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Hawking radiation is one of the most interesting phenomena predicted by the theory of quantum fields in
curved space. The origin of Hawking radiation is closely related to the fact that a particle which marginally
escapes from collapsing into a black hole is observed at future infinity with an infinitely large redshift. In other
words, such a particle had a very high frequency when it was near the event horizon. Motivated by the
possibility that the property of Hawking radiation may be altered by some unknown physics which may exist
beyond some critical scale, Unruh proposed a model which has higher order spatial derivative terms. In his
model, the effects of unknown physics are modeled so as to be suppressed for waves with a wavelength much
longer than the critical scalegl. Surprisingly, it was shown that the thermal spectrum is recovered for such
modified models. To introduce such higher order spatial derivative terms, Lorentz invariance must be violated
because one special direction needs to be chosen. In previous works, the rest frame of freely falling observers
was employed as this special reference frame. Here we give an extension by allowing a more general choice of
the reference frame. Developing the method taken by Corley, we show that the resulting spectrum of created
particles again becomes the thermal one at the Hawking temperature even if the choice of the reference frame
is generalized. Using the technique of the matched asymptotic expansion, we also show that the correction to
the thermal radiation stays of ordkeg2 or smaller when the spectrum of radiated particle around its peak is
concerned.

PACS numbes): 04.70.Dy, 04.62+v

[. INTRODUCTION fied so as to eliminate very short wavelength modes. In some
sense, this modification is arranged to effect the atomic
Thermal radiation from a black hole was first predicted bystructure of fluid which propagates sound waves. Usually,
Hawking [1], a phenomenon which has become widelythe group velocity of sound waves drops to values much less
known as Hawking radiation. This prediction is based onthan the low frequency value when the wavelength becomes
quantum field theory in curved space, which is thought of agomparable to the atomic scale. In performing such modifi-
an effective theory valid for low energy physics. However, cations[4], one must assume Fhe existencg of a reference
when we consider the mechanism of Hawking radiation, grame because the concept of high frequencies can never be a
crucial role is played by wave packets which left the past-Oreéntz invariant one. Namely, Unruh’s model manifestly
null infinity with very high frequency. Such wave packets breaks Lorentz invariance. To our surprise, even with such a
propagate through the collapsing body just before the horif—jrf_is_tIC change of theory, the spectrum observed at the_future
zon formed, and undergo a large redshift on the way out o'fnf'n'ty turned out to be kept unaltergd—€]. Here, in this

the future null infinity. Here arises one question. Can it pePaPer, We consider a generalization of this model.

ustified to apply quantum field theorv in curved space. an Lorentz invariance is the very basic principle for both
J PPy 4 y pace, special relativity and general relativity. Hence, there are

Qﬁectlve theo'ry' Qt low energy, to the phgnomenon Wh'Chinany efforts to examine the violation of Lorentz invariance
involves the infinitely high frequency regime? There may[7]l and new ideas to make use of high energy astrophysical
gxist some unknown physics _Which inva_lidates the applica‘phenomena have also been proposed recé@tlyHowever,
tion of the standard quantum field theory in curved sf@e e have not had any evidence suggesting this rather radical
One of such possibilities is that the spacetime may revegossibility yet. Therefore, one may think that it is not fruitful
its discrete nature at such high frequencies. To take accoug$ study in detail such a toy model that violates Lorentz
of the effect of the possible modification of theory in the invariance at the moment. But we also have another motiva-
high frequency regime. Unruh proposed a simple toy modefion to study this toy model even if we could believe that the
by a sonic analogue of a black hg®&4]. In Unruh’s model,  Lorentz invariance is an exact symmetry of the universe. In
the dispersion relation of fields at high frequencies is modi-most of the literature, the Hawking radiation was studied in
the framework of noninteracting quantum fields in curved
space. However, when we consider a realistic model, it will
*Email address: himemoto@vega.ess.sci.osaka-u.ac.jp be necessary to consider fields with interaction tef@is
TEmail address: tama@vega.ess.sci.osaka-u.ac.jp The evolution of interacting fields in the background that is
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forming a black hole is a very interesting issue but to study itspectrum of created particles by using this solution. To de-
is very difficult. Hence, as a first step, it will be interesting to termine the order of the leading correction to the thermal
take partly into account the interaction between the quanturapectrum, we employ the method of asymptotic matching in
fields and the matter which is forming a black hole. Then, itSec. V. In Sec. V, we also demonstrate some results of nu-
will be natural to introduce a modified dispersion relationmerical calculations to verify our analytic results. In addi-
associated with the rest frame of the matter remaining arountion, we display the results for some extreme cases which are
the black hole. In this sense, Unruh’s model does not requir€Ut of the range of validity of our analytic treatment. Section

that the fundamental theory itself violate Lorentz invariance.V! 1S devoted to conclusions. Furthermore, Appendix C is
In order to introduce the modified dispersion relation weadded to discuss the effect of scattering due to the modified

need to specify one special reference frame. In Ioreviougispersion relation. Although we do not think that this effect

works [4—6,10, the rest frame of freely falling observers 'S directly related to the issue of Hawking radiation, it can in

was employed as the special reference frame. In this case, tRENCIPle change the observed spectrum of Hawking radia-

thermal spectrum of Hawking radiation was shown to petion drastically if it accumulates throughout the long way to

reproduced. However, it is still uncertain whether the samé distant observer. In the present paper, we use units with
thing remains true even when we adopt another referenck=C=G=1.

frame as the special reference frame. In this paper, we give a

generalization of previous workg4—6,10 by allowing a Il. MODEL

more general choice of the reference frame. In this secton, we explain how we generalize the model
In most parts of the present paper, we follow the strategyy,; aq investigated in the earlier worjé—6]. Following

taken in the paper by Corleﬁﬁ].’ (Se_e_ also[10]) In his these references, we consider a massless scalar field propa-
paper, as modifications of Unruh’s original model, two types ating in a two-dimensional spacetime given by
of models were investigated. One is that with a subluminafJ

dispersion relation and the other is that with a superluminal d?= —di 2+ [d%—7 (%) d1]%, 2.1)
dispersion relation. It was shown analytically that the ther-

mal spectrum at the Hawking temperature is reproduced ivhere7 (X) is a function which goes to a constantiat
both cases. However, in the superluminal case, the standaghd satisfie§(X)=—1 for X=0. The equality holds &k
notion of the causal structure of black holes breaks down=Q. Since the line elemenfx=0 is null att = — 1, we find

Even if we consider the case that the background geometry ifat the event horizon is located @t — 1. Furthermore, by
given by a Schwarzschild black hole, the wave packets COlthe coordinate transformation given bgt=dt’' +3/(1
responding to the radiated particles can be traced back to th_eﬁz)d';( the above metric can be rewritten as
singularity inside the horizon due to their superluminal na- '

ture. Hence, the singularity becomes naked, and we confront _ 1

the problem of the boundary condition at the singularity. To ds’=—(1-32)dt’?+ 132 5. (2.2

avoid this difficulty, it is often required that the vacuum fluc-

tuations be in the ground state just inside the horizon. Howif \ve set (%) = — y2M/(X+2M), this metric represents a

As a topic related to be superluminal dispersion relation, ityiih the event horizon at= 0. In this coordinate system, the

was also reported that the Hawking radiation is not necessar- . . ~ .
ily reproduced in models with an inner horizéti]. In this unit vector perpendicular to the=const hypersurfaces is

paper, we wish to focus on the subluminal case, leaving Sucg?ven byt,:=d,t, and the differentiation in this direction is

a delicate issue related to the superluminal dispersion relgiven by U“d,=(d+0d5). We denote the unit outward
tion as a future problem. Even in the restriction to the subP0inting vector normal tai, by’s®. In order to examine the
luminal case, it will be important to study various models to€ffeéct on the spectrum of the Hawking radiation due to a
examine the universality of Hawking radiation. In the presenfmodification of theory in the high frequency regime, they

paper, we finally find that the resulting spectrum of creatednvestigated a system defined by the modified action of a

particle stays a thermal one at the Hawking temperature s&calar field,

long as we mildly change the choice of the special reference 1

frame. By a systematic use pf the technique of the so-called S= Ef d2%\—gg* D, b* Dyb, 2.3
matched asymptotic expansion, we also evaluate how small

the leading correction to the thermal radiation is. On the
other hand, for some extreme modification of the referenc&’ - N ]
frame, in which case the analytic treatment is no longer=U"d,, 3% D,=F(3%d,). If we setF(z)=z, the action
valid, the spectrum is numerically shown to deviate from the(2.3) reduces to the standard form. Since we are interested in

here the differential operatoD is defined bytu*D,

thermal one significantly. the effect caused by the change in the high frequency regime,
This paper is organized as follows. First we introduce awe assume thaf (z) differs fromz only for largez.
generalization of Unruh’s model in Sec. Il. In Sec. lll we In the above model, the dispersion relation for the scalar

review what quantities need to be evaluated in computing th&ield manifestly breaks Lorentz invariance, and there is a
spectrum of particle created in our model. In Sec. IV, wespecial reference frame specifiedbyOne can easily show
construct a solution of the field equation, and we evaluate théhat this reference frame is associated with a set of freely
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falling observers. As noted in the Introduction, it was shownmetric (2.8), we can easily verify)?>0 if and only if the
that the spectrum of Hawking radiation is reproduced in thig-constant hypersurfaces are space like. Hence, it will be ap-
model. Here we consider a further generalization of thispropriate to assumé€)?>0. Then, we find that2? has a
model, allowing us to adopt other reference frames as théinite minimum value wheno|<1. The minimum value is

special reference frame.

However, because of technical difficulties, we restrict our

1—32, which is realized when =0.
Next, we write down the explicit form ofi and s. By

consideration to stationary reference frames. As we ar@sing the fact thati is perpendicular to theconstant hyper-
working on a two-dimensional model, the reference frame isurfaces and that it is a unit vector, we can show that the
perfectly specified by choosing one timelike unit vector,differentiation in the direction ofi is given by

which we denote by. Sinced; in the original coordinate

system €,X) is a timelike Killing vector, the condition for
the reference frame to be stationary becomglsu%= 0,

where £, is the Lee derivative in the direction @ . This
condition can be simply written asu®/dt =0, where we

1
Ua(?az_(at+v(9x).

a (2.11

Similarly, we can show that the differentiation in the direc-
tion of s, which is a unit vector perpendicular tg is given

used indices associated with a tilde to represent the compdy

nents in the {,X) coordinates. Furthermore, the covariant

componentsu;(?)zg;,;;(?()uﬂ(i) are also independent of
Thus, if we introduce a new time coordindtey

dt=us (X [Us(R)di+ui(X)dx]=di— y(R)d%, (2.4

the t-constant hypersurfaces become manifestly perpendicu?

lar to u,. Here we introducedy(X):=—ui(X)/ug(X). Fur-
ther, it is convenient to choose a new spatial coordinae
that ¢; coincides with the Killing vector. Since

ax
=dit — ok,
at

(2.9

x should be chosen as a function which depends onl.on

Hence, we set

X:= f:g(i')dy'. (2.6)
By using such a new coordinatex) with
((X)=(1-Ty)%= (2.7
the metric(2.1) can be written in the forfh
ds?=02(x){—dt?+[dx—v(x)dt]?}, (2.9
where we set
1
Q%(x):= A597=7 (2.9
v(X):=y+v(1-D7y). (2.10

Here we mention the constraint éh If we explicitly write
down the condition thati be a timelike unit vector, i.e.,

u,u*=-1, we find thath=u—g holds. HenceQ?>0 is
guaranteed as long asis time like. Also, directly from the

1By considering the sonic analogue of Hawking radiation, the use

of this type of conformal metric was discussed 1r2].

dy. (2.12

By using u and s, the metric can be represented g%’

=—u“4u3+s“sﬁ, and the determinant of,; becomesg

Now, we find that to generalize the choice of the special
reference frame introduced to set the modified dispersion re-
lation is equivalent to generalizing the metric form given in
Eqg. (2.1 to the one given in E¢2.8) replacingl ands with
u ands in the defining equations of the differential operator
D. As a result, the actiof2.3) becomes

T

(2.13
If we set)?=1, the models are reduced to the original one
discussed in Ref.6].

Here, we should mention one important relation for later
use. The temperature of the Hawking spectrum is determined
by the surface gravity defined byx:=dv/dX|3-q. The sur-
face gravityx can also be represented [dS)]

_dv
“dx
X

1 (1
szzf dtdx{|(at+v&x)¢|2—9(x)2 F(ﬁax>¢

(2.19

K .
=0

In order to verify this relation, we evaluatk//dx by using
Egs.(2.6) and(2.10 to obtain

dv 1 _ _ . >
ax- m[%frv&(l—vw—vvﬁw—v Yzl

(2.19

From Eq.(2.10, we also findv=—1 whenx=0. Hence,
substitutingy = —1 into Eq.(2.15), we obtain Eq(2.14).

Then, let us derive the field equation by taking the varia-
tion of the action(2.13. Assuming thaf(z) is an odd func-
tion of z, we obtain

1 N
(0 + &Xv)(&t+vz9x)¢=QF<§¢9X)QF(—
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To proceed with further calculations, we need to assume a W=/ 172 (3.2
specific dispersion relation. Following Rdf6], we adopt
here Hence, as long &8..:=7(x—) is not equal to zerop(?Y

differs from w. By looking at the metriq2.2) in the static
chart, we find that this frequency shift is merely caused by
the familiar effect due to the gravitational redshift. There-
fore, even if we consider models wiih,# 0, @ might be
wherekg is a constant. Since the model should be arrangedentified with the frequency observed at the hypothetical
to differ from the ordinary one only in the high frequency infinity where the gravitational potential is set to be zero.
regime, the critical wave numbég, is supposed to be suffi- However, the situation is more transparent if we carivset

ciently large. With this choice df, neglecting the terms that =0 like the t\_/vo-dimensior:atl black hole case. In this case,
are inversely proportional to the fourth powerkgf, the field ~We can identifyw with () without any ambiguity. As

IE(Z)=Z+ (2.1

53
k2%

equation becomes mentioned in Ref[5], there is a difficulty in evaluating the
spectrum of radiation in the case of,:=v(x—®>)=0. In
) 5 1 previous modelsy.,=0 directly impliesv..=0. Therefore,
(9 0x0) (9 tvdy) = (9x+2—kg Iy Ixqy x we could not apply the result to the example of a two-

dimensional black hole spacetime directi@n this point, in
1 ) our extended model, the cases with=0 can be dealt with

+ W(ﬁxa Ixey f?x) ¢. since?,.=0 does not mean.,,#0.
0 Let us return to the problem of solving E®.1). From the
(2.18  above ODE, the asymptotic solution st is easily ob-

) ) ) ) ) tained by assuming a plane wave solution such as
Before closing this section, we briefly discuss the mean-

ing of the functions) andv. From Eq.(2.1J), it is easy to P(x) e, (3.3
understand that is the coordinate velocity of the integration
curves ofu. To understand the meaning ©6f, we further  Substituting this form into Eq.3.1), we obtain the dispersion
calculate the covariant acceleration of the integral curves ofelation
u, |u";ﬁu5|, where a semicolon represents the covariant dif-
ferentiation. After a straightforward calculation, we see that (w—v.K)2=k2— 3.4
the covariant acceleration is given by,Q 1. Hence we @l '
find that the derivative of) ~* gives the acceleration of the
reference frame. where(},, is the asymptotic constant value 8f The quan-
tity on the left-hand side,

I1l. PARTICLE CREATION RATE
o' =w—vk, (3.5

In this section, we briefly review how to evaluate the
spectrum of Hawking radiation. We clarify what quantities iS related to the frequency measured by the observers in the
need to be calculated for this purpogEor details, see Ref. special reference frame. In fact, this frequency dividedby
[5].) is the factor that appears when we perform the operator
To evaluate the spectrum of Hawking radiation, we needu®d, on a wave functiore™ (“'~¥9.  As shown in Ref[5],
to solve the field equatiof2.18 with an appropriate bound- two of the four solutions of Eq(3.4) have large absolute
ary condition. However, owing to the time translation invari- values, which we denote bl. , and the other two have
ance with the Killing vectow,, we do not have to solve the small absolute values, which we denéte;. For each pair,
partial differential equation(2.19 directly. By setting One is positive and the other is negative. The subsctipt
(1, x)=e""“Yy(x), Eq.(2.18 reduces to an ordinary differ- represents the signature of the solution. Then, the general
ential equatiofODE): solution of Eq.(3.1) at x—o° is given by a superposition of
these plane wave solutions as

[(—iw—h? v)(—iw-i—vﬁ)—{ﬁz—i-i(aziﬁia)
X X X ZKS X() XQ X I,U(X)ZI_E q(w)e‘k'(‘”)x. (3.6)

*s
1/ 1 1,
+ 2_k(2)(‘9><§ ‘7X§ ﬁX> ] } ¢=0. 3.1 By such a local analysis, however, the coefficierj{ay)
are not determined. To determine them, we need to find a

We could not make use of this simplification if we relax the Solution that satisfies the boundary condition corresponding
restriction that the reference frame should be stationary. 0 No ingoing waves plunging into the event horizon. This

Here we note that the norm of, is given by |3
=\1-v%Q=1-72 Therefore, the frequency? for
the static observers who stay at a constafur X) is related 2In the model proposed in Ref14], the case with),,=0 can be
to w by dealt with.
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condition is slightly different from the condition that the so-  Now that we verified that the extension of model does not
lution of ODE (3.1) vanish inside the horizon. The latter alter the expression of the inner product, we just quote the
condition is stronger than the former one because the lattdormula from Ref.[5]. For a wave packet which is peaked
one also prohibits the pure outgoing wave from the eventaround a frequency, the expectation value of the number of
horizon which may exist in the present model with the modi-created particles is given by

fied dispersion relation. The former condition is a sufficient
condition to determine the wave function uniquely, while the |w’(k,)vg(k,)c§(a})|
existence of a solution that satisfies the latter condition is not [0’ (K, 9vg(Ks )2 y(@)]’
guaranteed in general. However, once we find such a solu- grnheiEs

tion that satisfies the latter stronger condition, it is the 50'“'wherevg(k) :=dw(Kk)/dk is the group velocity measured by a
tion that satisfies the required boundary condition. In thesistic observer.

succeeding sections, we solve OLE]) requiring the latter
condition.

Finally, we present a formula to evaluate the expectation
value of the number of emitted particles naturally defined at |n this section, to determine the coefficiens we solve
X—o. In spite of our generalization of models, the samethe field equation(3.1) by using several approximations. In
derivation of the formula that is given in Ref5] is still  the region close to the horizon, we use the method of Fourier
valid. The same arguments follow without any change, butransformation. The solution is found to be uniquely deter-
one possible subtlety exists on the point as to whether thghined by imposing the boundary condition discussed in the
expression of the conserved inner product is unaltered or nopreceding section. On the other hand, in the region suffi-
Therefore, we briefly explain this point. The defining expres-ciently far from the horizon, we construct four independent

N(w)=

(3.1)

IV. SOLVING FIELD EQUATION

sion for the conserved inner product given in Hé&f| is

(91,021 | DG (0H00) b2 bl 030 91,
37

where the integration is taken ovet-aonstant hypersurface.

solutions which become'(“)* at x—o. We use the WKB
approximation for the two short-wavelength modes and we
use the simple ké expansion for the other two long-
wavelength modes. Later, we find that these two different
regions of validity have an overlapping interval as lonkgs

is taken to be sufficiently large. Hence, the requirement that

Here bothe, and#, are supposed to be solutions of the field the solutions obtained in both regions match in this overlap-
equation. The constancy of this inner product is related to th@iNg interval determines the coefficiertg o).

invariance of the function

L(b1,¢2) =+ 0x) b1+ (d+ %) ba

(1
F ﬁax ¢’1
under the global phase transformation
p—eo.

Taking the differentiation of:(e" ¢, ,e'* ¢,) with respect to
\, we have

- 0?2

(1 —
F(ﬁ ax) d’z}, (3-8)

(3.9

0 di(e™¢,,e™py)  IL
= =—i
dr I,

+£d(i¢l)
by dt
oL —

+—(—id¢y)

dbs

. % d(—di ?2)
I, !
oL

d L —
=l
dt dq

b1— t¢2) , (3.10
I,

Basically, our computation is an extension of that given
by Corley[6]. Here we take into account the generalization
of models discussed in Sec. Il. Furthermore, to evaluate the
order of the leading deviation from the thermal spectrum, we
shall take into account some higher order terms. At the same
time, we also carefully keep counting the order of errors
contained in our estimation. For brevity, we concentrate on
the most interesting case in whiehand x are same order.

A. Case close to the horizon

Now we want to find a solution satisfying the boundary
condition that the wave function rapidly decrease in the ho-
rizon. Therefore, we restrict our consideration to the region
close to the horizon|x|<x;, by choosing a sufficiently
smallx;. We introduce a parameter

S= max &(x), (4.1)
[x]<xq,i=0,1,2
with
_~ ~ K%X ~ QO
50::KX, 51:: T, 52:: Q—lX. (42)

where we used the field equation in the last equality. EquaSince we wish to think of5 as a small parameter for the

tion (3.10 proves the constancy of the inner prod(@t7).
Of course, the constancy of the inner prod(&%) can also
be verified by directly calculating its derivative using the
field equation.

perturbative expansion, we requife<1. Then, we find that
X1 must be chosen to satisfy

X, <min(1/x, kl k5,Q41Q). 4.3
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We assume that(x) and 1£)(x) can be expanded around
the horizon like

1
v(X)=—1+kx+ §K§x2+0(b\3),

I 1052 4.4
6 _Q_0+Q_1X+Q_0 ( ) ()

Substituting these expansions into the field equati®i),

we classify the terms into five parts according to the number

of differentiations acting ony. Then, keeping the leading
order correction terms with respect ®in each part, we

PHYSICAL REVIEW D 61 064004

sty

1 ZQO 2
— Q_l as_g

—[2kds+ (K2+ k3) 321+ 2{ — (i0— k)

NN 1
L =
[U9))= 72

—[k(io—«)+ K%](?S}Sl’\ﬂ— iw(io—k+ KE&S){#.
(4.9

If we are allowed to neglect the boundary terms, we can
construct a solution of Eq4.5 by using Eq.(4.6) from a

solution z}(s) which satisfies

L[ ¢(s)]=0. (4.9

obtain the field equation valid in the region close to the ho!N the following, we solve Eq(4.9) without worrying about

rizon as

wl!!

LLpO0 1= 1 F+
kO kO

0" 00, 000,
+ (26X = K2+ 15X Y+ 2{ — (iw— k)

+Hk(io—K)+ K%]X}zﬁ'—iw(iw— K— K%)z/f:O.
(4.5

In Corley’s papef6], terms ofO( %) were neglected, while
we keep them in the present paper.

Here, we introduce the momentum-space representati

of the wave function/(s) by

Y(X)= Lds EY(s). (4.6

Substituting this expression into E.5), we perform an
integration by parts like

J'dsxé";//(s)zf ds(iesx) #(s)
C c Js

N -
=—fcds éx(gw(S) +[e¥(s)];,

wheres; ands; are the start and end points of integration,
respectively. Note that there appear surface terms like the

whether the boundary terms can be neglected or not. After
we find a solution, we verify that the corresponding bound-
ary terms are sufficiently small.

To solve EQq.(4.9), it is convenient to introduce a new
variable

last term on the right-hand side in the above example. Then,
we find that the field equation in momentum space is giverHere we defined

by

L[ g(x)]:= Lds L #(s)]+ (boundary termps=0.
(4.7)

where

aIn(s%)
= dlns (4.10
Taking 6 as a small parameter, we expawbas
W=WO+ WD +0(8?). (4.11
ohhen, W is found to be given by
& W
WO =] —(sx3+|1—i—]|. (4.12
2 K
andW® is given by
W(1)=R(W<O)), (4.13
with
R(W):=3 ALY
W)=2 =2 5ms 2" "2
i o) ~
+{1-—|| W+ Z—l) (sX) " 1—"6,6°W(sx)?
S Low 1,030 )
T T gms 2 W WL
(4.149
€ ! 4.1
“=Vignzoc .49

Although we later consider the situation in whiéhs small,

‘€ is not small at all in the region close to the horizon. Sub-

stituting the explicit expression faW©) into R(W), we ob-
tain
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(=gt 8,—45,)

W= 3 (sx)®
C'
ram. ~ ~ [lw )
ey St (61—26,) 7—1 (s )
o 12 st 4.1
| 21502 @16

Under the condition that the boundary terms in Ef7) can
be neglected, we obtain the solutighix) which is valid up

to 0(51) as FIG. 1. The contour for integration is chosen for the correction
terms not to dominate the leading terms. In the shaded region, the
- f(s) higher order terms with respect &ecomes larger than the leading
Y(x) fcds e, (4.1 terms. Hence the contour is shortened so as not to violate the va-
lidity of the approximation.
where
1/|xso|<1 is required, wheres, is the value ofs at the
xf(s)=xfo(s)+xfy(s) (418 saddle point that dominates the integral. Then, this require-
. ment can be rewritten as
is given by
|X|>x%5, (4.21)
f + dsW“’) 21
Xfo(s):=xs s ns where we must choosg, to satisfy (1fxsp|)y=x,<1. We
_ shall see later that [i¥s| is of O(|€|). Hence, for the first
L E(xs)® 1), time at this moment, we further restrict our consideration to
=Xst —e—+| ~1=—~/lns, the region in whicf¥ is also small. In order for the condition
(4.19  |x|>x, to be compatible withx|<x,,
2/3
xf (S)::J Ew(l) ( ) <min(1,6% k2, kQ1/Q0) (4.22
! s koo
4% B4 is required. However, this requirement to the model param-
_€ (= %+ 2) (sX)5 eters will not reduce the generality of our analysis so much
40 because we are interested in the case that the typical length
22 " scale for modification of the dispersion relatimg,l, is suf-
—— 13+ (3, 2”52)(__ 1) (s%)2 ficiently small.
4 K As in the case 0B, we introduce an expansion parameter
iw~ [iw ~
— 5B 1597 €:=[€(xp)], (4.23
oK (4.20

- ) _ and we neglect terms that induce the relative erro®(é2)
The boundary condition of the wave function requires thaigr smaller in the amplitude of the wave function. As f@r

it exponentially decrease inside the horizon. In order to conge also keep terms up to linear orderdnHere one remark

struct a wave function that satisfies this boundary conditions jn order. We imposed a further restrictipg>x, to evalu-

we must choose the contour of integration appropriately. Weyte the explicit form of the solutiof4.17. We stress, how-

propose to adopt the contoGrgiven in Fig. 1. This contour  ever, that the solutiori4.17) itself is valid throughout the

does not go to infinity, but has end poiritienoted by open region|x|<x; .

circles in Fig. 2 at which the absolute value afis suffi- To evaluate Eq(4.17) by using the method of steepest

ciently large, but does not exceed the limit given in ). gescents, we need to know the valuesodt saddle points
Hence, as shown in Appendix A, the higher order correctionyhich are determined by solving

does not dominate along this contour. Furthermore, as is also
explained in Appendix A, with this choice of end points, the
boundary terms in Eq4.7) are exponentially small and can
be neglected.

Next, we show thai/(x) given by Eq.(4.17) is actually (4.29
the solution that satisfies the required boundary condition. In
order to evaluate the integratigd.17) analytically, we use We solve this equation by assuming that the solution is given
the method of steepest descents. For this method to be valily a power series expansion with respecttas

E(sx)?
2

iw
1+ —
K

f(s)=fy(s)+fi(s)=| 1+ - (sx)~ 1t

+(sx) " twh=0.
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Sy =Sps+S1++Sps e, (4.25 —“E\Y 1. 1. 2.
W=={ V73] ["10%"10% 5%
For our present purpose, it is enough to find a solution in the . 3 . 3 1
form of a series expansion with respectetdOne solution of + 1@ + = |3+ o _)”31+ =5,
XS, is of O(1), andintegration along the path through this 4k 8 4k 8 2
saddle point cannot be evaluated by the method of steepest — a1 i 1/iw2
descents. The other two solutions are given by + D | Dl s
2 48 k 4\ k
[ l+io/k [—&% 3(1+iwlk)? +'11+1iw+ 1w 2~5
XSy« =+ 2 - 2 - 2 8 164 4 « 16\ « 0
+0(€?) (4.26) [ 11 3iw 15(/iw\?]~
H =t —+ = — 1
| 64 4 « 16\ «
and N 5 iw 3(iw)\? 5 43
1 1« alx) % 430
— € 80 51 1 |
XS]_:i — 52 + = 3+_ (50 ) . i X
2 4 4 4 We can immediately see that amplitude of the wave function

reduces exponentially as we decreasas we increase- x).

+(_3+_ 51+852}1i I Next we turn to evaluate)(x) for x>0. We use the
32V 2 K method of steepest descents again. In the present case, the
i 3w location of saddle points moves to points on the imaginary
x|l 9+ — 50_3<3_ _) 5,+4|5— _) 52} axis on the complexs plane. The leading order approxima-
K K tion is given by
+0(€?). (4.2
v2i
XSgr=*+t—+ (4.3)
€2

Since|smaxlsoi|~\/ﬁ‘>‘> 1, these saddle points are contained
in the region in which the expansion with respect&as
valid. In the following, to keep notational simplicity, we ab- Therefore, to evaluate Eq4.17) by using the method of
breviate the Subscript as from So- ar‘]dslir unless it causes Steepest descents, we need to deform the contour of integra-
any ambiguity. tion. At this point, we must take account of the existence of
Now we evaluate the integratio(ﬂ_]_?) by using the @a branch cut emanating fros= 0, which originates from the
method of steepest descents. For the contour given in Fig. 10garithm term in the integrand. We choose this branch cut
only the saddle poins. dominantly contributes to the inte- along the negative side of the real axis. Then, deforming the

gration inside the horizon. For our present purpose, the forcontour so as to go through these two saddle points, we find
mula that the contour is divided into three pieces as shown in Fig.

2. We respectively denote them B4, C,, andC5. C,; and
C, are the contours passing through the saddle psintnd
—V2merts) 5 [xf"(s:)]? s, , respectively. Both cont h bound int
W(x)~ i 12{ S A +, resp y. Both contours have a new boundary poin
[—xf"(s+)] ; 24 [xf"(s+)] which is chosen to satisfis| <sn.. The contourC; con-
nects these two newly introduced boundary points, going
(4.28 around the origin in an anticlockwise manner.
First, we evaluate the integrations along the contdlys
andC, by using the method of steepest descents. Just repeat-

is accurate enough to keep the correction up(e?). The ing the same calculation as in the casexef0, these inte-

details of the calculation to evaluate Hd.28 up toO(e,5) ~ 9rations are evaluated as
are given in Appendix B. In the end, we obtain

1 xf#(s,)
T8 [xF(s.) ]2

+0(€?)

1 . .
) ) — AT T2k knQ) —ilwlk [2 2 —3l4—iwl2k
lﬂ(x)%‘IZWK(kOQO)_Iw/K_l/Z(—ZKX)_SM_""/ZK lﬁl,Z(X) e m( 0 0) TK(2KX)
2 2
Xexr{—§\/2KkoQo(_X)3/2+W+O(€2,52) , X ex :i§\/2Kk090x3/2+w1,2+0(62,52) ,
(4.29 (4.32

where where
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W e T V2 1,;S N 1..5 2.3 ) |xT1(s)|<1 is guaranteed. Therefore, we find that it is al-
127 | T 1099 109t 52 lowed to expand*'1(® as 1+ xf(s)+-- .
. 3 . 3 1 After this expansion, introducing a new variakteby
+ '_w_,_ 8+ o 2 5.+=5 e '"z:=sx, the integration along§; is written as
4k 8]0 |4k 8)71 272
e 41 o 1]iw\? ¢3(x)~xiw’KfE dz(—z) 17 @/e 1+ xf,],
ol el ’ (4.3
r . - 2 _
n 1_1+ E '_“’+ i('_“’) B0 whereCj is the contour in the complexplane correspond-
164 4 k 16\ « ing to C5. Since the integrand becomes exponentially small
11 3 15/ i) 2 at the boundaries, we are allowed to continue the contour to
4+l o= = _w+ _(_w) 3y o, Then, using the integral representation of a gamma func-
| 64 4« 16\« tion, the leading term corresponding to 1 in the square brack-
. 5 iw 3 iw)z . ] w33 ets of Eq.(4.35 is expressed as
16 « 4\« |73 ' P3(X)~—2 sinwol K)T'(— wl K)X''<.  (4.36
Next, we consider the integral along t8g contour. Here, Next, we consider the remaining terms in £4.39. Let
we dividexf(s) given in Eq.(4.18 into two parts as us expressf, asxf;==a,(—2)", where the coefficients,
are nondimensional constants. Then, by using the integral
— iw representation of the gamma function, we can evaluate the
xfo(s):=xs+|{ —1——=]Ins, contribution from each term as
~2 3 —l-iw/lknp—2
— €°(Xs) a,|_dz(—z)" e
xfi(s):= 6 +xfi(s), (4.349 "Je, (=2)

. w .
=—2a,sinh 7| —+in
K

and we expan@*'1(® assuming thakf,(s) is small. From
the validity of such an expansion, it is required that 4.3
|xfi(s)|<1. As for the case with largés|, the integrand '
becomes exponentially small whexs|>1. There we do not  and we find that its relative order is simply determined by the
have to mind at all even if,(s) becomes large and nega- order of a,. Hence, to find the expression correct up to
tive. In the restricted region satisfyifgs|<1, it is easy to O(e',8%), the only term that we must keep is
see thakf,(s)<1 is always guaranteed. As for the case with . .
: L . — io(io
small|s|, we do not have to consider the situation in which xfy(s)~—=—|—+1
|s| becomes extremely small because there is no requirement 2K\ K
on the choice of contour except for being inside the saddl
points. For example, if we choose the contour to|ge: 1,

S1(sx) 7L, (4.39

ﬁ'hus, we finally obtain

P3(X)=—2 sinh 7wl K)T (—iwl k)X

X

1—i—“”Zs +0(€?, 82 (4.39
2k 1 €, ) . .

In this section, we approximately solved Ed.5) with
i Q C, the boundary condition that the wave function decrease ex-
ponentially inside the horizon. We evaluated the explicit
form of the approximate solution in the regigp>x>Xx, as

P(X) = 1 (X) + o (X) + th3(X), (4.40

where each componen(x) is given by Eq.(4.32 or Eq.
FIG. 2. The deformed integration contour to evalugate) out- (4.39. This expression is correct up @(et,s%).

side the horizon. In th&>0 region, the saddle points move to the
neighborhood of the imaginary axis. The conto@sandC, are
chosen to pass through these saddle points and to be able to evalu-
ate the integrations along them by the steepest descents. The re- In the region far from the horizon, spacetime will become
maining part of the integration contour which goes around thealmost flat. In this region we assume that the rate of change
branch cut is callecC. of 1/Q(x) andv(x) is sufficiently small. As we have seen

/9%\\

B. Case far from the horizon
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for the asymptotic form of solutions in Sec. Il, we have four We denote the remaining terms on the right-hand side by
independent solutions since the ODEY) is of fourth order.  G(k). Following the standard prescription of the WKB ap-
For solutions with short wavelengths corresponding g proximation, the terms which contain differentiations with
we can use a WKB approximation to solve E8.18. On  respect tax are taken to be small. Accordingly, we also ex-
the other hand, for solutions with along wavelengths correpandk(x) in accordance with the number of differentiation
sponding tok-.;, we can solve Eq(2.18 perturbatively by as

treating the correction due to the modification of dispersion

relation as small. To be strict, we restrict our consideration to

the regionx>x,, wherex, is that given in Eq(4.3). In this k(x)=kO(x) + kD (x) + kP (x)+---. (4.4
region, we assume that the relations

After a slightly long but a straightforward calculation, we
le 1d 1 d1 ) 0] obtain
_— _— —_— — <
dx Q' v dx"” (1-v2) dX( ve)= 1-v?
(4.4)
1+2p?

0)_
are satisfied. As for higher order differentiations, we also K= = *ko2y1-v% 1=ve(x)— > €()+0(e)
assume that they are all restricted like

3 v (1+2v?) w?
=+ 1—1p2 T
Y een *koQlVl—v +l—v2+2k0"(1—v2)5’2+ ,

(4.45

dzl(w

2 dé 1 0}
_— | —
dx> Q "\ 1-v?

IRl i g

By substituting the expansiof.4), we find that these con-
ditions are satisfied even in the region close to thezhscl)zrizon.
Here, we define a quantitye(X):=w/koQ(1—0v°)>%, i d
which reduces t&(x) near the horizon. It will be natural to ~ K&'= > d—XIn{tkoﬂ(l—uz)3/2[1i4v €(x)+0(e)]}
assume tha&(x) takes its largest value in the region close to
the horizon, and hencg(x) is at most ofO(e') owing to the
restriction x>x,. In the following, we construct approxi-

i d
mate solutions valid up t®(e?) in the sense obyli. =5 d—In(tkOQ(l—v2)3’2+ dow+---),
We begin by considering solutions with short wave- X 44
lengths. Substituting the expression (4.46
[ ’ ’ EZ(X)
g=expli | dx'k(x") (4.42 kK@= +koQ\1—02 57 A% '%+(1-v?)
into Eq.(3.1), we write down the equation fd(x). Neglect- . L1 95
ing the terms on which differentiations with respect xo X|14vo) +180" Q| 5| |+ (1-v7)
acted more than 3 times,
><4Qlﬁ+91,2)+o3 4.4
1 2 . s , 6 6 (6 ) . ( . 7)
(kO—Q) k —(l—v )k —2vwk+w
) o , Now we turn to solutions with small absolute values, i.e.,
~ij i 2(L> K3—(1—v2)k—vw|+ 3K'"+4kk k.s. In this case, we cannot use the WKB approximation
dx| | ko2 kOZQ2 because the wavelength is not necessarily short compared
, ’ 5 ) with the typical scale for the background quantities to
n 12k (i i) n i (i i) n i(d_ i” change. However, for the model with the standard dispersion
kK3 ldx Q) 2ki|\dx Q)  Qldx* Q relation, we have exact solutions for the field equation

(4.43 =+w/(1l*v). We can use them as the leading order ap-
' proximation, which is a solution when we neglect terms re-

is obtained, where a prime is used to represent a differentia{ated to the modificati-on of dispersion relation. If we substi-
tion with respect tox. Denoting the left-hand side of Eq. tUt€K-s==/(1*v) into the neglected terms, we find that

(4.43 by F(k), we find that the first term on the right-hand all of them have relative order higher thah At first glance,
side is expressed as one may think that the terms corresponding to the second

and third terms in the square brackets in E443 give a
) correction ofO(€%), but they mutually cancel out. As a re-
'_i(d':(k)) sult, the equation to determine the correctifk. s:=K. ¢
2dx\ dk /° Fwl/(1£v) is obtained as
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—i0(1—0v?) SKusH 2w K g where
=iex —i Xk“”(x’)dx’ (921(9_(9 2 2 2
2kg *s xXQ0) XQ X A(k(X))va-i-(l—v )k(R)_W{Zk(R)(k(R)_k(l))
1.1 (> + 4K gy K )+ 2K 1 Ik r) — 92K )}
+ax5axﬁa§ ex |f kKQ(x")dx' | =:H-(x). (RYIxK(1) T 2K1) IxK(r) ~ IxK(R)
211/(1)\
(4.48 Ti2lala) | Hekotake)
The right-hand side consists of terms related to the modifi- 171/1\7
cation of dispersion relation, and they are small, of order S _<_) Kr) » (452
wk®)x O(€?). Different from the case for short-wavelength 2k Q21 Q

modes, the equation to determine the correlation becomes a
differential equation. Therefore, we can say that the correcandk) andk, are the real and imaginary parts ki re-
tion stays ofO(e?) only when we are interested in the be- spectively. The derivation dfis given in Appendix D.
havior of the solution within a small region such xs>x We evaluate this conserved currgrat x—o, where all
>X,. Once an extended region is concerned, there is nterms that contain differentiations with respectxwanish
reason why the correction stays@f e2). In fact, we need to  there. Adopting the normalizatiom|*=1 atx—oo,  is de-
know the behavior of the solution both at infinity and in the termined as
matching regionx;>x>X,. In such a case, a correction
much larger tharD(€?) can appear as explained in detail in
Appendix C.

Nevertheless, the origin of this correction is the effect of
scattering due to the modified dispersion relation. Even if thg=r | = + -+ by substituting.. into the expression dfin
observed spectrum of_ the emlt'geq pqrtlcles Qewates from thﬁlace ofk.., we also define the conserved currgntorre-
thermal one due to this effect, it is still possible to adopt thesponding tok; .
interpretation that th_e spectrum is modified by the scattering Owing to the conservation gf
during the propagation to a distant observer though it was

initially thermal. Hence we think this effect should be dis- i «
cussed separately from the present issue. (X)) =\ /—ex;{iJ K, (y)dy) (4.54
However, to be precise, we consider the case that the Aki(x)) R

condition (4.4 replacing=< with < is satisfied. This is the _ o _

case when is sufficiently large or when the functiongx) By using this improved expression, we can calculate the ex-
and 10)(x) rapidly converge to some constantatx;. In  Pplicit form of y;(x) in the regionx,>x>Xx, without any
such cases, we can think of the first term on the left-han@mbiguity except for the constant phase factor that does not
side of Eq.(4.48 as small. Then, solving Ed4.49 itera-  alter the absolute magnitude of the wave function. Expand-
tively, we find that the correction stays 6 €). Therefore, ing the expressioti4.54) in powers ofd, with the substitu-

j= vt (1-vl)k.—

—— k2. 4.

we obtain tion of Egs.(4.4), we evaluate)(x), keeping the terms up to
O(5Y). Here, in evaluatind\(x), the terms that includk
w become higher order ia, and hence we can neglect them all.
+ 2 g & g
kis_ltv [1+0O(eD]. (4.49 Consequently, we obtain

Consequently, we find that the solutions which behave

i,
like e'*C*=*)X at infinity are given by p=0)_ €™ (2kx)~ 34 1wi2
Vie  vkoQo

w+<x>=ex;{i | Xk+<y>dy), l//+s<x>=exp(i | Xk+s<y)dy),
(4.50

where the integral constants are chosen appropriately. Here :

we recall that what we wish to know is ndd(x), but M:eiwsxiwh« exp{—l—w?ﬁ O(€,82)
[*dy k(y). Although we are keeping track of the error in the \/E 2K '
expression ok(x), we cannot evaluate the error in the in-

tergral [ k(y)dy when it is integrated frome to the match- whereW, andW_ are no different fromw, andW; in Eq.

ing region wherex;>x>x,. To overcome this difficulty, we (4.33), respectively. As noted above, there appears an inte-
need to make use of the existence of a conserved current gration constanty, that cannot be determined by the present
analysis, but it is guaranteed to be a real number. Here, we
did not give the explicit form ofy_ s because we do not use

it later.

2
X exp( iz koo 2kx32+ W, +0O( €, 52)) :

, (4.595

J=A(k<x))exp(—2 | Xk(.)w)dy), (4.50
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By comparing Eq(4.40 with Eq. (4.59, we find that the TABLE |. Table to explain the matching procedure.
solution (4.40 obtained in the region close to the horizon is - 5 , -
matched to the solutions obtained in the outer region like € € € €

(50 X3/2 xO X~ 3/2 ¥~ 3
¢(X): 2K e—ww/2K+ia'_ l/,_ +e77w/2K+ia£r l'// 51 ,\’5/2 «\‘] .\‘_1/2 .\‘_2
\/jf \/J—+ 5 e 2 2 !
53 x9/2 1‘.3 '\,3/2 '\AO
T lw)| .
—Zsinl'(— F(——)e“”&, (4.56
K K VI+s

respect toe by restricting our consideration to the region
where o, are also real constants. From this expression, we,<x<x;, we obtained the expressio@.40 with Egs.

can read the coefficients, ,c_ as (4.32 and(4.39, which contains terms corresponding to the
_ first 2X 3 elements in the table.
[T iw) e'%+s A On the other hand, in the region distant from the horizon,
Cis=—2 S'”"(T Il -— N [1+0(e%, 5] we first considered an expansion of the solution with respect
+s

to € and calculated the corrections up@ge'). Namely, the
- 4 _1 terms corresponding to the first three columns in Table | are
c = \/mem/zke_( 1 ﬂ(l—vz)*w obtained. As the next step, in the regionxgx<x;, we
\/j—_ Ko) expanded this expression also with respecs tp to O( %)
by substituting Eq(4.4) into Eq.(4.33, and we obtained the
X[1+0(€%,6%)]. (457 first 2x3 elements in the table. The expressions that we
finally obtained are the outer-region solutid@s55).
Such twofold expansions in both schemes are simulta-
neously valid only in the regior; <x<X,, where botte(x)

and8,(x) are small. As mentioned above, as longkasis
taken to be sufficiently large, this overlapping region always

s

The factorw’vy appears in the formulé.11) for the expec-
tation value of the created particles. By differentiating the
dispersion relation at infinity3.4) with respect tok.,,, this
factor is easily calculated as

do(k..) exists. Since both expressions obtained by using the above

o' (Ke)vg(Ke):=(w—vKs) T two different schemes are approximate solutions of the same
* equation, they must be identical if we take an appropriate
3 superposition of the four independent solutions. In fact, we

=00+ (1-02)Kk.— (4.58  found that the near-horizon solutig4.40 can be written as

a superposition of the outer-region solutions as given in Eq.
and we find it to coincide with the conserved current. Thus(4-56- Now, let us look at Table | again. For each element in
by considering the combination Gﬁ'(k+s)vg(k+s)|c+s|2, f[he table, we have assigned a povv_exdﬁat the correspond-
the factorj, . in c. . cancels, and the same is also true forNd t€rms possess. As we mentioned above, we need to

k_ . Finally the expectation value of the number of createdtN00se an app:opnate sup(;r_posmon of the ffolur mdr;e_pendTint
particle is evaluated as outer-region solutions to achieve a successful matching. The

coefficients which determine the weight of this superposition
1 are nothing but, . Now we should note that the condition to
N(w)= ezmlq[lJrO(Gzﬁz)]- (459  determine the coefficients will be completely supplied by
matching thex-independent elements. Once these coeffi-
cients are determined, the agreement of the other
V. ANALYTIC AND NUMERICAL STUDIES x-dependent terms must be automatic for consistency. The
OF THE DEVIATION FROM HAWKING SPECTRUM leading-ordex-independent elements consist of the terms of

O . .
In the preceding section, to obtain the flux of the created(€ _50)' and it is easy tozsee tha}t the second lowest one
particles observed in the asymptotic region, whetg) is  consists of the terms d(e 8%). This fact tells us that the
essentially constant, we propagated the near-horizon solutidtPSsible_modification of the coefficients, s and c_ is at

(4.40), which satisfies the appropriate boundary condition, td"0St 0fO(?5°), and hence the possible deviation from the
infinity by matching it with the outer-region solutior.55), thermal radiation starts only from this order. Thus we find

which are valid in the region distant from the horizon. As a
result, we could determine the coefficier{sand we found 1
that the thermal spectrum is reproduced ugi@a?, 5*). N(w)= W[1+0(6253)]- (5.1

To explain the matching procedure in more detail, here
we present Table I. In the construction of the near-horizon
solution, the equation to be solved was expanded with re- Next, we investigate the deviation from thermal radiation
spect tos, and we obtained an equation which correctly de-6N/N:=(N— Nierma)/ Nihermain more detail. There are three
termines the terms up t©(6%). These terms correspond to different quantities oD(5) as given in Eq(4.1). We write
the first two lines in Table I. Then, expanding them with them down as

k52’
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-4,

So=xv"|y—0=KX, O1=Xk 0"|y_o=:(kX)by,

-5}

~ 1\’
52:)(90(5) ::(Kx)bz, (52)
x=0

-5.

where we introduced the nondimensional model parameter: I
b, andb,. We also have various quantities 6f 5%) and P
0O(6%) consisting of higher derivatives of and 1£). They ‘g}
are 3

1 i
X2k 0" |y—o=:(kX)?b3, XZQO(—> =:(kx)%b,
X=

Q
(5.3 i

and - -2.35  -2.3 -2.25 -2.2 -2.15 -2.1 -2.05 -2 -1.95  -1.9
Log(l/ko)

n
X3k _o=1(kx)%bs, X390(5> =:(kx)°bg, FIG. 3. The logarithmic plot o6N/N as a function of X, for
x=0 two different choices, of (x). The solid circlegour mode) and the
(5.4 open squareénodel in Ref[5]) represent the numerical data points

. . . for the respective models. Each solid line corresponds to a linear
respectively. Alsobs, by, bs, andbg are nondimensional ¢ - o \hich fits the data points

model parameters. One may suspect that terms including fac-
tors proportional tox =2 such asxk™%v"|,_, might appear

; 2.3
among the correction terms @(e”5%). However, by re- g gradient, 1.99742, which perfectly agrees with the expec-
peating the same calculation that was given in Sec. IV withgiign represented by E¢.5).
extra higher order derivative terms, we can verify that such ¢ this point, one may notice that the deviation we ob-

factors do not appear. From this notion, we can expect thahined here is much larger than that given by Corley and
the deviation from the thermal spectrum is given by Jacobsoii5], in which a model with

N k2
N E%ﬁg{[aoo(fr Agoib1 +aggd.+ (7 other termy] V= %{tank[(ZKx)zj}”z— 1, (5.9

+ (@pgt+ ajghq+asgh,) b+ (agst+agbq+asb,)b . : :
(Bog+ 3151+ Az2)Dg+ (Boat A1ab1+ A2ubp) b andQ =1 was consideretiThe outstanding feature of their

+agbs+aghgt + O(€*8%), (5.5  model is thath;=b,=bs=b,=bs=bg=0. Hence the terms
of O(€256°%) in Eq. (5.5 reduce toagyx?/k3Q2. If ag=0,
wherea’s are some functions ab/« which are independent all the terms ofO(€25°) in the deviationdN/N disappear,
of the model parameters. and it turns out to bed(e*8%). If so, the discrepancy be-
Now, we numerically confirm that the deviation actually tween two calculations can be understood. To show that this
starts from this order. The following results are obtained byjs certainly the case, we repeated the numerical calculation
USINgMATHEMATICA . As an example, let us consider a model for the same model that was discussed in R8f. The re-
given by sulting SN/N calculated for various values ofkl/were also
plotted in Fig. 3 by the open squares. Again, the data points
_ 1e 2x—3x2_ 1 (5.6 in the logarithmic plot are fitted well by a linear function.
' But this time its gradient is 4.06935, which indicates that the
deviation is actually caused by the terms@fe®5°).
Q=9e X **24 1 (5.7) Now, we can conclude thaty,,;=0. Although this result
might be interesting, we do not pursue this direction of study
For this model, we have=1, b,;=1, andb,=9/10, and the in this paper. Here, we would like to focus on another inter-
other parameters also do not vanish. For this fixed model, wSting aspect that is anticipated by the expresgids). With
numerically calculated the deviation from the thermal spec/noderate values of the model parameters, the deviation
trum for various values of k. The frequencyw was fixed ~ON/N stays small for a sufficiently large,. However, con-
to 1 since our main interest is in the modes whose observe(fTSely, we can expect that the deviation from the thermal
frequency at infinity becomes comparable with the HawkingSPECtrum becomes large if we consider some extreme modi-
temperature € «x/27). The results of the numerical calcula- fications of the special reference frame. Especially, when we
tion are shown in Fig. 3 by the solid circles. The horizontal
axis is log(1ky) and the vertical one is Iog\N/N. The data
points are fitted well by a liner functiotthe solid ling with 3T. Jacobson suggested to us the existence of this discrepancy.
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for small Q3 was tried, but it was found to be out of the

_ range of the validity of our present computation code. Any-
way, we conclude that, even ifk, is sufficiently small, the

. deviation from the thermal spectrum can be large if the com-
bination «/ky{y becomes large. To achieve such a small but
nonzeroQ)3, infinite acceleration for the integration curves

_ of u is unnecessary. Hence, we should stress that the effect
due to nonzerd)? can be important without considerintg an

1 extreme situation.

i VI. CONCLUSION

-0.12[

] We studied particle creation in a model which is a gener-
alization of Unruh’s toy model. In his model, the field equa-
tion for a scalar field is modified by introducing a nonstand-
ard dispersion relation. To do so, we necessarily violate
Lorentz invariance. This radical change of theory was origi-
nally motivated by the possible existence of an effect due to
the unknown physics at the Planck scale. However, as ex-
plained in the Introduction, there is another point of view, on
which it is also meaningful to study this model as an effec-
. - : S , tive theory which takes into account the interaction between
consider the limiting case in whicfy—0, the expression 4rioys fields even if we believe that the Lorentz invariance
(5.5 diverges. Although the approximation used to obtainjs exact.
the analytic expressio(b.5) is no longer valid in this limit, In the original model, the dispersion relation is modified
we can still expect that the resulting spectrum will signifi- on the basis of freely falling observers. In our present work,
cantly differ from the thermal one. As we mentioned belowwe generalized the choice of the reference frame with respect
Eq. (2.10, there is a lower bound ofd?(x). The possible to which we set the nonstandard dispersion relation. Extend-
smallest value of2?(x) is 1—o2, which is realized when ing the analytic method developed by Corlg], we have
v(x)=0. Hence, we find (x)~0 nearx=0 in this limiting ~ shown that the thermal spectrum of radiation from a black
case. Recall that(x) was the coordinate velocity of the hole is almost reproduced as long as the modification of the
integration curves ofl. Hence, a vanishing(x) means that special reference frame is not too extreme. In this analysis,
we adopt a reference frame corresponding to the static ofve assumedv~ «, wherew is the frequency of the emitted
servers. photon observed at the spatial infinity ards the surface
Here, we present the results of our numerical calculationgravity of the black hole. We have also obtained a strong
which shows that the deviatiofN/N can be large for some Stggestion that the dgvuémon from the exact thermal spec-
cases. Since we also want to demonstrate that a drasfifum appears fron®(«“/kp), wherek, is the typical wave

change of spectrum can occur just as a consequence of thgmber corresponding to the modification of the dispersion

change of the special reference frame, we vary only the func'€'ation. This speculation has been confirmed numerically.
: Of course, we should not stress this small deviation from

Ec()% Ts():()e \tNSrlmccm;aZ:e:g?gr:nlfgéze.%ﬁ(-ghew;nggsellmﬁg the Hawking spectrum. In the ordinary model with the Lor-
v P ged. ' entz invariant dispersion relation, the thermal radiation at

the same form that is given in E.6. As for (%), we temperaturd for a static observer is observed as the thermal

-0.14

-0.16
Qo

K/(kOQO)

FIG. 4. A plot of SN/N as a function of 1}, for the model
given by Eq.(5.6).

adopt radiation at the temperatufe/(1—8)/(1+ 8)]T for an ob-
—5—(1/2) server moving with radial velocity. This argument holds in
y=——, (5.9 general whatever the source of the outward pointing radia-
p v tion is because it is a direct consequencavefk. However,

_ . in the present modified model, Lorentz invariance is violated
with pe[0,1). p=0 corresponds to the original model asso-rom the beginning. We can easily see that{(k)/o is also
ciated with the freely fzallmg observers, and=1 COITe- ¢ 5 ,2/k2) Hence, even if the exact Hawking spectrum is
sponds to the case withy=0. With this choice ofy(X), the  onr0duced for one specific free-falling observer, it cannot be
following two conditions are satisfied. One is thdk) stays g for the other free-falling observers.
negative for all positivex. The other is thatQZ=1. We On the other hand, the result that we obtained analytically
calculated the deviatiodN/N for various values op, and  also suggests that the deviation from the thermal spectrum
the results are shown in Fig. 4. As was expected, the devigan pe large if we consider some extreme situations. With
tion becomes large for smafd§. This plot raises the inter- the aid of numerical methods, we also examined one such
esting speculation thal might converge to 0 in th€)  extreme situation. We considered a sequence of different
—0 limit. Although we have not confirmed it yet, it is very special reference frames which ranges from the case in
likely that this is the case because the situation in this limit isvhich the observers associated with the special reference
very similar to the case in which we set a static mirror sur-frame are freely falling into a black hole to the case in which
rounding the event horizon of the black hole. A calculationthey are kept from falling into it. We found that, in the latter
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FIG. 5. The integration contour satisfying the boundary condi-

tion that the wave function decay exponentially fast inside the event

horizon when terms of higher ordef can be neglected. In the

directions indicated by the hatched regiogs) increases expo-
nentially. Solid circles represent the saddle poists and the
dashed line represents the branch cut.

limiting case, the spectrum of radiation can significantly dif-
fer from the thermal one, even thougt?/k3 is smalll. It will

PHYSICAL REVIEW D61 064004

) K k4
|S|<Smax: min| KoQo,KoQo\/ —2.Ko Qo \/ 75—
Kq QO

(A1)

Thus we modify the contour not to run into infinity, but to
terminate at points contained in the regits <s,. as
shown in Fig. 1.

Because of this modification of the contour of integration,
the boundary terms in E@4.7) no longer vanish. However,

since z:/;(smax) is exponentially small at both end points, we
can expect that the correction due to the boundary terms is
negligibly small.

APPENDIX B: EVALUATION OF INTEGRATION
ABOUT SADDLE POINTS

In this appendix, we explain the details of how to evaluate
Eq. (4.28. We first consider the exponentf(s,). We
evaluate it as an expansion arowss; like

1
xf(s,.)=xfo(s0) + fo(So) (XS1) + 5 f5(So) (XS24

be important to study the physical meaning of this result. But

since the central issue of this paper is to develop an analytic
treatment of our new model, we have not performed detailed

numerical studies yet. We will return to this issue in future
publications.
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APPENDIX A: THE CONTOUR MODIFIED
FOR THE CORRECTION TERM

In this appendix, we explain how we chose the contour of

integrationC in Eqg. (4.17) in more detail. As shown in Ref.
[6], the contourC in Fig. 5 satisfies the condition that the

wave function exponentially decrease inside the horizon

whenW® and higher order corrections are neglected. When

W) are taken into account, the contour of integration needs

to be modified. The correctiow™) contains terms propor-
tional to s°, while terms of the highest power in the main
componentW(® are proportional tes®. As a result,| W)
becomes larger thafw(®)| when|s| becomes large. Hence,
from the validity of the approximation, the contour of inte-

gration must be modified to be contained in the region that

satisfies the conditiopV(®|>|W@)|. By comparing the ab-
solute value of the® terms inW(® with that of thes® terms

in W, the allowed region for the contour to move is found
to be restricted by

given by
O ity S
XM)=7{ V7] |37 10%" 1027 5%
2250192 52) 4 g3
Y R R 2
w
- 1+i; l0g(koQ oV —2kX)
P A I i B P
4 IK 2 IK
+E° 9+i2 2 9-15 2
4 IK 4 K
~ LW
85| 5-3i — +0(68%,€%). (B3)

Next, we evaluatd”(s,). Again, we expand it arounsl
=5p as
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1, . 1 we have only to retain the ternfg' (s)/x? and 7' (so)/x>.
7 F(s0)=1fo(s0) + 2 fo(So)(xS) -+ - Fi(So) Substituting XSy, ~ — (—&%/2) 2 into these two terms,
[xf"(s,:)]2/[xf"(s,) ] is evaluated as
1
+ 2 11 (So) (xsp) -+ (B4) [xf"(s,)]2 1 [-&( 15. 15,
mzz T 1+Z5O_Z51+1552

The power indices with respect ®of the respective terms
in the first line on the right-hand side are 0,1. . Those in +0(€%,6%). (B8)
the second line are 1,2... Hence the expression for @) . 5
f”(s,)/x which is correct up t@(46) is given by As for xf%(s,)/[xf"(s,)]% similarly we have

1 1 1 1 1 1. 1 s 1.,
15~ TS0+ 22 15 (S0) (xsp) + = Fi(s0). (BS) BT W(s0)= 316" (s0)+ 52 16 (s0) (xs1) ++ - 57 47 (s0)

As for this factor, it is not necessary to find the second order
correction ine. Hence we can use truncated expressions for
XSy and xs; obtained by discarding terms @(e) in Eqgs. ) ) _ i _
(4.26) and (4.27). Substituting these into EGB5), we find The order of respective terms in the first line is

+ 5 (s)(X8y) 4 (B9)

% P

O(e*),0(€*5),..., and that in the second line is
1 22 3. 3. 0O(€%6),0(€%6%),... . This time, only the term that we must
L F(s)=2\—— |1+ 7 00— ;01130 keep isf{*)(sy)/x%. Therefore, we find
- (s, ) =
—& w 3. 3. . X o g N Ny 2 52
N 1+i—) 1433, 55,063, T3V 2 (B B+ 43)+0(&, 5. (810
2 K 2 2
Substituting all the above results into Ed..28), finally
+O(62’52)}_ (B6) we obtain Eq.(4.56).

APPENDIX C: WAVE PROPAGATION

Finally, we evaluate the second and third terms in the IN THE MODIEIED MODEL

square brackets on the right-hand side of &g28. As be-

ore, we writef™ (s, )/x as In this appendix, by solving Eq4.48 in a simple model,

f itef” Ix? hi dix, b Ivi 8 i impl del
1 1 1 we show that/, ¢, which becomes™® ¥ atx— o, develops
2f"(s0)= 2 f(s0)+ —gf( ((s)(xsp) ++ 5 1 (s0) into a superposition of two modes given byexi *dx k%)

X (x")] and by ~exdi*dxk®(x")] in the region of smalk.
1., Here, we assumék, <1 as the condition that the expan-
+ X—zf(l J(so)(xsp) ++. (B7)  sion with respect taSk. ¢ be consistent.
Formally, Eq.(4.48 can be integrated easily to obtain
We evaluate the order of each term on the right-hand side in
this equation. Then, we find that the respective terms in the g (x)= j dx J dx’
first line are ofO(€2),0(€38),0(€35%),0(€35°%),... . Those s 2(x)
in the second line are @(€?5),0(€6%), O(ezb\g) .. One
may notice that the order in the first line does not change Xex;{ f
regularly. This is because the second term in the last line in
Eqg. (4.19 vanishes if it is differentiated more than 4 times.
Since the leading term ifi'(s, )/x is O(e'), we can neglect where we introduced a constarp, for definiteness, al-
the terms ofO(€%) or higher in Eq.(B7). Furthermore, we though the expressiofC1) is independent ok,. The inte-
do not have to keep the terms©f{ 6°) or higher. Therefore, gration of 5k,  becomes
|

fxék Ndx' = fxd f X" " 'fx,—zw dx”’
" +S(X) X == . x' dx"expg —i 1-v ///) +(X) —I Xol_UZ(X//) X
S 'fx 20 d’fxd’ 'fX' 20 x| H. (¢ 1fxd’H N, (C2
=720 T Ty OX ) )L AN T ey O [ HA (O + 50 | dxHL ), (€2

where we used an integration by parts for the second equality. Fhus) is expressed as

2(X// ”)H+(X’)a (Cl)

dx
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¢+S(x)~exp( —i kag‘);(x')dx')exp(ifxak+s(x')dx’)
~ex[<ika(fg(x’)dx’)

i X
1+%de H,(x")

X
1+ij 5k+s(x’)dx’)

X
exp( —if k@(x")dx’

iei(pfxd ! 'J'X' 2o dx” |H, (x' p( 'ka(o) ")ydx’ C3
ExxeXIXOTZ(X”)X +(X") |ex [ Ce(x)dx" |, (C3
|

where ¢ is a real constant. In the last step, EG.2) and 4y, o 2(—2+7y)
_ — 2y = 1K(0) _|(0) N h(v)=— i

20/(1=0v7) .k;s ,k(+o§ were used. Let us denote the co (v) A7) (1t 70° v T (1h 79
efficient of expi[*dx’ KZY(x')] on the right-hand side bg. )
As the probability for the waves to be scattered inward is 2(3—v0) v (=8+43yy) (¥
proportional to|3|?, it will be manifest that this scattering 1+9)°% 0 2(1+7y9)° \w
probability is not generally zero. 3

As a simple example, let us consider the case that the (2=70) (v c9)
spacetime is flat, i.eg =0, butt-constant hypersurfaces can 2(1+yp) \w) -~

fluctuate randomly. We assume(x) :=y(X) — yo<<1, where . .
vo is an x-independent constant. Furthermore, we assumdhe second term in the square brackets in @) does not
that fluctuations exist just in the interval betwegpr A and ~ depend orx, and the contribution tg from this term can be

Xo+A. We assume that the fluctuations obey the Gaussiahedlected. o _ _
random statistics characterized by Thus we find that the coefficieyft evaluated in the region

X<Xg—A is given by

n(v):=| dy eY{y,(X) y1(X+Vy)), c4 ie'? x
= [ dyeHmonay), ©4 L ORI
where we used ) to represent the ensemble average. Then,
the Fourier transformation of(x), % ex ifx' 2;’ —dx" |H, (x")
1 Xo 1-v4(x")
=5 | dxd 0, () e frars Wt
~ 20 )y Xk_gf vh(v)yi(v)
satisfies .
21w L
1 xex;n(sz(x’—xo)>e X
P = 5w dv=v).  (CO | 7
_iel¢w3fd (6 2sif(o—v)A] i
By settingg =0, in Egs.(2.9) and(2.10, we find T2k vh(»)7:(6) @—» °
1 (C10
X)=7y(X), =——=+v1—9%(X). C
v () =7(x) Q(x) 7 (x) (€ where we introduced:=2w/(1— y3). Then, with the aid of

Eq. (C6), {|8|?) is evaluated as

i (@—v)AT\?
s

Using these equations, we obtain

.JXZ ( 1 1 )d ,
exp | — X
o \I=72(}) 1- 93

6

(1612~ 5 | avinc?

H.(x)

(C11)

4yge %0 () If A is sufficiently large, we can use the approximation

H +w4J’d h(v)e "
=HoT 77 14 v)e T N1 5
kg (I=v0)(1+ 9> v sif(@—1)A] )2 )
XF1(1) +0(4D), (8 TGy | TmArE. (G2
with Therefore, finally, we obtain
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) NwGA h 20 \|? [ 2w ._1 . ' B B
= 2kg 1—%) " 1—%2,) L=51[(miotvd)¢] [(iotvd) ¢]=(3xh) (k)
2wA 73 2w 1 (1 1 ) - 1 (1 1 _) i
TR Tt 1—73)' (C13 oz | i | Eet | G o | de ).

This  expression is essentially proportional to (D2)
(w/ko)*(wA). Since the scattering probability is also pro- This Lagrangiarc is invariant under a global phase transfor-
portional towA, the effect can be large for largein prin- 5400 of ¢ given by p—e* ¢ andb—e . By using a

ciple. However, i4“ reality this effect is suppressed because Gfjyia| extension of the standard technique to derive the No-
the factor @/ky)”. If Ky is taken to be a Planck scale, the giher current. we can show that

factor (w/ky)* becomes extremely small, and then even the
waves coming from the cosmological distance scale will not . . L oL oL
be affected significantly to induce some observable effects } = ™ () 1| x FE) s W‘ax(ﬁ
unless extraordinary is concerned. X X

APPENDIX D: DERIVATION _[¢H$]) (D3)

OF THE CONSERVED CURRENT ) ) )
becomes a conserved current which satisfigs=0, al-

~Here we derive the conserved currggiven in Eq.(D3).  though the present Lagrangian does not have the standard
First we note that ODE31) can be derived from the varia- form in the sense that |t Contaimgqs_ Here we adopted the

tional principle of the action rule that the differentiation with respect ¥ or ¢ is per-

formed as if¢ and ¢ are independent.
Swzf dx 2, (D1) Applying the formula(D3) to the present case with the
substitution ¢=exgif*k(X)dx]=exdi[*(kg*+ikg)dx], we
with obtain Eq.(D3).
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