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Data analysis of gravitational-wave signals from spinning neutron stars. III. Detection statistics
and computational requirements
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We develop the analytic and numerical tools for data analysis of the continuous gravitational-wave signals
from spinning neutron stars for ground-based laser interferometric detectors. The statistical data analysis
method that we investigate is maximum likelihood detection which for the case of Gaussian noise reduces to
matched filtering. We study in detail the statistical properties of the optimum functional that needs to be
calculated in order to detect the gravitational-wave signal and estimate its parameters. We find it particularly
useful to divide the parameter space intoelementary cellssuch that the values of the optimal functional are
statistically independent in different cells. We derive formulas for false alarm and detection probabilities both
for the optimal and the suboptimal filters. We assess the computational requirements needed to do the signal
search. We compare a number of criteria to build sufficiently accurate templates for our data analysis scheme.
We verify the validity of our concepts and formulas by means of the Monte Carlo simulations. We present
algorithms by which one can estimate the parameters of the continuous signals accurately. We find, confirming
earlier work of other authors, that given a 100 Gflops computational power an all-sky search for observation
time of 7 days and directed search for observation time of 120 days are possible whereas an all-sky search for
120 days of observation time is computationally prohibitive.

PACS number~s!: 95.55.Ym, 04.80.Nn, 95.75.Pq, 97.60.Gb
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I. INTRODUCTION AND SUMMARY

This paper is a continuation of the study of data analy
for one of the primary sources of gravitational waves
long-arm ground-based laser interferometers currently un
construction@1–4#: spinning neutron stars. In the first pap
of this series @5# ~paper I! we have introduced a two
component model of the gravitational-wave signal from
spinning neutron star and we have derived the data proc
ing scheme, based on the principle of maximum likeliho
to detect the signal and estimate its parameters. In the se
paper@6# ~paper II! we have studied in detail accuracies
estimation of the parameters achievable with the propo
data analysis method. In this work which is paper III of t
series we find that the two-component model of the sig
introduced in paper I can be generalized in a straightforw
way to theN-component signal. The main purpose of th
paper is to study the statistical properties of the optimal fu
tional that we need to calculate in order to detect the sig
The main idea is to approximate each frequency compon
of the signal by alinear signal by which we mean a signa
with a constant amplitude and a phase linear in the sig
parameters. We have demonstrated the validity of such
approximation in paper II by means of the Monte Ca
simulations which show that the rms errors calculated us
the linear model closely approximate those of the ex
model. The key observation is that for the linear model
detection statistics is a homogeneous random field par
etrized by the parameters of the signal. For such a field
can calculate a characteristic correlation hyperellipsoid,
volume of which is independent of the values of the para
eters. The correlation hyperellipsoid determines anelemen-
0556-2821/2000/61~6!/062001~32!/$15.00 61 0620
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tary cell in the parameter space. We find that the number
cells covering the parameter space is a key concept tha
lows the calculation of the false alarm probabilities needed
obtain thresholds for the optimum statistics in order to sea
for significant signals. We use these ideas also to calcu
the number of filters needed to do the search. We show
the concept of an elementary cell is useful in the calculat
of true rms errors of the parameter estimators that can
achieved with matched filtering. It also explains the dev
tions of true rms errors from rms errors calculated from
covariance matrix. In this paper we develop a general the
of suboptimal filters which is necessary as such filters u
ally occur in practice. Our concept of an elementary c
carries over to the case of suboptimal filtering in a straig
forward manner. The analytic tools developed in this wo
lead to independent criteria for construction of accurate te
plates to do the signal search. We demonstrate that th
criteria give a consistent picture of what a suitable templ
should be. In an Appendix to this paper we indicate how
parametrize the templates in order that they realize an
proximately linear model so that the analytic formulas dev
oped here can directly be used.

The plan of the paper is as follows. In Sec. II we intr
duce anN-component model of the gravitational-wave sign
from a spinning neutron star. In Sec. III we study in det
the detection statistics for theN-component model. We show
that the detection statistics constitutes a certain random fi
We derive the probabilities of false alarm and the probab
ties of detection. We present two approaches to the calc
tion of the probability of false alarm: one is based on div
ing the parameter space into elementary cells determine
the correlation function of the detection statistics and
©2000 The American Physical Society01-1
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other is based on the geometry of random fields. In Sec
we carry out detailed calculations of the number of cells
the all-sky and directed searches. In Sec. V we estimate
number of filters needed to calculate the detection statis
and we obtain the computational requirements needed to
form the searches so that the data processing speed is
parable to data acquisition rate. We compare our calculat
with the results of Bradyet al. @7# obtained before by a
different approach. In Sec. VI we present the theory of s
optimal filters and consider their use in the detection of c
tinuous signals. In Sec. VII we propose a detailed algorit
to estimate accurately the parameters of the signal and
perform the Monte Carlo simulations to determine its perf
mance. In Appendix A we give analytic formulas for som
coefficients in the detection statistics. In Appendix B w
present analytic formulas for the components of the Fis
matrix for the approximate, linear model of the gravitation
wave signal from a spinning neutron star. In Appendix C
give a worked example of the application of our theory
suboptimal filtering derived in Sec. VI. In Appendix D w
study the transformation of the parameters of the signal
set of parameters such that the model is approximately
ear.

II. THE N-COMPONENT MODEL
OF THE GRAVITATIONAL-WAVE SIGNAL

FROM A SPINNING NEUTRON STAR

In paper I we have introduced a two-component mode
the gravitational-wave signal from a spinning neutron s
The model describes the quadrupole gravitational-w
emission from a freely precessing axisymmetric star. Eac
the components of the model is a narrow-band signal wh
frequency band of one component is centered around a
quency f o which is the sum of the spin frequency and t
precession frequency, and the frequency band of the se
component is centered around 2f o . A special case of the
above signal consisting of one component only describes
quadrupole gravitational wave from a triaxial ellipsoid rota
ing about one of its principal axes. In this case the narro
band signal is centered around twice the spin frequenc
the star. When the star is nonaxisymmetric and precesses
gravitational-wave signal consists of more than two com
nents. For the case of triaxial ellipsoid and small wob
06200
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angle there is a third component with frequency equal
twice the spin frequency of the star@8#. There are other
physical mechanisms generating gravitational waves
they can also lead to signals consisting of many compone
Recently two new mechanisms have been studied. One is
r-mode instability of spinning neutron stars@9–11# that
yields a spectrum of gravitational-wave frequencies with
dominant one of 4/3 of the star spin. The other is a tempe
ture asymmetry in the interior of the neutron star that
misaligned from the spin axis@12#. This can explain that
most of the rapidly accreting and weakly magnetic neut
stars appear to be rotating at approximately the same
quency due to the balance between the angular momen
accreted by the star and lost to gravitational radiation.

As more than two-component continuous gravitation
wave signals are possible in this paper we shall introduc
signal consisting ofN narrow-band components centere
aroundN different frequencies. More precisely we shall a
sume that over the bandwidth of each component the spe
density of the detector’s noise is nearly constant and that
bandwidths of the components do not overlap. Analytic f
mulas in this paper will be given for theN-component signal.
However in numerical calculations and simulations we sh
restrict ourselves to a one-component model.

We propose the following model of theN-component sig-
nal:

h~ t !5(
l 51

N

hl~ t !, hl~ t !5(
i 51

4

Ali hli ~ t !, l 51, . . . ,N,

~1!

whereAli are 4N amplitudes assumed to be constant. Tak
the upper bound of the modulus of the time derivative of
star’s spin frequencyf to be f /t, wheret is the age of the
star, the typical amplitude will change by a fraction ofTo /t
over the observation timeTo , and this is very small even fo
the youngest neutron stars. The amplitudesAli depend on the
physical mechanism generating gravitational waves, as w
as on the polarization angle and the initial phase of the w
@cf. Eqs. ~28!–~35! of paper I#. The above structure of the
N-component signal is motivated by the form of the tw
component signal considered in paper I@cf. Eq.~27! of paper
I#. The time dependent functionshli have the form
hl1~ t !5a~ t !cosF l~ t !, hl2~ t !5b~ t !cosF l~ t !,

l 51, . . . ,N,

hl3~ t !5a~ t !sinF l~ t !, hl4~ t !5b~ t !sinF l~ t !,

~2!

where the functionsa andb are given by

a~ t !5
1

16
sin 2g~32cos 2l!~32cos 2d!cos@2~a2f r2V r t !#2

1

4
cos 2g sinl~32cos 2d!sin@2~a2f r2V r t !#

1
1

4
sin 2g sin 2l sin 2d cos@a2f r2V r t#2

1

2
cos 2g cosl sin 2d sin@a2f r2V r t#1

3

4
sin 2g cos2l cos2d, ~3!
1-2



DATA ANALYSIS OF . . . . III. . . . PHYSICAL REVIEW D 61 062001
b~ t !5cos 2g sinl sind cos@2~a2f r2V r t !#1
1

4
sin 2g~32cos 2l!sind sin@2~a2f r2V r t !#

1cos 2g cosl cosd cos@a2f r2V r t#1
1

2
sin 2g sin 2l cosd sin@a2f r2V r t#. ~4!
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The functionsa and b are the amplitude modulation func
tions. They depend on the position of the source in the
~right ascensiona and declinationd of the source!, the po-
sition of the detector on the Earth~detector’s latitudel), the
angle g describing orientation of the detector’s arms w
respect to local geographical directions~see Sec. II A of pa-
per I for the definition ofg), and the phasef r determined by
the position of the Earth in its diurnal motion at the beg
ning of observation.V r is the rotational angular velocity o
the Earth. Thus the functionsa andb are independent of the
physical mechanisms generating gravitational waves. For
las ~3! and ~4! are derived in Sec. II A of paper I.

The phaseF l of the l th component is given by

F l~ t !52p(
k50

s1

f l

~k! tk11

~k11!!
1

2p

c
n0•rES~ t !(

k50

s2

f l

~k! tk

k!

1
2p

c
n0•rE~ t !(

k50

s3

f l

~k! tk

k!
, ~5!

where rES is the vector joining the solar system barycen
~SSB! with the center of the Earth andrE joins the center of
the Earth with the detector,n0 is the constant unit vector in
the direction from the SSB to the neutron star. We assu
that thel th component is a narrow-band signal around so

frequency f l

(0)
which we define as instantaneous frequen

evaluated at the SSB att50; f l

(k)
(k51,2, . . . ) is thekth

time derivative of the instantaneous frequency of thel th
component at the SSB evaluated att50. To obtain formula
~5! we model the frequency of each component in the r
frame of the neutron star by a Taylor series. In the Tay
expansion we include only terms which over the observa
time contribute more than 1/4 of a cycle to the phase of
signal~cf. Appendix A in paper II and Sec. VI C below! and
consequently the various sums in Eq.~5! may terminate dif-
ferently. For the detailed derivation of the phase model
Sec. II B and Appendix A of paper I.

III. OPTIMAL FILTERING FOR THE N COMPONENT
SIGNAL

A. Maximum likelihood detection

Maximum likelihood detection and parameter estimat
method applied in paper I to the two-component signal g
eralizes in a straightforward manner to theN-component sig-
nal.

We assume that the noisen in the detector is an additive
stationary, Gaussian, and zero-mean continuous random
cess. Then the datax, when the signalh is present, can be
06200
y

-

u-

r

e
e

y

st
r
n
e

e

-

ro-

written asx(t)5n(t)1h(t). The logarithm of the likelihood
function equals lnL5(xuh)21

2(huh), where the scalar produc
(•u•) is defined by

~h1uh2!ª4RE
0

` h̃1~ f !h̃2* ~ f !

Sh~ f !
d f . ~6!

In Eq. ~6! ˜ denotes the Fourier transform,* is complex
conjugation, andSh is the one-sidedspectral density of the
detector’s noise. As by our assumption the bandwidths of
components of the signal are disjoint we have (hl uhl 8)'0
for lÞ l 8, and the log likelihood ratio can be written as th
sum of the log likelihood ratios for each individual comp
nent:

ln L'(
l 51

N F ~xuhl !2
1

2
~hl uhl !G . ~7!

Thus we can consider theN-component signal asN indepen-
dent signals. Since we assume that over the bandwidth
each component of the signal the spectral densitySh( f ) is
nearly constant and equal toSh( f l), wheref l is the frequency
of the signalhl measured at the SSB att50, the scalar
products in Eq.~7! can be approximated by

~xuhl !'
2

Sh~ f l !
E

2To/2

To/2

x~ t !hl~ t !dt,

~8!

~hl uhl !'
2

Sh~ f l !
E

2To/2

To/2

@hl~ t !#2dt,

whereTo is the observation time, and the observation int
val is @2To/2,To/2#.

It is useful to introduce the following notation:

^x&ª
1

To
E

2To/2

To/2

x~ t !dt. ~9!

Using the above notation and Eq.~8! the log likelihood ratio
from Eq. ~7! can be written as

ln L'(
l 51

N
2To

Sh~ f l !
S ^xhl&2

1

2
^hl

2& D . ~10!

Proceeding along the line of argument of paper I@cf. Sec.
III A of paper I# we find the explicit analytic formulas for the
maximum likelihood estimatorsÂli of the amplitudesAli :
1-3
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Âl1'2
B^xhl1&2C^xhl2&

D
,

Âl2'2
A^xhl2&2C^xhl1&

D
,

Âl3'2
B^xhl3&2C^xhl4&

D
, ~11!

Âl4'2
A^xhl4&2C^xhl3&

D
,

l 51, . . . ,N,

where we have defined

Aª^a2&, Bª^b2&, Cª^ab&, DªAB2C2,
~12!

and we have assumed thatDÞ0. To obtain Eqs.~11! we
have used the following approximate relations:

^hl1hl3&'^hl1hl4&'^hl2hl3&'^hl2hl4&'0,

^hl1
2 &'^hl3

2 &'
1

2
A,

^hl2
2 &'^hl4

2 &'
1

2
B, ~13!

^hl1hl2&'^hl3hl4&'
1

2
C,

l 51, . . . ,N.

One can show that when the observation timeTo is an
integer multiple of one sidereal day the functionC vanishes.
To simplify the formulas from now on we assume thatTo is
an integer multiple of one sidereal day~in Appendix A we
have given the explicit analytic expressions for the functio
A and B in this case!. In the real data analysis for lon
stretches of data of the order of months such a choice
observation time is reasonable. Then Eqs.~11! take the form
~we assume thatAÞ0 andBÞ0)

Âl1'2
^xhl1&

A
, Âl2'2

^xhl2&
B

, Âl3'2
^xhl3&

A
,

~14!

Âl4'2
^xhl4&

B
, l 51, . . . ,N.

The reduced log likelihood functionF is the log likeli-
hood function where amplitude parametersAli were replaced
by their estimatorsÂl1. By virtue of Eqs.~13! and~14! from
Eq. ~10! one gets
06200
s

of

F'(
l 51

N
2To

Sh~ f l !
F ^xhl1&

21^xhl3&
2

A
1

^xhl2&
21^xhl4&

2

B G .
~15!

The maximum likelihood estimators of the parameters
the signal are obtained in two steps. First, the estimator
the frequency, the spindown parameters, and the anglea
and d are obtained by maximizing the functionalF with
respect to these parameters. Secondly the estimators o
amplitudesAli are calculated from the analytic formulas~11!
with the correlationŝ xhli & evaluated for the values of th
parameters obtained in the first step. Thus filtering for
N-component signal requires 4N linear filters. The ampli-
tudesAli of the signal depend on the physical mechanis
generating gravitational waves. If we know these mec
nisms and consequently we know the dependence ofAli on a
number of parameters we can estimate these parameters
the estimators of the amplitudes by least-squares method
shall consider this problem in a future paper.

Next we shall study the statistical properties of the fun
tional F. The probability density functions~pdfs! of F when
the signal is absent or present can be obtained in a sim
manner as in Sec. III B of paper I for the two-compone
signal.

Let us suppose that filtershli are known functions of time,

i.e., the phase parametersf l

(k)
, a, d are known, and let us

define the following random variables:

xliª^xhli &, l 51, . . . ,N, i 51, . . . ,4. ~16!

Sincex is a Gaussian random process the random varia
xli being linear in x are also Gaussian. Let E0$xli % and
E1$xli % be respectively the means ofxli when the signal is
absent and when the signal is present. One easily gets

E0$xli %50, i 51, . . . ,4, l 51, . . . ,N, ~17!

E1$xl1%5
1

2
AAl1 , E1$xl2%5

1

2
BAl2 ,

E1$xl3%5
1

2
AAl3 , E1$xl4%5

1

2
BAl4 , l 51, . . . ,N.

~18!

Since here we assume that the observation time is an int
multiple of one sidereal day it immediately follows from
Eqs. ~13! that the Gaussian random variablesxli are uncor-
related and their variances are given by

Var$xli %5
Sh~ f l !A

4To
, i 51,3,

Var$xli %5
Sh~ f l !B

4To
, i 52,4,

l 51, . . . ,N. ~19!

The variances are the same irrespective of whether the si
is absent or present. We introduce new rescaled varia
zli :
1-4
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zli 52A To

Sh~ f l !A
xli , i 51,3,

zli 52A To

Sh~ f l !B
xli , i 52,4,

l 51, . . . ,N, ~20!

so thatzli have a unit variance. By means of Eqs.~17! and
~18! it is easy to show that

E0$zli %50, i 51, . . . ,4, l 51, . . . ,N, ~21!

and

ml1ªE1$zl1%5A ToA

Sh~ f l !
Al1 ,

ml2ªE1$zl2%5A ToB

Sh~ f l !
Al2 ,

ml3ªE1$zl3%5A ToA

Sh~ f l !
Al3 ,

ml4ªE1$zl4%5A ToB

Sh~ f l !
Al4 ,

l 51, . . . ,N. ~22!

The statisticsF from Eq. ~15! can be expressed in terms
the variableszli as

F'
1

2 (
l 51

N

(
i 51

4

zli
2 . ~23!

The pdfs ofF both when the signal is absent and pres
are known. When the signal is absent 2F has ax2 distribu-
tion with 4N degrees of freedom and when the signal
present it has a noncentralx2 distribution with 4N degrees of
freedom and noncentrality parameterl5( l 51

N ( i 51
4 mli

2 . We
find that the noncentrality parameter is exactly equal to
optimal signal-to-noise ratio ddefined as

dªA~huh!. ~24!

This is the maximum signal-to-noise ratio that can
achieved for a signal in additive noise with thelinear filter
@13#. This fact does not depend on the statistics of the no

Consequently the pdfsp0 and p1 when respectively the
signal is absent and present are given by

p0~F!5
F n/221

~n/221!!
exp~2F!, ~25!

p1~d,F!5
~2F!(n/221)/2

dn/221
I n/221~dA2F!

3expS 2F2
1

2
d2D , ~26!

where n54N is the number of degrees of freedom ofx2

distributions andI n/221 is the modified Bessel function of th
first kind and ordern/221. The false alarm probabilityPF is
the probability thatF exceeds a certain thresholdFo when
there is no signal. In our case we have
06200
t

e

e.

PF~Fo!ªE
Fo

`

p0~F!dF5exp~2Fo! (
k50

n/221 Fo
k

k!
. ~27!

The probability of detectionPD is the probability thatF
exceeds the thresholdFo when the signal-to-noise ratio i
equal tod:

PD~d,Fo!ªE
Fo

`

p1~d,F!dF. ~28!

The integral in the above formula cannot be evaluated
terms of known special functions. We see that when
noise in the detector is Gaussian and the phase param
are known the probability of detection of the signal depen
on a single quantity: the optimal signal-to-noise ratiod.

B. False alarm probability

Our next step is to study the statistical properties of
functionalF when the parameters of the phase of the sig
are unknown. We shall first consider the case when the
nal is absent in the data stream. Letj be the vector consisting
of all phase parameters. Then the statisticsF(j) given by Eq.
~15! is a certain generalized multiparameter random proc
called therandom field. If the vectorj is one dimensional the
random field is simply a random process. A comprehens
study of the properties of the random fields can be found
the monograph@14#. For random fields we can define th
meanm and the autocovariance functionC just in the same
way as we define such functions for random processes:

m~j!ªE$F~j!%, ~29!

C~j,j8!ªE$@F~j!2m~j!#@F~j8!2m~j8!#%. ~30!

We say that the random fieldF is homogeneousif its meanm
is constant and the autocovariance functionC depends only
on the differencej2j8. The homogeneous random field
defined above are also calledsecond orderor wide-sense
homogeneousfields.

In a statistical signal search we need to calculate the f
alarm probability, i.e., the probability that our statisticsF
crosses a given threshold if the signal is absent in the dat
paper I for the case of a homogeneous fieldF we proposed
the following approach. We divide the space of the pha
parametersj into elementary cellswhich size is determined
by the volume of thecharacteristic correlation hypersurface
of the random fieldF. The correlation hypersurface is de
fined by the requirement that the correlationC equals half of
the maximum value ofC. Assuming thatC attains its maxi-
mum value whenj2j850 the equation of the characterist
correlation hypersurface reads

C~t!5
1

2
C~0!, ~31!

where we have introducedtªj2j8. Let us expand the left-
hand side of Eq.~31! aroundt50 up to terms of second
order int. We arrive at the equation
1-5
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(
i , j 51

M

Gi j t it j51, ~32!

where M is the dimension of the parameter space and
matrix G is defined as follows:

Gi jª2
1

C~0!

]2C~t!

]t i]t j
U

t50

. ~33!

The above equation defines anM-dimensional hyperellipsoid
which we take as an approximation to the characteristic c
relation hypersurface of our random field and we call
correlation hyperellipsoid. This approximation is helpful in
establishing upper limit estimates of the number of elem
tary cells in the parameter space. TheM-dimensional Euclid-
ean volumeVcell of the hyperellipsoid defined by Eq.~32!
equals

Vcell5
pM /2

G~M /211!AdetG
, ~34!

whereG denotes the Gamma function. We estimate the nu
ber Nc of elementary cells by dividing the total Euclidea
volume Vtotal of the parameter space by the volumeVcell of
the correlation hyperellipsoid, i.e. we have

Nc5
Vtotal

Vcell
. ~35!

We approximate the probability distribution ofF(j) in
each cell by probabilityp0(F) when the parameters ar
known @in our case by probability given by Eq.~25!#. The
values of the statisticsF in each cell can be considered
independent random variables. The probability thatF does
not exceed the thresholdFo in a given cell is 12PF(Fo),
wherePF(Fo) is given by Eq.~27!. Consequently the prob
ability thatF does not exceed the thresholdFo in all the Nc

cells is @12PF(Fo)#Nc. The probabilityPF
T that F exceeds

Fo in one or morecell is thus given by

PF
T~Fo!512@12PF~Fo!#Nc. ~36!

This is the false alarm probability when the phase parame
are unknown. The expected number of false alarmsNF is
given by

NF5NcPF~Fo!. ~37!

By means of Eqs.~27! and ~35!, Eq. ~37! can be written as

NF5
Vtotal

Vcell
exp~2Fo! (

k50

n/221 F o
k

k!
. ~38!

Using Eq.~37! we can express the false alarm probabil
PF

T from Eq. ~36! in terms of the expected number of fals
alarms. Using limn→`(11x/n)n5exp(x) we have that, for
large number of cells,

PF
T~Fo!'12exp~2NF!. ~39!
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When the expected number of false alarms is small (NF

!1) we havePF
T'NF .

A related approach to calculate the false alarm probab
has already been developed for the case of coalescing b
ries by Dhurandhar and Sathyaprakash@15#. Our formula for
the number of cells is a special case~when the matrixG is
constant! of the geometrical formula proposed by Owen@16#.

Another approach to calculate the false alarm probabi
can be found in the monograph@17#. Namely one can use th
theory of level crossing by random processes. A classic
position of this theory for the case of a random process,
for a one-dimensional random field, can be found in R
@18#. The case ofM-dimensional random fields is treated
@14# and important recent contributions are contained in R
@19#. For a random processn(t) it is clear how to define an
upcrossingof the levelu. We say thatn has an upcrossing o
u at to if there existse.0 such thatn(t)<u in the interval
(to2e,to), andn(t)>u in (to ,to1e). Then under suitable
regularity conditions of the random process involving diffe
entiability of the process and the existence of its appropr
moments one can calculate the mean number of upcross
per unit parameter interval@in the one-dimensional case th
parameter is usually the timet andn(t) is a time series#.

For the case of anM-dimensional random field the situa
tion is more complicated. We need to count somehow
number of times a random field crosses a fixed hypersurf
Let F(j) be an M-dimensional homogeneous real-valu
random field where parametersj5(j1 , . . . ,jM) belong to
M-dimensional Euclidean spaceRM and letC be a compact
subset ofRM. We define theexcursion setof F(j) insideC
above the levelFo as

AF~Fo ,C!ª$jPC:F~j!>Fo%. ~40!

It was found@14# that when the excursion set does not inte
sect the boundary of the setC then a suitable analogue of th
mean number of level crossings is the expectation value
the Euler characteristicx of the setAF . For simplicity we
shall denotex@AF(Fo ,C)# by xFo

. It turns out that using the
Morse theory the expectation value of the Euler characte
tic of AF can be given in terms of certain multidimension
integrals~see Ref.@14#, Theorem 5.2.1!. Closed form formu-
las were obtained for homogeneousM-dimensional Gaussian
fields and two-dimensionalx2 fields ~see @14#, Theorems
5.3.1 and 7.1.2!. Recently Worsley@19# obtained explicit for-
mulas forM-dimensional homogeneousx2 field. We quote
here the most general results and give a few special cas

We say that U(j), jPF M, is a x2 field if U(j)
5( l 51

n Xl(j)2, where X1(j), . . . ,Xn(j) are independent
identically distributed, homogeneous, real-valued Gauss
random fields with zero mean and unit variance. We say
U(j) is a generalizedx2 field if the Gaussian fieldsXl(j)
are not necessarily independent.

Let 2F(j) be ax2 field and letXl(j), l 51, . . . ,n, be the
component Gaussian fields. Then under suitable regula
conditions~differentiability of the random fields and the ex
istence of appropriate moments of their distributions!
1-6
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E@xFo
#5

VAdetL

pM /2G~n/2!
Fo

(n2M )/2exp~2Fo!WM ,n~Fo!. ~41!

In Eq. ~41! V is the volume of the setC and matrixL is
defined by
a
er
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he
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06200
L i jª2
]2C~j!

]j i]j j
U

j50

, ~42!

where C is the correlation function of each Gaussian fie
Xl(j). WM ,n(Fo) is a polynomial of degreeM21 in Fo
given by
WM ,n~Fo!5
~M21!!

~22!M21 (
j 50

[( M21)/2]

(
k50

M21-2j S n21

M2122 j 2kD 2k
~2Fo! j 1k

j !k!
, ~43!
o
e ex-
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where division by factorial of a negative integer is treated
multiplication by zero and@N# denotes the greatest integ
<N. We have the following special cases:

W1,n~Fo!51,

W2,n~Fo!5Fo2
1

2
~n21!,

~44!

W3,n~Fo!5Fo
22S n2

1

2DFo1
1

4
~n21!~n22!,

W4,n~Fo!5Fo
31

3

4
~n21!2Fo

22
3

2
nFo

2
1

8
~n21!~n22!~n23!.

It has rigorously been shown that for the homogene
Gaussian random fields the probability distribution of t
Euler characteristic of the excursion set asymptotically
proaches Poisson distribution~see Ref.@14#, Theorem 6.9.3!.
It has been argued that the same holds forx2 fields. It has
also been shown forM-dimensional homogeneousx2 fields
that asymptotically the level surfaces of the local maxima
the field areM-dimensional ellipsoids. Thus for large thres
old the excursion set consists of disjoint and simply co
nected~i.e., without holes! sets. Remembering that we a
sume that the excursion set does not intersect the boun
of the parameter set, the Euler characteristic of the excur
set is simply the number of connected components of
excursion set. Thus we can expect that for ax2 random field
the expected number of level crossings by the field, i.e.
the language of signal detection theory the expected num
of false alarms, has Poisson distribution. Thus the probab
that Fmax does not cross a thresholdFo is given by
exp(2E@xFo

#) and the probability that there is at least o
level crossing~i.e., for our signal detection problem the fals
alarm probabilityPF

T) is given by

PF
T~Fo!5P~Fmax>Fo!'12exp~2E@xFo

# !. ~45!
s

s
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f
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ry
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e
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From Eqs.~39! and ~45! we see that to compare the tw
approaches presented above it is enough to compare th
pected number of false alarmsNF with E@xFo

#. It is not

difficult to see that forx2 fields G52L. Thus asymptoti-
cally ~i.e., for large thresholdsFo) using Eqs.~34!, ~38!, and
~41! we get

NF

E@xFo
#
→2M /2G~M /211!F o

2M /2 as Fo→`, ~46!

where we have used thatV from Eq. ~41! coincides with
Vtotal from Eq. ~38!.

Worsley ~@19#, Corollary 3.6! also gives asymptotic~i.e.,
for thresholdFo tending to infinity! formula for the probabil-
ity P(Fmax>Fo) that the global maximumFmax of F crosses
a thresholdFo :

P~Fmax>Fo!→ VAdetL

pM /2G~n/2!
Fo

(n1M )/221exp~2Fo!

as Fo→`. ~47!

In the signal detection theory the above probability is sim
the false alarm probability and it should be compared w
the probability given by Eq.~36!. It is not difficult to verify
that asymptotically Eqs.~36! and ~47! are equivalent if we
replace the expected number of false alarmsNF by E@xFo

#.
This reinforces the argument leading to Eq.~46!.

We have performed Monte Carlo simulations with com
puter generated noise to test the above formulas. We h
found that Eq.~45! ~based on the expectation value of th
Euler characteristic of the excursion set! overestimates the
false alarm probability whereas Eq.~36! ~based on dividing
the parameter space into elementary cells! tends to underes
timate it.

C. Detection probability

When the signal is present a precise calculation of the
of F is very difficult because the presence of the sig
makes the data random processx(t) nonstationary. As a first
approximation we can estimate the probability of detect
of the signal when the parameters are unknown by the p
ability of detection when the parameters of the signal
1-7
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FIG. 1. Probability of detection~plots on the left! and the receiver operating characteristic~plots on the right! for a monochromatic~upper
plots! and a linearly frequency modulated signal~lower plots!. In the simulation 104 of sequences ofN528 random independent sample
drawn from zero mean and unit variance normal distribution were generated. The results of the simulation are marked by th
Theoretical distributions are given by solid lines. Probability of detection is calculated from Eqs.~26! and ~28! for n52 and optimal
signal-to-noise ratiod54. The receiver operating characteristics are parametric curves with signal-to-noise ratiod as a parameter; they ar
calculated from Eqs.~28! and ~36! for d54, 5, and 6.
at
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known @given by Eq.~28!#. This approximation assumes th
when the signal is present the true values of the phase
rameters fall within the cell whereF has a maximum. This
approximation will be better the higher the signal-to-no
ratio d. Parametric plot of probability of detection vs pro
ability of false alarm with optimal signal-to-noise ratiod as a
parameter is called thereceiver operating characteristic
~ROC!.

We have performed the numerical simulations to see h
the ROC obtained from the analytical formulas presen
above compares with that obtained from the discrete fi
duration time series. Using a computer pseudorandom g
erator we have obtained sequences ofN528 independent
random values drawn from a normal distribution and wh
necessary we have added the signal. We have consid
both the monochromatic and the linearly frequency mo
lated signal. We have performed 104 trials. The results are
presented in Fig. 1. The two upper plots are for the mo
06200
a-

w
d
e
n-

n
red
-

-

chromatic signal and the lower two are for the one spindo
signal. In the plots on the left we compare the probability
detection calculated from Eq.~28! with the results of the
simulations, and in the plots on the right we compare
theoretical and the simulated receiver operating characte
tics. For the false alarm probability we have used the form
~36!. In the insets we have zoomed the ROC for small valu
of the false alarm probability. We see that the agreem
between the theoretical and simulated ROC is quite goo

IV. NUMBER OF CELLS FOR THE ONE-COMPONENT
SIGNAL

Let us return to the case of a gravitational-wave sig
from a spinning neutron star. In Sec. V of paper II we ha
shown that each component of theN-component signal can
be approximated by the following one-component signal:

h~ t;ho ,F0 ,j!5hosin@F~ t;j!1F0#, ~48!
1-8
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where the phaseF of the signal is given by

F~ t;j!5 (
k50

s

vkS t

To
D k11

1
2p

c
$a1@RESsin~fo1Vot !1RE cosl cos« sin~f r1V r t !#

1a2@REScos~fo1Vot !1RE cosl cos~f r1V r t !#%, ~49!
r
-

to
s

b

a
the
-
ace.

y
low-
whereTo denotes the observation time,RES51 A.U. is the
mean distance from the Earth’s center to the SSB,RE is the
mean radius of the Earth,Vo is the mean orbital angula
velocity of the Earth,fo is a deterministic phase which de
fines the position of the Earth in its orbital motion att50,
and« is the angle between ecliptic and the Earth’s equa
The vectorj collects all the phase parameters, it equalj
5(a1 ,a2 ,v0 , . . . ,vs), so the phaseF depends ons13
parameters. The dimensionless parametersvk are related to

the spindown coefficientsf o

(k)
introduced in Eq.~5! as fol-

lows:

vkª
2p

~k11!!
f o

~k!
To

k11 , k50, . . . ,s. ~50!

The parametersa1 anda2 are defined by

a1ª f o~cos« sina cosd1sin« sind!,
~51!

a2ª f o cosa cosd.

In Appendix D we show that the parametersa1 ,a2 can be
used instead of the parametersa,d to label the templates
needed to do the matched filtering. The signal defined
s

06200
r.

y

Eqs. ~48! and ~49! has two important properties: it has
constant amplitude and its phase is a linear function of
parametersj. We will use here this simplified signal to es
timate the number of elementary cells in the parameter sp

For the signal given by Eqs.~48! and~49! the statisticsF
of Eq. ~15! can be written as

F~j!'
1

2
$@xc~j!#21@xs~j!#2%, ~52!

where

xc~j!ª2A To

Sh~ f o!
^x cosF~ t;j!&,

~53!

xs~j!ª2A To

Sh~ f o!
^x sinF~ t;j!&.

We calculate the autocovariance functionC @defined by
Eq. ~29!# of the random field~52! when the datax consists
only of the noisen. We recall thatn is a zero mean stationar
Gaussian random process. Consequently we have the fol
ing useful formulas@20#
E$~nuh1!~nuh2!%5~h1uh2!, ~54!

E$~nuh1!~nuh2!~nuh3!~nuh4!%5~h1uh2!~h3uh4!1~h1uh3!~h2uh4!1~h1uh4!~h2uh3!, ~55!
ata.
ave
whereh1 , h2 , h3, andh4 are deterministic functions. Let u
also observe that

^sin2 F~ t;j!&'^cos2 F~ t;j!&'
1

2
. ~56!

Making use of Eqs.~54!, ~55!, and~56! one finds that

E0$F~j!%'1, ~57!
E0$F~j!F~j8!%'112@^cosF~ t;j!cosF~ t;j8!&2

1^cosF~ t;j!sinF~ t;j8!&2

1^sinF~ t;j!cosF~ t;j8!&2

1^sinF~ t;j!sinF~ t;j8!&2#, ~58!

where subscript 0 means that there is no signal in the d
For our narrow-band signal to a good approximation we h

^cosF~ t;j!cosF~ t;j8!&'
1

2
^cos@F~ t;j!2F~ t;j8!#&,

~59!
1-9
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^cosF~ t;j!sinF~ t;j8!&'2
1

2
^sin@F~ t;j!2F~ t;j8!#&,

~60!

^sinF~ t;j!cosF~ t;j8!&'
1

2
^sin@F~ t;j!2F~ t;j8!#&,

~61!

^sinF~ t;j!sinF~ t;j8!&'
1

2
^cos@F~ t;j!2F~ t;j8!#&.

~62!

Collecting Eqs.~57!–~62! together one gets

C~j,j8!5E0$F~j!F~j8!%2E0$F~j!%E0$F~j8!%

'^cos@F~ t;j!2F~ t;j8!#&2

1^sin@F~ t;j!2F~ t;j8!#&2. ~63!

The phaseF given by Eq.~49! is a linear function of the
parametersj, hence the autocovariance functionC from Eq.
~63! depends only on the differencet5j2j8 and it can be
written as

C~t!'^cos@F~ t;t!#&21^sin@F~ t;t!#&2. ~64!

To calculate the volume of the elementary cell by mea
of Eq. ~34! we need to compute the matrixG defined in Eq.
~33!. Substituting Eq.~64! into Eq. ~33! we obtain

G52G̃, ~65!

where the matrixG̃ has the components

G̃ i jª K ]F

]t i

]F

]t j
L 2 K ]F

]t i
L K ]F

]t j
L . ~66!

The matrix G̃ is the reduced Fisher information matrix fo
our signal where the initial phase parameterF0 @cf. Eq.~48!#
has been reduced; see Appendix B.
06200
s

As the mean~57! of the random fieldF is constant and its
autocovariance~63! depends only on the differencej2j8 the
random fieldF is a homogeneous random field. Let us o
serve that for the fixed values of the parametersj the random
variablesxc andxs are zero mean and unit variance Gauss
random variables. However the correlation between
Gaussian fieldsxc andxs does not vanish:

E$xc~j!xs~j8!%'^sin@F~ t;j!2F~ t;j8!#&, ~67!

and thus the Gaussian random fieldsxc andxs are not inde-
pendent. ThereforeF is not a x2 random field but only a
generalizedx2 random field. Our formula for the number o
cells @Eq. ~35!# and the formula for the false alarm probab
ity @Eq. ~36!# apply to any homogeneous random fields; ho
ever, formula~41! applies only tox2 fields. Nevertheless by
examining the proof of formula~41! @14,19# we find that it is
very likely that the formula holds for generalizedx2 random
fields as well if we replace the determinant of the matrixL

by the determinant of the reduced Fisher matrixG̃.
The total volume of the parameter space depends on

range of the individual parameters. Following Ref.@7# we
assume that

2pTof min<v0<2pTof max, ~68!

2bkv0<vk<bkv0 , k51, . . . ,s, ~69!

where bkª1/(k11)(To/tmin)
k, f min and f max are respec-

tively the minimum and the maximum value of th
gravitational-wave frequency,tmin is the minimum spindown
age of the neutron star. The parametersa1 anda2 defined in
Eq. ~51! fill, for the fixed value of the frequency paramet
v0, a two-dimensional ball concentrated around the origin
the (a1 ,a2) plane, with radius equal tov0 /(2pTo):

~a1 ,a2!PB2„0,v0 /~2pTo!…. ~70!

Taking Eqs. ~68!–~70! into account the total volume
Vtotal(s)

all of the parameter space for all-sky searches wits
spindowns included can be calculated as follows:
x

Vtotal(s)
all 5E

2pTof min

2pTof max
d v0E E

B2„0,v0 /(2pTo)…
d a1 d a2E

2b1v0

b1v0
d v1 . . . E

2bsv0

bsv0
d vs

5
22s11ps12

~s13!~s11!!
To

s11S To

tmin
D s(s11)/2

~ f max
s132 f min

s13!. ~71!

The volumeVcell(s)
all of one cell we calculate from Eq.~34! for M5s13 andG52G̃ (s)

all , whereG̃ (s)
all is the reduced Fisher matri

~66! for the phaseF given by Eq.~49! with s spindowns included:

Vcell(s)
all 5

~p/2!(s13)/2

G@~s15!/2#AdetG̃ (s)
all

. ~72!

In Appendix B we have given formulas needed to calculate matricesG̃ (s)
all for s50, . . . ,4analytically.
1-10
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The numberNcells(s)
all of cells for all-sky searches is given by

Ncells(s)
all 5

Vtotal(s)
all

Vcell(s)
all

5
2(3s11)/2ps/211

G~s/211!
AdetG̃ (s)

all S To

tmin
D s(s11)/2

To
s11~ f max

s132 f min
s13!. ~73!

In Fig. 2 we have plotted the numberNcells(s)
all of cells as a function of the observation timeTo for various models of the signa

depending on the minimum spindown agetmin and the maximum gravitational-wave frequencyf max, and for various numbers
s of spindowns included~assuming the minimum gravitational-wave frequencyf min50). We see that for a giventmin and
f max, curves corresponding to different numberss intersect. This effect was observed and explained by Bradyet al. @7#. To
obtain the number of cells for a given observation timeTo we always take the number of cells given by the uppermost cu
We have calculated the observation timesTcross(k)

all for which the numbers of cells withk and k11 spindowns included
coincide:

Ncells(k11)
all ~To5Tcross(k)

all !5Ncells(k)
all ~To5Tcross(k)

all !, k50, . . . ,s21. ~74!

FIG. 2. Number of cells in all-sky searches as a function of the observation timeTo for different values of the minimum spindown ag
tmin and the maximum gravitational-wave frequencyf max ~the minimum gravitational-wave frequencyf min50). The lines shown in the plots
correspond to different numberss of spindowns included:s54 ~solid!, s53 ~dotted!, s52 ~dashed!, s51 ~dotted-dashed!, ands50 ~double
dotted-dashed!. We have assumed the Laser Interferometric Gravitational Wave Observatory~LIGO! Hanford detector and we have pu
f r51.456 andfo50.123.
t
p
is
in

ice.
d in

nd
In Table I we have given the values ofTcross(k)
all for all the

signal models considered.
The Fisher matrixG̃ (s)

all depends on the phasesf r , fo ,
and the latitudel of the detector~see Appendix B!. We
know from paper II~see Appendix C of paper II! that the
Fisher matrix also depends on the choice of the instan
time at which the instantaneous frequency and spindown
rameters are defined~in the present paper this moment
chosen to coincide with the middle of the observational
06200
of
a-

-

terval!. We find that the determinant detG̃ (s)
all and conse-

quently the number of cells does not depend on this cho
The dependence on the remaining parameters is studie
Fig. 3. The dependence on the phasesf r and fo is quite
weak. The dependence onl is quite strong; however, for the
detectors under construction for whichl varies from 35.68°
~TAMA300! to 52.25° ~GEO600! the number of cells
changes by a factor of 2 for 7 days of observation time a
by around 10% for 120 days of observation time.
1-11
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PIOTR JARANOWSKI AND ANDRZEJ KRÓLAK PHYSICAL REVIEW D 61 062001
In Sec. V of paper II we have shown that for directed searches the constant amplitude signal given by Eqs.~48! and ~49!
can be further simplified by discarding in the phase~49! terms due to the motion of the detector with respect to the SSB. S
a signal reads

h~ t;ho ,F0 ,j!5ho sin@F~ t;j!1F0#, F~ t;j!5 (
k50

s

vkS t

To
D k11

. ~75!

The vectorj has nows11 components:j5(v0 , . . . ,vs). Using Eqs.~68! and~69! the total volumeVtotal(s)
dir of the parameter

space for directed searches withs spindowns included is calculated as follows:

Vtotal(s)
dir 5E

2pTof min

2pTof max
d v0E

2b1v0

b1v0
d v1 . . . E

2bsv0

bsv0
d vs

5
22s11ps11

~s11!~s11!!
To

s11S To

tmin
D s(s11)/2

~ f max
s112 f min

s11!. ~76!

The volumeVtotal(s)
dir of one cell we calculate from Eq.~34! for M5s11 andG52G̃ (s)

dir , whereG̃ (s)
dir is the reduced Fisher matri

~66! for the polynomial phase~75! with s spindowns included:

Vcell(s)
dir 5

~p/2!(s11)/2

G@~s13!/2#AdetG̃ (s)
dir

. ~77!

The matrixG̃ (s)
dir for s50, . . . ,4 can becalculated analytically by means of formulas given in Appendix B.

The numberNcells(s)
dir of independent cells is given by

Ncells(s)
dir 5

Vtotal(s)
dir

Vcell(s)
dir

5
2(3s11)/2ps/211

~s11!G~s/211!
AdetG̃ (s)

dir S To

tmin
D s(s11)/2

To
s11~ f max

s112 f min
s11!. ~78!

In Fig. 4 we have plotted the number of cellsNcells(s)
dir as a function of the observation timeTo for various models of the signa

depending on the minimum spindown agetmin , the maximum gravitational-wave frequencyf max, and the numbers of
spindowns included~assuming the minimum gravitational-wave frequencyf min50). We see that, like for all-sky searches, f
a giventmin and f max curves corresponding to different numberss intersect. We have calculated analytically the observat
timesTcross(k)

dir for which the numbers of cells withk andk11 spindowns included coincide:

Ncells(k11)
dir ~To5Tcross(k)

dir !5Ncells(k)
dir ~To5Tcross(k)

dir !, k50, . . . ,s21. ~79!

Using Eq.~78! one obtains

Tcross(k)
dir 5F ~k12!G@~k13!/2#

2A2p~k11!G@~k12!/2#
A detG̃ (k)

dir

detG̃ (k11)
dir

f max
k112 f min

k11

f max
k122 f min

k12
tmin

k11G 1/(k12)

, k50, . . . ,s21. ~80!

TABLE I. The observation times for which the numbers of cells withk andk11 spindowns included coincide for various models of t
signal depending on the minimum spindown agetmin and the maximum gravitational-wave frequencyf max. The minimum gravitational-
wave frequencyf min50. In the case of all-sky searches we have used the latitudel546.45° of the LIGO Hanford detector and we have p
fo50.123 andf r51.456.
062001-12
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FIG. 3. Dependence of number of cells in all-sky searches on the anglesf r , fo , and the latitudel of the detector’s site. We have
chosen the minimum spindown agetmin540 years, the maximum gravitational-wave frequencyf max51 kHz, and the minimum
gravitational-wave frequencyf min50. The plots~a!, ~c!, and ~e! are for the observation timeTo57 days~and the number of spindown
s52); ~b!, ~d!, and~f! are forTo5120 days~and the number of spindownss53). In the plots~a!, ~b!, ~c!, ~d! we have used the latitude
l546.45° of the LIGO Hanford detector; in~a!, ~b!, ~e!, ~f! we have putfo50.123; and in~c!, ~d!, ~e!, ~f! we have usedf r51.456.
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In Table I we have given the values ofTcross(k)
dir for all the

signal models considered.
In Table II we have given the number of cells both f

all-sky and directed searches for various models of the sig
depending on the minimum spindown agetmin and the maxi-
mum gravitational-wave frequencyf max, and for the obser-
vation timeTo of 7 and 120 days~assuming the minimum
gravitational-wave frequencyf min50). The number of cells
is calculated from Eq.~73! for all-sky searches and from Eq
~78! in the case of directed searches. For a given observa
time To the numbers of spindowns one should include in th
signal’s model is obtained as such numbers chosen out of
s50, . . . ,4 forwhich Ncells(s)

all ~or Ncells(s)
dir ) is the greatest.

We have also calculated the thresholdFo for the 1% false
alarm probability~or equivalently for 99% detection confi
06200
al

on

dence!. By means of Eqs.~27! and~36! for n52 ~what cor-
responds to a one-component signal! the relation between the
thresholdFo and the false alarm probabilitya50.01 reads

Fo52 ln@12~12a!1/Nc#, ~81!

whereNc is the number of cells. Following the relation be
tween the expectation value of the optimum statistics wh
the signal is present and the signal-to-noise ratio which
given by

E1$F%511
1

2
d2, ~82!

we have calculated the ‘‘threshold’’ signal-to-noise ratio
1-13
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FIG. 4. Number of cells in directed searches as a function of the observation timeTo for different values of the minimum spindown ag
tmin and the maximum gravitational-wave frequencyf max ~the minimum gravitational-wave frequencyf min50). The lines shown in the plots
correspond to different numberss of spindowns included:s54 ~solid!, s53 ~dotted!, s52 ~dashed!, s51 ~dotted-dashed!, ands50 ~double
dotted-dashed!.
a

tic
the
de-
doªA2~Fo21!, ~83!

whereFo is given by Eq.~81!. The values ofdo for various
models of the signal and observation times of 7 and 120 d
are given in Table II. If the signal-to-noise ratio isdo then
there is roughly a 50% probability that the optimum statis
will cross the thresholdFo .
06200
ys

V. NUMBER OF FILTERS FOR THE ONE-COMPONENT
SIGNAL

To calculate the number of fast Fourier transforms~FFTs!
to do the search we first need to calculate the volume of
elementary cell in the subspace of the parameter space
fined by v05const. This subspace we call thefilter space.
nding

tio
TABLE II. Number of cells for all-sky and directed searches for various models of the signal depe
on the minimum spindown agetmin and the maximum gravitational-wave frequencyf max, and for the
observation timeTo of 7 and 120 days. The minimum gravitational-wave frequencyf min50. To calculate the

Fisher matrixG̃ (s)
all we have used the latitudel546.45° of the LIGO Hanford detector and we have putfo

50.123 andf r51.456. For each case we also give the 99% confidence threshold signal-to-noise rado

calculated by virtue of Eq.~83!.
1-14
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We would like to stress the conceptual difference betw
the number of cells of the parameter space and the numb
filters. The number of cells determines the false alarm pr
ability whereas the number of filters determines compu
tional requirements to do the search.

Let us expand the autocovariance functionC of Eq. ~64!
aroundt50 up to terms of second order int:

C~t!512 (
i , j 51

M

G̃ i j t it j , ~84!

where G̃ i j are defined in Eq.~66! and M is the number of
phase parameters. In Eq.~84! we have used the property th
C attains its maximum value of 1 fort50. Let us assume
that t1 corresponds to frequency parameter and let us m
mize C given by Eq.~84! with respect tot1. It is easy to
show thatC attains its maximum value, keepingt2 , . . . ,tM
fixed, for

t̄152
1

G11
(
i 52

M

G1it i . ~85!

Let us define

C̄~t2 , . . . ,tM !ªC~ t̄1 ,t2 , . . . ,tM !. ~86!

Substituting Eqs.~84! and ~85! into Eq. ~86! we obtain

C̄~t2 , . . . ,tM !512 (
i , j 52

M

Ḡ i j t it j , ~87!
a

n

06200
n
of
-
-

i-

where

Ḡ i jªG̃ i j 2
G̃1i G̃1 j

G̃11

. ~88!

We define an elementary cell in the filter space by the
quirement that at the boundary of the cell the correlationC̄
equals 1/2:

C̄~t2 , . . . ,tM !5
1

2
. ~89!

Substituting Eq.~87! into Eq. ~89! we arrive at the equation
describing the surface of the elementary hyperellipsoid in
filter space:

(
i , j 52

M

Ḡ i j t it j5
1

2
. ~90!

The volume of the elementary cell is thus equal to@cf. Eq.
~34!#

V̄cell5
~p/2!(M21)/2

G@~M11!/2#AdetḠ
. ~91!

The volumeV̄cell of the elementary cell in the filter space
independent of the value of the frequency parameter.

Taking Eqs. ~68!–~70! into account the total volume
V̄total(s)

all of the filter space for all-sky searches withs spin-
downs included can be calculated as follows:
V̄total(s)
all 5H E E

B2„0,v0 /(2pTo)…
d a1 d a2E

2b1v0

b1v0
d v1 . . . E

2bsv0

bsv0
d vsJ

v052pTof max

5
22sps11

~s11!!
To

sS To

tmin
D s(s11)/2

f max
s12. ~92!
a
-
in
Putting in Eq.~92! v052pTof max we have definedV̄total(s)
all

as that slicev05const of the parameter space which h

maximum volume. The volumeV̄cell(s)
all of one cell in the filter

space we calculate from Eq.~91! for M5s13:

V̄cell(s)
all 5

~p/2!(s12)/2

G@~s14!/2#AdetḠ (s)
all

, ~93!

where the matrixḠ (s)
all is calculated from Eq.~88! for G̃

5G̃ (s)
all .

The numberNfilters(s)
all of filters for all-sky searches is give

by
s Nfilters(s)
all 5

V̄total(s)
all

V̄cell(s)
all

5
23s/2p (s11)/2~s12!

~s11!G@~s11!/2#

3AdetḠ (s)
all S To

tmin
D s(s11)/2

To
s f max

s12 . ~94!

In Fig. 5 we have plotted the numberNfilters(s)
all of filters as a

function of the observation timeTo for various models of the
signal depending on the minimum spindown agetmin and the
maximum gravitational-wave frequencyf max, and for vari-
ous numberss of spindowns included. We see that for
given tmin and f max curves corresponding to different num
berss intersect. This effect was observed and explained
1-15
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FIG. 5. Number of filters in all-sky searches as a function of the observation timeTo for different values of the minimum spindown ag
tmin and the maximum gravitational-wave frequencyf max. The lines shown in the plots correspond to different numberss of spindowns
included:s54 ~solid!, s53 ~dotted!, s52 ~dashed!, s51 ~dotted-dashed!, ands50 ~double dotted-dashed!. We have assumed the LIGO
Hanford detector and we have putf r51.456 andfo50.123.
re
x
ce
en
s
th

s.

d
q.
Ref. @7#: in the regime where adding an extra parameter
duces the number of filters the parameter space in the e
dimension extends less than the width of the elementary
in this dimension. To obtain the number of filters for a giv
observation timeTo we always take the number of filter
given by the uppermost curve. We have also calculated
observation timesT̄cross(k)

all for which the numbers of filters
with k andk11 spindowns included coincide:

Nfilters(k11)
all ~To5T̄cross(k)

all !5Nfilters(k)
all ~To5T̄cross(k)

all !,

k50, . . . ,s21. ~95!

In Table III we have given the values ofT̄cross(k)
all for all the

signal models considered.
06200
-
tra
ll

e

For directed searches, the total volumeV̄total(s)
dir of the filter

space withs spindowns included we calculate using Eq
~68! and ~69!:

V̄total(s)
dir 5H E

2b1v0

b1v0
d v1 . . . E

2bsv0

bsv0
d vsJ

v052pTof max

5
22sps

~s11!! S To

tmin
D s(s11)/2

~ f maxTo!s. ~96!

The volumeV̄cell(s)
dir of one cell in the filter space for directe

searches withs spindowns included we calculate from E
~91! for M5s11:
TABLE III. The observation times for which the numbers of filters withk andk11 spindowns included
coincide for various models of the signal depending on the minimum spindown agetmin and the maximum
gravitational-wave frequencyf max. In the case of all-sky searches we have used the latitudel546.45° of the
LIGO Hanford detector and we have putfo50.123 andf r51.456.
1-16
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FIG. 6. Number of filters in directed searches as a function of the observation timeTo for different values of the minimum spindown ag
tmin and the maximum gravitational-wave frequencyf max. The lines shown in the plots correspond to different numberss of spindowns
included:s54 ~solid!, s53 ~dotted!, s52 ~dashed!, s51 ~dotted-dashed!.
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V̄cell(s)
dir 5

~p/2!s/2

G@~s12!/2#AdetḠ (s)
dir

, ~97!

where the matrixḠ (s)
dir is calculated from Eq.~88! for G̃

5G̃ (s)
dir .

The numberNfilters(s)
all of filters in the case of directed

searches is thus given by

Nfilters(s)
dir 5

V̄total(s)
dir

V̄cell(s)
dir

5
2(3s22)/2p (s11)/2

G@~s13!/2#
AdetḠ (s)

dir S To

tmin
D s(s11)/2

~ f maxTo!s.

~98!

In Fig. 6 we have plotted the number of filters for vario
models of the signal depending on the minimum spindo
age tmin and the maximum gravitational-wave frequen
f max, and for various numberss of spindowns included. We
have also calculated analytically the observation tim
T̄cross(k)

dir for which the numbers of filters withk and k11
spindowns included coincide:

Nfilters(k11)
dir ~To5T̄cross(k)

dir !5Nfilters(k)
dir ~To5T̄cross(k)

dir !,

k51, . . . ,s21. ~99!
06200
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Using Eq.~98! one obtains

T̄cross(k)
dir 5F G@~k14!/2#

2A2pG@~k13!/2#
A detḠ (k)

dir

detḠ (k11)
dir

tmin
k11

f max
G 1/(k12)

,

k51, . . . ,s21. ~100!

In Table III we have given the values ofT̄cross(k)
dir for all the

signal models considered.
In Table IV we have given the number of filters both f

all-sky and directed searches for various models of the sig
depending on the minimum spindown agetmin and the maxi-
mum gravitational-wave frequencyf max, and for the obser-
vation timeTo of 7 and 120 days. The number of filters
calculated from Eq.~94! for all-sky searches and from Eq
~98! in the case of directed searches. For a given observa
time To the numbers of spindowns one should include in th
signal’s model is obtained as such numbers chosen out of
s50, . . . ,4 forwhich Nfilters(s)

all ~or Nfilters(s)
dir ) is the greatest.

We shall next compare the number of filters obtain
above with the number of filters calculated by Bradyet al.
@7#. In their calculations they have assumed a constant
plitude of the signal; however, they have used a full mode
the phase. To calculate the number of templates they h
used the so-called metric approach of Owen@16#. They have
assumed a certain geometry of spacing of the templa
combination of a hexagonal and a hypercubic spacing,
they have introduced an additional parameter—a misma
1-17
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TABLE IV. Number of filters for all-sky and directed searches for various models of the signal depe
on the minimum spindown agetmin and the maximum gravitational-wave frequencyf max, and for the

observation timeTo of 7 and 120 days. To calculate the Fisher matrixḠ (s)
all we have used the latitudel

546.45° of the LIGO Hanford detector and we have putfo50.123 andf r51.456. For each case we als
give the numberP of floating point operations per second~flops! needed to do the search;P is calculated by
means of Eq.~101!.
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m, which was the measure of the correlation of the t
neighboring templates. Also in their calculation they ha
assumed that the data processing method involves re
pling of the time series so that the resampled signal is mo
chromatic. We shall compare the number of filters in Ta
IV of our paper with the corresponding number of filte
given in Table I of@7#. Our calculations correspond to mis
matchm50.5. This means that to compare our numbers
filters with the corresponding numbers of Bradyet al. our
numbers have to be multiplied by 2.4, 5.8, 15, and 40 for
signal with 0, 1, 2, and 3 spindowns, respectively, for all-s
searches and by 1.3, 1.7, and 2.2 for 1, 2, and 3 spindo
respectively, for directed searches. The difference in the
ume of our hyperellipsoidal cells and their volumes of
ementary patches means@see Ref.@7#, Eq. ~5.18! for all-sky
searches and the paragraph above Eq.~7.2! for directed
searches# that our numbers additionally have to be multiplie
by 1.7, 2.2, 2.8, and 3.6 for all-sky searches and by 1.0,
and 1.3 for directed searches for comparison. After introd
ing the corrections for the mismatch parameter and the
of an elementary cell we find that our corrected number
templates is greater than the number of templates give
Table I of @7# by ~going from top to bottom of the table!
2.83104, 14, 2.7, and 1.5 for all-sky searches and by 2
1.7, 0.31, and 0.25 for directed searches. We thus conc
that considering the differences in the way the calculati
were done there is a reasonable agreement between the
ber of filters obtained by the two approaches except for
case: all-sky searches with the maximum frequencyf max
5200 Hz and the minimum spindown agetmin
51000 years where the difference is 4 orders of magnitu

We would also like to point out the uncertainties in t
calculation of the number of filters. Our model of the intri
sic spin frequency evolution of the neutron star is extrem
simple: we approximate the frequency evolution by a Tay
series. In reality the frequency evolution will be determin
by complex physical processes. The size of the param
space is likewise uncertain. The range for the spindown
rameters@see Eqs.~68! and~69!# was chosen so that the tot
size of our parameter space is the same as in@7#. The ap-
06200
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proximation of the time derivative of the frequency
f max/tmin that is used to estimate the maximum value of t
spindowns is probably an order of magnitude estimate. T
implies that the size of the parameter space and consequ
the number of filters is accurate withins(s11)/2 orders of
magnitude, wheres is the number of spindowns in the pha
of the signal. Even this large uncertainty does not change
conclusion that all-sky searches for 120 days of observa
time are computationally too prohibitive.

To estimate the computational requirement to do the s
nal search we adopt a simple formula@see Eq.~6.11! of @7##
for the numberP of floating point operations per secon
~flops! required assuming that the data processing rate sh
be comparable to the data acquisition rate@it is assumed that
fast Fourier transform~FFT! algorithm is used#:

P56 f maxNf@ log2~2 f maxTo!11/2#, ~101!

where Nf is the number of filters. The above formula a
sumes that we calculate only one modulus of the Fou
transform. Calculation of the optimal statisticsF for the am-
plitude modulated signal requires two such moduli for ea
component of the signal@see Eq.~99! of paper I; we assume
that the observation time is an integer multiple of the sider
day so thatC50# and several multiplications. Moreover
dechirping operations are used instead of resampling,
data processing would involve complex FFTs. All these o
erations will not increase the complexity of the analysis, i
the number of floating point operations will still go a
O„N log2(N)…, whereN is the number of points to be pro
cessed.

In Table IV we have given the computer powerP ~in
Teraflops, Tf! required for all the cases considered. We s
that for 120 days of observation time all-sky searches
computationally too prohibitive whereas for directe
searches only one case (tmin51000 years, f max5200 Hz)
is within reach of a 1 Teraflops computer. For 7 days o
observation time all cases except for the most demand
all-sky search withtmin540 years andf max51 kHz are
within a reach of a 1 Teraflops computer.
1-18
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We would like to mention that by applying a standa
heterodyne technique@21# we can split the data from th
detector of bandwidth (f min , f max) into M data sequence
each of bandwidthB and each shorter than the original ser
by a factor f max/B. This reduces the memory and stora
requirements for data processing systems.

We have calculated the computational requirements
the case of one-component model. For theN-component sig-
nal the computational requirements do not substantially
crease as each filter~which is essentially a Fourier transform
of the data! picks up all spectral components of a multicom
ponent signal.

It is interesting to consider the case of directed search
a known source. If the parameters of the source are perfe
known, that is if we know completely its frequency and sp
down parameters, we could simply fold the data with t
known period of the source as it is done in radio astrono
in timing of known pulsars.~However, before folding we
would first need to resample the time series to correct for
Earth motion and the spindown parameters.! If we know a
frequency within a certain narrow range we could apply h
erodyning technique to reduce the amount of data to anal
The computational power needed for this case would be c
siderably reduced with respect to directed search of sourc
completely unknown frequency.

VI. SUBOPTIMAL FILTERING

It will very often be the case that the filter we use
extract the signal from the noise is not optimal. This may
the case when we do not know the exact form of the sig
~this is almost always the case in practice! or we choose a
suboptimal filter to reduce the computational cost and s
plify the analysis. We shall consider here an important s
cial case of a suboptimal filter that may be useful in t
analysis of gravitational-wave signals from a spinning n
tron star.

A. General theory

We shall assume a constant amplitude one-compo
model of the signal. Then the optimal~maximum likelihood!
statistics is given by Eq.~52!. Let us suppose that we do no
model the phase accurately and instead of the two opti
filters cos@F(t;j)# and sin@F(t;j)# we use filters with a phas
F8(t;j8), where functionF8 is different fromF and the set
of filter parametersj8 is in general different fromj, i.e.Fsub
has the form@cf. Eqs.~52! and ~53!#

Fsub5
2To

Sh~ f o!
@^x cosF8~ t;j8!&21^x sinF8~ t;j8!&2#,

~102!

where we have assumed that the suboptimal filters are
row band at some ‘‘carrier’’ frequencyf o as in the case o
optimal filters.

Let us first establish the probability density functions
Fsub when the phase parametersj8 are known. Since the
dependence on the data random process is the same as
optimal case the false alarm and detection probability de
06200
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ties will be the same as for the optimal case, i.e., 2Fsub has a
central or a noncentralx2 distribution with 2 degrees of free
dom depending on whether the signal is absent or pres
From the narrow-band property of the suboptimal filter w
get the following expressions for the expectation values
the variances ofFsub (0 means that signal is absent and
means that signal is present!:

E0$Fsub%51, E1$Fsub%511
1

2
dsub

2 , ~103!

Var0$Fsub%51, Var1$Fsub%511dsub
2 , ~104!

where

dsubªd$^cos@F~ t;j!2F8~ t;j8!#&2

1^sin@F~ t;j!2F8~ t;j8!#&2%1/2; ~105!

hered is the optimal signal-to-noise ratio.
We see that for the suboptimal filter introduced above

false alarm probability has exactly the samex2 distribution
as in the optimal case whereas the probability of detec
has noncentralx2 distribution but with a different noncen
trality parameterdsub

2 . We shall calldsub ~the square root of
the noncentrality parameter! the suboptimal signal-to-noise
ratio. It is clear that when the phases of the signal and
suboptimal filter are different the suboptimal signal-to-no
ratio is strictly less and the probability of detection is le
than for the optimal filter.

When the parametersj8 are unknown the functionalFsub
is a random field and we can obtain the false alarm proba
ties as in the case of an optimal filter. Here we only quote
formula based on the number of independent cells of
random field. One thing we must remember is that the nu
ber of cells for the suboptimal and the optimal filters will
general be different because they may have a different fu
tional dependence and a different number of paramet
Thus we have@cf. Eqs.~27! and ~36! for n52#

PsF
T ~Fo!512@12exp~2Fo!#Nsc, ~106!

whereNsc is the number of cells for the suboptimal filter.
The detection probability for the suboptimal filter is give

by @cf. Eqs.~26! and ~28! for n52#

PsD~dsub,Fo!ªE
Fo

`

ps1~dsub,F!dF, ~107!

where

ps1~dsub,F!5I 0~dsubA2F!expS 2F2
1

2
dsub

2 D . ~108!

The probability of detection for the suboptimal filter is o
tained from the probability of detection for the optimal on
by replacing the optimal signal-to-noise ratiod by the sub-
optimal onedsub.

When we design a suboptimal filtering scheme we wo
like to know what is the expected number of false alar
1-19
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with such a scheme and what is the expected numbe
detections. As in the optimal case the expected numberNsF
of false alarms with suboptimal filter is given by@cf. Eqs.
~27! and ~37! for n52#

NsF5Nscexp~2Fo!. ~109!

To obtain the expected number of detections we ass
that the signal-to-noise ratiod varies inversely proportionally
to the distance from the source and that the sources are
formly distributed in space. We also assume that the spac
Euclidean. Let us denote byd1 the signal-to-noise ratio fo
which the number of events is one. Then the number
events corresponding to the signal-to-noise ratiod is
(d1 /d)3. The expected number of the detected events
given by

ND~d1 ,Fo!53E
0

`

x2PDS d1

x
,FoDdx ~110!

in the case of the optimal filter, and by

NsD~d1sub,Fo!53E
0

`

x2PsDS d1sub

x
,FoDdx ~111!

for the suboptimal filter. Let us note that@cf. Eq. ~105!#

d1sub5d1$^cos@F~ t;j!2F8~ t;j8!#&2

1^sin@F~ t;j!2F8~ t;j8!#&2%1/2. ~112!

Because of the statistical nature of the detection any
nal can only be detected with a certain probability less th
1. In the case of Gaussian noise for signals with the sig
to-noise ratio around the threshold this probability is roug
1/2 and it increases exponentially with increasing signal
noise ratio. In Appendix C we give a worked example of t
application of the statistical formulas for the suboptimal
tering derived above.

B. Fitting factor

To study the quality of suboptimal filters~or search tem-
plates as they are sometimes called! one of the present au
thors@22,23# introduced anl factor defined as the square ro
of the correlation between the signal and the suboptimal
ter. It turned out that a more general and more natural qu
tity is the fitting factor introduced by Apostolatos@24#. The
fitting factor ~FF! between a signalh(t;u) and a filter
h8(t;u8) (u andu8 are the parameters of the signal and t
filter, respectively! is defined as

FFªmax
u8

„h~ t;u!uh8~ t;u8!…

A„h~ t;u!uh~ t;u!…A„h8~ t;u8!uh8~ t;u8!…
. ~113!

If both the signalh and the filterh8 are narrow band aroun
the same frequencyf o the scalar products (•u•) from Eq.
~113! can be computed from the formula
06200
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~h1uh2!'
2

Sh~ f o!
E

2To/2

To/2

h1~ t !h2~ t !dt, ~114!

whereSh is the one-sided noise spectral density andTo is the
observation time.

Let us assume that the signal and the filter can be wri
as

h~ t;u!5ho sinC~ t;z!, h8~ t;u8!5ho8 sinC8~ t;z8!,
~115!

whereho andho8 are constant amplitudes,z andz8 denote the
parameters entering the phasesC andC8 of the signal and
the filter, respectively. We substitute Eqs.~115! into Eq.
~113!. Using Eq.~114! we obtain

FF'max
z8

1

To
E

2To/2

To/2

cos@C~ t;z!2C8~ t;z8!#dt. ~116!

It is easy to maximize the FF~116! with respect to the initial
phase of the filter. Let us denote the initial phases of
functionsC andC8 by F0 andF08 , respectively. Then

C~ t;z!5F~ t;j!1F0 , C8~ t;z8!5F8~ t;j8!1F08 ,
~117!

wherej andj8 denote the remaining parameters of the sig
and the filter, respectively. After substitution of Eqs.~117!
into Eq. ~116! we easily get

FF' max
F08 ,j8

^cos@F~ t;j!2F8~ t;j8!1~F02F08!#&

5 max
F08 ,j8

$cos~F02F08!^cos@F~ t;j!2F8~ t;j8!#&

2sin~F02F08!^sin@F~ t;j!2F8~ t;j8!#&%

5max
j8

$^cos@F~ t;j!2F8~ t;j8!#&2

1^sin@F~ t;j!2F8~ t;j8!#&2%1/2. ~118!

Thus we obtain that the FF is nothing else but the ratio of
maximized value of the suboptimal signal-to-noise ratiodsub
and the optimal signal-to-noise ratiod @cf. Eq. ~105!#. We
stress however that the value of the fitting factor by itself
not adequate for determining the quality of a particu
search template—one also needs the underlying probab
distributions~both the false alarm and the detection! derived
in the previous subsection. This is clearly shown by an
ample in Appendix C.

In the remaining part of this subsection we shall propos
way of approximate computation of the fitting factor. Let
now assume that the filter and the signal coincide, i.e.F8
5F, and the filter parametersj8 differ from the parameters
1-20
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j of the signal by small quantitiesDj: j85j1Dj. Then
Eq. ~118! can be rewritten as

FF'max
Dj

$^cos@F~ t;j!2F~ t;j1Dj!#&2

1^sin@F~ t;j!2F~ t;j1Dj!#&2%1/2. ~119!

Obviously the FF~119! attains its maximum value of 1 whe
Dj50. Let us expand the expression in curly brackets on
right-hand side of Eq.~119! with respect toDj aroundDj
50 up to terms of second order inDj. The result is

FF'H 12min
Dj

S (
i , j

G i j Dj iDj j D J 1/2

, ~120!
n

as

s

06200
e

where

G i jª K ]F

]j i

]F

]j j
L 2 K ]F

]j i
L K ]F

]j j
L . ~121!

One can employ the formula~120! to estimate the FF in
the case when the filterF8 is obtained from the signalF by
replacing some of the signal parameters by zeros, provi
the signalF depends weakly on these discarded paramet
Let the signalF depend onn parametersj1 , . . . ,jn , and the
filter F8 is defined by

~122!

where k,n, so the filter F8 depends onk parameters
j18 , . . . ,jk8 . One can write
m the

by
.

~123!

with

Dj i5H j i82j i , i 51, . . . ,k,

2j i , i 5k11, . . . ,n.
~124!

We want to approximate the differenceF(t;j)2F(t;j1Dj) with Dj given by Eq.~124! by its Taylor expansion around
Dj50. It is reasonable provided the two following conditions are satisfied. First, the filter parameters differ slightly fro
respective parameters of the signal, i.e. the quantitiesDj i are small compared toj i for i 51, . . . ,k. Secondly, the functionF
depends on the parametersjk11 , . . . ,jn ~discarded from the filter! weakly enough to make a reasonable approximation
Taylor expansion up toDj i52j i for i 5k11, . . . ,n. If the above holds, one can use the formula~120! to approximate the FF
Taking Eqs.~123! and ~124! into account, from Eq.~120! one gets

FF'H 12 min
Dj1 , . . . ,Djk

S (
i , j 51

n

G i j Dj iDj jUDjk1152jk11 , . . . ,Djn52jnD J 1/2

. ~125!
in
with

es

-

/4
a

y. In
pa-
the
C. Fitting factor vs 1Õ4 of a cycle criterion

Let us consider the phase of the gravitational-wave sig
of the form @cf. Eq. ~5!#

F~ t !52p(
k50

s1

f o

~k! tk11

~k11!!
1

2p

c
n0•rES~ t !(

k50

s2

f o

~k! tk

k!

1
2p

c
n0•rE~ t !(

k50

s3

f o

~k! tk

k!
. ~126!

In paper I we have introduced the following criterion:we
exclude an effect from the model of the signal in the c
when it contributes less than 1/4 of a cycle to the phase
the signal during the observation time. In paper II we have
shown that if we restrict to observation timesTo
<120 days, frequenciesf o<1000 Hz, and spindown age
al

e
of

t>40 years, the phase model~126! meets the criterion for
an appropriate choice of the numberss1 , s2, and s3. We
have also shown that the effect of the star proper motion
the phase is negligible if we assume that the star moves
respect to the SSB not faster than 103 km/s and its distance
to the Earthr o>1 kpc. In Table V, which is Table I of
paper II, one can find the numberss1 , s2, ands3 needed to
meet 1/4 of a cycle criterion for different observation tim
To , maximum valuesf max of the gravitational-wave fre-
quency, and minimum valuestmin of the neutron star spin
down age.

In Appendix A of paper I we have indicated that the 1
of a cycle criterion is only a sufficient condition to exclude
parameter from the phase of the signal but not necessar
this subsection we study the effect of neglecting certain
rameters in the template by calculating FFs. We employ
1-21
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approximate formula~125! developed in the previous sub
section to calculate FF between the one-component con
amplitude signals with the phases given by Eq.~126! for
numberss1 , s2, and s3 taken from Table V and the sam
signals with a smaller number~as compared to that given i
Table V! of spindowns included. We have found that for t
first two models of Table V if in the template one neglec
the fourth spindown, FF is greater than 0.99, both for all-s
and directed searches. For other cases in Table V we h
found that neglecting any spindown parameter can resu
the FF appreciably less than one.

In paper II we have considered the effect of the pro
motion of the neutron star on the phase of the signal ass
ing that it moves uniformly with respect to the SSB referen
frame. We have found that for the observation timeTo
5120 days and the extreme case of a neutron star at a
tancer o540 pc moving with the transverse velocityuvns'u
5103 km/s ~wherevns' is the component of the star’s ve
locity vns perpendicular to the vectorn0), gravitational-wave
frequency f o51 kHz, and spindown aget540 years,
proper motion contributes only;4 cycles to the phase o
the signal. We have shown in paper II that in this extre
case the phase model consistent with the 1/4 of a cycle
terion reads@cf. Eq. ~33! in paper II#

F~ t !52p(
k50

4

f o

~k! tk11

~k11!!
1

2p

c
n0•rES~ t !(

k50

3

f o

~k! tk

k!

1
2p

c S n0•rE~ t !1
vns'

r o
•rES~ t !t D f o . ~127!

The ratiovns' /r o determines the proper motion of the st
and can be expressed in terms of the proper motionsma and
md in right ascensiona and declinationd, respectively~see
Sec. IV of paper II!.

For the extreme case described above we have app
formula ~125! to calculate the FF between the on
component constant amplitude signal with the phase gi
by Eq.~127! and the same signal with a simplified phase. W
have found that when both proper motion paramet

TABLE V. The number of spindown terms needed in vario
contributions to the phase of the signal depending on the typ
population of neutron stars searched for@cf. Eq.~126!#. The number
s1 refers to the dominant polynomial in time term in Eq.~126!, s2

refers to the Earth orbital motion contribution, ands3 refers to the
Earth diurnal motion contribution.

To(days) tmin (years) f max (Hz) s1 s2 s3

120 40 103 4 3 0
120 40 200 4 2 0
120 103 103 2 1 0
120 103 200 2 1 0

7 40 103 2 1 0
7 40 200 2 1 0
7 103 103 1 1 0
7 103 200 1 1 0
06200
nt

y
ve
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r
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e
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e
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ma , md and the fourth spindown parameterf o

(4)
are ne-

glected, the FF is greater than 0.99 for both all-sky and
rected searches. Thus we conclude that neglecting the fo
spindown and the proper motion does not reduce appreci
the probability of detection of the signal.

It is also interesting to compare the results obtained fr
the calculation of the fitting factor with the results summ
rized in Table I for the observation times when the numb
of cells for models withk and k11 spindowns coincides
The observation times given in Table I can be interpreted
observation times at which one should include thek11 pa-
rameter in the template. We see that for the first two mod
in Table V, Table I says that only 3 spindowns are needed
indicated by the calculation of the FF. The remaining ca
also agree except for the cases of 120 days of observa
time and 200 Hz frequency where Table I indicates one l
spindown than Table V. Finally we note that the crosso
observation times in Table I agree within a few percent w
those for the number of filters given in Table III.

VII. MONTE CARLO SIMULATIONS AND THE
CRAMÉ R-RAO BOUND

As signal-to-noise ratio goes to infinity the maximum
likelihood estimators become unbiased and their rms er
tend to the errors calculated from the covariance matrix. T
rms errors calculated from the covariance matrix are
smallest error achievable for unbiased estimators and
give what is called the Crame´r-Rao bound.

In this section we shall study some practical aspects
detecting phase modulated and multiparameter signal
noise and estimating their parameters. For simplicity we c
sider the polynomial phase signal with a constant amplitu
Our aim is to estimate the parameters of the signal ac
rately. We compare the results of the Monte Carlo simu
tions with the Crame´r-Rao bound.

We consider a monochromatic signal and signals with
2, and 3 spindown parameters. In our simulations we
white noise to the signals and we repeat our simulations
several values of the optimal signal-to-noise ratiod. To de-
tect the signal and estimate its parameters we calculate
optimal statisticsF derived in Sec. III. The maximum like
lihood detection involves finding the global maximum ofF.
Our algorithm consists of two parts: acoarsesearch and a
fine search. The coarse search involves calculation ofF on

of
TABLE VI. Coordinates of the regions of convergence for t

polynomial phase signals withs spindowns included in the units o
the square roots of diagonal elements of the inverse of the matrG
given by Eq. ~33!. The region of convergence for thekth (k
50, . . . ,3) spindown is the interval@2r k ,r k#.

s r0 r 1 r 2 r 3

0 10 – – –
1 0.7 0.5 – –
2 0.2 0.08 0.1 –
3 ;0.08 ;0.02 ;0.01 ;0.03
1-22
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FIG. 7. Simulations of the biases~plots on the left! and the rms errors~plots on the right! for a monochromatic signal. The results of th
simulations are marked by the circles. Thex axes are labelled by the optimal signal-to-noise ratio. The thin solid lines in the plots on the
are calculated from the covariance matrix and the thick lines follow from Eqs.~129! and ~132!.
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an appropriate grid in parameter space and finding the m
mum value ofF on the grid and the values of the paramet
of the signal that give the maximum. This gives coarse e
mators of the parameters. Fine search involves finding
maximum ofF using optimization routines with the startin
value determined from the coarse estimates of the par
eters. The grid for the coarse search is determined by
region of convergence of the optimization routine used in
fine search. We have determined the regions of converge
of our optimization routines in the noise free case. For
case of a monochromatic signal whenF depends only on one
parameter~frequency! our optimization algorithm is base
on the golden section search and the parabolic interpola
For a signal with some spindowns includedF depends on
s11 parameters (s is the number of spindowns! and we use
the Nelder-Mead simplex algorithm.

To perform our simulations we have usedMATLAB soft-
ware where the above optimization algorithms are imp
06200
i-
s
i-
e

-
he
e
ce
e

n.

-

mented infmin ~1-parameter case! and fmins (n-parameter
case! routines. Both algorithms involve only calculation o
the function to be maximized at certain points but not
derivatives. For the multiparameter case the regions of c
vergence are approximately parallelepipeds. We have s
marized our results in Table VI. We have given the values
the intersection of the parallelepipeds with the coordin
axes in the parameter space. We have expressed these v
in the units of square roots of diagonal values of the inve
of the matrixG given by Eq.~33!. In the case of the signa
with 3 spindowns our estimation of the radius of conve
gence is very crude because the computational burden t
such a calculation is very heavy. The above results hold
the statisticsF calculated when data is only signal and n
noise.

In the coarse search we have chosen a rectangular gr
the spindown parameter space with the nodes separate
twice the values given in Table VI and we have chosen
1-23
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FIG. 8. Simulations of the biases~plots on the left! and the rms errors~plots on the right! for a 1-spindown signal. The results of th
simulations are marked by the circles. Thex axes are labelled by the optimal signal-to-noise ratio. The thin solid lines in the plots on the
are calculated from the covariance matrix and the thick lines follow from Eqs.~129! and ~132!.
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spindown parameter ranges to be from23 to 3 times the
square roots of the corresponding diagonal elements of
trix G given by Eq.~33!. We have made 104 simulations in
the case of a monochromatic signal, 1-spindown, a
2-spindown signals and for each signal-to-noise ratio. T
case of 3 spindowns turned out to be computationally
prohibitive. In each case we have taken the length of
signal to be 25 points.

In our simulations we have observed that above a cer
signal-to-noise ratio that we shall call the threshold sign
to-noise ratio, the results of the Monte Carlo simulatio
agree very well with the calculations of the rms errors fro
the covariance matrix; however, below the threshold sign
to-noise ratio they differ by a large factor. This thresho
effect is well known in signal processing@25# and has also
06200
a-

d
e
o
e

in
l-
s

l-

been observed in numerical simulations for the case o
coalescing binary chirp signal@26,27#. There exist more re-
fined theoretical bounds on the rms errors that explain
effect and they were also studied in the context of
gravitational-wave signal from a coalescing binary@28#.
Here we present a simple model that explains the deviat
from the covariance matrix and reproduces well the result
the Monte Carlo simulations. The model makes use of
concept of the elementary cell of the parameter space tha
introduced in Sec. III. The calculation given below is a ge
eralization of the calculation of the rms error for the case
a monochromatic signal given by Rife and Boorstyn@29#.

When the values of parameters of the template that co
spond to the maximum of the functionalF fall within the cell
in the parameter space where the signal is present, the
1-24
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FIG. 9. Simulations of the biases~plots on the left! and the rms errors~plots on the right! for a 2-spindown signal. The results of th
simulations are marked by the circles. Thex axes are labelled by the optimal signal-to-noise ratio. The thin solid lines in the plots on the
are calculated from the covariance matrix and the thick lines follow from Eqs.~129! and ~132!.
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error is satisfactorily approximated by the covariance mat
However sometimes as a result of noise the global maxim
is in the cell where there is no signal. We then say that
outlier has occurred. In the simplest case we can assume
the probability density of the values of the outliers is unifo
over the search interval of a parameter and then the rms e
is given by

sout
2 5

D2

12
, ~128!

whereD is the length of the search interval for a given p
rameter. The probability that an outlier occurs will be t
06200
.
m
n
at

ror

-

higher the lower the signal-to-noise ratio. Letq be the prob-
ability that an outlier occurs. Then the total variances2 of
the estimator of a parameter is the weighted sum of the
errors

s25sout
2 q1sCR

2 ~12q!, ~129!

wheresCR is the rms errors calculated from the covarian
matrix for a given parameter.

Let us now calculate the probabilityq. Let Fs be the value
of F in the cell where the signal is present and letFo be its
value in the cells where the signal is absent. We have
1-25
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12q5P$all: Fo,Fs%

5E
0

`

P$all: Fo,FsuFs5F%P$Fs5F%dF, ~130!

whereP stands for probability. Since the values of the outp
of the filter in each cell are independent and they have
same probability density function we have

P$all: Fo,FsuFs5F%5@P$Fo,FsuFs5F%#Nc21,
~131!

whereNc is the number of cells of the parameter space. T

12q5E
0

`

p1~d,F!F E
o

F
p0~y!dyGNc21

dF, ~132!

wherep0 andp1 are probability density functions of, respe
tively, false alarm and detection given by Eqs.~25! and~26!.

In Figs. 7, 8, and 9 we have presented the results of
simulations and we have compared them with the rms er
calculated from the covariance matrix. We have also ca
lated the errors from our simple model presented above u
Eqs. ~129! and ~132!. In the case of frequency, spindown
and phase to calculatesout we have assumed uniform prob
ability density. The estimator of the amplitude is propo
ud

s.

r
e
h

te
e
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nd
w
sk

06200
t
e

s

ur
rs
-

ng

-

tional to the modulusuX̃u of the Fourier transform of the dat
and in the case of the amplitude we have calculatedsout for
the probability density ofuX̃u assuming that there is no sign
in the data. We see that the agreement between the simu
and calculated errors is very good. This confirms that
simple model is correct. We also give biases of the estim
tors in our simulations. We see from Figures 7–9 that
signal-to-noise ratio increases the simulated biases ten
zero and the standard deviations tend to rms errors calcul
from the covariance matrices.
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APPENDIX A: FUNCTIONS A, B, AND C

The functionsA, B, andC in Eqs.~12! for the observation
time chosen as an integer number of sidereal days take
form ~heren is a positive integer!
AuTo5n 2p/Vr
5

1

16
sin22gF9 cos4 l cos4d1

1

2
sin2 2l sin2 2d1

1

32
~32cos 2l!2~32cos 2d!2G1

1

32
cos2 2g@4 cos2 l sin2 2d

1sin2 l~32cos 2d!2#,

BuTo5n 2p/Vr
5

1

32
sin2 2g@~32cos 2l!2 sin2d14 sin2 2lcos2d#1

1

4
cos2 2g~11cos 2l cos 2d!,

CuTo5n 2p/Vr
50.
well
ase
e-
data
on
ull

ds
al
-
e de-
t
her
1.
ers
ur

th
he
We see that the functionsA, B, andC depend only on one
unknown parameter of the signal—the declinationd of the
gravitational-wave source. They also depend on the latit
l of the detector’s location and the orientationg of the de-
tector’s arms with respect to local geographical direction

APPENDIX B: THE FISHER MATRIX

In this appendix we give the explicit analytic formula fo
the Fisher matrix for the simplified model of th
gravitational-wave signal from a spinning neutron star. T
model is defined by Eqs.~48! and ~49! in Sec. IV. It has a
constant amplitude and its phase is linear in the parame
In paper II we have shown that this model reproduces w
the accuracy of the estimators of the parameters calcul
from the full model which has amplitude modulation a
nonlinear in parameters phase. In this paper in Sec. V
show that the number of templates needed to perform all-
e

e

rs.
ll
ed

e
y

searches calculated from the linear model reproduces
the number of templates calculated from the nonlinear ph
model in Ref.@7#. Thus we see that the Fisher matrix pr
sented below can be used in the theoretical studies of
analysis of gravitational-wave signals from spinning neutr
stars instead of a very complex Fisher matrix for the f
model.

In paper II we have found that the Fisher matrix depen
on the choice of the initial time within the observation
interval ~initial time is that instant of time at which the in
stantaneous frequency and the spindown parameters ar
fined, see Appendix C of paper II!. However one finds tha
the determinant of the transformation between the two Fis
matrices with different values of the initial time chosen is
Consequently the number of cells and the number of filt
do not depend on the choice of initial time. We present o
analytic formula for the initial time chosen to coincide wi
the middle of the observation interval. This simplifies t
1-26
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analytic expressions considerably.
The Fisher matrixG (s)

all for all-sky searches withs spin-
downs included is defined by

~G (s)
all ! i jª

1

To
E

2To/2

To/2 ]C~ t;z!

]z i

]C~ t;z!

]z j
dt, ~B1!
06200
wherez5(F0 ,j), j5(a1 ,a2 ,v0 , . . . ,vs), and the phase
C is equal to

C~ t;z!5F01F~ t;j!; ~B2!

the functionF is given by Eq.~49!. We have calculated the
Fisher matrixG (s)

all for s54. The result is
G (4)
all 5

¨
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The above formulas could further be simplified if we a
sume that the observation time is an integer multiple of o
sidereal day. We also note that if we have data correspon
to a full year we can start our observation at a time cor
sponding to any position of the detector in its motion arou
the Sun. This means that in such a case we can choos
phasesf r andfo arbitrarily.

The Fisher matrixG (s)
all for s50, . . . ,3equals the subma

trix of G (4)
all consisting of the firsts13 columns and the firs

s13 rows of G (4)
all . The reduced matrixG̃ (s)

all defined in Eq.
~66! can also be obtained from the matrixG (s)

all by means of
the following procedure: take the inverse ofG (s)

all , remove the
first column and the first row of the inverse, take again

inverse of such a submatrix—it equalsG̃ (s)
all .

In the case of directed searches the Fisher matrixG (s)
dir is

also defined by Eq. ~B1!, but now z5(F0 ,j), j
5(v0 , . . . ,vs), and the phaseF is given by Eq.~75!. The
Fisher matrixG (4)

dir with s54 spindowns included reads

G (4)
dir 5

¨

1 0
1

12
0

1

80
0

1

12
0

1

80
0

1

448

1

80
0

1

448
0

1

448
0

1

2304

1

2304
0

1

11264

©
. ~B4!

The Fisher matrixG (s)
dir for s50, . . . ,3equals the submatrix

of G (4)
dir consisting ofs11 first columns ands11 first rows

of G (4)
dir . The reduced matrixG̃ (s)

dir defined by Eq.~66! can be
06200
-
e
ng
-

d
the

e

obtained from the matrixG (s)
dir by means of the same proce

dure as described above for the case of all-sky searches

APPENDIX C: SUBOPTIMAL FILTERING

Very often suboptimal filter~or a search template! is pro-
posed in hierarchical signal searches. In such a search
passes the data through a suboptimal filter that requires m
less computational cost than the optimal filter and one re
ters the candidate events. Then one passes the data thr
optimal filters, however only for the values~or around the
values! of the parameters of the candidate events to as
the significance of the candidate events. In such a search
would like to ensure that there is no loss of events. A way
achieve this when using a suboptimal filter is to lower t
threshold with respect to the threshold chosen for the opti
filter so that the number of expected significant events is
same as with the optimum filter. The probability densiti
derived in Sec. VI A can be used to calculate what the lo
ered threshold should be.

To illustrate the general theory developed in Sec. VI
have considered the following example. We have assum
the observation timeTo to be 3 days and we have restricte
ourselves to directed searches. For such a case the mod
the phase consistent with the 1/4 of a cycle criterion hass1
52 spindowns in the dominant term,s251 spindown in the
contribution due to the Earth orbital motion and no contrib
tion due to the Earth diurnal motion (s350), cf. Eq.~126!.
We have correlated this signal with a template that hass1
51, s251, ands350. Assuming the gravitational-wave fre
quency f o51 kHz and the maximum values of the spi
downs for the spindown aget540 yr the fitting factor is
0.91, the number of cellsNc for the optimal random field is
2.331012, and the number of cellsNsc for the suboptimal
random field is 3.731012. We have found that the fitting
factor is practically independent on the right ascension
the declination of the gravitational-wave source.

In our computations we assume that we lower the thre
old according to the law

FoL5~Fo21!FF211. ~C1!
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FIG. 10. Suboptimal filtering. In the upper left plot we show the ratioNsD(d1sub,FoL)/ND(d1 ,Fo) of the expected number of the detecte
events for the suboptimal filtering@calculated from Eq.~111!# and the optimal one@calculated from Eq.~110!# as a function of the
signal-to-noise ratiod1 ~the signal-to-noise ratio for which the number of events is one!. We have assumed that in the suboptimal filter w
lower the threshold according to Eq.~C1!. We have also put FF50.91. In the right upper plot we give the ratior
5@NsD(d1sub,FoL)/ND(d1 ,Fo)#/FF3 as a function of the fitting factor~we have usedd1516.6). In the left lower plot diamonds mark th
ratio NsD(d1sub,FoL)/ND(d1 ,Fo) of the number of the detected events for the suboptimal filter with lowered threshold@calculated from Eqs.
~111! and ~C1!# and the number of events detected with the optimum filter@calculated from Eq.~110!#; squares denote the rati
NsD(d1sub,Fo)/ND(d1 ,Fo) of the number of events detected by suboptimal filtering without lowering the threshold and the number of
detected with the optimum filter; the solid line gives the fraction of the detected events calculated from FF3 law; all dependencies are show
as functions of the fitting factor~we have putd1516.6). The lower plot on the right gives the ratio of the expected number of false al
with the suboptimal filter and lowered threshold and the expected number of false alarms for the optimal filter.
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The above rule is motivated by the relation between the
pectation value of the statisticsF and the optimal signal-to
noise ratio given by Eq.~82!.

The numerical results obtained using formulas derived
Sec. VI A are presented in Fig. 10. We have assumed
false alarm probability for the optimal filter to be 1%. The
is one more input parameter that we need in order to ca
late the numbers of expected events: the signal-to-noise
d1 for which the number of events is 1. In the upper left p
in Fig. 10 we have shown the ratio of the expected numbe
the detected events for the suboptimal filtering@calculated
from Eq. ~111!# and the optimal one@calculated from Eq.
~110!# as a function ofd1. We have assumed that in th
suboptimal filter we lower the threshold according to E
~C1!. We have also put FF50.91.
06200
x-

n
e

u-
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t
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To assess the number of events that one loses usin
search template Apostolatos@24# assumed that the number o
detected events decreases as FF3. In the right upper plot of
Fig. 10 we have compared the number of detected ev
calculated from Eq.~111! and the ones calculated using FF3

law. We see that in general FF3 law underestimates the even
loss. However, for the fitting factors close to one the diffe
ence is small.

We have calculated the numbers of expected detect
and false alarms for the optimal and suboptimal filter bo
with original and lowered thresholds. The results are p
sented in the two lower plots in Fig. 10. In the plot on the l
diamonds mark the ratio of the number of the detected ev
for the suboptimal filter with lowered threshold@calculated
from Eqs.~111! and~C1!# and the number of events detecte
1-30
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with the optimum filter@calculated from Eq.~110!#; squares
denote the ratio of the number of events detected by sub
timal filtering without lowering the threshold and the numb
of events detected with the optimum filter; the solid li
gives the fraction of the detected events calculated from3

law; all dependencies are shown as functions of the fitt
factor. The lower plot on the right gives the ratio of th
expected number of false alarms with the suboptimal fi
and lowered threshold and the expected number of f
alarms for the optimal filter.

From our example we see that when using a subopti
filter by appropriate lowering of the threshold we can det
all those events that can be detected with an optimal fil
There is, however, a limitation to threshold lowering arisi
from the fact that below a certain threshold the false ala
rate can increase to an unmanageable level. In the real
analysis there may be other limitations. For example belo
certain threshold a forest of non-Gaussian events may
pear, completely obscuring the real signals.

APPENDIX D: THE USE OF PARAMETERS a1 AND a2

TO LABEL THE FILTERS

If one knows the values of the parametersa1 , a2, and f o
it is possible to solve Eqs.~51! with respect to the anglesa
andd. One can show that each triple (a1 ,a2 , f o) gives two
such solutions which can be written as follows~note that
becausedP@2p/2,p/2# to determine d uniquely it is
enough to know sind):

sind5b1sin«6A12b1
22b2

2, ~D1!

cosd5A12sin2d, ~D2!

sina5
b12sin« sind

cos« cosd
, ~D3!

cosa5
b2

cosd
, ~D4!

where

b1ª
a1

f o
, b2ª

a2

f o
. ~D5!

The correspondence between the parametersa1 , a2 , f o
anda, d given by Eqs.~D1!–~D4! implies that one can us
A

-
al
d
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a
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a1 , a2 instead ofa, d to label the templates needed fo
matched filtering. To do this the family of templates label
by a, d ~and the other parameters! must be replaced bytwo
template families labeled bya1 , a2 ~and the other param
eters!. The first family arises when in the original family on
replaces sind, cosd, sina, and cosa by the right-hand sides
of Eqs.~D1!–~D4! with plus sign chosen in the front of th
square root in Eq.~D1!. In the second family the replace
ments are made with minus sign chosen. The filters labe
by parametersa1 and a2 will to a good approximation be
linear and the theory of data processing developed in
paper applies to such a filtering scheme.

When as a result of filtering of the data one gets a sign
cant event one obtains at the same time the maximum l
lihood estimators of the parametersa1 , a2 , f o ~and the
others!. One can obtain the maximum likelihood estimato
of the position (a,d) of the gravitational-wave source in th
sky by means of Eqs.~D1!–~D4!. Note that one should ex
pect to get the maximum correlation for a template belong
to one out of two families described above, which means t
after filtering one would also know which sign on the righ
hand side of Eq.~D1! should be chosen.

The covariance matrix for the parametersa, d, andf o can
be obtained from the covariance matrix for the parame
a1 , a2, and f o by means of the law of propagation of error
Let us introduce

xª~a1 ,a2 , f o!, yª~a,d, f o!. ~D6!

Let Cx be the covariance matrix for the parametersx, then
the covariance matrixCy for the parametersy can be calcu-
lated as follows:

Cy5JCxJ
T, ~D7!

whereT denotes matrix transposition and the Jacobi matriJ
has components:

J5S ]a

]a1

]a

]a2

]a

] f o

]d

]a1

]d

]a2

]d

] f o

0 0 1

D . ~D8!

All derivatives entering Eq.~D8! can be calculated using
Eqs.~D1!–~D4!.
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