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Generalization of the model of Hawking radiation with modified high frequency
dispersion relation
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Hawking radiation is one of the most interesting phenomena predicted by the theory of quantum fields in
curved space. The origin of Hawking radiation is closely related to the fact that a particle which marginally
escapes from collapsing into a black hole is observed at future infinity with an infinitely large redshift. In other
words, such a particle had a very high frequency when it was near the event horizon. Motivated by the
possibility that the property of Hawking radiation may be altered by some unknown physics which may exist
beyond some critical scale, Unruh proposed a model which has higher order spatial derivative terms. In his
model, the effects of unknown physics are modeled so as to be suppressed for waves with a wavelength much
longer than the critical scalek0

21. Surprisingly, it was shown that the thermal spectrum is recovered for such
modified models. To introduce such higher order spatial derivative terms, Lorentz invariance must be violated
because one special direction needs to be chosen. In previous works, the rest frame of freely falling observers
was employed as this special reference frame. Here we give an extension by allowing a more general choice of
the reference frame. Developing the method taken by Corley, we show that the resulting spectrum of created
particles again becomes the thermal one at the Hawking temperature even if the choice of the reference frame
is generalized. Using the technique of the matched asymptotic expansion, we also show that the correction to
the thermal radiation stays of orderk0

22 or smaller when the spectrum of radiated particle around its peak is
concerned.

PACS number~s!: 04.70.Dy, 04.62.1v
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I. INTRODUCTION

Thermal radiation from a black hole was first predicted
Hawking @1#, a phenomenon which has become wide
known as Hawking radiation. This prediction is based
quantum field theory in curved space, which is thought of
an effective theory valid for low energy physics. Howev
when we consider the mechanism of Hawking radiation
crucial role is played by wave packets which left the p
null infinity with very high frequency. Such wave packe
propagate through the collapsing body just before the h
zon formed, and undergo a large redshift on the way ou
the future null infinity. Here arises one question. Can it
justified to apply quantum field theory in curved space,
effective theory at low energy, to the phenomenon wh
involves the infinitely high frequency regime? There m
exist some unknown physics which invalidates the appli
tion of the standard quantum field theory in curved space@2#.

One of such possibilities is that the spacetime may rev
its discrete nature at such high frequencies. To take acc
of the effect of the possible modification of theory in th
high frequency regime. Unruh proposed a simple toy mo
by a sonic analogue of a black hole@3,4#. In Unruh’s model,
the dispersion relation of fields at high frequencies is mo
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fied so as to eliminate very short wavelength modes. In so
sense, this modification is arranged to effect the atom
structure of fluid which propagates sound waves. Usua
the group velocity of sound waves drops to values much
than the low frequency value when the wavelength becom
comparable to the atomic scale. In performing such mod
cations @4#, one must assume the existence of a refere
frame because the concept of high frequencies can never
Lorentz invariant one. Namely, Unruh’s model manifes
breaks Lorentz invariance. To our surprise, even with suc
drastic change of theory, the spectrum observed at the fu
infinity turned out to be kept unaltered@4–6#. Here, in this
paper, we consider a generalization of this model.

Lorentz invariance is the very basic principle for bo
special relativity and general relativity. Hence, there a
many efforts to examine the violation of Lorentz invarian
@7#, and new ideas to make use of high energy astrophys
phenomena have also been proposed recently@8#. However,
we have not had any evidence suggesting this rather rad
possibility yet. Therefore, one may think that it is not fruitf
to study in detail such a toy model that violates Loren
invariance at the moment. But we also have another mot
tion to study this toy model even if we could believe that t
Lorentz invariance is an exact symmetry of the universe
most of the literature, the Hawking radiation was studied
the framework of noninteracting quantum fields in curv
space. However, when we consider a realistic model, it w
be necessary to consider fields with interaction terms@9#.
The evolution of interacting fields in the background that
©2000 The American Physical Society04-1
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forming a black hole is a very interesting issue but to stud
is very difficult. Hence, as a first step, it will be interesting
take partly into account the interaction between the quan
fields and the matter which is forming a black hole. Then
will be natural to introduce a modified dispersion relati
associated with the rest frame of the matter remaining aro
the black hole. In this sense, Unruh’s model does not req
that the fundamental theory itself violate Lorentz invarian

In order to introduce the modified dispersion relation
need to specify one special reference frame. In previ
works @4–6,10#, the rest frame of freely falling observer
was employed as the special reference frame. In this case
thermal spectrum of Hawking radiation was shown to
reproduced. However, it is still uncertain whether the sa
thing remains true even when we adopt another refere
frame as the special reference frame. In this paper, we gi
generalization of previous works@4–6,10# by allowing a
more general choice of the reference frame.

In most parts of the present paper, we follow the strate
taken in the paper by Corley@6#. ~See also@10#.! In his
paper, as modifications of Unruh’s original model, two typ
of models were investigated. One is that with a sublumi
dispersion relation and the other is that with a superlum
dispersion relation. It was shown analytically that the th
mal spectrum at the Hawking temperature is reproduce
both cases. However, in the superluminal case, the stan
notion of the causal structure of black holes breaks do
Even if we consider the case that the background geomet
given by a Schwarzschild black hole, the wave packets c
responding to the radiated particles can be traced back to
singularity inside the horizon due to their superluminal n
ture. Hence, the singularity becomes naked, and we conf
the problem of the boundary condition at the singularity.
avoid this difficulty, it is often required that the vacuum flu
tuations be in the ground state just inside the horizon. Ho
ever, it is not clear what is the correct boundary conditi
As a topic related to be superluminal dispersion relation
was also reported that the Hawking radiation is not neces
ily reproduced in models with an inner horizon@11#. In this
paper, we wish to focus on the subluminal case, leaving s
a delicate issue related to the superluminal dispersion r
tion as a future problem. Even in the restriction to the s
luminal case, it will be important to study various models
examine the universality of Hawking radiation. In the pres
paper, we finally find that the resulting spectrum of crea
particle stays a thermal one at the Hawking temperature
long as we mildly change the choice of the special refere
frame. By a systematic use of the technique of the so-ca
matched asymptotic expansion, we also evaluate how s
the leading correction to the thermal radiation is. On
other hand, for some extreme modification of the refere
frame, in which case the analytic treatment is no lon
valid, the spectrum is numerically shown to deviate from
thermal one significantly.

This paper is organized as follows. First we introduce
generalization of Unruh’s model in Sec. II. In Sec. III w
review what quantities need to be evaluated in computing
spectrum of particle created in our model. In Sec. IV,
construct a solution of the field equation, and we evaluate
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spectrum of created particles by using this solution. To
termine the order of the leading correction to the therm
spectrum, we employ the method of asymptotic matching
Sec. V. In Sec. V, we also demonstrate some results of
merical calculations to verify our analytic results. In add
tion, we display the results for some extreme cases which
out of the range of validity of our analytic treatment. Secti
VI is devoted to conclusions. Furthermore, Appendix C
added to discuss the effect of scattering due to the modi
dispersion relation. Although we do not think that this effe
is directly related to the issue of Hawking radiation, it can
principle change the observed spectrum of Hawking rad
tion drastically if it accumulates throughout the long way
a distant observer. In the present paper, we use units
\5c5G51.

II. MODEL

In this secton, we explain how we generalize the mo
that was investigated in the earlier works@4–6#. Following
these references, we consider a massless scalar field p
gating in a two-dimensional spacetime given by

ds252d t̃ 21@dx̃2 ṽ~ x̃!d t̃#2, ~2.1!

whereṽ( x̃) is a function which goes to a constant atx̃→`
and satisfiesṽ( x̃)>21 for x̃>0. The equality holds atx̃
50. Since the line elementdx̃50 is null at ṽ521, we find
that the event horizon is located atṽ521. Furthermore, by
the coordinate transformation given byd t̃5d t̃81 ṽ/(1
2 ṽ2)dx̃, the above metric can be rewritten as

ds252~12 ṽ2!d t̃821
1

12 ṽ2 dx̃2. ~2.2!

If we set ṽ( x̃)52A2M /( x̃12M ), this metric represents a
two-dimensional counterpart of a Schwarzschild spacet
with the event horizon atx̃50. In this coordinate system, th
unit vector perpendicular to thet̃ 5const hypersurfaces i
given byũaª]a t̃ , and the differentiation in this direction i
given by ũa]a5(] t̃1 ṽ] x̃). We denote the unit outward
pointing vector normal toũa by s̃a. In order to examine the
effect on the spectrum of the Hawking radiation due to
modification of theory in the high frequency regime, th
investigated a system defined by the modified action o
scalar field,

S5
1

2 E d2x̃A2ggab Daf* Dbf, ~2.3!

where the differential operatorD is defined by ũa Da

5ũa]a , s̃a Da5F̂( s̃a]a). If we set F̂(z)5z, the action
~2.3! reduces to the standard form. Since we are intereste
the effect caused by the change in the high frequency reg
we assume thatF̂(z) differs from z only for largez.

In the above model, the dispersion relation for the sca
field manifestly breaks Lorentz invariance, and there is
special reference frame specified byũ. One can easily show
that this reference frame is associated with a set of fre
4-2
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falling observers. As noted in the Introduction, it was sho
that the spectrum of Hawking radiation is reproduced in t
model. Here we consider a further generalization of t
model, allowing us to adopt other reference frames as
special reference frame.

However, because of technical difficulties, we restrict o
consideration to stationary reference frames. As we
working on a two-dimensional model, the reference frame
perfectly specified by choosing one timelike unit vect
which we denote byu. Since] t̃ in the original coordinate
system (t̃ ,x̃) is a timelike Killing vector, the condition for
the reference frame to be stationary becomes £] t̃

ua50,

where £] t̃
is the Lee derivative in the direction of] t̃ . This

condition can be simply written as]uã/] t̃ 50, where we
used indices associated with a tilde to represent the com
nents in the (t̃ ,x̃) coordinates. Furthermore, the covaria

componentsuã( x̃)5gãb̃( x̃)ub̃( x̃) are also independent oft̃ .
Thus, if we introduce a new time coordinatet by

dt5u
0̃

21
~ x̃!@u0̃~ x̃!d t̃1u1̃~ x̃!dx̃#5d t̃2g~ x̃!dx̃, ~2.4!

the t-constant hypersurfaces become manifestly perpend
lar to ua . Here we introducedg( x̃)ª2u1̃( x̃)/u0̃( x̃). Fur-
ther, it is convenient to choose a new spatial coordinatex so
that ] t coincides with the Killing vector. Since

] t5] t̃1
]x

] t̃
] x̃ , ~2.5!

x should be chosen as a function which depends only onx̃.
Hence, we set

xªE
0

x̃
z~ x̃8!dx̃8. ~2.6!

By using such a new coordinate~t,x! with

z~ x̃8!5~12 ṽg!22g2, ~2.7!

the metric~2.1! can be written in the form1

ds25V2~x!$2dt21@dx2v~x!dt#2%, ~2.8!

where we set

V2~x!ª
1

~12 ṽg!22g2 , ~2.9!

v~x!ªg1 ṽ~12 ṽg!. ~2.10!

Here we mention the constraint onV. If we explicitly write
down the condition thatu be a timelike unit vector, i.e.
uaua521, we find thatV25u

0̃

2
holds. HenceV2.0 is

guaranteed as long asu is time like. Also, directly from the

1By considering the sonic analogue of Hawking radiation, the
of this type of conformal metric was discussed in@12#.
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metric ~2.8!, we can easily verifyV2.0 if and only if the
t-constant hypersurfaces are space like. Hence, it will be
propriate to assumeV2.0. Then, we find thatV2 has a
finite minimum value whenuṽu,1. The minimum value is
12 ṽ2, which is realized whenv50.

Next, we write down the explicit form ofu and s. By
using the fact thatu is perpendicular to thet-constant hyper-
surfaces and that it is a unit vector, we can show that
differentiation in the direction ofu is given by

ua]a5
1

V
~] t1v]x!. ~2.11!

Similarly, we can show that the differentiation in the dire
tion of s, which is a unit vector perpendicular tou, is given
by

sa]a5
1

V
]x . ~2.12!

By using u and s, the metric can be represented asgab

52uaub1sasb, and the determinant ofgab becomesg
52V4.

Now, we find that to generalize the choice of the spec
reference frame introduced to set the modified dispersion
lation is equivalent to generalizing the metric form given
Eq. ~2.1! to the one given in Eq.~2.8! replacingũ ands̃ with
u ands in the defining equations of the differential operat
D. As a result, the action~2.3! becomes

S5
1

2 E dt dxF u~] t1v]x!fu22V~x!2UF̂S 1

V
]xDfU2G .

~2.13!

If we setV2[1, the models are reduced to the original o
discussed in Ref.@6#.

Here, we should mention one important relation for la
use. The temperature of the Hawking spectrum is determi
by the surface gravityk defined bykªdṽ/dx̃u x̃50 . The sur-
face gravityk can also be represented as@13#

k5
dv
dxU

x50

. ~2.14!

In order to verify this relation, we evaluatedv/dx by using
Eqs.~2.6! and ~2.10! to obtain

dv
dx

5
1

~12 ṽg!22g2 @g ,x̃1 ṽ ,x̃~12 ṽg!2 ṽ ṽ ,x̃g2 ṽ2g ,x̃#.

~2.15!

From Eq. ~2.10!, we also findv521 when x50. Hence,
substitutingv521 into Eq.~2.15!, we obtain Eq.~2.14!.

Then, let us derive the field equation by taking the var
tion of the action~2.13!. Assuming thatF̂(z) is an odd func-
tion of z, we obtain

~] t1]xv !~] t1v]x!f5VF̂S 1

V
]xDVF̂S 1

V
]xDf.

~2.16!
e

4-3
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To proceed with further calculations, we need to assum
specific dispersion relation. Following Ref.@6#, we adopt
here

F̂~z!5z1
1

2k0
2 z3, ~2.17!

wherek0 is a constant. Since the model should be arran
to differ from the ordinary one only in the high frequenc
regime, the critical wave numberk0 is supposed to be suffi
ciently large. With this choice ofF̂, neglecting the terms tha
are inversely proportional to the fourth power ofk0 , the field
equation becomes

~] t1]xv !~] t1v]x!f5F]x
21

1

2k0
2 S ]x

2 1

V
]x

1

V
]xD

1
1

2k0
2 S ]x

1

V
]x

1

V
]x

2D Gf.

~2.18!

Before closing this section, we briefly discuss the me
ing of the functionsV andv. From Eq.~2.11!, it is easy to
understand thatv is the coordinate velocity of the integratio
curves ofu. To understand the meaning ofV, we further
calculate the covariant acceleration of the integral curve
u, uua

;bubu, where a semicolon represents the covariant
ferentiation. After a straightforward calculation, we see t
the covariant acceleration is given byu]xV

21u. Hence we
find that the derivative ofV21 gives the acceleration of th
reference frame.

III. PARTICLE CREATION RATE

In this section, we briefly review how to evaluate th
spectrum of Hawking radiation. We clarify what quantiti
need to be calculated for this purpose.~For details, see Ref
@5#.!

To evaluate the spectrum of Hawking radiation, we ne
to solve the field equation~2.18! with an appropriate bound
ary condition. However, owing to the time translation inva
ance with the Killing vector] t , we do not have to solve th
partial differential equation~2.18! directly. By setting
f(t,x)5e2 ivtc(x), Eq.~2.18! reduces to an ordinary differ
ential equation~ODE!:

F ~2 iv1]xv !~2 iv1v]x!2H ]x
21

1

2k0
2 S ]x

2 1

V
]x

1

V
]xD

1
1

2k0
2 S ]x

1

V
]x

1

V
]x

2D J Gc50. ~3.1!

We could not make use of this simplification if we relax t
restriction that the reference frame should be stationary.

Here we note that the norm of] t is given by u] tu
5A12v2V5A12 ṽ2. Therefore, the frequencyv (stat) for
the static observers who stay at a constantx ~or x̃! is related
to v by
06400
a
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v~stat!5v/A12 ṽ2. ~3.2!

Hence, as long asṽ`ª ṽ(x→`) is not equal to zero,v (stat)

differs from v. By looking at the metric~2.2! in the static
chart, we find that this frequency shift is merely caused
the familiar effect due to the gravitational redshift. Ther
fore, even if we consider models withṽ`Þ0, v might be
identified with the frequency observed at the hypotheti
infinity where the gravitational potential is set to be ze
However, the situation is more transparent if we can setṽ`

50 like the two-dimensional black hole case. In this ca
we can identifyv with v (stat) without any ambiguity. As
mentioned in Ref.@5#, there is a difficulty in evaluating the
spectrum of radiation in the case ofv`ªv(x→`)50. In
previous models,v`50 directly impliesṽ`50. Therefore,
we could not apply the result to the example of a tw
dimensional black hole spacetime directly.2 On this point, in
our extended model, the cases withṽ`50 can be dealt with
sinceṽ`50 does not meanv`Þ0.

Let us return to the problem of solving Eq.~3.1!. From the
above ODE, the asymptotic solution atx→` is easily ob-
tained by assuming a plane wave solution such as

c~x!}eikx. ~3.3!

Substituting this form into Eq.~3.1!, we obtain the dispersion
relation

~v2v`k!25k22
k4

k0
2V`

2 , ~3.4!

whereV` is the asymptotic constant value ofV. The quan-
tity on the left-hand side,

v8ªv2vk, ~3.5!

is related to the frequency measured by the observers in
special reference frame. In fact, this frequency divided byV
is the factor that appears when we perform the opera
iua]a on a wave functione2 i (vt2kx). As shown in Ref.@5#,
two of the four solutions of Eq.~3.4! have large absolute
values, which we denote byk6 , and the other two have
small absolute values, which we denotek6s . For each pair,
one is positive and the other is negative. The subscrip6
represents the signature of the solution. Then, the gen
solution of Eq.~3.1! at x→` is given by a superposition o
these plane wave solutions as

c~x!5 (
l 56,6s

cl~v!eikl ~v!x. ~3.6!

By such a local analysis, however, the coefficientscl(v)
are not determined. To determine them, we need to fin
solution that satisfies the boundary condition correspond
to no ingoing waves plunging into the event horizon. Th

2In the model proposed in Ref.@14#, the case withv`50 can be
dealt with.
4-4
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GENERALIZATION OF THE MODEL OF HAWKING . . . PHYSICAL REVIEW D61 064004
condition is slightly different from the condition that the s
lution of ODE ~3.1! vanish inside the horizon. The latte
condition is stronger than the former one because the la
one also prohibits the pure outgoing wave from the ev
horizon which may exist in the present model with the mo
fied dispersion relation. The former condition is a sufficie
condition to determine the wave function uniquely, while t
existence of a solution that satisfies the latter condition is
guaranteed in general. However, once we find such a s
tion that satisfies the latter stronger condition, it is the so
tion that satisfies the required boundary condition. In
succeeding sections, we solve ODE~3.1! requiring the latter
condition.

Finally, we present a formula to evaluate the expectat
value of the number of emitted particles naturally defined
x→`. In spite of our generalization of models, the sam
derivation of the formula that is given in Ref.@5# is still
valid. The same arguments follow without any change,
one possible subtlety exists on the point as to whether
expression of the conserved inner product is unaltered or
Therefore, we briefly explain this point. The defining expre
sion for the conserved inner product given in Ref.@5# is

~f1 ,f2!5 i E dx@f1* ~] t1v]x!f22f2~] t1v]x!f1* #,

~3.7!

where the integration is taken over at-constant hypersurface
Here bothf1 andf2 are supposed to be solutions of the fie
equation. The constancy of this inner product is related to
invariance of the function

L~f1 ,f2!ª~] t1]x!f1•~] t1]x!f̄2

2V2F F̂S 1

V
]xDf1G•F F̂S 1

V
]xD f̄2G , ~3.8!

under the global phase transformation

f→eilf. ~3.9!

Taking the differentiation ofL(eilf1 ,eilf2) with respect to
l, we have

05
dL~eilf1 ,eilf2!

dl
5

]L
]f1

if1
]L
]ḟ1

d~ if1!

dt

1
]L
]f̄2

~2 i f̄2!1
]L

]ḟ̄2

d~2 i f̄2!

dt

5 i
d

dt S ]L
]ḟ1

f12
]L

]ḟ̄2

f̄2D , ~3.10!

where we used the field equation in the last equality. Eq
tion ~3.10! proves the constancy of the inner product~3.7!.
Of course, the constancy of the inner product~3.7! can also
be verified by directly calculating itst derivative using the
field equation.
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Now that we verified that the extension of model does
alter the expression of the inner product, we just quote
formula from Ref.@5#. For a wave packet which is peake
around a frequencyv, the expectation value of the number
created particles is given by

N~v!5
uv8~k2!vg~k2!c2

2 ~v!u
uv8~k1s!vg~k1s!c1s

2 ~v!u
, ~3.11!

wherevg(k)ª]v(k)/]k is the group velocity measured by
static observer.

IV. SOLVING FIELD EQUATION

In this section, to determine the coefficientscl , we solve
the field equation~3.1! by using several approximations. I
the region close to the horizon, we use the method of Fou
transformation. The solution is found to be uniquely det
mined by imposing the boundary condition discussed in
preceding section. On the other hand, in the region su
ciently far from the horizon, we construct four independe
solutions which becomeeikl (v)x at x→`. We use the WKB
approximation for the two short-wavelength modes and
use the simple 1/k0

2 expansion for the other two long
wavelength modes. Later, we find that these two differ
regions of validity have an overlapping interval as long ask0
is taken to be sufficiently large. Hence, the requirement t
the solutions obtained in both regions match in this overl
ping interval determines the coefficientscl(v).

Basically, our computation is an extension of that giv
by Corley @6#. Here we take into account the generalizati
of models discussed in Sec. II. Furthermore, to evaluate
order of the leading deviation from the thermal spectrum,
shall take into account some higher order terms. At the sa
time, we also carefully keep counting the order of erro
contained in our estimation. For brevity, we concentrate
the most interesting case in whichv andk are same order.

A. Case close to the horizon

Now we want to find a solution satisfying the bounda
condition that the wave function rapidly decrease in the
rizon. Therefore, we restrict our consideration to the reg
close to the horizon,uxu,x1 , by choosing a sufficiently
small x1 . We introduce a parameter

dª max
uxu,x1 ,i 50,1,2

d̃ i~x!, ~4.1!

with

d̃0ªkx, d̃1ª
k1

2x

k
, d̃2ª

V0

V1
x. ~4.2!

Since we wish to think ofd as a small parameter for th
perturbative expansion, we required!1. Then, we find that
x1 must be chosen to satisfy

x1!min~1/k,k/k1
2,V1 /V0!. ~4.3!
4-5
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We assume thatv(x) and 1/V(x) can be expanded aroun
the horizon like

v~x!5211kx1
1

2
k1

2x21O~d3!,

S 1

V D5
1

V0
1

1

V1
x1

1

V0
O~d2!. ~4.4!

Substituting these expansions into the field equation~3.1!,
we classify the terms into five parts according to the num
of differentiations acting onc. Then, keeping the leadin
order correction terms with respect tod in each part, we
obtain the field equation valid in the region close to the h
rizon as

L@c~x!#ª
1

k0
2 F 1

V0
2 1

2

V0V1
xGc~4!1

4

k0
2

1

V0V1
c-

1~2kx2k2x21k1
2x2!c912$2~ iv2k!

1@k~ iv2k!1k1
2#x%c82 iv~ iv2k2k1

2!c50.

~4.5!

In Corley’s paper@6#, terms ofO(d1) were neglected, while
we keep them in the present paper.

Here, we introduce the momentum-space representa
of the wave functionc(s) by

c~x!5E
C
ds esxĉ~s!. ~4.6!

Substituting this expression into Eq.~4.5!, we perform an
integration by parts like

E
C
ds xesxĉ~s!5E

C
dsS ]

]s
esxD ĉ~s!

52E
C
ds esxS ]

]s
ĉ~s! D1@esxĉ~s!#si

sf ,

wheresi and sf are the start and end points of integratio
respectively. Note that there appear surface terms like
last term on the right-hand side in the above example. Th
we find that the field equation in momentum space is giv
by

L@c~x!#ªE
C
ds L̂@ĉ~s!#1~boundary terms!50.

~4.7!

where
06400
r

-

on

,
e

n,
n

L̂@ĉ~s!#ª
1

k0
2V0

2 F122
V0

V1
S ]s2

2

sD Gs4ĉ

2@2k]s1~k21k1
2!]s

2#s2ĉ12$2~ iv2k!

2@k~ iv2k!1k1
2#]s%sĉ2 iv~ iv2k1k1

2]s!ĉ.

~4.8!

If we are allowed to neglect the boundary terms, we c
construct a solution of Eq.~4.5! by using Eq.~4.6! from a
solution ĉ(s) which satisfies

L̂@ĉ~s!#50. ~4.9!

In the following, we solve Eq.~4.9! without worrying about
whether the boundary terms can be neglected or not. A
we find a solution, we verify that the corresponding boun
ary terms are sufficiently small.

To solve Eq.~4.9!, it is convenient to introduce a new
variable

Wª

] ln~s2ĉ !

] ln s
. ~4.10!

Taking d as a small parameter, we expandW as

W5W~0!1W~1!1O~d2!. ~4.11!

Then,W(0) is found to be given by

W~0!5F ẽ2

2
~sx!31S 12 i

v

k D G . ~4.12!

andW(1) is given by

W~1!5R~W~0!!, ~4.13!

with

R~W!ª d̃0F2
1

2

]W

] ln s
2

1

2
W21

1

2
W

1S 12
iv

k D S W1
iv

2k
21D G~sx!212 d̃2ẽ2W~sx!2

2 d̃1S 2
1

2

]W

] ln s
2

1

2
W21

3

2
W21D ~sx!21.

~4.14!

Here we defined

ẽªA 1

k0
2V0

2kx3. ~4.15!

Although we later consider the situation in whichẽ is small,
ẽ is not small at all in the region close to the horizon. Su
stituting the explicit expression forW(0) into R(W), we ob-
tain
4-6
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W~1!5
ẽ4~2 d̃01 d̃124d̃2!

8
~sx!5

2
ẽ2

2 F d̃01~ d̃122d̃2!S iv

k
21D G~sx!2

1
iv

2k
d̃1S iv

k
11D ~sx!21. ~4.16!

Under the condition that the boundary terms in Eq.~4.7! can
be neglected, we obtain the solutionc(x) which is valid up
to O(d1) as

c~x!'E
C
ds ex f~s!, ~4.17!

where

x f~s!5x f0~s!1x f1~s! ~4.18!

is given by

x f0~s!ªxs1E ds

s
W~0!22 lns

5xs1
ẽ2~xs!3

6
1S 212

iv

k D ln s,

~4.19!

x f1~s!ªE ds

s
W~1!

5
ẽ 4~2 d̃01 d̃124d̃2!

40
~sx!5

2
ẽ2

4 F d̃01~ d̃122d̃2!S iv

k
21D G~sx!2

2
iv

2k
d̃1S iv

k
11D ~sx!21.

~4.20!

The boundary condition of the wave function requires t
it exponentially decrease inside the horizon. In order to c
struct a wave function that satisfies this boundary conditi
we must choose the contour of integration appropriately.
propose to adopt the contourC given in Fig. 1. This contour
does not go to infinity, but has end points~denoted by open
circles in Fig. 1! at which the absolute value ofs is suffi-
ciently large, but does not exceed the limit given in Eq.~A1!.
Hence, as shown in Appendix A, the higher order correct
does not dominate along this contour. Furthermore, as is
explained in Appendix A, with this choice of end points, t
boundary terms in Eq.~4.7! are exponentially small and ca
be neglected.

Next, we show thatc(x) given by Eq.~4.17! is actually
the solution that satisfies the required boundary condition
order to evaluate the integration~4.17! analytically, we use
the method of steepest descents. For this method to be v
06400
t
-
,
e

n
so

In

lid,

1/uxs0u!1 is required, wheres0 is the value ofs at the
saddle point that dominates the integral. Then, this requ
ment can be rewritten as

uxu.x2 , ~4.21!

where we must choosex2 to satisfy (1/uxs0u)x5x2
!1. We

shall see later that 1/uxs0u is of O(u ẽu). Hence, for the first
time at this moment, we further restrict our consideration
the region in whichẽ is also small. In order for the condition
uxu.x2 to be compatible withuxu,x1 ,

S k

k0V0
D 2/3

!min~1,k2/k1
2,kV1 /V0! ~4.22!

is required. However, this requirement to the model para
eters will not reduce the generality of our analysis so mu
because we are interested in the case that the typical le
scale for modification of the dispersion relation,k0

21, is suf-
ficiently small.

As in the case ofd, we introduce an expansion paramet

eªu ẽ~x2!u, ~4.23!

and we neglect terms that induce the relative error ofO(e2)
or smaller in the amplitude of the wave function. As ford,
we also keep terms up to linear order ind. Here one remark
is in order. We imposed a further restrictionuxu.x2 to evalu-
ate the explicit form of the solution~4.17!. We stress, how-
ever, that the solution~4.17! itself is valid throughout the
region uxu,x1 .

To evaluate Eq.~4.17! by using the method of steepe
descents, we need to know the value ofs at saddle points
which are determined by solving

f 8~s![ f 08~s!1 f 18~s!5F11
ẽ2~sx!2

2
2S 11

iv

k D ~sx!21G
1~sx!21W~1!50. ~4.24!

We solve this equation by assuming that the solution is gi
by a power series expansion with respect tod as

FIG. 1. The contour for integration is chosen for the correct
terms not to dominate the leading terms. In the shaded region
higher order terms with respect tod becomes larger than the leadin
terms. Hence the contour is shortened so as not to violate the
lidity of the approximation.
4-7
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s65s061s161s261¯ . ~4.25!

For our present purpose, it is enough to find a solution in
form of a series expansion with respect toe. One solution of
xs0 is of O(1), andintegration along the path through th
saddle point cannot be evaluated by the method of stee
descents. The other two solutions are given by

xs06ª7SA2 ẽ2

2 D 21

2
11 iv/k

2
6A2 ẽ2

2

3~11 iv/k!2

8

1O~e2! ~4.26!

and

xs156SA2e2

2 D 21S d0

4
2

d1

4
1d2D1

1

4 F S 31
iv

k D d0

1S 231
iv

k D d118d2G7
1

32
A2e2

2 S 11
iv

k D
3F S 91

iv

k D d023S 32
5iv

k D d114S 52
3iv

k D d2G
1O~e2!. ~4.27!

Sinceusmax/s06u;A1/d̃@1, these saddle points are contain
in the region in which the expansion with respect tod is
valid. In the following, to keep notational simplicity, we ab
breviate the subscript as6 from s06 ands16 unless it causes
any ambiguity.

Now we evaluate the integration~4.17! by using the
method of steepest descents. For the contour given in Fi
only the saddle points1 dominantly contributes to the inte
gration inside the horizon. For our present purpose, the
mula

c~x!'
2A2pex f~s6!

@2x f9~s6!#1/2F12
5

24

@x f-~s6!#2

@x f9~s6!#3

1
1

8

x f ~4!~s6!

@x f9~s6!#2 1O~e2!G ~4.28!

is accurate enough to keep the correction up toO(e1). The
details of the calculation to evaluate Eq.~4.28! up toO(e,d)
are given in Appendix B. In the end, we obtain

c~x!'A2pk~k0V0!2 iv/k21/2~22kx!23/42 iv/2k

3expS 2
2

3
A2kk0V0~2x!3/21W1O~e2,d2! D ,

~4.29!

where
06400
e

est

1,

r-

W52SA2 ẽ2

2 D 21S 2
1

10
d̃01

1

10
d̃12

2

5
d̃2D

1S iv

4k
1

3

8D d̃01S iv

4k
2

3

8D d̃11
1

2
d̃2

1A2 ẽ2

2 H F2
41

48
2

iv

k
2

1

4 S iv

k D 2G
1F11

64
1

1

4

iv

k
1

1

16S iv

k D 2G d̃0

1F2
11

64
1

3

4

iv

k
1

15

16S iv

k D 2G d̃1

1F2
5

16
2

iv

k
2

3

4 S iv

k D 2G d̃2J . ~4.30!

We can immediately see that amplitude of the wave funct
reduces exponentially as we decreasex ~as we increase2x!.

Next we turn to evaluatec(x) for x.0. We use the
method of steepest descents again. In the present case
location of saddle points moves to points on the imagin
axis on the complexs plane. The leading order approxima
tion is given by

xs0656
& i

e2
1¯ . ~4.31!

Therefore, to evaluate Eq.~4.17! by using the method of
steepest descents, we need to deform the contour of inte
tion. At this point, we must take account of the existence
a branch cut emanating froms50, which originates from the
logarithm term in the integrand. We choose this branch
along the negative side of the real axis. Then, deforming
contour so as to go through these two saddle points, we
that the contour is divided into three pieces as shown in F
2. We respectively denote them byC1 , C2 , andC3 . C1 and
C2 are the contours passing through the saddle pointss2 and
s1 , respectively. Both contours have a new boundary po
which is chosen to satisfyusu,smax. The contourC3 con-
nects these two newly introduced boundary points, go
around the origin in an anticlockwise manner.

First, we evaluate the integrations along the contoursC1
andC2 by using the method of steepest descents. Just rep
ing the same calculation as in the case ofx,0, these inte-
grations are evaluated as

c1,2~x!5e7pv/2k
1

Ak0V0

~k0V0!2 iv/kA2pk~2kx!23/42 iv/2k

3expS 7 i
2

3
A2kk0V0x3/21W1,21O~e2,d2! D ,

~4.32!

where
4-8
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W1,257 i
&

ẽ S 2
1

10
d̃01

1

10
d̃12

2

5
d̃2D

1S iv

4k
1

3

8D d̃01S iv

4k
2

3

8D d̃11
1

2
d̃2

7 i
ẽ

&
H F2

41

48
2

iv

k
2

1

4 S iv

k D 2G
1F11

64
1

1

4

iv

k
1

1

16S iv

k D 2G d̃0

1F2
11

64
1

3

4

iv

k
1

15

16S iv

k D 2G d̃1

1F2
5

16
2

iv

k
2

3

4 S iv

k D 2G d̃2J . ~4.33!

Next, we consider the integral along theC3 contour. Here,
we dividex f(s) given in Eq.~4.18! into two parts as

x f̄0~s!ªxs1S 212
iv

k D ln s,

x f̄1~s!ª
ẽ2~xs!3

6
1x f1~s!, ~4.34!

and we expandex f̄1(s) assuming thatx f̄1(s) is small. From
the validity of such an expansion, it is required th
ux f̄1(s)u!1. As for the case with largeusu, the integrand
becomes exponentially small whenuxsu@1. There we do not
have to mind at all even ifx f̄1(s) becomes large and nega
tive. In the restricted region satisfyinguxsu&1, it is easy to
see thatx f̄1(s)!1 is always guaranteed. As for the case w
small usu, we do not have to consider the situation in whi
usu becomes extremely small because there is no requirem
on the choice of contour except for being inside the sad
points. For example, if we choose the contour to beusu*1,

FIG. 2. The deformed integration contour to evaluatec(x) out-
side the horizon. In thex.0 region, the saddle points move to th
neighborhood of the imaginary axis. The contoursC1 and C2 are
chosen to pass through these saddle points and to be able to e
ate the integrations along them by the steepest descents. Th
maining part of the integration contour which goes around
branch cut is calledC3 .
06400
t

nt
le

ux f̄1(s)u!1 is guaranteed. Therefore, we find that it is a

lowed to expandex f̄1(s) as 11x f̄(s)1¯ .
After this expansion, introducing a new variablez by

e2 ipzªsx, the integration alongC3 is written as

c3~x!'xiv/kE
C̄3

dz~2z!212 iv/ke2z@11x f̄1#,

~4.35!

whereC̄3 is the contour in the complexz plane correspond-
ing to C3 . Since the integrand becomes exponentially sm
at the boundaries, we are allowed to continue the contou
`. Then, using the integral representation of a gamma fu
tion, the leading term corresponding to 1 in the square bra
ets of Eq.~4.35! is expressed as

c3~x!'22 sinh~pv/k!G~2v/k!xiv/k. ~4.36!

Next, we consider the remaining terms in Eq.~4.35!. Let
us expressx f̄1 asx f̄15(an(2z)n, where the coefficientsan
are nondimensional constants. Then, by using the inte
representation of the gamma function, we can evaluate
contribution from each term as

anE
C̄3

dz~2z!n212 iv/ke2z

522an sinhFpS v

k
1 in D GGS n2

iv

k D ,

~4.37!

and we find that its relative order is simply determined by
order of an . Hence, to find the expression correct up
O(e1,d1), the only term that we must keep is

x f̄1~s!'2
iv

2k S iv

k
11D d̃1~sx!21. ~4.38!

Thus, we finally obtain

c3~x!522 sinh~pv/k!G~2 iv/k!xiv/k

3S 12
iv

2k
d̃11O~e2,d2! D . ~4.39!

In this section, we approximately solved Eq.~4.5! with
the boundary condition that the wave function decrease
ponentially inside the horizon. We evaluated the expli
form of the approximate solution in the regionx1.x.x2 as

c~x!5c1~x!1c2~x!1c3~x!, ~4.40!

where each componentc i(x) is given by Eq.~4.32! or Eq.
~4.39!. This expression is correct up toO(e1,d1).

B. Case far from the horizon

In the region far from the horizon, spacetime will becom
almost flat. In this region we assume that the rate of cha
of 1/V(x) and v(x) is sufficiently small. As we have see

alu-
re-
e

4-9
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for the asymptotic form of solutions in Sec. II, we have fo
independent solutions since the ODE~3.1! is of fourth order.
For solutions with short wavelengths corresponding tok6 ,
we can use a WKB approximation to solve Eq.~2.18!. On
the other hand, for solutions with along wavelengths cor
sponding tok6s , we can solve Eq.~2.18! perturbatively by
treating the correction due to the modification of dispers
relation as small. To be strict, we restrict our consideration
the regionx.x2 , wherex2 is that given in Eq.~4.3!. In this
region, we assume that the relations

V
d

dx

1

V
,

1

v
d

dx
v,

1

~12v2!

d

dx
~12v2!&

v

12v2

~4.41!

are satisfied. As for higher order differentiations, we a
assume that they are all restricted like

V
d2

dx2

1

V
&S v

12v2D 2

, V
d3

dx3

1

V
&S v

12v2D 3

,... .

By substituting the expansion~4.4!, we find that these con
ditions are satisfied even in the region close to the horiz

Here, we define a quantitye(x)ªv/k0V(12v2)3/2,
which reduces toẽ(x) near the horizon. It will be natural to
assume thate(x) takes its largest value in the region close
the horizon, and hencee(x) is at most ofO(e1) owing to the
restriction x.x2 . In the following, we construct approxi
mate solutions valid up toO(e1) in the sense ofdc/c.

We begin by considering solutions with short wav
lengths. Substituting the expression

c5expXi Ex

dx8k~x8!C ~4.42!

into Eq.~3.1!, we write down the equation fork(x). Neglect-
ing the terms on which differentiations with respect tox
acted more than 3 times,

S 1

k0V D 2

k42~12v2!k222vvk1v2

' i
d

dx F2S 1

k0V D 2

k32~12v2!k2vwG1
3k8214kk9

k0
2V2

1
12kk8

k0
2V

S d

dx

1

V D1
5k2

2k0
2 F S d

dx

1

V D 2

1
1

V S d2

dx2

1

V D G
~4.43!

is obtained, where a prime is used to represent a differen
tion with respect tox. Denoting the left-hand side of Eq
~4.43! by F(k), we find that the first term on the right-han
side is expressed as

i

2

d

dx S dF~k!

dk D .
06400
-

n
o

o

.

a-

We denote the remaining terms on the right-hand side
G(k). Following the standard prescription of the WKB a
proximation, the terms which contain differentiations wi
respect tox are taken to be small. Accordingly, we also e
pandk(x) in accordance with the number of differentiatio
as

k~x!5k~0!~x!1k~1!~x!1k~2!~x!1¯ . ~4.44!

After a slightly long but a straightforward calculation, w
obtain

k6
~0!56k0VA12v2S 16ve~x!2

112v2

2
e2~x!1O~e3! D

56k0VA12v21
vv

12v2 7
~112v2!v2

2k0V~12v2!5/21¯ ,

~4.45!

k6
~1!5

i

2

d

dx
ln$6k0V~12v2!3/2@164ve~x!1O~e2!#%

5
i

2

d

dx
ln~6k0V~12v2!3/214vw1¯ !,

~4.46!

k6
~2!56k0VA12v2 Fe2~x!

8v2 X41v2v821~12v2!

3F14~vv8!8118vv8VS 1

V D 8G1~12v2!2

3H 4VS 1

V D 9
1FVS 1

V D 8G2J C1O~e3!G. ~4.47!

Now we turn to solutions with small absolute values, i.
k6s . In this case, we cannot use the WKB approximati
because the wavelength is not necessarily short comp
with the typical scale for the background quantities
change. However, for the model with the standard dispers
relation, we have exact solutions for the field equationk6s
56v/(16v). We can use them as the leading order a
proximation, which is a solution when we neglect terms
lated to the modification of dispersion relation. If we subs
tute k6s'6v/(16v) into the neglected terms, we find tha
all of them have relative order higher thane2. At first glance,
one may think that the terms corresponding to the sec
and third terms in the square brackets in Eq.~4.43! give a
correction ofO(e0), but they mutually cancel out. As a re
sult, the equation to determine the correctiondk6sªk6s
7v/(16v) is obtained as
4-10
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2 i ]x~12v2!dk6s62vdk6s

5
1

2k0
2 expS 2 i Ex

k6s
~0!~x8!dx8 D F]x

2 1

V
]x

1

V
]x

1]x

1

V
]x

1

V
]x

2GexpS i Ex

k6s
~0!~x8!dx8 D5:H6~x!.

~4.48!

The right-hand side consists of terms related to the mod
cation of dispersion relation, and they are small, of or
vk1s

(0)3O(e2). Different from the case for short-waveleng
modes, the equation to determine the correlation becom
differential equation. Therefore, we can say that the corr
tion stays ofO(e2) only when we are interested in the b
havior of the solution within a small region such asx1.x
.x2 . Once an extended region is concerned, there is
reason why the correction stays ofO(e2). In fact, we need to
know the behavior of the solution both at infinity and in t
matching regionx1.x.x2 . In such a case, a correctio
much larger thanO(e2) can appear as explained in detail
Appendix C.

Nevertheless, the origin of this correction is the effect
scattering due to the modified dispersion relation. Even if
observed spectrum of the emitted particles deviates from
thermal one due to this effect, it is still possible to adopt
interpretation that the spectrum is modified by the scatte
during the propagation to a distant observer though it w
initially thermal. Hence we think this effect should be di
cussed separately from the present issue.

However, to be precise, we consider the case that
condition ~4.41! replacing& with ! is satisfied. This is the
case whenv is sufficiently large or when the functionsv(x)
and 1/V(x) rapidly converge to some constants atx*x1 . In
such cases, we can think of the first term on the left-ha
side of Eq.~4.48! as small. Then, solving Eq.~4.48! itera-
tively, we find that the correction stays ofO(e2). Therefore,
we obtain

k6s6
v

16v
@11O~e2!#. ~4.49!

Consequently, we find that the solutions which beha
like eik(x→`)x at infinity are given by

c6~x!5expXi Ex

k6~y!dyC, c6s~x!5expXi Ex

k6s~y!dyC,
~4.50!

where the integral constants are chosen appropriately. H
we recall that what we wish to know is notk(x), but
*xdy k(y). Although we are keeping track of the error in th
expression ofk(x), we cannot evaluate the error in the i
tergral*`

x k(y)dy when it is integrated from̀ to the match-
ing region wherex1.x.x2 . To overcome this difficulty, we
need to make use of the existence of a conserved curre

j 5A„k~x!…expX22Ex

k~ I !~y!dyC, ~4.51!
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where

A„k~x!…5vv1~12v2!k~R!2
1

k0
2V2 $2k~R!~k~R!

2 2k~1!
2 !

14k~R!]xk~ I !12k~ I !]xk~R!2]x
2k~R!%

1
2

k0
2 F 1

V S 1

V D 8G~22k~R!k~ I !1]xk~R!!

1
1

2k0
2 F 1

V S 1

V D 8G8k~R! , ~4.52!

and k(R) and k(I ) are the real and imaginary parts ofk, re-
spectively. The derivation ofj is given in Appendix D.

We evaluate this conserved currentj at x→`, where all
terms that contain differentiations with respect tox vanish
there. Adopting the normalizationufu251 at x→`, j is de-
termined as

j 5vv`1~12v`
2 !k`2

2

k0
2V`

2 k`
3 . ~4.53!

For l 56,6s, by substitutingkl` into the expression ofj in
place ofk` , we also define the conserved currentj l corre-
sponding tokl .

Owing to the conservation ofj,

c l~x!5A j l

A„kl~x!…
expXi Ex

kl ~R!~y!dyC ~4.54!

By using this improved expression, we can calculate the
plicit form of c l(x) in the regionx1.x.x2 without any
ambiguity except for the constant phase factor that does
alter the absolute magnitude of the wave function. Expa
ing the expression~4.54! in powers ofd̃ i with the substitu-
tion of Eqs.~4.4!, we evaluatec l(x), keeping the terms up to
O(d1). Here, in evaluatingA(x), the terms that includek(I )
become higher order ine, and hence we can neglect them a
Consequently, we obtain

c6~x!

Aj 6

5
eia6

Ak0V0

~2kx!23/42 iv/2k

3expS 6 i
2

3
k0V0A2kx3/21W61O~e2,d2! D ,

c1s~x!

Aj 1s

5eia1sxiv/k expS 2
iv

2k
d̃11O~e2,d2! D , ~4.55!

whereW1 andW2 are no different fromW2 andW1 in Eq.
~4.33!, respectively. As noted above, there appears an i
gration constanta l that cannot be determined by the prese
analysis, but it is guaranteed to be a real number. Here,
did not give the explicit form ofc2s because we do not us
it later.
4-11



is

w

he

us

fo
te

te

ti
, t

a

er
o
r
e
o
ith

n

e

on,
ect

are

we

lta-

ys
ove
me

ate
we

Eq.
in

-
d to
dent
The
ion
o

ffi-
her
The
of
ne

he
d

on
e
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By comparing Eq.~4.40! with Eq. ~4.55!, we find that the
solution~4.40! obtained in the region close to the horizon
matched to the solutions obtained in the outer region like

c~x!5A2pkS e2pv/2k1 ia82
c2

Aj 2

1epv/2k1 ia18
c1

Aj 1
D

22 sinhS pv

k DGS 2
iv

k Deia1s
c1s

Aj 1s

, ~4.56!

wherea68 are also real constants. From this expression,
can read the coefficientsc1s ,c2 as

c1s522 sinhS pv

k DGS 2
iv

k D eia1s

Aj 1s

@11O~e2,d2!#

c25A2pke2pv/2k
eia28

Aj 2

S 12
4vv

k0V
~12v2!23/2D 21/2

3@11O~e2,d2!#. ~4.57!

The factorv8vg appears in the formula~3.11! for the expec-
tation value of the created particles. By differentiating t
dispersion relation at infinity~3.4! with respect tok` , this
factor is easily calculated as

v8~k`!vg~k`!ª~v2vk`!
dv~k`!

dk`

5v`v1~12v`
2 !k`2

2k`
3

k0
2V`

2 , ~4.58!

and we find it to coincide with the conserved current. Th
by considering the combination ofv8(k1s)vg(k1s)uc1su2,
the factor j 1s in c1s cancels, and the same is also true
k2 . Finally the expectation value of the number of crea
particle is evaluated as

N~v!5
1

e2pv/k21
@11O~e2,d2!#. ~4.59!

V. ANALYTIC AND NUMERICAL STUDIES
OF THE DEVIATION FROM HAWKING SPECTRUM

In the preceding section, to obtain the flux of the crea
particles observed in the asymptotic region, wherev(x) is
essentially constant, we propagated the near-horizon solu
~4.40!, which satisfies the appropriate boundary condition
infinity by matching it with the outer-region solutions~4.55!,
which are valid in the region distant from the horizon. As
result, we could determine the coefficientscl and we found
that the thermal spectrum is reproduced up toO(e1,d1).

To explain the matching procedure in more detail, h
we present Table I. In the construction of the near-horiz
solution, the equation to be solved was expanded with
spect tod, and we obtained an equation which correctly d
termines the terms up toO(d1). These terms correspond t
the first two lines in Table I. Then, expanding them w
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respect toe by restricting our consideration to the regio
x2,x,x1 , we obtained the expression~4.40! with Eqs.
~4.32! and~4.39!, which contains terms corresponding to th
first 233 elements in the table.

On the other hand, in the region distant from the horiz
we first considered an expansion of the solution with resp
to e and calculated the corrections up toO(e1). Namely, the
terms corresponding to the first three columns in Table I
obtained. As the next step, in the region ofx2,x,x1 , we
expanded this expression also with respect tod up to O(d1)
by substituting Eq.~4.4! into Eq.~4.33!, and we obtained the
first 233 elements in the table. The expressions that
finally obtained are the outer-region solutions~4.55!.

Such twofold expansions in both schemes are simu
neously valid only in the regionx1,x,x2 , where bothẽ(x)
and d̃ i(x) are small. As mentioned above, as long ask0 is
taken to be sufficiently large, this overlapping region alwa
exists. Since both expressions obtained by using the ab
two different schemes are approximate solutions of the sa
equation, they must be identical if we take an appropri
superposition of the four independent solutions. In fact,
found that the near-horizon solution~4.40! can be written as
a superposition of the outer-region solutions as given in
~4.56!. Now, let us look at Table I again. For each element
the table, we have assigned a power ofx that the correspond
ing terms possess. As we mentioned above, we nee
choose an appropriate superposition of the four indepen
outer-region solutions to achieve a successful matching.
coefficients which determine the weight of this superposit
are nothing butcl . Now we should note that the condition t
determine the coefficientscl will be completely supplied by
matching thex-independent elements. Once these coe
cients are determined, the agreement of the ot
x-dependent terms must be automatic for consistency.
leading-orderx-independent elements consist of the terms
O(e0d0), and it is easy to see that the second lowest o
consists of the terms ofO(e2d3). This fact tells us that the
possible modification of the coefficientsc1s and c2 is at
most ofO(e2d3), and hence the possible deviation from t
thermal radiation starts only from this order. Thus we fin

N~v!5
1

e2pv/k21
@11O~e2d3!#. ~5.1!

Next, we investigate the deviation from thermal radiati
dN/Nª(N2Nthermal)/Nthermal in more detail. There are thre
different quantities ofO(d) as given in Eq.~4.1!. We write
them down as

TABLE I. Table to explain the matching procedure.
4-12
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d̃05xv8ux505kx, d̃15xk21v9ux505:~kx!b1 ,

d̃25xV0S 1

V D
x50

8
5:~kx!b2 , ~5.2!

where we introduced the nondimensional model parame
b1 and b2 . We also have various quantities ofO(d2) and
O(d3) consisting of higher derivatives ofv and 1/V. They
are

x2k21v-ux505:~kx!2b3 , x2V0S 1

V D
x50

8
5:~kx!2b4

~5.3!

and

x3k21v ~4!ux505:~kx!3b5 , x3V0S 1

V D
x50

9
5:~kx!3b6 ,

~5.4!

respectively. Also,b3 , b4 , b5 , andb6 are nondimensiona
model parameters. One may suspect that terms including
tors proportional tok22 such asxk22v-ux50 might appear
among the correction terms ofO(e2d3). However, by re-
peating the same calculation that was given in Sec. IV w
extra higher order derivative terms, we can verify that su
factors do not appear. From this notion, we can expect
the deviation from the thermal spectrum is given by

dN

N
5

k2

k0
2V0

2 $@a0001a001b11a002b21~7 other terms!#

1~a031a13b11a23b2!b31~a041a14b11a24b2!b4

1a5b51a6b6%1O~e4d6!, ~5.5!

wherea’s are some functions ofv/k which are independen
of the model parameters.

Now, we numerically confirm that the deviation actua
starts from this order. The following results are obtained
usingMATHEMATICA . As an example, let us consider a mod
given by

v52
1

2
e22x23x2

2
1

2
, ~5.6!

V59e2x2x2/211. ~5.7!

For this model, we havek51, b151, andb259/10, and the
other parameters also do not vanish. For this fixed model
numerically calculated the deviation from the thermal sp
trum for various values of 1/k0

2. The frequencyv was fixed
to 1 since our main interest is in the modes whose obse
frequency at infinity becomes comparable with the Hawk
temperature (5k/2p). The results of the numerical calcula
tion are shown in Fig. 3 by the solid circles. The horizon
axis is log(1/k0) and the vertical one is logdN/N. The data
points are fitted well by a liner function~the solid line! with
06400
rs

c-

h
h
at

y
l

e
-

ed
g

l

its gradient, 1.99742, which perfectly agrees with the exp
tation represented by Eq.~5.5!.

At this point, one may notice that the deviation we o
tained here is much larger than that given by Corley a
Jacobson@5#, in which a model with

v5
1

2
$tanh@~2kx!2#%1/221, ~5.8!

andV[1 was considered.3 The outstanding feature of the
model is thatb15b25b35b45b55b650. Hence the terms
of O(e2d3) in Eq. ~5.5! reduce toa000k

2/k0
2V0

2. If a000[0,
all the terms ofO(e2d3) in the deviationdN/N disappear,
and it turns out to beO(e4d6). If so, the discrepancy be
tween two calculations can be understood. To show that
is certainly the case, we repeated the numerical calcula
for the same model that was discussed in Ref.@5#. The re-
sultingdN/N calculated for various values of 1/k0 were also
plotted in Fig. 3 by the open squares. Again, the data po
in the logarithmic plot are fitted well by a linear function
But this time its gradient is 4.06935, which indicates that
deviation is actually caused by the terms ofO(e4d6).

Now, we can conclude thata000[0. Although this result
might be interesting, we do not pursue this direction of stu
in this paper. Here, we would like to focus on another int
esting aspect that is anticipated by the expression~5.5!. With
moderate values of the model parameters, the devia
dN/N stays small for a sufficiently largek0 . However, con-
versely, we can expect that the deviation from the therm
spectrum becomes large if we consider some extreme m
fications of the special reference frame. Especially, when

3T. Jacobson suggested to us the existence of this discrepan

FIG. 3. The logarithmic plot ofdN/N as a function of 1/k0 for
two different choices, ofv(x). The solid circles~our model! and the
open squares~model in Ref.@5#! represent the numerical data poin
for the respective models. Each solid line corresponds to a lin
function which fits the data points.
4-13
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YOSHIAKI HIMEMOTO AND TAKAHIRO TANAKA PHYSICAL REVIEW D 61 064004
consider the limiting case in whichV0
2→0, the expression

~5.5! diverges. Although the approximation used to obta
the analytic expression~5.5! is no longer valid in this limit,
we can still expect that the resulting spectrum will sign
cantly differ from the thermal one. As we mentioned belo
Eq. ~2.10!, there is a lower bound onV2(x). The possible
smallest value ofV2(x) is 12 ṽ2, which is realized when
v(x)50. Hence, we findv(x)'0 nearx50 in this limiting
case. Recall thatv(x) was the coordinate velocity of th
integration curves ofu. Hence, a vanishingv(x) means that
we adopt a reference frame corresponding to the static
servers.

Here, we present the results of our numerical calculat
which shows that the deviationdN/N can be large for some
cases. Since we also want to demonstrate that a dr
change of spectrum can occur just as a consequence o
change of the special reference frame, we vary only the fu
tion g( x̃), which was defined in Eq.~2.4!. The model of
ṽ( x̃) is kept unchanged. As for a model ofṽ( x̃), we assume
the same form that is given in Eq.~5.6!. As for g( x̃), we
adopt

g5
2 ṽ2~1/2!

r212 ṽ
, ~5.9!

with rP@0,1). r50 corresponds to the original model ass
ciated with the freely falling observers, andr51 corre-
sponds to the case withV0

250. With this choice ofg( x̃), the
following two conditions are satisfied. One is thatv(x) stays
negative for all positivex. The other is thatV`

2 51. We
calculated the deviationdN/N for various values ofr, and
the results are shown in Fig. 4. As was expected, the de
tion becomes large for smallV0

2. This plot raises the inter
esting speculation thatN might converge to 0 in theV0

2

→0 limit. Although we have not confirmed it yet, it is ver
likely that this is the case because the situation in this limi
very similar to the case in which we set a static mirror s
rounding the event horizon of the black hole. A calculati

FIG. 4. A plot of dN/N as a function of 1/V0 for the model
given by Eq.~5.6!.
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for small V0
2 was tried, but it was found to be out of th

range of the validity of our present computation code. An
way, we conclude that, even ifk/k0 is sufficiently small, the
deviation from the thermal spectrum can be large if the co
binationk/k0V0 becomes large. To achieve such a small b
nonzeroV0

2, infinite acceleration for the integration curve
of u is unnecessary. Hence, we should stress that the e
due to nonzeroV0

2 can be important without considerintg a
extreme situation.

VI. CONCLUSION

We studied particle creation in a model which is a gen
alization of Unruh’s toy model. In his model, the field equ
tion for a scalar field is modified by introducing a nonstan
ard dispersion relation. To do so, we necessarily viol
Lorentz invariance. This radical change of theory was ori
nally motivated by the possible existence of an effect due
the unknown physics at the Planck scale. However, as
plained in the Introduction, there is another point of view,
which it is also meaningful to study this model as an effe
tive theory which takes into account the interaction betwe
various fields even if we believe that the Lorentz invarian
is exact.

In the original model, the dispersion relation is modifie
on the basis of freely falling observers. In our present wo
we generalized the choice of the reference frame with res
to which we set the nonstandard dispersion relation. Exte
ing the analytic method developed by Corley@6#, we have
shown that the thermal spectrum of radiation from a bla
hole is almost reproduced as long as the modification of
special reference frame is not too extreme. In this analy
we assumedv'k, wherev is the frequency of the emitted
photon observed at the spatial infinity andk is the surface
gravity of the black hole. We have also obtained a stro
suggestion that the deviation from the exact thermal sp
trum appears fromO(k2/k0

2), wherek0 is the typical wave
number corresponding to the modification of the dispers
relation. This speculation has been confirmed numericall

Of course, we should not stress this small deviation fr
the Hawking spectrum. In the ordinary model with the Lo
entz invariant dispersion relation, the thermal radiation
temperatureT for a static observer is observed as the therm
radiation at the temperature@A(12b)/(11b)#T for an ob-
server moving with radial velocityb. This argument holds in
general whatever the source of the outward pointing rad
tion is because it is a direct consequence ofv5k. However,
in the present modified model, Lorentz invariance is viola
from the beginning. We can easily see that (v2k)/v is also
of O(v2/k0

2). Hence, even if the exact Hawking spectrum
reproduced for one specific free-falling observer, it cannot
so for the other free-falling observers.

On the other hand, the result that we obtained analytic
also suggests that the deviation from the thermal spect
can be large if we consider some extreme situations. W
the aid of numerical methods, we also examined one s
extreme situation. We considered a sequence of diffe
special reference frames which ranges from the case
which the observers associated with the special refere
frame are freely falling into a black hole to the case in whi
they are kept from falling into it. We found that, in the latt
4-14
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GENERALIZATION OF THE MODEL OF HAWKING . . . PHYSICAL REVIEW D61 064004
limiting case, the spectrum of radiation can significantly d
fer from the thermal one, even thoughv2/k0

2 is small. It will
be important to study the physical meaning of this result. B
since the central issue of this paper is to develop an ana
treatment of our new model, we have not performed deta
numerical studies yet. We will return to this issue in futu
publications.
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APPENDIX A: THE CONTOUR MODIFIED
FOR THE CORRECTION TERM

In this appendix, we explain how we chose the contour
integrationC in Eq. ~4.17! in more detail. As shown in Ref
@6#, the contourC in Fig. 5 satisfies the condition that th
wave function exponentially decrease inside the horiz
whenW(1) and higher order corrections are neglected. Wh
W(1) are taken into account, the contour of integration ne
to be modified. The correctionW(1) contains terms propor
tional to s5, while terms of the highest power in the ma
componentW(0) are proportional tos3. As a result,uW(1)u
becomes larger thanuW(0)u when usu becomes large. Hence
from the validity of the approximation, the contour of int
gration must be modified to be contained in the region t
satisfies the conditionuW(0)u@uW(1)u. By comparing the ab-
solute value of thes3 terms inW(0) with that of thes5 terms
in W(1), the allowed region for the contour to move is foun
to be restricted by

FIG. 5. The integration contour satisfying the boundary con
tion that the wave function decay exponentially fast inside the ev
horizon when terms of higher orderd can be neglected. In the

directions indicated by the hatched regions,ĉ(s) increases expo-
nentially. Solid circles represent the saddle pointss6 and the
dashed line represents the branch cut.
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usu,smax5minS k0V0 ,k0V0Ak2

k1
2,k0V0AkV1

V0
D .

~A1!

Thus we modify the contour not to run into infinity, but t
terminate at points contained in the regionusu,smax as
shown in Fig. 1.

Because of this modification of the contour of integratio
the boundary terms in Eq.~4.7! no longer vanish. However
since ĉ(smax) is exponentially small at both end points, w
can expect that the correction due to the boundary term
negligibly small.

APPENDIX B: EVALUATION OF INTEGRATION
ABOUT SADDLE POINTS

In this appendix, we explain the details of how to evalua
Eq. ~4.28!. We first consider the exponentx f(s1). We
evaluate it as an expansion arounds5s0 like

x f~s1!5x f0~s0!1 f 08~s0!~xs1!1
1

2x
f 09~s0!~xs1!21¯

1x f1~s0!1 f 18~s0!~xs1!1
1

2x
f 19~s0!~xs1!21¯ .

~B1!

The first term in the first line of the right-hand side is zero
order in d, and the second term vanishes identically. T
other terms in the first line are quadratic or higher order ind.
The terms in the second line are proportional tod1,d2,d3,...,
respectively. Thus we find

x f~s1!5x f0~s0!1x f1~s0!1O~d2!. ~B2!

Using Eqs.~4.19!, ~4.20!, and~4.26!, x f(s1) is found to be
given by

x f~s1!52SA2 ẽ2

2 D 21S 2

3
2

1

10
d̃01

1

10
d̃12

2

5
d̃2D

1
d̃0

4 S 31 i
v

k D2
d̃1

4 S 32 i
v

k D12d̃2

2S 11 i
v

k D log~k0V0A22kx!

1
1

4 S 11 i
v

k DA2 ẽ2

2
F2S 11 i

v

k D
1

d̃0

4 S 91 i
v

k D2
d̃1

4 S 9215i
v

k D
1 d̃2S 523i

v

k D G1O~d2,e2!. ~B3!

Next, we evaluatef 9(s1). Again, we expand it arounds
5s0 as

-
nt
4-15
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1

x
f 9~s1!5

1

x
f 09~s0!1

1

x2 f 0-~s0!~xs1!1¯1
1

x
f 19~s0!

1
1

x2 f 1-~s0!~xs1!1¯ . ~B4!

The power indices with respect tod of the respective terms
in the first line on the right-hand side are 0,1, . . . . Those in
the second line are 1,2, . . . . Hence the expression fo
f 9(s1)/x which is correct up toO(d) is given by

1

x
f 9~s1!'

1

x
f 09~s0!1

1

x2 f 0-~s0!~xs1!1
1

x
f 19~s0!. ~B5!

As for this factor, it is not necessary to find the second or
correction ine. Hence we can use truncated expressions
xs0 and xs1 obtained by discarding terms ofO(e) in Eqs.
~4.26! and ~4.27!. Substituting these into Eq.~B5!, we find

1

x
f 9~s1!52A2 ẽ2

2 F11
3

4
d̃02

3

4
d̃113d̃2

1A2 ẽ2

2 S 11 i
v

k D S 11
3

2
d̃02

3

2
d̃116d̃2D

1O~e2,d2!G . ~B6!

Finally, we evaluate the second and third terms in
square brackets on the right-hand side of Eq.~4.28!. As be-
fore, we writef-(s1)/x2 as

1

x2 f-~s1!5
1

x2 f 0-~s0!1
1

x3 f 0
~4!~s0!~xs1!1¯

1

x2 f 1-~s0!

1
1

x3 f 1
~4!~s0!~xs1!1¯ . ~B7!

We evaluate the order of each term on the right-hand sid
this equation. Then, we find that the respective terms in
first line are ofO(e2),O(e3d),O(e3d2),O(e3d3),... . Those
in the second line are ofO(e2d),O(e2d2),O(e2d3),... . One
may notice that the order in the first line does not chan
regularly. This is because the second term in the last lin
Eq. ~4.19! vanishes if it is differentiated more than 4 time
Since the leading term inf 9(s1)/x is O(e1), we can neglect
the terms ofO(e3) or higher in Eq.~B7!. Furthermore, we
do not have to keep the terms ofO(d2) or higher. Therefore,
06400
r
r

e
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e
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we have only to retain the termsf 0-(s0)/x2 and f 1-(s0)/x2.
Substituting xs01'2(2 ẽ2/2)21/2 into these two terms,
@x f-(s1)#2/@x f9(s1)#3 is evaluated as

@x f-~s1!#2

@x f9~s1!#3 5
1

2
A2 ẽ2

2 S 11
15

4
d̃02

15

4
d̃1115d̃2D

1O~e2,d2!. ~B8!

As for x f (4)(s1)/@x f9(s1)#2, similarly we have

1

x3 f ~4!~s1!5
1

x3 f 0
~4!~s0!1

1

x4 f 0
~5!~s0!~xs1!1¯

1

x~3! f 1
~4!~s0!

1
1

x4 f 1
~5!~s0!~xs1!1¯ . ~B9!

The order of respective terms in the first line
O(e4),O(e4d),..., and that in the second line is
O(e3d),O(e3d2),... . This time, only the term that we mus
keep isf 1

(4)(s0)/x3. Therefore, we find

x f ~4!~s1!

@x f9~s1!#2 53A2 ẽ2

2
~ d̃02 d̃114d̃2!1O~e2,d2!. ~B10!

Substituting all the above results into Eq.~4.28!, finally
we obtain Eq.~4.56!.

APPENDIX C: WAVE PROPAGATION
IN THE MODIFIED MODEL

In this appendix, by solving Eq.~4.48! in a simple model,

we show thatc1s , which becomeseik1s
(0)x at x→`, develops

into a superposition of two modes given by;exp@i*xdx8k1s
(0)

3(x8)# and by;exp@i*xdx8k2s
(0)(x8)# in the region of smallx.

Here, we assumedk1s!1 as the condition that the expan
sion with respect todk1s be consistent.

Formally, Eq.~4.48! can be integrated easily to obtain

dk1s~x!5
i

12v2~x!
expS 2 i E

x0

x 2v

12v2~x8!
dx8D Èx

dx8

3expS i E
x0

x8 2v

12v2~x9!
dx9DH1~x8!, ~C1!

where we introduced a constantx0 , for definiteness, al-
though the expression~C1! is independent ofx0 . The inte-
gration ofdk1s becomes
Èx

dk1s~x8!dx852 Èx

dx8F E
x0

x8
dx9expS 2 i E

x0

x9 2v

12v2~x-!
dx-DH1~x9!G d

dx8 F 1

2v
expS 2 i E

x0

x8 2v

12v2~x9!
dx9D G

52
1

2v
expS 2 i E

x0

x 2v

12v2~x8!
dx8D Èx

dx8expS 2 i E
x0

x8 2v

12v2~x9!
dx9DH1~x8!1

1

2v Èx

dx8H1~x8!, ~C2!

where we used an integration by parts for the second equality. Thusc1s(x) is expressed as
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c1s~x!'expS 2 i Ex

k1s
~0!~x8!dx8 DexpS i Èx

dk1s~x8!dx8D
'expS i Ex

k1s
~0!~x8!dx8 D S 11 i Èx

dk1s~x8!dx8D
5S 11

i

2v Èx

dx8 H1~x8! D expS 2 i Ex

k1s
~0!~x8!dx8 D

2F ieiw

2v Èx

dx8 expS i E
x0

x8 2v

12v2~x9!
dx9DH1~x8!GexpS 2 i Ex

k2s
~0!~x8!dx8 D , ~C3!
o-

i

th
n

m

sia

en
where w is a real constant. In the last step, Eq.~C2! and
22v/(12v2)5k2s

(0)2k1s
(0) were used. Let us denote the c

efficient of exp@i*x dx8 k2s
(0)(x8)# on the right-hand side byb.

As the probability for the waves to be scattered inward
proportional toubu2, it will be manifest that this scattering
probability is not generally zero.

As a simple example, let us consider the case that
spacetime is flat, i.e.,ṽ[0, but t-constant hypersurfaces ca
fluctuate randomly. We assumeg1(x)ªg(x)2g0!1, where
g0 is an x-independent constant. Furthermore, we assu
that fluctuations exist just in the interval betweenx02D and
x01D. We assume that the fluctuations obey the Gaus
random statistics characterized by

n~n!ªE dy eny^g1~x!g1~x1y!&, ~C4!

where we used̂ & to represent the ensemble average. Th
the Fourier transformation ofg1(x),

g̃1~n!ª
1

2p E dx einxg1~x!, ~C5!

satisfies

^g̃1~n!g̃1* ~n8!&5
1

2p
n~n!d~n2n8!. ~C6!

By settingṽ[0, in Eqs.~2.9! and ~2.10!, we find

v~x!5g~x!,
1

V~x!
5A12g2~x!. ~C7!

Using these equations, we obtain

expF i E
x0

x

2vS 1

12g2~x8!
2

1

12g0
2Ddx8GH1~x!

5H01
v4

k0
2 E dnFh~n!e2 inx2

4g0e2 inx0

~12g0!~11g0!5

v

n G
3g̃1~n!1O~g1

2!, ~C8!

with
06400
s

e

e

n

,

h~n!52
4g0

~12g0!~11g0!5

v

n
1

2~221g0!

~11g0!4

1
2~32g0!

~11g!3

n

v
1

~2813g0!

2~11g0!2 S n

v D 2

1
~22g0!

2~11g0! S n

v D 3

. ~C9!

The second term in the square brackets in Eq.~C8! does not
depend onx, and the contribution tob from this term can be
neglected.

Thus we find that the coefficientb evaluated in the region
x,x02D is given by

bª2
ieiw

2v Èx

dx8u„x82~x02D!…u„~x01D!2x8…

3expS i E
x0

x8 2v

12v2~x9!
dx9DH1~x8!

'
ieiw

2v E
x02D

x01D

dx8
v4

k0
2 E dn h~n!g̃1~n!

3expS 2iv

12g0
2 ~x82x0! De2 inx8

5
ieiwv3

2k0
2 E dn h~n!g̃1~u!

2 sin@~ṽ2n!D#

~ṽ2n!
e2 inx0,

~C10!

where we introducedṽª2v/(12g0
2). Then, with the aid of

Eq. ~C6!, ^ubu2& is evaluated as

^ubu2&'
v6

2pk0
4 E dnuh~n!u2S sin@~ṽ2n!D#

~ṽ2n! D 2

n~n!.

~C11!

If D is sufficiently large, we can use the approximation

S sin@~ṽ2n!D#

~ṽ2n! D 2

'pDd~n2ṽ !. ~C12!

Therefore, finally, we obtain
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^ubu2&'
v6D

2k0
4 UhS 2v

12g0
2DU2

nS 2v

12g0
2D

'
2v6D

k0
4

g0
2

~12g0!6 nS 2v

12g0
2D . ~C13!

This expression is essentially proportional
(v/k0)4(vD). Since the scattering probability is also pr
portional tovD, the effect can be large for largeD in prin-
ciple. However, in reality this effect is suppressed becaus
the factor (v/k0)4. If k0 is taken to be a Planck scale, th
factor (v/k0)4 becomes extremely small, and then even
waves coming from the cosmological distance scale will
be affected significantly to induce some observable effe
unless extraordinaryv is concerned.

APPENDIX D: DERIVATION
OF THE CONSERVED CURRENT

Here we derive the conserved currentj given in Eq.~D3!.
First we note that ODE~3.1! can be derived from the varia
tional principle of the action

Sv5E dxL, ~D1!

with
d

l
e,

06400
of

e
t
ts

Lª 1

2 H @~2 iv1v]x!f#•@~ iv1v]x!f̄#2~]xf!~]xf̄ !

1
1

2k0
2 S 1

V
]x

1

V
]xf D ]x

2f̄1
1

2k0
2 S 1

V
]x

1

V
]xf̄ D ]x

2fJ .

~D2!

This LagrangianL is invariant under a global phase transfo
mation off given byf→eilf and f̄→e2 ilf̄. By using a
trivial extension of the standard technique to derive the N
ether current, we can show that

j 52 i XH ]L
]~]xf!

•f2F]xS ]L
]~]x

2f! D G•f1
]L

]~]x
2f!

•]xfJ
2@f↔f̄#C ~D3!

becomes a conserved current which satisfies]xj 50, al-
though the present Lagrangian does not have the stan
form in the sense that it contains]x

2f. Here we adopted the

rule that the differentiation with respect tof or f̄ is per-
formed as iff and f̄ are independent.

Applying the formula~D3! to the present case with th
substitution f5exp@i*x k(x)dx#5exp@i*x(k(R)1ik(I))dx#, we
obtain Eq.~D3!.
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