PV, V, VYV esy, (56)

whereV may be eitheA or C, and the constant3, E, F are antisymmetric with respect to the permutation of the indices 1 and
2. We can remove the higher-derivative terms from the equation by means of the following field redefinition:

1_ - 2y /! b I 2y /! I lo—
Vg—> Vg_ FVaVS‘F J12381Va82+ L123Vb51VaV bSZ y vaas_ V Vavbs_ m3Va3+ |§2 U|1|2|SS lV aS 2= 0’
3
58)
(57 (
where

where

_ 2,2 2
Ui,1,= ~ D I, (Mt my—ms)

2L 1537 F123
= 2Ly 1,1, (MF+m3). (59)

23105+ Lipdmi+mi—m3—12)=E
12st Lazd M+ ma—my )=Eiz A straightforward calculation of the constantgjives
VB=V3— (3155 2L 159 M38;S,— L 1,93V 15, VPs,. _A(az—U2)(S-1)(S+1)(2+3)
Viyi,1g(A) = (Ky+1)(ky+ 1) t123
Then Eq.(56) acquires the form (60)
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16(a3—1/2)(a3—3/2)(a3—5/2)(Z + 3)
v .(C)=

1lal3 (ki + 1) (ky+1) t123. (61

Taking into account the normalization of the quadratic acti@ and (28), we get the corresponding cubic terms

Sea= MJ NETICEAACLVS (62)

(2m )5
where

2(ks+1)(az—1/2(S—1)(S+1)(S+3)

Vi (A)= (Kt 1) (kpt 1) (ks +2) tags (63)
8(ks+3)(as—1/2)(ars— 3/ (as—5/2)(S+3)
Vi ,1,(C)= (ki 1) (Kpt 1) (kg + 2) SPE (64)

B. Three-point functions

Denote byRiI3 the operator in SYM that corresponds\t'@ on the gravity side. Then the three-point function of two scalars
and a vector field is given by the integral

N2

8
(0'1(x)0 2<y>R'3<z>>— Py

d®w - - R
Vi f — 02K (0.X)Ks (0,Y)Cp(w,2). (65
)

HereICA(w,i) with A=k is a bulk-to-boundary propagat646) for s' and Gai(w,i) is a bulk-to-boundary propagator for a
massive vector field/l,j‘ with a masam(V):

LA, N N
Gai(@X)= 3 —7 @0 Ka, (©X)Jai(0=x),

whereJ,p(X) = 85— 2 (XaXp /X?).

In the last formulaA ,=2+ 1+ m?(V) and, thusA ,=k+ 2 for the fieIdAL1 andA,=k+6 for CL. Note thatG,; obeys the
transversality conditioV3G,;=0.

The condition of the conformal covariance defines the correl@®runiquely up to the coefficient ;»3:

(0'1(X)0'2(y)R ¥(2))=— : (66)

A x—27|ly—z
123 (| Iy |Zi

| |A1+A2 A|X Z|A1+A A2|y Z|A2+A -Aq |)‘(’_)‘/’|

with

_(x=2)i  (y-2),
x-2? (y-2%

Applying the inversion method df7] to integrate Eq(65) one finds for\ 1,5 the following answer:

1

123:(27)5? PP T(4,)

1 1 1
{5844, ~8,+1) F(E(A2+ A,—Ay+ 1))F(§(A2+ Ay—A,+1)

I'(A;=2)I'(A,—-2)
For the fieldA' the last formula reads as
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1 5
AN2 25 r(§z+§)

PHYSICAL REVIEW 61 064009

T(a;+3/2T (ay+ 32T (as+1/2)

N1odA) = (2m)5 4 (kg 1) (kp+ 1) (kg+2)

while for C':

12+5
2 2

4N2 25 r

(k3t+3)(ks+4)

T(k—2)T(k—2)T(ky) 123

T(ay+ 72T (ay+ 72T (ag+1/2)

A2 C)=

The two-point correlator corresponding to a massive vector

field on the AdS space was found [ih0]:

1J

- -

5y RISy 2 2
(Ri(x),R5(y)) 0A,(A,—1)
m? Ix—y|

ZAinj(;_g),
(67)

2m)5 7t (ki+ 1) (ko+1)(kg+2)

I'(k;—2)T'(k,—2)T'(k3+6) tazs.

VIl. CONCLUSION

In this paper we obtained the cubic couplings in type 1IB
supergravity on AdSx S° involving two scalar fields' and
the corresponding three-point functions by using the covari-
ant equations of motion and the quadratic action. Since all
the fields we considered correspond to operators which are
descendants of CPOs, one may, in principle, derive the same

where the constant accounts our normalization of the qua- regyts directly from the superconformal invariance. This

dratic action for the vector fields and is equal ®
=[4N?/(2m)°][(k+1)/2(k+2)] for the field A and to 6

=[4N?/(27)%][(k+3)/2(k+2)] for C, respectively. We
introduce a normalized operath with the two-point corre-
lation function

.- 8" .-
(RI(x),R(y))= WJU(X—W-
Explicitly R{ is given by

l_(27T)5/2 T
- (k+1)%"

i 2N

for the YM operator corresponding #@'a and
(2,”.)5/2 T 1/2

Ri= 2N (k+5)

k+2
(k+3)(k+6)

for CL. By using these formulas, the definitid89) of the
normalized CPO, and the expression fgs; from the Ap-

would require a detailed study of superconformal Ward iden-
tities in SYM, which, to our knowledge, has not been carried
out yet.

In most cases to find a cubic coupling of two scalglrs
with a fieldF we used a corrected equation of motion for the
field F. We saw that to get rid of higher-derivative terms we
had to make a field redefinition of the for(®). By this
reason, a field= corresponds not to a descendant of a CPO,
but to a properly extended operator which includes products
of CPOs.

In fact one can obtain the cubic couplings by using cor-
rected equations of motion for scalatsas it was done in the
case of the graviton couplings. We have done that to derive
the cubic couplings of two scalass with the scalarsp', and
with the vector fields, and we have certainly obtained the
same result§36) and(62). The fact that we derived the same
vertices from different equations also confirms the correct
normalization of the quadratic action for type 1B supergrav-
ity [40]. It is worth noting that contrary to the graviton case
considered in Sec. V, in these cases to remove higher-
derivative terms from the corrected equations of motion for
s' we had to make the following redefinitions of the scalars

pendix, one gets the correlation functions of normalized opx|!.

erators

1/2

(2m)%? 1 (klkz
N 4752\ kz+2

157A) =

% k3(0[1+ 1/2)(0[2+ 1/2)

(k3+1)2 123

(277.) 5/2 1
N 4’7T5/2

kiko(kz+3)
(k3+1)(ks+6)

Y2ks+4
ks+5

NIZET(C) =

! D+ T (gt 72)
X Tkt 6)(a;— 12 (ap—1/2)1 123

$1—S1+ 183+ L123V S, Va3
and
Sl—> Sl + J 123V aSzVS"’ L 123V aV bSZV ng .

This implies that the extended CPOs corresponding to the
scalarss' that were discussed in Sec. Il have to depend on
products of CPOs and their descendants. Unfortunately, the
knowledge of the three-point functions obtained in the paper
does not allow one to fix the explicit form of the extended
CPOs uniquely.
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It is worth noting that the cubic couplings of three scalarsThe scalar spherical harmonics are orthonormal and satisfy
s vanish when any of ther’s vanish[12]. The cubic cou- the relation
plings studied in this paper vanishdf; takes special values,
and in most of the cases there are several such values. of
Sincea; anda, have to be non-negative the cubic couplings
have no zeros a; and «,. However, in all of the three-
point functions considered zeros of the cubic couplings are ]
cancelled by poles in the general expressions for the three- aj;3= (z(kl)z(kz)z(k3))’1’2

J Y'iyl2yls=ga,,,

point functions, just as in the case of the three-point func- s 42 |12(2)E-2)
tions of extended CPOs. This gives us a reason to believe 2

that for generic values of conformal dimensions the three- Ko kol Kal

point functions obtained coincide with the three-point func- u((;llclzds% (A2)
tions of CPOs and their descendants. arlas! ag!

The next natural step is to find quartic couplings of scalars . : . Lol
s', and to compute four-point functions of extended CPOsWhere ai=z(kj+k—ki), j#I#i, and(C1C2C) is the
We expect that the quartic couplings vanish if, sky=k, umqueSOl(G) Invariant obtained by contracting, |Ind|ces
+ky+ ks, because in this case there is no exchange diagrarR€WeenC2 andC’s, a, indices betweerC's andC, and
and all contributions to the four-point functions may be @s indices betweeiC 2 andC'. _
given only by the quartic couplings. However, the four-point A vector spherical harmonic is defined as a tangent com-

. - . -, = . ponent of the following vector:

functions in this case are nonsingulaxat x,, and it seems
to be impossible to reproduce such a coordinate dependence Yl =z(k)VC L XX (A3)
via supergravity with a nonzero on-shell quartic coupling. BERREN

Finally, it would be interesting to find the supergravity | ) ) )
fields that correspond to CPOs, and to compute their cubi¥/here the tenso€y,; ; is symmetric and traceless with
couplings. A similar problem exists in the case of AdS com-respect toi, ... ,ix, and its symmetric part vanishes. The
pactifications of 11-dimensional supergravity, where analotensors are orthonormal
gous cubic coupling$46,47 also have zeros. In the 11-
dimensional case the problem seems to be simpler because C'I“;il"'ikcﬂ;il"'ik: M S
the covariant action is known.

The vector spherical harmonics are orthonormal and satisfy
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APPENDIX where
We follow_[12] describ_ing spheric_al harmonics 8A. The To—C1 2 c's o
scalar spherical harmonié€ are defined by 1237 mig iy, e ipla el Ml
I —1/2~1 i i PN I
Y'=2z(k) Cil...ikxll"‘xlk (A1) Cil"'ip2+1j1---jp3le---jp3|1---|p1—1m
whereC| ; are totally symmetric traceless rakkortho- xcld o (AS)
1k dp-dp—alaTp v

normal tensors oBQ(6): (C'CJ)ZC!r,_ikCiJl...ikI 8, x
are the Cartesian coordinates of tR& in which S° is em-  andp;=a;+3%, po=a,— 3, ps=as— .

bedded, and A tensor spherical harmonic is defined as a projection of

the following six-dimensional tensor onto the sphere:
3
an

z(k)=

Ymn:Z(k)illzclmn;il...ikxil' : -Xikl (A6)

2K L(k+1)(k+2)
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where the tensoﬁ:’::nnl i\ is symmetric and traceless with
' : . J VevAYIY'2y v ;Y!s
respect taq, ..., and m,n, and its symmetric part van- atp
ishes, i.e.
| | | —
Cmn| +Cm| n. +Cm|k iq- ikfln_o'

1 3
=§< —f(ky) f(ka) — (ko) f(ks) + gf(kl)f(ka)
The tensors are orthonormal

| J 13 lszlszlsz
C C i = 0 O, imyn,y- + 51k 5T(ka) "+ 5T (ks)

myngig i mony iy

Then, we get that the tensor spherical harmonics are ortho-

normal and satisfy the relation —4(f(ky) +f(kg) — f(k2)) |aszs.
avl v Bviv!3
J’ VEVIVEYRY (g = Prs, Analogously, when computing the interaction verty,
from equations of motion for scalasg one finds two inte-
1 w3 grals involving the vector harmonice, . Both of them are
P123= (2(K1)Z(K2)z(k3)) 1 expressed Vid 3:
=3 +1 1202
2
kq!ka!ks! AT f v(eyAyliylay Y'3——((k3+ 1)(ks+3)—8
arlay! (az— 1)1 12 (A7)
+f(ky) = f(k)tizs
where
P,=C't o cl cls o
123~ miy . |p211...]p3 n]l"']p3ll"'|p1 mn,ll...lplll...lp2 f V(avﬁ)Yllvaylgy'ﬁ's’:E(f(k2)+§f(kl)
(A8) 2 5

andp;=ay, p;=az, ps=az—1.
In deriving the equations of motions for scalar fiekys —(kst1)(ks+3)
and for tensor¢>'(‘ab) one comes across a number of integrals
of scalar spherical harmonics, all of them can be reduced to
aj,s. Introducing the concise notatiof(k)=k(k+4) we Finally the derivation of theS;g-vertex from the equa-
present below the corresponding formulas: tions of motion for scalarsy requires the knowledge of the
following integrals:

t103.

f VY12 YIs= 2 (F(ky) + ko)~ F(k)azs,

fwvﬂv'lvﬂv Y'zv'(SB)— (3f (k) +5f(ky) —5k3

f VevAYLY Y2y pY's
—20k3—30)P123

1 1 1
:(1—0f(k1)f(k2)+Ef(kl)f(k3)+§f(k2)f(k3)

vavmv'lv Y'2V7Y|(3B) (f(kl)—f(kz)—ki

1 2 1 2 3 2
= 71k = ZH(kg) 2+ 25 (k)2 |2z

—4Kk3—8)P12s.
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