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Some cubic couplings in type IIB supergravity on AdS5ÃS5 and three-point functions
in four-dimensional super Yang-Mills theory at large N
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~Received 27 September 1999; published 23 February 2000!

All cubic couplings in type IIB supergravity on AdS53S5 that involve two scalar fieldssI that are mixtures
of the five form field strength on S5 and the trace of the graviton on S5 are derived by using the covariant
equations of motion and the quadratic action for type IIB supergravity on AdS53S5. All corresponding
three-point functions in SYM4 are calculated in the supergravity approximation. It is pointed out that the
scalarssI correspond not to the chiral primary operators in theN54 SYM but rather to a proper extension of
the operators.

PACS number~s!: 04.50.1h, 11.25.Hf
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I. INTRODUCTION

According to the AdS-conformal field theory~CFT! cor-
respondence@1–3#, the generating functional of Green fun
tions in D54, N54 supersymmetric Yang-Mills theor
(SYM4) at largeN and at strong ’t Hooft couplingl coin-
cides with the on-shell value of the type IIB supergrav
action on AdS53S5. For this reason, to calculate ann-point
Green function one has to know the supergravity action u
the nth order. In particular, the normalization constants
two- and three-point Green functions@4–25# are determined
by the quadratic and cubic actions for physical fields of
pergravity.

The particle spectrum of type IIB supergravity on Ad5

3S5 @26,27# contains scalar fieldssI that are mixtures of the
five form field strength on S5 and the trace of the graviton o
S5. The transformation properties of the scalars with resp
to the superconformal group of SYM4 allow one to conclude
that they correspond to chiral primary operators~CPOs! of
SYM4. In @12# the quadratic and cubic actions for the scal
sI have been found and used to calculate all three-point fu
tions of normalized CPOs. These three-point functions
peared to coincide with the three-point functions of CP
computed in free field theory for generic values of conform
dimensions of CPOs. However, there is an apparent con
diction. As was noted in@28# ~see also@25#! a three-point
function of CPOs calculated in the AdS-CFT framewo
vanishes, if the sum of conformal dimensions of any of
two operators equals the conformal dimension of the th
operator, because of the vanishing of the cubic coupling
the corresponding scalar fields. Thus we are forced to c
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clude that the scalarssI used in@12# cannot correspond to
CPOs. Another way to come to the conclusion is that
scalars from@12# do not coincide with the original scalar
that are mixtures of the five-form and the graviton but d
pend nonlinearly on the original scalars and their derivativ
Thus the scalars used in@12# do not transform with respect to
the superconformal group in a proper way and cannot co
spond to CPOs.

In this paper we show that a scalarsI used in@12# corre-
sponds to an operator which is the sum of a CPO and n
chiral composite operators. The non-chiral operators
normal-ordered products of CPOs and their descendants,
so-called double- and multi-trace operators.

The knowledge of correlation functions of the chiral p
mary operators allows one to compute correlation functio
of all their descendants, in particular, the correlation fun
tions of the stress energy tensor andR-symmetry currents.
To compute four-point functions1 of the chiral operators one
has to know thesI-dependent quartic terms and all cub
terms that involve two scalar fieldssI . In the present paper
as the first step in this direction, we determine all such cu
terms. It is sufficient to consider only the sector of type I
supergravity that depends on the graviton and the four-fo
potential. There are four different types of vertices descr
ing interaction of two scalarssI with symmetric tensor fields
of the second rank coming from the AdS5 components of the
graviton, with vector fields, with scalar fields coming fro
the S5 components of the graviton, and with scalar fieldst I

that are mixtures of the trace of the graviton on the sph
and the five form field strength on the sphere.

To this end we apply an approach similar to the one u
in @12#. Namely, we use the quadratic action for type I
supergravity on AdS53S5 recently obtained in@40# and the
covariant equations of motion of@41–43#. Just as it was in
the case of cubic couplings of three scalarssI @12#, to get rid

,
s:

,
s: 1Some results on four-point functions have been obtained in@28–
39#.
©2000 The American Physical Society09-1
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G. ARUTYUNOV AND S. FROLOV PHYSICAL REVIEW D61 064009
of higher-derivative terms we will have to redefine the ori
nal gravity fields. Thus the fields entering the final acti
correspond not to descendants of CPOs but to extended
erators involving products of CPOs and their descenda
However, we expect that for generic values of conform
dimensions of these operators, their three-point functions
incide with the three-point functions of the correspondi
descendants of CPOs. Let us note in passing that the
way to find an action depending on the fields that corresp
directly to CPOs and their descendants seems to be to d
the action starting from the covariant action of@44,45#. In
this way one probably should obtain a nonvanishing cu
couplings of scalarssI corresponding to CPOs whose co
formal dimensions satisfy the relationD11D25D3. These
cubic terms seem to be of the form suggested in@28#. Un-
fortunately, the lack of covariance of the gauge-fixed act
of @44,45# makes the analysis extremely complicated.

The paper is organized as follows. In Sec. II we sugg
the operators that correspond to the scalarssI from @12#. In
Sec. III we recall equations of motion for the graviton a
the four-form potential, and the quadratic actions for t
fields under consideration, and introduce notations. In S
IV we obtain cubic couplings of two scalarssI with a scalar
t I , and with scalarsf I coming from the graviton on the
sphere, and calculate their three-point functions by using
sults obtained in@7#. In Sec. V cubic couplings of two scalar
sI with symmetric second rank tensor fields are derived
the corresponding three-point functions are found. In Sec
we obtain cubic vertices of two scalarssI and a vector field,
and calculate their three-point functions. Note that thr
point functions of two scalars with a massive vector field,
a massive symmetric second rank tensor, were not con
ered in the literature before. In the Conclusion we discuss
results obtained, and open problems. In the Appendix
recall the definitions of scalar, vector and tensor spher
harmonics.

II. EXTENDED CHIRAL PRIMARY OPERATORS

In this section we recall the definition of chiral prima
operators and introduce a notion of extended chiral prim
operators.

According to@12#, CPOs have the form

OI~xW !5
~2p!k

Aklk
Ci 1••• i k

I tr „ :f i 1~xW !•••f i k~xW !:…, ~1!

whereCi 1••• i k
I are totally symmetric traceless rankk ortho-

normal tensors ofSO(6): ^CICJ&5Ci 1••• i k
I Ci 1••• i k

J 5d IJ, f i

are scalars of SYM4, and :A1•••An : means the normal
ordered product of the operatorsAi .

The two- and three-point functions of CPOs computed
free theory are@12#

^OI~xW !OJ~yW !&5
d IJ

uxW2yW u2k
, ~2!
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^OI 1~xW !OI 2~yW !OI 3~zW !&5
1

N

Ak1k2k3^C
I 1CI 2CI 3&

uxW2yW u2a3uyW2zWu2a1uzW2xW u2a2
,

~3!

where a i5
1
2 (kj1kl2ki), j Þ lÞ i , and ^CI 1CI 2CI 3& is the

uniqueSO(6) invariant obtained by contractinga1 indices
betweenCI 2 andCI 3, a2 indices betweenCI 3 andCI 1, and
a3 indices betweenCI 2 andCI 1. According to the AdS-CFT
conjecture, there should exist fields of type IIB supergrav
on AdS53S5 that correspond to CPOs. The transformati
properties of CPOs and supergravity fields with respec
the superconformal group of SYM4 show that these fields
seem to be scalar fieldssI , that are mixtures of the five form
field strength on S5 and the trace of the graviton on S5.2 To
calculate the three-point functions of CPOs in the framew
of the AdS-CFT correspondence the quadratic and cubic
tions for the scalarssI were found in@12#. Then, it was
shown that for generic values of conformal dimensions
CPOs the normalized three-point functions computed us
the actions precisely coincide with the free field theory res
~3!. On the other hand, as was pointed out in@28# the cubic
couplings of scalarssI satisfying one of the three relations

k11k25k3 , k21k35k1 , k31k15k2 , ~4!

vanish, and, therefore, the three-point functions of the ope
tors corresponding to scalarssI vanish too. Thus, scalarssI

used in@12# do not correspond to CPOs. We can explain t
by noting that the scalarssI from @12# differ from the origi-
nal scalars that are mixtures of the graviton and the five-fo
on S5. The original scalarssI satisfy equations which depen
on higher-derivative terms. To remove the derivative ter
the following field redefinition was made in@12#

sI 15s8I 11 (
I 2 ,I 3

~JI 1I 2I 3
s8I 2s8I 31LI 1I 2I 3

¹as8I 2¹as8I 3!.

~5!

Namely for the scalarss8I the cubic couplings mentione
above vanish. Because of the redefinition~5! new scalarss8I

do not transform with respect to the superconformal group
a proper way, and, therefore, cannot correspond to CPO

From the computational point of view these cubic co
plings have to vanish because if, say,k11k25k3 then the
three-point function~3! is nonsingular atx5y, but gravity
calculations with a nonvanishing on-shell bulk cubic co
pling always lead to a function singular atx5y, x5z and
y5z. By the same reason we expect thatn-point functions of
operators corresponding to scalarss8I @with an additional
field redefinition which is required to remove highe

2Strictly speaking this correspondence between CPOs and sc
sI may be valid only at linear order in supergravity fields. T
reason is that the local supersymmetry transformations of su
gravity fields are nonlinear, and, one should expect that the indu
superconformal transformations are nonlinear too. Thus the orig
gravity fields seem to depend nonlinearly on fields with the lin
transformation law.
9-2
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SOME CUBIC COUPLINGS IN TYPE IIB . . . PHYSICAL REVIEW D61 064009
derivative terms from the (n21)th order equations of mo
tion for sI# would vanish if, say,kn5k11•••1kn21. Study
of the general scalar exchange performed in@28# seems to
confirm the conclusion.

Thus, scalarssI ~here and in what follows we omit th
primes on redefined fields! correspond to properly extende
CPOs which have vanishing three-point functions if Eq.~4!
is fulfilled. Indeed one can easily find such an extension
CPOs. Namely, we define the extended CPOs that co
spond to scalarssI as

ÕI 1~xW !5OI 1~xW !2
1

2N (
I 21I 35I 1

CI 1I 2I 3:OI 2~xW !OI 3~xW !:,

~6!

where CI 1I 2I 35Ak1k2k3^C
I 1CI 2CI 3&. It is not difficult to

verify that in the largeN limit these operators have the no
malized two-point functions~2!, the three-point functions~3!
if Eq. ~4! is not satisfied, and vanishing three-point functio
if Eq. ~4! takes place. Indeed, for generic values of conf
mal dimensions the second term on the right-hand s
~RHS! of Eq. ~6! gives a contribution of order 1/N2 to a
three-point function. Only if one of the relations Eq.~4! is
fulfilled, e.g.k15k21k3 the correlator

1

N
CI 1I 2I 3^OI 1~xW !:OI 2~yW !OI 3~yW !:&

does not vanish, and gives exactly the same function a
Eq. ~3!.

However, these operators will require a further modific
tion to be consistent with alln-point functions computed in
the framework of the AdS-CFT correspondence. In gene
an extended CPO is the sum of a CPO and non-chiral c
posite operators which are normal-ordered products of C
and their descendants. Nevertheless, we expect that in
largeN limit an n-point function of extended CPOs coincide
with n-point functions of CPOs for generic values of confo
mal dimensions of the operators. As we will discuss in
following sections a similar modification is required for o
erators corresponding to other supergravity fields.

III. EQUATIONS OF MOTION AND QUADRATIC
ACTIONS

To obtain cubic couplings of two scalarssI with other
type IIB supergravity fields it is sufficient to consider on
the graviton and the four-form potential. To this end we a
ply the method of@12#, and use the covariant equations
motion @41–43# and the quadratic action for type IIB supe
gravity on AdS53S5 @40#. The equations of motion of the
4-form potential and the graviton are
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FM1 . . . M5
5

1

5!
«M1 . . . M10

FM6 . . . M10, ~7!

RMN5
1

3!
FMM1 . . . M4

FN
M1 . . . M4 . ~8!

HereM ,N, . . . ,50,1, . . . 9 and we use thefollowing nota-
tions:

FM1 . . . M5
55] [ M1

AM2 . . . M5]5]M1
AM2 . . . M5

14 terms,

i.e., all antisymmetrizations are with ‘‘weight’’1. The dua
forms are defined as

«01 . . . 95A2G; e01 . . . 952
1

A2G

«M1 . . . M105GM1N1
•••GM10N10«N1 . . . N10

~F* !M1 . . . Mk
5

1

k!
«M1 . . . M10

FMk11 . . . M10

5
1

k!
«N1 . . . N10GM1N1

•••GMkNk
FNk11 . . . N10

.

In the units in which the radius of S5 is set to be unity, the
AdS53S5 background solution looks as

ds25
1

x0
2 ~dx0

21h i j dxidxj !1dV5
25gMNdxMdxN

Rabcd52gacgbd1gadgbc ; Rab524gab

Rabgd5gaggbd2gadgbg ; Rab54gab

F̄abcde5«abcde; F̄abgd«5«abgd« , ~9!

where a,b,c, . . . and a,b,g, . . . are the AdS and the
sphere indices respectively andh i j is the 4-dimensional
Minkowski metric. We represent the gravitational field a
the 4-form potential as

GMN5gMN1hMN ; AMNPQ5ĀMNPQ1aMNPQ ;

F5F̄1 f .
9-3
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Then the self-duality equation~7! decomposed up to the se
ond order looks as

f 2 f * 1T(1)1T~h, f * !1T~h!50. ~10!

Here we introduced the following notations:

TM1 . . . M5

(1) 5
1

2
hF̄M1 . . . M5

25h[ M1

K F̄M2 . . . M5]K ,

h5hK
K

d
a
tri

w

e
m

06400
TM1 . . . M5
~h, f * !5

1

2
h fM1 . . . M5

* 25h[ M1

K f M2 . . . M5]K*

TM1 . . . M5
~h!5

5

2
hh[ M1

K F̄M2 . . . M5]K

2S 1

8
h21

1

4
hMLhMLD F̄M1 . . . M5

210h[ M1

K1 hM2

K2 F̄M3M4M5]K1K2
. ~11!

Decomposing the Einstein equation~8! up to the second or-
der, we get
RMN
(1) 1RMN

(2) 52
4

3!
hKLF̄MKM1M2M3

F̄NL
M1M2M31

1

3!
~ f MM1 . . . M4

F̄N
M1 . . . M41F̄MM1 . . . M4

f N
M1 . . . M4!

1
4

3!
hKLhL

SF̄MKM1M2M3
F̄NS

M1M2M31
233

3!
hK1S1hK2S2F̄MK1K2M1M2

F̄NS1S2

M1M22
4

3!
hKS

3~ f MKM1M2M3
F̄NS

M1M2M31 f NKM1M2M3
F̄MS

M1M2M3!1
1

3!
f MM1 . . . M4

f N
M1 . . . M4 . ~12!
of

for

an

r-
d
me

al

on-
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RMN
(1) 5¹KhMN

K 2
1

2
¹M¹NhL

L

RMN
(2) 52¹K~hL

KhMN
L !1

1

2
¹N~hKL¹MhKL!

1
1

2
hMN

K ¹KhL
L2hMK

L hNL
K ~13!

and we introduce a notation

hMN
K 5

1

2
~¹MhN

K1¹NhM
K 2¹KhMN!. ~14!

In Eqs.~10!–~14! and in what follows indices are raised an
lowered by means of the background metric, and the cov
ant derivatives are with respect to the background me
too.

The gauge symmetry of the equations of motion allo
one to impose the de Donder gauge:

¹ahaa5¹ah(ab)5¹aaM1M2M3a50;

~15!

h(ab)[hab2
1

5
gabhg

g .

This gauge choice does not remove all the gauge symm
of the theory, for a detailed discussion of the residual sy
metry see@26#. As was shown in@26#, the gauge condition
ri-
c,

s

try
-

~15! implies that the components of the 4-form potential
the formaabgd andaaabg can be represented as follows:

aabgd5«abgd«¹«b; aaabg5«abgd«¹dfa
« . ~16!

It is also convenient to introduce the dual 1- and 2-forms
aabcd andaabca :

aabcd52«abcdeQ
e; aabca52«abcdefa

de . ~17!

Then the solution of the first-order self-duality equation c
be written as

Qa5¹ab, fa
ab5¹ [afa

b] . ~18!

The quadratic action for physical fields of type IIB supe
gravity was found in@40#. To write down the action we nee
to expand fields in spherical harmonics, and make so
fields redefinition. We begin with the scalar fieldsb and p
[ha

a . Expanding them into a set of scalar spheric
harmonics3

p~x,y!5( p I 1~x!YI 1~y!;

b~x,y!5( bI 1~x!YI 1~y!;

3Here and in what follows we suppose that the spherical harm
ics of all types are orthonormal.
9-4
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¹b
2Yk52k~k14!Yk,

and making the fields redefinition@12#4

pk510ksk110~k14!tk ; bk52sk1tk ~19!

we write the quadratic actions for the scalarssI andt I in the
form

S~s!5
4N2

~2p!5E d5xA2ga(
32k~k21!~k12!

k11

3S 2
1

2
¹ask¹

ask2
1

2
k~k24!sk

2D , ~20!

S~ t !5
4N2

~2p!5E d5xA2ga(
32~k12!~k14!~k15!

k13

3S 2
1

2
¹atk¹

atk2
1

2
~k14!~k18!tk

2D . ~21!

Now we expand the graviton on AdS5 in scalar spherica
harmonics

hab~x,y!5( hab
I 1 ~x!YI 1~y!

and make the following shift of the gravitational fields:

hab
k 5f (ab)

k 1¹ (a¹b)zk1
1

5
gabS fck

c 2
3

5
pkD , ~22!

where

zk5
4

k11
sk1

4

k13
tk . ~23!

Then the zero modefab
0 [fab describes a graviton on AdS5

with the standard action

S~fab!5
4N2

~2p!5E d5xA2gaS 2
1

4
¹cfab¹

cfab

1
1

2
¹afab¹cfcb2

1

2
¹afc

c¹bfba1
1

4
¹cfa

a¹cfb
b

1
1

2
fabf

ab1
1

2
~fa

a!2D ~24!

and the action for the traceless symmetric tensor fieldsfab
k

has the form

4We often denotep I 1 aspk and a similar notation for other fields
06400
S~f (ab)
k !5

4N2

~2p!5E d5xA2ga( S 2
1

4
¹cf (ab)

k ¹cfk
(ab)

1
1

2
¹afk

(ab)¹cf (cb)
k

2
1

4
~k214k22!f (ab)

k fk
(ab)D . ~25!

As was shown in@26# the fieldsfck
c are nondynamical and

vanish on shell at the linearized level.
Expanding vector fieldshaa andfaa into a set of vector

spherical harmonics

haa~x,y!5( hha
I 5~x!Ya

I 5~y!;

faa~x,y!5( fa
I 5~x!Ya

I 5~y!;

~¹b
224!Ya

k 52~k11!~k13!Ya
k ,

and making the change of variables@26#

Aa
k5ha

k24~k13!fa
k ; Ca

k5ha
k14~k11!fa

k ~26!

we present the actions for the vector fields in the form

S~A!5
4N2

~2p!5E d5xA2ga(
k11

2~k12! S 2
1

4
„Fab~Ak!…2

2
1

2
~k221!~Aa

k!2D ~27!

S~C!5
4N2

~2p!5E d5xA2ga(
k13

2~k12! S 2
1

4
„Fab~Ck!…2

2
1

2
~k13!~k15!~Ca

k!2D , ~28!

whereFab(A)5]aAb2]bAa . Finally, expanding the gravi-
ton on the sphere in tensor harmonics

h(ab)~x,y!5( f I 14~x!Y(ab)
I 14 ~y!;

~¹g
2210!Y(ab)

k 52~k214k18!Y(ab)
k ,

we write the action for the scalarsfk in the form

S~f!5
4N2

~2p!5E d5xA2ga( S 2
1

4
¹afk¹

afk

2
1

4
k~k14!fk

2D . ~29!
9-5
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IV. CUBIC COUPLINGS OF SCALARS

The aim of this section is to find the cubic couplings
the scalar fieldstk andfk with a pair of scalarssk . This can
be achieved by finding the quadratic contribution of the s
lars sk to the equations of motion fortk andfk respectively
with a subsequent reconstruction of the corresponding
grangian vertex.
06400
-

a-

A. Cubic couplings of tk

Since tk appear as the mixture of fieldspk and bk we
begin by considering the equations of motion for these fie
Restricting in Eq.~13! indicesM and N to the sphere and
taking into account the gauge conditions~15!, ~16! we find
that Einstein equation~13! results in
nder
the

e
case
1

10
gab„~¹M¹M232!p180¹g¹gb…1

1

2
¹a¹bfa

a51
1

10
gab¹a~hab¹bp!1

3

100
¹ap¹bp1

3

50
p¹a¹bp

1
1

4
¹ahab¹bhab1

1

2
hab¹a¹bhab18¹a¹ab¹b¹ab24gabS ¹g¹ab¹g¹ab1¹g

2b¹d
2b1

2

5
p22

8

5
p¹g

2b

2
1

200
¹g~p¹gp! D , ~30!

wherefa
a5ha

a1 3
5 p in accordance with Eq.~22!. Note that we have omitted all the linear terms that are projected out u

the projection onto the spherical harmonics¹ (a¹b)Y
I or YI and accounted only for the quadratic terms that contain after

field redefinition~19! and ~22! two scalarssk . In particular the scalarssk appear after redefinition~22! for the gravitational
field hab .

Equation~30! implies then the following two equations:

¹ (a¹b)fa
a5

3

50
¹ (ap¹b)p1

3

25
p¹ (a¹b)p1

1

2
¹ (ahab¹b)h

ab1hab¹ (a¹b)h
ab116¹ (a¹ab¹b)¹ab ~31!

and

~¹M¹M232!p180¹g¹gb1¹a¹afa
a5¹a~hab¹bp!1

13

50
¹ap¹ap1

8

25
p¹a¹ap1

1

2
¹ahab¹

ahab

1hab¹a¹ahab224¹a¹ab¹a¹ab240¹g
2b¹d

2b216p2164p¹g
2b ~32!

that are obtained by decoupling from Eq.~30! the trace part. Projecting Eq.~31! onto ¹a¹bYI one can solve it forfa
a and

substituting the result in Eq.~32! obtain the close equation forp andb.
According to @26# the second equation involving the fieldsp and b is found by considering the component of th

self-duality equation~10! involving one sphere and four AdS indices, and the component with five AdS indices. In our
these components read as

¹a~aa1 . . . a4
1«a1 . . . a5

¹a5b!5«a1 . . . a4aS 3

5
p¹a¹ab1hab¹b¹abD ~33!

and

5¹ [a1
aa2 . . . a5]5«a1 . . . a5S ¹g

2b1
1

2
fa

a2
4

5
p2

4

5
p¹g

2b2
1

4
habh

ab1
37

100
p2D . ~34!

Projecting Eq.~33! onto¹aYI one findsaa1 . . . a5
. Substituting thenaa1 . . . a5

as well as previously foundfa
a into Eq. ~34! one

obtains the equation forp andb.
The required equation fortk is then obtained by substituting the redefinition~19! in Eqs.~32!–~34! and by eliminating all

the terms linear insk . Skipping all the computational details we write down the equation fort I that is found to be of the form

„¹a¹a2~k314!~k318!…t I 35D123s
I 1sI 21E123¹

asI 1¹asI 21F123¹ (a¹b)s
I 1¹ (a¹b)sI 2.

To remove the derivative terms we perform the appropriate redefinition oft I similar to Eq.~5!:
9-6
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t I 35t8I 31 (
I 1 ,I 2

~JI 1I 2I 3
s8I 1s8I 21LI 1I 2I 3

¹as8I 1¹as8I 2!.

Introducing the notationa1235*YI 1YI 2YI 3 we quote the final answer

~¹a¹a2~k314!~k318!!t I 352t I 1I 2I 3
sI 2sI 3,

t I 1I 2I 3
5a123

4~(14!~a112!~a212!a3~a321!~a322!~a323!~a324!

~k111!~k211!~k312!~k314!~k315!
,

wherea35 1
2 (k11k22k3), (5k11k21k3.

Taking into account the normalization of the quadratic action fortk fields ~21! we obtain the corresponding vertex

Stss5
4N2

~2p!5
TI 1I 2I 3

E A2gasI 1sI 2t I 3

with

TI 1I 2I 3
5a123

27~(14!~a112!~a212!a3~a321!~a322!~a323!~a324!

~k111!~k211!~k313!
. ~35!

B. Cubic couplings of fk

To find equations of motion for the fieldsfk coming from the graviton on the sphere we again consider Eq.~13! for the
indicesM5a, N5b:

~¹M¹M22!h(ab)5
3

50
¹ (ap¹b)p1

3

25
p¹ (a¹b)p1

1

2
¹ (ahab¹b)h

ab1hab¹ (a¹b)h
ab116¹ (a¹ab¹b)¹ab,

where this time all the linear terms that are projected out under the projection onY(ab) were omitted.
Introducing the notationp1235*¹aYI 1¹bYI 2Y(ab)

I 3 and projecting both sides of the last equation onY(ab) we get an
equation forf:

„¹a¹a2k3~k314!…f I 35p123S 2
3

50
p I 1p I 22

1

2
hab

I 1 hI 2

ab116¹abI 1¹abI 2D .

Finally leaving on the RHS only the contribution of the scalarssk we obtain

„¹a¹a2k3~k314!…f I 352
p123

5~k111!~k211!

3„48k1k2~k111!~k211!sI 1sI 2280~k111!~k211!¹asI 1¹asI 2140¹ (a¹b)s
I 1¹ (a¹b)sI 2

….

Performing again a shift off I to get rid of the derivative terms one arrives at

„¹a¹a2k3~k314!…f I 352
8p123(~(12!

~k111!~k211!
~a321!~a322!sI 1sI 2.

Taking into account the normalization of the quadratic action forfk we can read off the corresponding vertexSssf :

Sssf5
4N2

~2p!5
F I 1I 2I 3

E A2gasI 1sI 2f I 3, ~36!

where

F I 1I 2I 3
5

4p123(~(12!

~k111!~k211!
~a321!~a322!.
064009-7



ng

s

-

G. ARUTYUNOV AND S. FROLOV PHYSICAL REVIEW D61 064009
C. Three-point functions

Recall that two- and three-point correlation functions of operatorsOD in a boundary conformal field theory correspondi
to scalar fields on AdS are given by@7#

^OD~xW !OD~yW !&5
2

p2

u~D21!~D22!2

uxW2yW u2D
, ~37!

^OD1
~xW !OD2

~yW !OD3
~zW !&5

l123

uxW2yW uD11D22D3uxW2zWuD11D32D2uyW2zWuD31D22D1
, ~38!

wherel123 is given by

l12352w123

GF1

2
~D11D21D324!GG@D̄1#G@D̄2#G@D̄3#

2p4G~D122!G~D222!G~D322!

andD̄15 1
2 (D21D32D1). Herew123 stands for the coupling of scalar fields~that is a doubled interaction vertex for the field

we consider! andu denotes the normalization constant of their quadratic action. Taking into account that a scalart I 3 (f I 3)
corresponds to a YM operatorOD3

with the conformal weightD35k318 (D35k314), we, therefore find correlation func

tions of two extended CPOs with this operator. The constantl123 reads for both cases as follows:

l123~ t !52
4N2

~2p!5

28

p4

GS 1

2
(13DG~a114!G~a214!G~a311!~a112!~a212!

~k111!~k211!~k313!G~k122!G~k222!G~k316!
a123

and

l123~f!52
4N2

~2p!5

24

p4

GS 1

2
(12DG~a112!G~a212!G~a3!

~k111!~k211!G~k122!G~k222!G~k312!
p123.

Taking into account the normalization of the two-point functions one can introduce the normalized extended CPO@12#:

OD5
~2p!5/2

2N

p

8~k21!~k22! S k11

k~k12! D
1/2

OD ~39!

as well as the normalized gauge theory operator corresponding to scalartk :

OD5
~2p!5/2

2N

p

8~k16! S k13

~k12!~k14!~k15!~k17! D
1/2

OD , D5k18

and to scalarfk :

OD5
~2p!5/2

2N

p

~k13!1/2~k12!
OD , D5k14.

With these formulas at hand we can finally write down the normalized constants:

l123
norm~ t !52

~2p!5/2

N

1

~2p!5/2S k1k2~k311!~k317!

~k313!~k314!~k315! D
1/2

3
G~a114!~a112!

a1!

G~a214!~a212!

a2!

k3!

G~k318!
^C I 1C I 2C I 3&

and

l123
norm~f!52

~2p!5/2

N

~a111!~a211!

4~2p!5/2 S k1k2

~k311!~k312!~k313! D
1/2

P123.
064009-8
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SOME CUBIC COUPLINGS IN TYPE IIB . . . PHYSICAL REVIEW D61 064009
Here we used explicit expressions fora123 andp123 from the
Appendix.

V. CUBIC COUPLINGS OF SECOND RANK TENSORS
WITH SI

A. Cubic couplings

Clearly the coupling of the symmetric second rank ten
f (ab)

k with a pair of scalarssk can be found by studing th
corrected equation of motion forf (ab)

k . The most simple
way consists however in finding the equations of motion
the fieldsk corrected by the quadratic terms each contain
one fieldf (ab)

k andsk . This is explained by noting that th
field f (ab)

k is transverse on-shell and therefore the interact
term, being in the latter case a Lorentz scalar does not c
tain derivatives acting onf (ab)

k . As a consequence the add
tional shift needed to get rid of derivative terms is not
quired.

Since the fieldsk appear as the mixture~19! of p andb,
the equation forsk again follows from the system~31!–~34!.
Clearly this time Eqs.~31! and ~32! read as

¹ (a¹b)fa
a5¹ (af (ab)¹b)¹

a¹bz1f (ab)¹ (a¹b)¹
a¹bz

1¹a¹bz¹ (a¹b)f
(ab) ~40!

and

~¹M¹M232!p180¹g¹gb1¹a¹afa
a

5¹a~f (ab)¹bp!1¹ (af (ab)¹b)¹
a¹bz

1f (ab)¹ (a¹b)¹
a¹bz1¹a¹bz¹ (a¹b)f

(ab) ~41!

where we have used representation~22! for the graviton field
hab and left only the terms contributing to the vertex und
consideration. By this reason the coefficientszk in z
5*z IYI are reduced now tozk5@4/(k11)#sk in compari-
son with Eq.~23!.

Again projecting Eq.~40! onto¹a¹bYI one solves forfa
a

and after substitution of the solution into Eq.~41! one ob-
tains a closed form equation forp andb.

The second equation forp andb follows from Eqs.~33!
and ~34! that now acquire the form

¹a~aa1 . . . a4
1«a1 . . . a5

¹a5b!5«a1 . . . a4a~f (ab)¹b¹ab!

~42!

and

5¹ [a1
aa2 . . . a5]5«a1 . . . a5S ¹g

2b1
1

2
fa

a2
4

5
p

2
1

2
f (ab)¹

a¹bz D . ~43!

Omitting the straightforward but lengthy algebraic manip
lations we write down the final answer for the Lagrangi
vertex describing the interaction of the symmetric seco
rank tensorf (ab) with scalarssI :
06400
r

r
g

n
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-

r

-

d

Sssg5
4N2

~2p!5
GI 1I 2I 3

E A2ga¹asI 1¹bsI 2f (ab)
I 3 ,

whereGI 1I 2I 3
is found to be

GI 1I 2I 3
5

4~(12!~(14!a3~a321!

~k111!~k211!
a123.

B. Three-point functions

Denote byT i j
I the operator in SYM of the conforma

weight DG5k14 that corresponds to the AdS fieldf (ab) .
To compute the three-point correlation function of this o
erator with extended CPOs in the boundary conformal fi
theory one needs the bulk-to-boundary propagator for
field f (ab)

I . In principle this can be extracted from the m
mentum space results of@24#. In the case of three-point cor
relators it is however more convenient to deal directly w
the x-space propagator.

Recall that the linearized equations of motion forf (ab)
I

read as

¹c¹
cf (ab)

I 1~22k224k!f (ab)
I 50, ¹bf (ab)

I 50.
~44!

Now one can easily check that the following function:

Gabi j~v0 ,xW !5
DG11

DG21
v0

2KDG
~v,xW !Jak~v2xW !Jbl~v

2xW !Ei j ,kl ~45!

is the bulk-to-boundary Green function for Eq.~44!. Here
Ei j ,kl denotes the traceless symmetric projector:

Ei j ,kl5
1

2
~d ikd j l 1d i l dk j!2

1

4
d i j dkl ,

KD(v,xW ) is a bulk-to-boundary propagator for a scalar fie
corresponding to an operator of conformal dimensionD:

KD~v,xW !5cD

v0
D

„v0
21~vW 2xW !2

…

D
, cD5

G~D!

p2G~D22!
,

~46!

andJab(x)5dab22(xaxb /x2).
Note that function~45! satisfies the transversality cond

tion ¹aGabi j50. The normalization constant (DG11)/(DG
21) in Eq. ~45! is fixed by requiring the corresponding so
lution of Eq.~44! to reproduce correctly the boundary data
the limit v0→0. In the case of vanishing AdS mass Eq.~45!
turns into the graviton bulk-to-boundary propagator@8#.

Having discussed the propagator forf (ab) we come back
to the three-point correlator that now reads as
9-9
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^O I 1~xW !O I 2~yW !T i j
I 3~zW !&52

8N2

~2p!5
GI 1I 2I 3

E d5v

v0
5

v0
4¹a¹bKD1

~v,xW !KD2
~v,yW !Gabi j

I 3 ~v,zW !. ~47!

By the conformal symmetry this correlator is defined up to the normalization constantb123:

^O I 1~xW !O I 2~yW !T i j
I 3~zW !&5

b123

uxW2yW uD11D22DGuxW2zWuD11DG2D2uyW2zWuD21DG2D1
S ZiZj

Z2
2

1

d
d i j D ,

where

Zi5
~xW2zW ! i

~xW2zW !2
2

~yW2zW ! i

~yW2zW !2
. ~48!

This constant is then found by explicit evaluation of integral~47!:

b12352
4N2

~2p!5
4p2cD1

cD2
cDG

GI 1I 2I 3

DG11

DG21

GX1
2

~D11D21DG22!C
G~DG12!

3

GX1
2

~D11DG2D212!CGX1
2

~D21DG2D112!CGX1
2

~D11D22DG12!C
G~D1!G~D2!

. ~49!

Substituting here the normalization constants andGI 1I 2I 3
we finally find

b12352
4N2

~2p!5

64

p4 S k312

~k111!~k211! D
GS 1

2
(13DG~a113!G~a213!G~a311!

G~k122!G~k222!G~k315!
a123.

The two-point correlation function of the YM operatorTi j corresponding to the symmetric second rank tensor fieldf (ab)
was computed in@24#

^T i j
I ~xW !T kl

J ~yW !&5
4N2

~2p!5

1

p2
~DG22!2~DG11!

d IJ

uxW2yW u2DG
Ei j i 8 j 8Ji 8k~xW2yW !Jj 8 l~xW2yW !.

Therefore, introducing the normalized operator

Ti j
I 5

~2p!5/2

2N

p

~DG22!~DG11!1/2
T i j

I

one obtains the correlation function of two normalized CPO’s andTi j
I with the constantb123

norm :

b123
norm52

~2p!5/2

N

1

23/2p5/2
„k1k2~k311!~k312!~k315!…1/23

~a111!~a112!~a211!~a212!

~k311!~k312!~k313!~k314!~k315!
^C I 1C I 2C I 3&,
e
r.

t

tor
of
where the explicit expression fora123 was used. Note that th
variablea3 completely dissappeared from the final answe

VI. CUBIC COUPLINGS OF TWO SCALARS sI

WITH VECTOR FIELDS

A. Cubic couplings

To obtain cubic couplings of two scalarssI with vectors
fields we need equations of motion for the vector fields up
06400
o

the second order. The equations of motion for the vec
fields fa

a can be derived from the following components
the self-duality equation:

f aabcd2 f aabcd* 1Taabcd
(1) 1T~h, f * !aabcd1T~h!aabcd50,

~50!

f ababc2 f ababc* 1Tababc
(1) 1T~h, f * !ababc1T~h!ababc50.

~51!
9-10
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From the definition off we have

f ababc52¹ [aab]abc ,

f ababc* 5«abcde~¹d¹afb
e2¹d¹bfa

e !.

Here we omitted all terms dependent on the component
the 4-form potential of the formaabab which are not relevan
for the cubic couplings under consideration. From the d
nition of the tensorsT ~11! we can easily see that

Tababc
(1) 5T~h, f * !ababc5T~h!ababc50,

if we keep only terms which may give a contribution to t
cubic couplings. Thus Eq.~51! does not get relevant qua
dratic corrections, and, therefore,

aaabc5«abcde¹
dfa

e . ~52!

Taking into account Eq.~52! and formulas~11! for the ten-
sorsT, one can rewrite Eq.~50! in the form
06400
of

-

~¹b
21¹b

224!fa
a2¹b¹afa

b2ha
a1

1

2
hb

b¹a¹ab

2
3

10
p¹a¹ab2hab¹b¹ab50. ~53!

Here we have omitted all terms that are projected out un
the projection ontoYa . Expanding all the fields in spherica
harmonics and using Eqs.~19!–~23!, we obtain equations o
motion for the vector fieldsfa

I

¹b
2fa

32¹b¹afb
32~k311!~k313!fa

32ha
3

52t123S 4k2~k212!

k211
s2¹as11

4

k211
¹a¹bs2¹bs1D ,

~54!

where t123[t I 1I 2I 3
5*¹aYI 1YI 2Ya

I 3 , f3 meansf I 3 and so
on, and summation over 1 and 2 is assumed.

Now we proceed with the equations of motion forha
a .

These equations can be derived from thea,a components of
Eq. ~12!. Omitting all intermediate calculations, we prese
the equations in the form
rm

and
¹b
2ha

32¹b¹ahb
32„~k311!~k313!18…ha

3216~k311!~k313!fa
3

52t123f ~k1 ,k2!s1¹as2216t123

k225

k111
¹a¹bs1¹bs21

8t123

~k111!~k211!
¹a¹b¹cs2¹b¹cs1 , ~55!

where

f ~k1 ,k2!5
4k1~1614k122k1

2110k214k1k222k1
2k222k2

22k1k2
2!

~k111!~k211!
.

The equations of motion for vector fieldsA andC are linear combinations of the two above and can be written in the fo

¹b
2Va

32¹b¹aVb
32m3

2Va
35¹aV31D123s1¹as21E123¹

bs1¹a¹bs21F123¹
b¹cs1¹a¹b¹cs2 , ~56!

whereV may be eitherA or C, and the constantsD, E, F are antisymmetric with respect to the permutation of the indices 1
2. We can remove the higher-derivative terms from the equation by means of the following field redefinition:
Va
3→Va

32
1

m3
2
¹aṼ31J123s1¹as21L123¹

bs1¹a¹bs2 ,

~57!

where

2L1235F123

2J1231L123~m1
21m2

22m3
2212!5E123

Ṽ35V32~J12322L123!m1
2s1s22L123m1

2¹bs1¹bs2 .

Then Eq.~56! acquires the form
¹b
2Va

I 32¹b¹aVb
I 32m3

2Va
I 31 (

I 1 ,I 2

v I 1I 2I 3
sI 1¹asI 250,

~58!

where

v I 1I 2I 3
52DI 1I 2I 3

1JI 1I 2I 3
~m1

21m2
22m3

2!

22LI 1I 2I 3
~m1

21m2
2!. ~59!

A straightforward calculation of the constantsv gives

v I 1I 2I 3
~A!5

4~a321/2!~(21!~(11!~(13!

~k111!~k211!
t123

~60!
9-11
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v I 1I 2I 3
~C!5

16~a321/2!~a323/2!~a325/2!~(13!

~k111!~k211!
t123. ~61!

Taking into account the normalization of the quadratic actions~27! and ~28!, we get the corresponding cubic terms

Sssv5
4N2

~2p!5
VI 1I 2I 3

E A2gasI 1¹asI 2Va
I 3 , ~62!

where

VI 1I 2I 3
~A!5

2~k311!~a321/2!~(21!~(11!~(13!

~k111!~k211!~k312!
t123 ~63!

VI 1I 2I 3
~C!5

8~k313!~a321/2!~a323/2!~a325/2!~(13!

~k111!~k211!~k312!
t123. ~64!

B. Three-point functions

Denote byR i
I 3 the operator in SYM that corresponds toVi

I 3 on the gravity side. Then the three-point function of two scal
and a vector field is given by the integral

^O I 1~xW !O I 2~yW !R i
I 3~zW !&5

8N2

~2p!5
VI 1I 2I 3

E d5v

v0
5

v0
2KD1

~v,xW !]bKD2
~v,yW !Gbi

I 3~v,zW !. ~65!

HereKD(v,xW ) with D5k is a bulk-to-boundary propagator~46! for sI andGai(v,xW ) is a bulk-to-boundary propagator for
massive vector fieldVa

I 3 with a massm(V):

Gai~v,xW !5
Dv

Dv21
v0

21KDv
~v,xW !Jai~v2xW !,

whereJab(x)5dab22(xaxb /x2).
In the last formulaDv521A11m2(V) and, thusDv5k12 for the fieldAa

I andDv5k16 for Ca
I . Note thatGai obeys the

transversality condition¹aGai50.
The condition of the conformal covariance defines the correlator~65! uniquely up to the coefficientl123:

^O I 1~xW !O I 2~yW !R i
I 3~zW !&5

l123

uxW2yW uD11D22DvuxW2zWuD11Dv2D2uyW2zWuD21Dv2D1
S uxW2zWuuyW2zWu

uxW2yW u
Zi D , ~66!

with

Zi5
~xW2zW ! i

~xW2zW !2
2

~yW2zW ! i

~yW2zW !2
.

Applying the inversion method of@7# to integrate Eq.~65! one finds forl123 the following answer:

l1235
8N2

~2p!5

1

p4
VI 1I 2I 3

~Dv22!GX1
2

~D11D21Dv23!C
G~Dv!

3

GX1
2

~D11Dv2D211!CGX1
2

~D21Dv2D111!CGX1
2

~D21D22Dv11!C
G~D122!G~D222!

.

For the fieldAI the last formula reads as
064009-12
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l123~A!5
4N2

~2p!5

25

p4

GS 1

2
(1

5

2D
~k111!~k211!~k312!

G~a113/2!G~a213/2!G~a311/2!

G~k122!G~k222!G~k3!
t123

while for CI :

l123~C!5
4N2

~2p!5

25

p4

GS 1

2
(1

5

2D ~k313!~k314!

~k111!~k211!~k312!

G~a117/2!G~a217/2!G~a311/2!

G~k122!G~k222!G~k316!
t123.
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The two-point correlator corresponding to a massive vec
field on the AdS space was found in@10#:

^R i
I~xW !,R j

J~yW !&5
2

p2
uDv~Dv21!2

d IJ

uxW2yW u2Dv
Ji j ~xW2yW !,

~67!

where the constantu accounts our normalization of the qu
dratic action for the vector fields and is equal tou
5@4N2/(2p)5#@(k11)/2(k12)# for the field A and to u
5@4N2/(2p)5#@(k13)/2(k12)# for C, respectively. We
introduce a normalized operatorRi

I with the two-point corre-
lation function

^Ri
I~xW !,Rj

J~yW !&5
d IJ

uxW2yW u2Dv
Ji j ~xW2yW !.

Explicitly Ri
I is given by

Ri
I5

~2p!5/2

2N

p

~k11!3/2
R i

I

for the YM operator corresponding toAa
I and

Ri
I5

~2p!5/2

2N

p

~k15! S k12

~k13!~k16! D
1/2

R i
I

for Ca
I . By using these formulas, the definition~39! of the

normalized CPO, and the expression fort123 from the Ap-
pendix, one gets the correlation functions of normalized
erators

l123
norm~A!5

~2p!5/2

N

1

4p5/2S k1k2

k312D 1/2

3
k3~a111/2!~a211/2!

~k311!2
T123,

l123
norm~C!5

~2p!5/2

N

1

4p5/2S k1k2~k313!

~k311!~k316! D
1/2k314

k315

3
k3!G~a117/2!G~a217/2!

G~k316!~a121/2!! ~a221/2!!
T123.
06400
r

-

VII. CONCLUSION

In this paper we obtained the cubic couplings in type I
supergravity on AdS53S5 involving two scalar fieldssI and
the corresponding three-point functions by using the cov
ant equations of motion and the quadratic action. Since
the fields we considered correspond to operators which
descendants of CPOs, one may, in principle, derive the s
results directly from the superconformal invariance. Th
would require a detailed study of superconformal Ward id
tities in SYM4 which, to our knowledge, has not been carri
out yet.

In most cases to find a cubic coupling of two scalarssI

with a fieldF we used a corrected equation of motion for t
field F. We saw that to get rid of higher-derivative terms w
had to make a field redefinition of the form~5!. By this
reason, a fieldF corresponds not to a descendant of a CP
but to a properly extended operator which includes produ
of CPOs.

In fact one can obtain the cubic couplings by using c
rected equations of motion for scalarssI as it was done in the
case of the graviton couplings. We have done that to de
the cubic couplings of two scalarssI with the scalarsf I , and
with the vector fields, and we have certainly obtained
same results~36! and~62!. The fact that we derived the sam
vertices from different equations also confirms the corr
normalization of the quadratic action for type IIB supergra
ity @40#. It is worth noting that contrary to the graviton cas
considered in Sec. V, in these cases to remove hig
derivative terms from the corrected equations of motion
sI we had to make the following redefinitions of the scala
sI :

s1→s11J123s2f31L123¹as2¹af3

and

s1→s11J123¹as2V3
a1L123¹a¹bs2¹bV3

a .

This implies that the extended CPOs corresponding to
scalarssI that were discussed in Sec. II have to depend
products of CPOs and their descendants. Unfortunately,
knowledge of the three-point functions obtained in the pa
does not allow one to fix the explicit form of the extend
CPOs uniquely.
9-13



r

,
f
gs

ar
re
nc
ie
ee
c

ar
s

ra
be
in

en
.
ty
b

m
lo
-
au

es
h.
nk
hin

in
p
in

.F
de
x

tisfy

m-

h

e

isfy

of

G. ARUTYUNOV AND S. FROLOV PHYSICAL REVIEW D61 064009
It is worth noting that the cubic couplings of three scala
s vanish when any of thea8s vanish @12#. The cubic cou-
plings studied in this paper vanish ifa3 takes special values
and in most of the cases there are several such values oa3.
Sincea1 anda2 have to be non-negative the cubic couplin
have no zeros ata1 and a2. However, in all of the three-
point functions considered zeros of the cubic couplings
cancelled by poles in the general expressions for the th
point functions, just as in the case of the three-point fu
tions of extended CPOs. This gives us a reason to bel
that for generic values of conformal dimensions the thr
point functions obtained coincide with the three-point fun
tions of CPOs and their descendants.

The next natural step is to find quartic couplings of scal
sI , and to compute four-point functions of extended CPO
We expect that the quartic couplings vanish if, say,k45k1
1k21k3, because in this case there is no exchange diag
and all contributions to the four-point functions may
given only by the quartic couplings. However, the four-po
functions in this case are nonsingular atxW15xW2, and it seems
to be impossible to reproduce such a coordinate depend
via supergravity with a nonzero on-shell quartic coupling

Finally, it would be interesting to find the supergravi
fields that correspond to CPOs, and to compute their cu
couplings. A similar problem exists in the case of AdS co
pactifications of 11-dimensional supergravity, where ana
gous cubic couplings@46,47# also have zeros. In the 11
dimensional case the problem seems to be simpler bec
the covariant action is known.
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APPENDIX

We follow @12# describing spherical harmonics onS5. The
scalar spherical harmonicsYI are defined by

YI5z~k!21/2Ci 1 . . . i k
I xi 1

•••xi k ~A1!

whereCi 1••• i k
I are totally symmetric traceless rankk ortho-

normal tensors ofSO(6): ^CICJ&5Ci 1••• i k
I Ci 1••• i k

J 5d IJ, xi

are the Cartesian coordinates of theR6 in which S5 is em-
bedded, and

z~k!5
p3

2k21~k11!~k12!
.
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The scalar spherical harmonics are orthonormal and sa
the relation

E YI 1YI 2YI 35a123,

a1235„z~k1!z~k2!z~k3!…21/2
p3

S 1

2
(12D !2(1/2)((22)

3
k1!k2!k3!

a1!a2!a3!
^CI 1CI 2CI 3&, ~A2!

where a i5
1
2 (kj1kl2ki), j Þ lÞ i , and ^CI 1CI 2CI 3& is the

uniqueSO(6) invariant obtained by contractinga1 indices
betweenCI 2 andCI 3, a2 indices betweenCI 3 andCI 1, and
a3 indices betweenCI 2 andCI 1.

A vector spherical harmonic is defined as a tangent co
ponent of the following vector:

Ym
I 5z~k!21/2Cm; i 1 . . . i k

I xi 1
•••xi k ~A3!

where the tensorCm; i 1 . . . i k
I is symmetric and traceless wit

respect toi 1 , . . . ,i k , and its symmetric part vanishes. Th
tensors are orthonormal

Cm; i 1 . . . i k
I Cn; i 1 . . . i k

J 5d IJdmn .

The vector spherical harmonics are orthonormal and sat
the relation

E ¹aYI 1YI 2Ya
I 35t123,

t1235
p3

k311

„z~k1!z~k2!z~k3!…21/2

X1
2

~S13!C!2(1/2)(S23)

3
k1!k2!k3!

S a12
1

2D ! S a22
1

2D ! S a32
1

2D !

T123 ~A4!

where

T1235Cmi1 . . . i p2
j 1 . . . j p3

I 1 Cj 1 . . . j p3
l 1 . . . l p1

I 2 Cm; l 1 . . . l p1
i 1 . . . i p2

I 3

2Ci 1 . . . i p211 j 1 . . . j p3

I 1 Cj 1 . . . j p3
l 1 . . . l p121m

I 2

3Cm; l 1 . . . l p121i 1 . . . i p211

I 3 ~A5!

andp15a11 1
2 , p25a22 1

2 , p35a32 1
2 .

A tensor spherical harmonic is defined as a projection
the following six-dimensional tensor onto the sphere:

Ymn5z~k!21/2Cmn; i 1 . . . i k
I xi 1

•••xi k, ~A6!
9-14
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where the tensorCmn; i 1 . . . i k
I is symmetric and traceless wit

respect toi 1 , . . . ,i k , andm,n, and its symmetric part van
ishes, i.e.

Cmn; i 1 . . . i k
I 1Cmi1 ;n . . . i k

I 1•••1Cmik ; i 1 . . . i k21n
I 50.

The tensors are orthonormal

Cm1n1 ; i 1 . . . i k
I Cm2n2 ; i 1 . . . i k

J 5d IJdm1n1 ;m2n2
.

Then, we get that the tensor spherical harmonics are or
normal and satisfy the relation

E ¹aYI 1¹bYI 2Y(ab)
I 3 5p123,

p1235„z~k1!z~k2!z~k3!…21/2
p3

S 1

2
S11D !2(1/2)S

3
k1!k2!k3!

a1!a2! ~a321!!
P123, ~A7!

where

P1235Cmi1 . . . i p2
j 1 . . . j p3

I 1 Cn j1 . . . j p3
l 1 . . . l p1

I 2 Cmn; l 1 . . . l p1
i 1 . . . i p2

I 3

~A8!

andp15a1 , p25a2 , p35a321.
In deriving the equations of motions for scalar fieldstk

and for tensorf (ab)
k one comes across a number of integr

of scalar spherical harmonics, all of them can be reduce
a123. Introducing the concise notationf (k)5k(k14) we
present below the corresponding formulas:

E ¹aYI 1YI 2¹aYI 35
1

2
„f ~k1!1 f ~k3!2 f ~k2!…a123,

E ¹ (a¹b)YI 1¹aYI 2¹bYI 3

5S 1

10
f ~k1! f ~k2!1

1

10
f ~k1! f ~k3!1

1

2
f ~k2! f ~k3!

2
1

4
f ~k2!22

1

4
f ~k3!21

3

20
f ~k1!2Da123,
tt

l
gle

06400
o-

s
to

E ¹ (a¹b)YI 1YI 2¹a¹bYI 3

5
1

2 S 2 f ~k1! f ~k2!2 f ~k2! f ~k3!1
3

5
f ~k1! f ~k3!

1
1

2
f ~k1!21

1

2
f ~k2!21

1

2
f ~k3!2

24„f ~k1!1 f ~k3!2 f ~k2!…Da123.

Analogously, when computing the interaction vertexSssv
from equations of motion for scalarssk one finds two inte-
grals involving the vector harmonicsYa

I . Both of them are
expressed viat123:

E ¹ (a¹b)YI 1YI 2¹aYb
I 35

1

2
„~k311!~k313!28

1 f ~k1!2 f ~k2!…t123

E ¹ (a¹b)YI 1¹aYI 2Yb
I 35

1

2 S f ~k2!1
3

5
f ~k1!

2~k311!~k313! D t123.

Finally the derivation of theSssf-vertex from the equa-
tions of motion for scalarssk requires the knowledge of th
following integrals:

E ¹ (a¹g)YI 1¹b¹gYI 2Y(ab)
I 3 5

1

10
„3 f ~k1!15 f ~k2!25k3

2

220k3230…p123

E ¹ (a¹b)YI 1¹gYI 2¹gY(ab)
I 3 5

1

2
„f ~k1!2 f ~k2!2k3

2

24k328…p123.
cl.
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