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Nonminimal coupling and quintessence
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Recent studies of type Ia supernovas with redshifts up to aboutz&1 reveal evidence for a cosmic accelera-
tion in the expansion of the Universe. The most straightforward explanation to account for this acceleration is
a cosmological constant dominating the recent history of our Universe; however, a more interesting suggestion
is to consider an evolving vacuum energy. Several proposals have been put forward along these lines, most of
them in the context of general relativity. In this work we analyze the conditions under which the dynamics of
a self-interacting Brans-Dicke field can account for this accelerated expansion of the Universe. We show that
accelerated expanding solutions can be achieved with a quadratic self-coupling of the Brans-Dicke field and a
negative coupling constantv.

PACS number~s!: 04.60.2m, 98.80.Cq
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I. INTRODUCTION

Type Ia supernovas~SNe Ia! allow us, when used as stan
dard candles, to reliably determine the cosmological par
eters. Indeed, low redshift supernovas can be used to ob
the Hubble constantH0, while supernovas at greater di
tances allow probing the deceleration parameterq0 . Recent
analyses of the magnitude-redshift relation of about 50 S
Ia with redshifts greater thanz>0.35 strongly suggest tha
we are living in an accelerating, low-matter density unive
@1–4#. The consistency relationship between these cos
logical parameters and the luminosity distancedL of a SNe is
given, for z&1, by dL'H0

21@z1(12q0)z2/2#. The results
obtained by different groups indicate that@1–4#

21&q0,0. ~1!

These values seem to favor, in the case of a flat univers
rather low contribution to the energy density from no
relativistic matter, sayVM;0.3, but on the other hand
dominant positive cosmological constant,VL;0.7, as can
be inferred from data@5# and consistently from the well
known Friedmann model equation

q05
1

2
~3g11!VM2VL , ~2!

whereVM (V) denotes the energy density of matter~vacuum!
in terms of the critical density,g stands for the constant i
the matter equation of state,p5gr, and observationally
21<g<0 ~g50 for non-relativistic matter,g51/3 for rela-
tivistic matter andg521 for a scalar field fluid dominated
by its potential!. Even though a dominant cosmological co
stant corresponding toVL;0.7 is consistent with all obser
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vational facts~see@6# for a list of constraints and@7# for a
thorough discussion! it implies a quite unnatural fine-tuning
of parameters if its origin lies in any known particle physi
scale~see Ref.@8# for reviews and Refs.@6,9# for possible
connections with fundamental symmetries such as Lore
invariance and string theoryS duality!.

From Eq.~2! we see that a negativeq0 can also arise from
a negative pressure component or ‘‘dark energy.’’ This alt
native calls for a scalar field endowed with a potential wh
can give rise to a dynamical vacuum energy, the so-ca
‘‘quintessence.’’ Suggestions along these lines were p
posed long ago, although yielding, in that case, a vanish
deceleration parameter@10#. A number of quintessence mod
els have been put forward, most of them invoking a sca
field with a very shallow potential, which until recently wa
overdamped by the expansion of the Universe, so that
energy density was smaller than the radiation energy den
at early times@11–13#. For instance, scalar fields with a
exponential type potential can, under conditions, rende
negativeq0 @14,15#. More involved possibilities include the
string theory dilaton together with gaugino condensat
@16#, an axion with an almost massless quark@17#, the effect
of D-particle recoil@18#, supersymmetric inflationary model
@19#, the multidimensional Einstein-Yang-Mills system@20#,
etc. However interesting, most of these suggestions nece
ily involve a quite severe fine tuning of parameters@21#. This
fact calls for constructions that allow for a negative dec
eration parameter using sources of negative pressure tha
not require a potential arising from known particle phys
scales. Other difficulties associated with quintessence is
the couplings of the scalar field to matter can lead to obse
able long-range forces and time variation of fundamen
constants of nature@22,23#.

In this work we study the possibility of obtaining the re
quired negative pressure effects by considering a scalar
coupled non-minimally with gravity. It is well known tha
the nonminimal coupling of fields to gravity have non-trivi
implications on issues such as geodesic completeness, s
ity of the ground state~see@24# and references therein! and
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the variation of constants of nature. In here, we shall c
sider the self-interacting Brans-Dicke theory as a protot
of a non-minimally coupled theory and show that accelera
expanding solutions can be obtained and the abovementi
difficulties partially evaded. Actually, accelerated expand
solutions at present time, the so-called scaling attract
have already been studied in some theories of gravity w
nonminimal coupling to a scalar field. Indeed, the no
minimal coupling 1

2 ef2R has been considered in Ref.@25#
with the conclusion that the scalar field behaves as a b
tropic fluid, then leading to scaling attractors, only when
constante!1 for exponential and power-law potentials.
Ref. @26# the search of scaling attractors has been exten
to the case of the nonminimal coupling of the form@1
1e f (f)#R andV(f)5A f(f)M, wheref (f) is a power-law
or exponential function of the scalar field andA and M are
constants, and shown that, in the limit where the kinetic te
of the scalar field is dynamically unimportant, the constra
on the time variation of the gravitational coupling is qu
severe and limits the fraction of energy in the scalar field
be at most 4% of the total energy density. We shall see in
next sections that our results, although obtained from so
what different starting assumptions, are consistent with
conclusions of Refs.@25,26#, namely that although accele
ated expanding solutions can be obtained in nonminim
coupled gravity theories the constraint on the variability
the gravitational coupling is quite strong and that it implie
universe that is considerably older thanH0

21 .
Our starting point is the Brans-Dicke~BD! theory@27# as

this is a viable scalar-tensor alternative to general relativ
In this theory spacetime is described by the interplay of
metric tensor with a scalar field,f, so that the strength of th
gravitational coupling to matter is given byf21 . The theory
is consistent with observational tests which explains the
newed interest in its application both in astrophysics a
cosmology. Moreover, the BD theory is also the model a
ing from string theory at low energies in the so-called str
or Jordan frame and from the dimensional reduction
Kaluza-Klein theories. BD theories and its extensions
known to have relevant cosmological implications@28–30#.

In its simplest version, the salient features of BD theo
depend uniquely on the strength of the dimensionl
‘‘Dicke coupling constant’’v that couples the scalar fiel
universally to matter. However, the cosmological sett
arising from the simplest BD scenario is, as far as power-
solutions are concerned~cf. equations below!, inconsistent
with the cosmic acceleration, unlessuvu is of order unity.
Since the couplingv is observationally constrained by sola
system experiments to beuvu.500 @31#, we are led to con-
sider a version of the BD theory where the BD scalar ha
potential. For the latter we choose a quadratic self-coup
in the Jordan frame as this implies in a minimal change
the field equations. Thus, our scenario can be regarded a
next to minimal Brans-Dicke model. Furthermore, we sh
that a negativev is required to account for the accelerat
expansion of the Universe.

In what follows we consider an homogeneous and iso
pic Friedmann-Robertson-Walker universe where matter~not
including the BD scalar field! is described as a perfect fluid
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The relevant thermodynamical fluid variables are the ene
density and the isotropic pressure that are related by
equation of state specified above.

II. FIELD EQUATIONS AND SOLUTIONS

The self-interacting BD field theory of our interest is d
scribed by the following action:

S5
1

16pE d4xA2gFfR2v
f ,af ,

a

f
1V~f!G1SMatter .

~3!

where we chooseV(f)5V0f2 . As already mentioned in the
Introduction a BD theory with a vanishing potential is in
compatible with a negativeq0, at the least for power-law
solutions for the scale factor and scalar field specified bel
unlessuvu5O(1) which is inconsistent with solar system
experiments. However, as we shall see in a while, the po
tial we have introduced for the scalar field changes the eq
tions of motion in a minimal way. It is worth stressing th
introducing a potential does not involve, in our proposal, a
fine-tuning of parameters as our scaleV0 will be fixed by the
value of Newton’s constant and the age of the Univer
Furthermore, as far as giving origin to a time variation of t
fundamental constants, our proposal implies indeed in a
able time variation of the gravitational coupling, even thou
this is compatible with available data.

From the Lagrangian density~3! we obtain the field equa
tions

Gmn5
v

f2 Ff ;mf ;n2
1

2
gmnf ;af ;

aG1
1

f
@f ;mf ;n2gmnh2f#

1
V~f!

2f
gmn1

8p

f
Tmn

Matter , ~4!

h2f5
8p

312v
TMatter1

1

312v F2V~f!2f
dV~f!

df G .
~5!

Hence for our choice of the potentialV(f), the last term in
Eq. ~5! vanishes andV(f) affects directly only the dynamics
of the scale factora(t).

These field equations in a Friedmann-Robertson-Wa
geometry

ds252dt21a~ t !2F dr2

12kr2 1r 2dV2G , ~6!

read

S ȧ

a
D 2

1
k

a2
5

8p

3f
r2

ȧ

a

ḟ

f
1

v

6
S ḟ

f
D 2

2
V0

6
f, ~7!

3S ä

a
D 52

8p

~312v!f
@~31v!r13vp#2vS ḟ

f
D 2

13
ȧ

a

ḟ

f

2
V0

2
f, ~8!
7-2
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NONMINIMAL COUPLING AND QUINTESSENCE PHYSICAL REVIEW D61 064007
f̈13
ȧ

a
ḟ5

8p

312v
~r23p!. ~9!

Clearly, these equations must be considered together with
energy conservation equation

ṙ13
ȧ

a
~r13p!50, ~10!

arising from the covariant conservation of the energ
momentum tensor of matter that has been assumed to be
as a perfect fluid.

Finally, the relationship between the gravitational co
pling G(t) and the scalar field is given by

G~ t !5S 2v14

2v13D 1

f~ t !
. ~11!

In order to obtain solutions for the above equations
consider the following power-law form for both scale-fact
and scalar field:

a~ t !5a0S t

t0
D a

, f~ t !5f0S t

t0
D b

, ~12!

where the zero indices stand for the present time.
Substituting these solutions into Eq.~9! leads, when ne-

glecting the mattter pressure constribution~g;0!, to the re-
lationships

3a522b, b5
s

312v
, ~13!

where

s[
8pr0t0

2

f0
. ~14!

From Eqs.~11!–~13! and the Hubble parameter at prese
H0[(ȧ/a)(t0), we get the deceleration parameterq0

[2(äa/ȧ2)(t0) and the time variation of the gravitationa
coupling

q05
11b

22b
, ~15!

S Ġ

G
D

0

5
3b

b22
H0 . ~16!

Moreover, adjusting the gravitational coupling to its pres
value,GN , i.e. Newton’s constant, we get, after inserting E
~11! into Eq. ~14! and combining with Eq.~13!, for the age
of the Universe,

t0
25

2b~v12!

3VMH0
2

. ~17!

Naturally, for consistencyV0 must satisfy Eq.~7!. Hence, for
a flat universe (k50) we find
06400
he

-
ave

-

e
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t
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V053GNVMH0
2~2v13!F2b~2v13!26a~a1b!1vb2

4b~v12!2 G .

~18!

III. CONDITIONS FOR NEGATIVE q0

In order to haveq0,0 it is equivalent that the right han
side of Eq.~8! is positive. It is useful then to consider it as
function,

f [2
8p

~312v!f
@~31v!r#2vS ḟ

f
D 2

13
ȧ

a

ḟ

f
2

Vo

2
f,

~19!

and establish the conditions for havingf .0.
Power-law solutions~12! satisfy the field equations only

if b522. Then, solving forv yields

v,2
V0f0t0

2

4
21. ~20!

Since the productV0f0t0
2 is completely determined by Eqs

~11!, ~17! and ~18! it is easy to see that this condition
satisfied for any value ofv. Therefore, we can conclude tha
the cosmic accelerated expansion can be driven by a
interacting Brans-Dicke field as we have specified.

In summary we have, after establishing thatb522,

a~ t !5a0S t

t0
D 4/3

, f~ t !5f0S t

t0
D 22

, ~21!

t0
252

4~v12!

3VMH0
2

, ~22!

S Ġ

G
D

0

5
3

2
H0 , ~23!

and

q052
1

4
. ~24!

We see that the obtained value forq0 is consistent with the
observations, Eq.~1!, and so is the resulting time variation o
the gravitational coupling@31#, even though many searche
are consistent with no variation at all@32#. We stress that, in
our proposal, the gravitational coupling is a growing functi
of time. Morever, notice that, althoughf is positive indepen-
dently of the sign ofv, asb is negative, then in order to hav
a meaningful age of the Universe it implies that the Dic
coupling constant must be negative. Interestingly, nega
values forv are found in the BD effective low-energy mod
els arising from Kaluza-Klein and superstring theories@30#.
We shall see in the next section that negative values fov
are also required for obtaining growing modes for the ene
density perturbations in a Universe expanding in
accelerated way.
7-3
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IV. PERTURBED FIELD EQUATIONS AND ASYMPTOTIC
BEHAVIOR

Having found accelerated expanding solutions in the c
text of the BD theory we should ask whether the issue
structure formation is modified by the dynamics of the B
scalar field. That is, we are bound to consider the evolu
of the energy density perturbations in the context of our
scenario as these are, of course, associated with the fo
tion of structure in the Universe. Hence in what follows w
shall develop a formalism that quickly allows us to find t
asymptotic behavior of the relevant variables for accelera
expanding solutions at present time. This treatment is s
lar, in its results, to the more encompassing analysis of c
mological perturbations for generalized theories of grav
@33#, at least in what concerns the asymptotic behavior
solutions.

In order to get the matter energy density perturbations
consider the temporal components of Eqs.~8!, ~9! and ~10!
after perturbation. Then to obtain the relevant perturb
equations we write the metric tensor as

gmn→gmn1dgmn , ~25!

wheredgmn5hmn , and work in the gaugeh0m50. Our con-
clusions will be independent of this gauge choice~see@33#
for a discussion!. For this perturbed metric@34#,

dR005
1

a2 H ḧkk22
ȧ

a
ḣkk12F S ȧ

a
D 2

2
ä

a
GhkkJ . ~26!

The perturbation of the energy-momentum tensor is given

dT005dr, ~27!

and the corresponding trace reads

dT5dr23dp. ~28!

For the perturbation of the D’Alembertian of the BD field w
have

dh2f5df̈1aȧhkkḟ2
1

2a2
ḣkkḟ13

a

a
dḟ2

¹2

a2
df.

~29!

The relevant perturbations are parametrized in the follow
way:

hkk5a2h, ~30!

df5lf, l!1, ~31!

dr5Dr, D!1, ~32!

where h(t), l(t) and D(t) are the perturbed gravitationa
field, scalar field and matter energy density, respectively

Since structure is formed when pressure no longer p
vents gravitational collapse, we setg50. The perturbed
equations are then
06400
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ḧ1S ȧ

a
D ḣ5

8pr

f

~21v!

~312v!
~D2l!1l̈12~11v!

ḟ

f
l̇

2
Vo

2
fl, ~33!

l̈1S 2
ḟ

f
13

ȧ

a
D l̇1S f̈

f
13

ȧ

a

ḟ

f
D l2

1

2

ḟ

f
ḣ2

¹2l

a2

5
8pr

~312v!f
D, ~34!

Ḋ2
1

2
ḣ1dU ,k

k 50, ~35!

whereUm is the comoving fluid velocity.
Inserting solutions~12!,~13! with b522 into this set of

coupled differential equations we get

1

2
ḧ1

a

t
ḣ5b~21v!

~D2l!

t2
1l̈12~11v!

b

t
l̇

2
V0

2
f0S t

t0
D b

l, ~36!

l̈1S b12

t D l̇1
b

t2
l2

1

2

b

t
ḣ2

¹2l

a2
5b

D

t2
, ~37!

Ḋ2
1

2
ḣ1dU ,k

k 50. ~38!

In order to continue we suppose that the perturbations
have as plane waves:

l~rW,t !5l~ t !exp~2 ikW•rW !, ~39!

wherek is the wave number of the perturbation, and we
dUk to vanish, which is allowed by an infinitesimal gaug
transformation.

Combining then Eq.~36! with Eq. ~38! we get

D̈1S 14

3t D ~Ḋ2l̇ !1S 612v

t2 D ~D2l!1S 414v1
14

3

t
D l̇

1
V0f0t0

2

2t2
l1

k2

a0
2 S t0

t D 8/3

l50. ~40!

Since we are interested in the asymptotic regime, we k
only terms up tot22 and neglect the last term of the previou
equation.

Finally, from the value of the product,V0f0t0
252(4v

1 20
3 ) previously obtained, we get the differential equatio

D̈1
C1

t
~Ḋ2l̇ !1

C2

t2
~D2l!1

C3

t
l̇1

C4

t2
l50, ~41!

whereC15 14
3 ,
7-4
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C2~v![612v, ~42!

C3~v![4~11v!1C1 , ~43!

and

C4~v![2
1016v

3
. ~44!

Aiming to solve Eq.~41! we look for solutions of the fol-
lowing form:
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06400
D2l5 f ~ t !, f ~ t !5jtd, D~ t !5xtu, ~45!

wherej andx are constants.
Inserting these solutions into Eq.~41! we obtain the alge-

braic equation

xu21@x~C321!1j~C12C3!#u1C4~x2j!1jC250,
~46!

and also thatd5u.
Solving for u we find
u65
x~12C3!1j~C32C1!6A@x~C321!1j~C12C3!#224x@C4~x2j!1jC2#

2x
. ~47!
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Thus, the existence of growing modes for the energy den
perturbations corresponds now to whether there are pos
u solutions. In the case of our interest, namelyv negative
and uvu@1, it is easy to see that

u6→2uvuF S 12
j

x D6AS 12
j

x D 2

2
1

2uvu S 122
j

x D G ,
~48!

meaning thatu1 corresponds to a growing mode whenev
j,x. Moreover, we see that it is only forv negative that rea
u solutions always exist. We can then conclude that the c
mological setting of our accelerated expanding solutio
does not upset known structure formation scenarios.

V. DISCUSSION AND CONCLUSIONS

In this work we have shown that a minimally extend
BD theory with a quadratic self-coupling in the Jordan fram
and a negativev can account for the accelerated expans
of the Universe yieldingq052 1

4 . The resulting variation on
time of the gravitational coupling is given by (Ġ/G)0
5 3

2 H0, being still compatible with data. In this respect o
results are similar to the conclusions of Refs.@23,26# as like-
wise we find that the existence of scaling attractors in gra
theories with nonminimal coupling to a scalar fields is se
erly constrained by the time variability of the gravitation
coupling. Furthermore, we have also shown that the mo
allows growing modes for the energy density perturbatio
of matter, implying that the dynamics of the BD field do
not upset known structure formation scenarios.

Before closing, it is worth pointing out some distinct fe
tures of our model. The first one being that as accelera
expanding solutions require a negativev, we then expect the
parametrized-post-Newtonian~PPN! parametergPPN[(1
1v)/(21v) to be, for largeuvu, fairly close but greater than
1. This is a clear observational signature of our propo
ty
ve

r

s-
s

n

y
-

el
s

d

l,

which even though being consistent with current data@35#,

ugPPN21u,231023, ~49!

can be, at least in principle, further improved by dedica
solar system experiments.

A second consequence of our proposal is that it imp
the Universe is considerably older thanH0

21 . This is incom-
patible with observation if the age of the Universe is iden
fied with age of the oldest stars, the globular clusters. C
tradiction with models of chemical evolution of galaxies m
also exist. Even though these constraints are extracted f
data assuming a universe with constant gravitational c
pling they point out that the minimal extention of the B
model we have considered is not quite consistent with d
In this respect, it is interesting that the effect of variation
time of the gravitational coupling may reveal itself in th
evolution of astrophysical objects. Indeed, as recently d
cussed@36#, stringent bounds onv can be set, namely tha
v.5000 and that (Ġ/G)05O(10214), based on the luminos
ity function of white dwarfs assuming thatĠ,0 and 12.5
Gyr as the age of the Universe. We suspect that this ag
the Universe problem is a common feature of all scal
tensor gravity models that have scaling attractors and do
contain, as for instance in@26#, the Einstein-Hilbert term in
the action.

Finally, we could conclude remarking that an interesti
theoretical challenge would be devicing inflationary mod
which would, at late times, behave like scalar-tensor grav
theories in what concerns the existence of scaling attract
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