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We develop the analytic and numerical tools for data analysis of the continuous gravitational-wave signals
from spinning neutron stars for ground-based laser interferometric detectors. The statistical data analysis
method that we investigate is maximum likelihood detection which for the case of Gaussian noise reduces to
matched filtering. We study in detail the statistical properties of the optimum functional that needs to be
calculated in order to detect the gravitational-wave signal and estimate its parameters. We find it particularly
useful to divide the parameter space ilementary cellsuch that the values of the optimal functional are
statistically independent in different cells. We derive formulas for false alarm and detection probabilities both
for the optimal and the suboptimal filters. We assess the computational requirements needed to do the signal
search. We compare a number of criteria to build sufficiently accurate templates for our data analysis scheme.
We verify the validity of our concepts and formulas by means of the Monte Carlo simulations. We present
algorithms by which one can estimate the parameters of the continuous signals accurately. We find, confirming
earlier work of other authors, that given a 100 Gflops computational power an all-sky search for observation
time of 7 days and directed search for observation time of 120 days are possible whereas an all-sky search for
120 days of observation time is computationally prohibitive.

PACS numbses): 95.55.Ym, 04.80.Nn, 95.75.Pq, 97.60.Gb

[. INTRODUCTION AND SUMMARY tary cellin the parameter space. We find that the number of
cells covering the parameter space is a key concept that al-
This paper is a continuation of the study of data analysidows the calculation of the false alarm probabilities needed to
for one of the primary sources of gravitational waves forobtain thresholds for the optimum statistics in order to search
long-arm ground-based laser interferometers currently unddor significant signals. We use these ideas also to calculate
construction1-4]: spinning neutron stars. In the first paper the number of filters needed to do the search. We show that
of this series[5] (paper ) we have introduced a two- the concept of an elementary cell is useful in the calculation
component model of the gravitational-wave signal from aof true rms errors of the parameter estimators that can be
spinning neutron star and we have derived the data procesachieved with matched filtering. It also explains the devia-
ing scheme, based on the principle of maximum likelihood tions of true rms errors from rms errors calculated from the
to detect the signal and estimate its parameters. In the secordvariance matrix. In this paper we develop a general theory
paper[6] (paper I) we have studied in detail accuracies of of suboptimal filters which is necessary as such filters usu-
estimation of the parameters achievable with the proposedlly occur in practice. Our concept of an elementary cell
data analysis method. In this work which is paper Il of thecarries over to the case of suboptimal filtering in a straight-
series we find that the two-component model of the signaforward manner. The analytic tools developed in this work
introduced in paper | can be generalized in a straightforwardead to independent criteria for construction of accurate tem-
way to theN-component signal. The main purpose of thisplates to do the signal search. We demonstrate that those
paper is to study the statistical properties of the optimal funceriteria give a consistent picture of what a suitable template
tional that we need to calculate in order to detect the signakhould be. In an Appendix to this paper we indicate how to
The main idea is to approximate each frequency componermgarametrize the templates in order that they realize an ap-
of the signal by dinear signal by which we mean a signal proximately linear model so that the analytic formulas devel-
with a constant amplitude and a phase linear in the signabped here can directly be used.
parameters. We have demonstrated the validity of such an The plan of the paper is as follows. In Sec. Il we intro-
approximation in paper Il by means of the Monte Carloduce arN-component model of the gravitational-wave signal
simulations which show that the rms errors calculated usindfrom a spinning neutron star. In Sec. lll we study in detail
the linear model closely approximate those of the exacthe detection statistics for thécomponent model. We show
model. The key observation is that for the linear model thethat the detection statistics constitutes a certain random field.
detection statistics is a homogeneous random field paranWe derive the probabilities of false alarm and the probabili-
etrized by the parameters of the signal. For such a field onges of detection. We present two approaches to the calcula-
can calculate a characteristic correlation hyperellipsoid, théion of the probability of false alarm: one is based on divid-
volume of which is independent of the values of the paraming the parameter space into elementary cells determined by
eters. The correlation hyperellipsoid determinese@@men- the correlation function of the detection statistics and the
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other is based on the geometry of random fields. In Sec. I\angle there is a third component with frequency equal to
we carry out detailed calculations of the number of cells fortwice the spin frequency of the sté8]. There are other
the all-sky and directed searches. In Sec. V we estimate thghysical mechanisms generating gravitational waves and
number of filters needed to calculate the detection statistickhey can also lead to signals consisting of many components.
and we obtain the computational requirements needed to peRecently two new mechanisms have been studied. One is the
form the searches so that the data processing speed is commode instability of spinning neutron staf9-11] that
parable to data acquisition rate. We compare our calculationgelds a spectrum of gravitational-wave frequencies with the
with the results of Bradyet al. [7] obtained before by a dominant one of 4/3 of the star spin. The other is a tempera-
different approach. In Sec. VI we present the theory of subture asymmetry in the interior of the neutron star that is
optimal filters and consider their use in the detection of conmisaligned from the spin axigl2]. This can explain that
tinuous signals. In Sec. VII we propose a detailed algorithmmost of the rapidly accreting and weakly magnetic neutron
to estimate accurately the parameters of the signal and wstars appear to be rotating at approximately the same fre-
perform the Monte Carlo simulations to determine its perfor-quency due to the balance between the angular momentum
mance. In Appendix A we give analytic formulas for some accreted by the star and lost to gravitational radiation.
coefficients in the detection statistics. In Appendix B we As more than two-component continuous gravitational-
present analytic formulas for the components of the Fishewave signals are possible in this paper we shall introduce a
matrix for the approximate, linear model of the gravitational-signal consisting ofN narrow-band components centered
wave signal from a spinning neutron star. In Appendix C wearoundN different frequencies. More precisely we shall as-
give a worked example of the application of our theory ofsume that over the bandwidth of each component the spectral
suboptimal filtering derived in Sec. VI. In Appendix D we density of the detector’s noise is nearly constant and that the
study the transformation of the parameters of the signal to Bandwidths of the components do not overlap. Analytic for-
set of parameters such that the model is approximately linmulas in this paper will be given for tHé-component signal.

ear. However in numerical calculations and simulations we shall
restrict ourselves to a one-component model.
II. THE N-COMPONENT MODEL We propose the following model of thé-component sig-
OF THE GRAVITATIONAL-WAVE SIGNAL nal:
FROM A SPINNING NEUTRON STAR N .
In paper | we have int_roduced a two-component model of )= hy(t), hl(t)zz Aihi(t), 1=1,...N,

the gravitational-wave signal from a spinning neutron star. =1 i=1
The model describes the quadrupole gravitational-wave 1

emission from a freely precessing axisymmetric star. Each of

the components of the model is a narrow-band signal wherahereA; are 4N amplitudes assumed to be constant. Taking
frequency band of one component is centered around a fréhe upper bound of the modulus of the time derivative of the
quencyf, which is the sum of the spin frequency and thestar’s spin frequency to be f/7, where is the age of the
precession frequency, and the frequency band of the secorstar, the typical amplitude will change by a fractionTof/
component is centered around,2 A special case of the over the observation timé,, and this is very small even for
above signal consisting of one component only describes thidne youngest neutron stars. The amplitudgsdepend on the
guadrupole gravitational wave from a triaxial ellipsoid rotat- physical mechanism generating gravitational waves, as well
ing about one of its principal axes. In this case the narrowas on the polarization angle and the initial phase of the wave
band signal is centered around twice the spin frequency dicf. Egs.(28)—(35) of paper I. The above structure of the
the star. When the star is nonaxisymmetric and precesses, thecomponent signal is motivated by the form of the two-
gravitational-wave signal consists of more than two compo<component signal considered in papécfl Eq.(27) of paper
nents. For the case of triaxial ellipsoid and small wobblel]. The time dependent functioiig; have the form

hj1(t)=a(t)cosd (1), h2(t) =b(t)cos® (1),
I=1,...N, 2
his(t)=a(t)sin®(t), hi4(t)=b(t)sin®(t),

where the functions. andb are given by

a(t) ! in2y(3—cos 2\ )(3—cos25)cog2(a— ¢, — Q,1)]— %cos 2y sinA(3—cos 25)sinN2(a— ¢, — Q1) ]

1 1 3
+ Zsin 2y sin 2\ sin 26 cod a— ¢, — O, t]— 5C0S 2y COS sin28siMa— ¢, — Q,t]+ Zsin 2ycogh cogs, (3
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1
b(t)=cos2ysin\ sinécog2(a— ¢, —Q,t)]+ Zsin 2y(3—cosA)sinssin2(a— ¢, — O, t)]

1
+C0s 2y cos\ cosdcog a— ¢, — Q,t]+ Esin 2ysin 2\ cosdsifa— ¢, — O, t]. 4

The functionsa and b are the amplitude modulation func- written asx(t) =n(t)+h(t). The logarithm of the likelihood
tions. They depend on the position of the source in the skyunction equals I\ =(x/h)—3(h|h), where the scalar product
(right ascensiorr and declinations of the sourcg the po-  (-|-) is defined by

sition of the detector on the Earttetector’s latitude\), the o

angle y describing orientation of the detector’'s arms with =h,(f)h3 (f)

respect to local geographical directiofsee Sec. Il A of pa- GALPY ‘=49{J'(J W ' (6)
per | for the definition ofy), and the phase, determined by
the position of the Earth in its diurnal motion at the begin-
ning of observation{}, is the rotational angular velocity of
the Earth. Thus the functiorssandb are independent of the
physical mechanisms generating gravitational waves. Form

In Eq. (6) ~ denotes the Fourier transfornd, is complex
conjugation, ands, is the one-sidedspectral density of the
lfjetector’s noise. As by our assumption the bandwidths of the

las (3) and (4) are derived in Sec. Il A of paper |. components of the signal are disjoint we havg|lf;,)~0
The phasab, of the [th component is given by for 1#1’, and the log likelihood ratio can be written as the
! sum of the log likelihood ratios for each individual compo-
S1 k+1 s K nent:
k) t 2 (k) t
CD|(t)—27Tk§=:0 W oD +?n0~rE5(t)k§=:O f

N
INA~>
I=1

1
%otk (X|h|)—§(h||h|)} (7)

2
+Tn0'rE(t)k A le, 5

Thus we can consider tié-component signal a¥ indepen-
wherergs is the vector joining the solar system barycenterdent signals. Since we assume that over the bandwidth of
(SSB with the center of the Earth ang joins the center of ©ach component of the signal the spectral denSiff) is
the Earth with the detecton, is the constant unit vector in N€arly constantand equal §(f)), wheref, is the frequency
the direction from the SSB to the neutron star. We assum@f the signalh, measured at the SSB a0, the scalar
that thelth component is a narrow-band signal around soméroducts in Eq(7) can be approximated by

frequency(ﬁ) which we define as instantaneous frequency 2 Tol2

evaluated at the SSB at=0: 1 (k=12 ...) is thekth (x[h)~ sn(f,)f_To,zx(t)h'(t)dt’

time derivative of the instantaneous frequency of thie (8)
component at the SSB evaluatedt &t0. To obtain formula 2 T2

(5) we model the frequency of each component in the rest (h,|h|)~—f [hy(t)]?dt,

frame of the neutron star by a Taylor series. In the Taylor Sn(f) -7

expansion we include only terms which over the observation

time contribute more than 1/4 of a Cyc|e to the phase of théVhereTo is the observation time, and the observation inter-
signal(cf. Appendix A in paper Il and Sec. VIC belowand  Val is[—To/2,T,/2].

Consequenﬂy the various sums in Ea) may terminate dif- It is useful to introduce the fOIIOWing notation:

ferently. For the detailed derivation of the phase model see

. 1 (T2
Sec. [IB and Appendix A of paper I. <X>’=T_ x(t)dt. )
oJ —Ty/2

(o}

Ill. OPTIMAL FILTERING FOR THE N COMPONENT

SIGNAL Using the above notation and E@®) the log likelihood ratio

A. Maximum likelihood detection from Eg. (7) can be written as

Maximum likelihood detection and parameter estimation NoooT 1
method applied in paper | to the two-component signal gen- INA~> —fo (xh))— §<h'2>)' (10
eralizes in a straightforward manner to tkeeomponent sig- =1 Sn(fy)
nal.

We assume that the noisein the detector is an additive, ~ Proceeding along the line of argument of papfefl Sec.

stationary, Gaussian, and zero-mean continuous random prBL A of paper I] we find the explicit analytic formulas for the
cess. Then the datg when the signah is present, can be maximum likelihood estimatord,; of the amplitudes\; :
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~ 2B<Xh|1>_ C(xhy»)
117 D y

A 2A<Xh|2>_ C(xhy1)

|2~ D H

“ B{xh;3)—C(xh

As~2 ( |3>D ( |4>, (11)

~  A(xh)—C(xhyz)

A|4~2 D ’

I=1,... N,

where we have defined
A:=(a?), B:=(b?, C:=(ab), D:=AB-C?

(12

and we have assumed thAt#0. To obtain Eqs(11) we
have used the following approximate relations:

(hyhyg)~{hy1hg) = (hizhy3)~(hiohi4) =0,

(W2 =(h2)=~ A,

1
(hi)~(his)~ 5B, (13

<h|1h|2>“<h|3h|4>“%C.

One can show that when the observation tifmgis an
integer multiple of one sidereal day the functi@Grvanishes.
To simplify the formulas from now on we assume tfgtis
an integer multiple of one sidereal déy Appendix A we

have given the explicit analytic expressions for the functions
A and B in this casg¢ In the real data analysis for long
stretches of data of the order of months such a choice of

observation time is reasonable. Then Ed4) take the form
(we assume thah#0 andB+0)

. h . h . h
|1%2<XA|1>, %2<X 12) |3%2<XA|3>’
(14)
. h
A|4~2%, I=1,...N.

The reduced log likelihood functiorf is the log likeli-
hood function where amplitude parametéjswere replaced
by their estimatorg\,;. By virtue of Eqs.(13) and(14) from
Eqg. (10) one gets

PHYSICAL REVIEW D 61 062001

}_%EN: 2T, <xh|1>2;(xh,3>2+ <Xh|2>2’;<Xh|4>2 '
(15

The maximum likelihood estimators of the parameters of
the signal are obtained in two steps. First, the estimators of
the frequency, the spindown parameters, and the angles
and é are obtained by maximizing the functiond#l with
respect to these parameters. Secondly the estimators of the
amplitudesA; are calculated from the analytic formulésl)
with the correlationgxh;;) evaluated for the values of the
parameters obtained in the first step. Thus filtering for the
N-component signal requiresM linear filters. The ampli-
tudesA,; of the signal depend on the physical mechanisms
generating gravitational waves. If we know these mecha-
nisms and consequently we know the dependendg; ain a
number of parameters we can estimate these parameters from
the estimators of the amplitudes by least-squares method. We
shall consider this problem in a future paper.

Next we shall study the statistical properties of the func-
tional 7. The probability density functiongdfs) of F when
the signal is absent or present can be obtained in a similar
manner as in Sec. Il B of paper | for the two-component
signal.

Let us suppose that filters; are known functions of time,

. (k)
i.e., the phase parametefs, «, 6 are known, and let us
define the following random variables:

Xli::<Xh|i>1 Izl, PR ,N, |:1, e ,4. (16)
Sincex is a Gaussian random process the random variables
X;i being linear inx are also Gaussian. Lety&} and
Ei{xi} be respectively the means gf when the signal is

absent and when the signal is present. One easily gets

Egx;}=0, i=1,...,4, 1=1,... N, 17)
1 1
Ei{Xii}= EAAlly Eif{Xi2}= EBAIZv
1 1
El{X|3}: EAAIS, El{X|4}: EBA|41 |:1, A ,N.
(18)

Since here we assume that the observation time is an integer
multiple of one sidereal day it immediately follows from
Egs. (13) that the Gaussian random variablgs are uncor-
related and their variances are given by

Var{x}= ShA(rTI_I)A, i=1,3,
0 I=1,...N. (19
Var{X”}: w, i:2,4;

The variances are the same irrespective of whether the signal
is absent or present. We introduce new rescaled variables
VATIN
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T - n/2—-1 ]_-k
= —0 . i = P e — _O
Zji =2 \ Sh(fI)AXII ' =13, PF(]:O)'_ ffopO(ﬂdf eXF( —7:0) I(ZO Kl (27)
I=1,... N, (20
T, The probability of detectiorPp is the probability that?
Z; =2\/ﬂx“ , 1=24, exceeds the threshol#, when the signal-to-noise ratio is
Sh(fy) equal tod:
so thatz; have a unit variance. By means of E@%7) and
(18) it is easy to show that PD(difo)::f p.(d. HAF. 28)
Eo{zi}=0, i=1,....4, 1=1,...N, (21) Fo
and The integral in the above formula cannot be evaluated in
terms of known special functions. We see that when the
—E _ ToA A noise in the detector is Gaussian and the phase parameters
My =Ey{z1}= Sy(f) Y are known the probability of detection of the signal depends
5 on a single quantity: the optimal signal-to-noise ratio
Mi2=E{Z1}= \/ = Ai2,
12=Brl20} Sn(fp ' 1 \ - B. False alarm probability
TA =L...N (2 Our next step is to study the statistical properties of the
Myz:=E1{2j3}= mﬁs, functional 7 when the parameters of the phase of the signal
are unknown. We shall first consider the case when the sig-
T,B nal is absent in the data stream. I&die the vector consisting
mig:=E{z4}= Sh(fl)AM’ of all phase parameters. Then the statisf¢§) given by Eq.

(15) is a certain generalized multiparameter random process
The statisticsF from Eq. (15) can be expressed in terms of called therandom field If the vectoré is one dimensional the

the variableg); as random field is simply a random process. A comprehensive
N 4 study of the properties of the random fields can be found in
j_-%} ST 2 (23) the monograptj14]. For random fields we can define the
215 meanm and the autocovariance functi@hjust in the same

. . way as we define such functions for random processes:
The pdfs of 7 both when the signal is absent and present

are known. When the signal is absenf Bas ay? distribu- m( &) =E{F (&)}, (29
tion with 4N degrees of freedom and when the signal is
present it has a noncentraf distribution with 4N degrees of C(&&)=E{[AEH-—mHIFAE)—-m(&)]}. (30

freedom and noncentrality parameter =] ;=% . m? . We o .
find that the noncentrality parameter is exactly equal to thaVe say that the random fielflis homogeneoui$ its meanm

optimal signal-to-noise ratio dlefined as is constant and the autocovariance functepends only
on the differenceé—&'. The homogeneous random fields
d:=y/(h[h). (24 defined above are also callet:cond orderor wide-sense

This is the maximum signal-to-noise ratio that can behomogenepu_ﬁelds_.
In a statistical signal search we need to calculate the false

achieved for a signal in additive noise with theear filter ST . L
[13]. This fact does not depend on the statistics of the noise"’.Ilarm probability, i.e., the probability that our Statisties

. crosses a given threshold if the signal is absent in the data. In
si (;glnisseggsegrt]lg/ at:g pr(lfs gn?f;?epl iy:ne ?) respectively the paper | for the case of a homogeneous fiéldve proposed
g P 9 y the following approach. We divide the space of the phase

Fh-1 parameterst into elementary cellsvhich size is determined
Po(F)= mexﬂ -7, (25 py the volume of theharacteristic correlation hypersurface
' of the random fieldF. The correlation hypersurface is de-
(2F)(n2=1)2 fined by the requirement that the correlatidrequals half of
pa(d,F)= Wlnlz— 1(d\27) the maximum value o€. Assuming thaC attains its maxi-
mum value wherg— & =0 the equation of the characteristic
1 correlation hypersurface reads
X exp( - F— —dz) , (26)
Z 1
wheren=4N is the number of degrees of freedom pf Cln= EC(O)’ (32)

distributions and ,»_ 1 is the modified Bessel function of the

first kind and orden/2— 1. The false alarm probabilitp is ~ where we have introducegi=£— &'. Let us expand the left-
the probability that” exceeds a certain threshafd, when  hand side of Eq(31) around==0 up to terms of second
there is no signal. In our case we have order in7. We arrive at the equation
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M When the expected number of false alarms is smisi (
> Gynn=1, (32 <1) we haveP{~Ng.
hj=1 A related approach to calculate the false alarm probability
where M is the dimension of the parameter space and thg!as already been developed for the case of coalescing bina-

matrix G is defined as follows: ries by Dhurandhar and Sathyaprak$h]. Our formula for
the number of cells is a special cagehen the matrixG is
1 9°C(» constank of the geometrical formula proposed by Owéi6].
Gij=— =y 5 . (33 Another approach to calculate the false alarm probability
C(0) gy | _ |
™0 can be found in the monograph7]. Namely one can use the

The above equation defines Bhdimensional hyperellipsoid theory of level crossing by random processes. A classic ex-
which we take as an approximation to the characteristic corP0Sition of this theory for the case of a random process, i.e.

relation hypersurface of our random field and we call thefOr @ one-dimensional random field, can be found in Ref.

correlation hyperellipsoid This approximation is helpful in [18]. The. case oM-dimensiona! random fields is 'treat.ed in
establishing upper limit estimates of the number of elemenl14] and important recent contributions are contained in Ref.

tary cells in the parameter space. Medimensional Euclid- 19 For a random procesy(t) it is clear how to define an
ean volumeV,, of the hyperellipsoid defined by E¢32) upcrossingof the levelu. We say thah has an upcrossing of

equals u att, if there existse>0 such than(t)<u in the interval
(to— €t,), andn(t)=u in (t,,t,+ €). Then under suitable
M2 regularity conditions of the random process involving differ-
Veel= , (34)  entiability of the process and the existence of its appropriate
['(M/2+1)JdetG moments one can calculate the mean number of upcrossings

wherel denotes the Gamma function. We estimate the numPe" unit parameter intervgin the one-dimensional case the

ber N, of elementary cells by dividing the total Euclidean parameter is usually the tinteandn(t) is a time serief

For the case of aM-dimensional random field the situa-
volume Vo Of the parameter space by the voluMg of ., s more complicated. We need to count somehow the
the correlation hyperellipsoid, i.e. we have '

number of times a random field crosses a fixed hypersurface.
Vioal Let F(& be an M-dimensional homogeneous real-valued
=y (35  random field where parameteés=(¢,, ... ,&y) belong to
cell M-dimensional Euclidean spad¢&”! and letC be a compact
We approximate the probability distribution gf(&) in  Subset ofRM. We define theexcursion sebf F(£) insideC
each cell by probabilityp,(F) when the parameters are above the levelr, as
known [in our case by probability given by E¢25)]. The
values of the statistic§ in each cell can be considered as
independent random variables. The probability tatioes
not exceed the threshold, in a given cell is +Pg(F,),
wherePr(F,) is given by Eq.(27). Consequently the prob- ¢ \yas found[14] that when the excursion set does not inter-
ability that 7 does ”St exceed the thresthﬂ?,j inall theNc  gect the boundary of the sétthen a suitable analogue of the
cells is[1—Pg(F,)] . The probabilityPr that 7 exceeds mean number of level crossings is the expectation value of
Fo in one or morecell is thus given by the Euler characteristig of the setA . For simplicity we
T B N, shall denotey[ AAF,,C)] by X, ltturns out that using the
Pr(Fo)=1-[1=Pe(F) T (36 Morse theory the expectation value of the Euler characteris-

This is the false alarm probability when the phase parameteic of Az can be given in terms of certain multidimensional

given by las were obtained for homogeneddsdimensional Gaussian

fields and two-dimensionay? fields (see[14], Theorems
Ne=N:Pr(Fy). (377  5.3.1and 7.1.2 Recently Worsley19] obtained explicit for-
mulas forM-dimensional homogeneoyg field. We quote
By means of Egs(27) and(35), Eq. (37) can be written as  here the most general results and give a few special cases.

AL F,,C):={éc C:FH &= F,}. (40

Ve I Ev\n/e Xs?ézthat#(g),xg(zf“", ;?(Z)XZ fie]ddif u((jg)t
_ Viotal 0 =3 , Where e are independent,
Ng= exp— —. 38 =174 1 n
P Ve XA=Fo) kZ k! (38) identically distributed, homogeneous, real-valued Gaussian

_ _ random fields with zero mean and unit variance. We say that
Using Eq.(37) we can express the false alarm probability U(£) is a generalizedy? field if the Gaussian fieldX(£)
T ; ilv i
Pe from Eq. (36) in terms of the expected number of false are not necessarily independent.

alarms. Using lim_,..(1+x/n)"=expk) we have that, for Let 2F(€) be ay? field and letX,(£), 1=1,...n, be the

large number of cells, component Gaussian fields. Then under suitable regularity
T conditions(differentiability of the random fields and the ex-
Pe(Fo)~1—exp(—Ng). (39 istence of appropriate moments of their distributions
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VydetA #C(&)
E[Xfo]zmﬂnw)mexﬂ—fo)wm,n(ﬂ)- (41 Ajj=— TEE |y (42)

where C is the correlation function of each Gaussian field
In Eqg. (41 V is the volume of the se€ and matrixA is  X,(§). Wy ,(F,) is a polynomial of degreeM—1 in F,
defined by given by

(M_l)l [(M—=1)/2] M—1-2] n—-1 k(_fo)j+k
(—2)M-1 =0 k=0 \M—-1-2j—k ikt

WM,n(]:o): (43

where division by factorial of a negative integer is treated as From Egs.(39) and (45) we see that to compare the two
multiplication by zero andN] denotes the greatest integer approaches presented above it is enough to compare the ex-

=<N. We have the following special cases: pected number of false alarmé: with E[x ]. It is not
difficult to see that fory? fields G=2A. Thus asymptoti-
Win(Fo)=1, cally (i.e., for large threshold&,) using Eqs(34), (38), and
(41) we get
1
Wz,n(]:o):fo_i(n_l)a N

—2M2P(M2+ 1) F M2 as Fo—w, (46)
(44) E[X]:O]

1 where we have used that from Eg. (41) coincides with
Fot Z(n—l)(n—Z), Viota from Eqg. (38).

Worsley ([19], Corollary 3.6 also gives asymptoti@.e.,
3 3 for thresholdF, tending to infinity formula for the probabil-
_ ity P(Fma Fo) that the global maximund,,,, of F crosses
W (Fo) = Fot+ —(n—1)2F2— >nF, ! ma" "o max
amol ot g °o 27o° a thresholdF,:

1
ws,n<fo)=f§—(n— 2

1
V./detA
—5(h—=1)(n—=2)(n—3). _ VTR AntMmy/2-1
8( . ) ) P(FmacFo) = rv|/21(n/2)f§)n

It has rigorously been shown that for the homogeneous as F,—e. (47)
Gaussian random fields the probability distribution of the
Euler characteristic of the excursion set asymptotically apin the signal detection theory the above probability is simply
proaches Poisson distributi¢see Ref[14], Theorem 6.9.8  the false alarm probability and it should be compared with
It has been argued that the same holdsérfields. It has the probability given by Eq(36). It is not difficult to verify
also been shown foM-dimensional homogeneoyg fields  that asymptotically Eqs(36) and (47) are equivalent if we
that asymptotically the level surfaces of the local maxima ofreplace the expected number of false alaiasby H Xfo].
the field areM-dimensional ellipsoids. Thus for large thresh- This reinforces the argument leading to E46).
old the excursion set consists of disjoint and simply con- \We have performed Monte Carlo simulations with com-
nected(i.e., without holey sets. Remembering that we as- puter generated noise to test the above formulas. We have
sume that the excursion set does not intersect the boundafyund that Eq.(45) (based on the expectation value of the
of the parameter set, the Euler characteristic of the excursiofuler characteristic of the excursion sewerestimates the
set is simply the number of connected components of thgalse alarm probability whereas E(6) (based on dividing
excursion set. Thus we can expect that for?aandom field  the parameter space into elementary ¢ebnds to underes-
the expected number of level crossings by the field, i.e., irimate it.
the language of signal detection theory the expected number
of false alarms, has Poisson distribution. Thus the probability C. Detection probability

that Fnhax does not cross a threshold, is given by ) . ) )
exp(—E[ x ]) and the probability that there is at least one When the signal is present a precise calculation of the pdf

level crossingi.e., for our signal detection problem the false of F is very difficult because the presence of the ;lgnal
AU makes the data random procegs$) nonstationary. As a first
alarm probabilityPg) is given by

approximation we can estimate the probability of detection
of the signal when the parameters are unknown by the prob-
ability of detection when the parameters of the signal are

eX[i _-7:0)

PE(Fo)=P(Fae Fo)~1-expg—Elxz]). (45
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FIG. 1. Probability of detectiofplots on the leftand the receiver operating characterigfilots on the rightfor a monochromati¢upper
plots) and a linearly frequency modulated sigtiiwer plots. In the simulation 16 of sequences dfi=28 random independent samples
drawn from zero mean and unit variance normal distribution were generated. The results of the simulation are marked by the circles.
Theoretical distributions are given by solid lines. Probability of detection is calculated from(Eg)sand (28) for n=2 and optimal
signal-to-noise rati@=4. The receiver operating characteristics are parametric curves with signal-to-noistaatiooparameter; they are
calculated from Egs(28) and (36) for d=4, 5, and 6.

known[given by Eq.(28)]. This approximation assumes that chromatic signal and the lower two are for the one spindown
when the signal is present the true values of the phase paignal. In the plots on the left we compare the probability of
rameters fall within the cell wherg has a maximum. This detection calculated from Eq28) with the results of the
approximation will be better the higher the signal-to-noisesimulations, and in the plots on the right we compare the
ratio d. Parametric plot of probability of detection vs prob- t_heoretical and the simulated r_e_ceiver operating characteris-
ability of false alarm with optimal signal-to-noise ratias a  ticS. For the false alarm probability we have used the formula
parameter is called theeceiver operating characteristic (36)- In the insets we have zoomed the ROC for small values
(ROO). of the false alarm probability. We see that the agreement

We have performed the numerical simulations to see ho/€tween the theoretical and simulated ROC is quite good.
the ROC obtained from the analytical formulas presented
above compares with that obtained from the discrete finite V. NUMBER OF CELLS FOR THE ONE-COMPONENT
duration time series. Using a computer pseudorandom gen- SIGNAL
erator we have obtained sequencesl\pﬁﬁ 2? mdependent Let us return to the case of a gravitational-wave signal
random values drawn from a normal distribution and Whenrr m a spinning neutron star. In Sec. V of paper Il we have
necessary we have added the signal. We have considerg own that each component of thecomponent signal can

both the monochromatic and the linearly frequency modube approximated by the following one-component sianal:
lated signal. We have performed“@ials. The results are PP y 9 P gnat.

presented in Fig. 1. The two upper plots are for the mono- h(t;hy,®q,8)=hsimd(t; )+ D], (48
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where the phasé of the signal is given by

k+1
+ T{al[REssin( dotT Qot) +Rg cosh cose sin( ¢, + O, t)]

d(t;8) =2, wk(T—o

k=0

+ @y Res€0g o+ Qot) + Re cosh cog ¢, + Q1) ]}, (49

whereT, denotes the observation timBzs=1 A.U. isthe Egs. (48) and (49) has two important properties: it has a
mean distance from the Earth’s center to the SBBjs the  constant amplitude and its phase is a linear function of the
mean radius of the Eart), is the mean orbital angular parameters. We will use here this simplified signal to es-
velocity of the Earthg, is a deterministic phase which de- timate the number of elementary cells in the parameter space.
fines the position of the Earth in its orbital motiontatO, For the signal given by Eq$48) and(49) the statisticsF
ande is the angle between ecliptic and the Earth’s equatorof Eq. (15) can be written as

The vectoré collects all the phase parameters, it equils

=(aq,as,0q, ...,ws), SO the phaseb depends ors+3 1
parameters. The dimensionless parameigrare related to Flé)~ E{[xc(g)]hr[xs(g)]Z}, (52)
K
the spindown coefficient&i introduced in Eq.(5) as fol-
lows: where
2m (K k+1 _ T
O ote + K=0es (50 Xe(£)=2\ g 1 5{x cOSP(t:8)),
(0]
The parameters; and a, are defined by (53
To :
aq:=f (COSe sina cosé+sine sin ), Xs(§)=2 Sh(f0)<x sSin®(t; ).
(51)
ay:=f,cosa coss. We calculate the autocovariance functiGn[defined by

Eq. (29)] of the random field52) when the data consists
In Appendix D we show that the parameterg,a, can be only of the noisen. We recall thah is a zero mean stationary
used instead of the parametarsd to label the templates Gaussian random process. Consequently we have the follow-
needed to do the matched filtering. The signal defined byng useful formulag20]

E{(n[hy)(n[hy)}=(hy|hy), (54)
E{(n[hy)(n[hz)(n[hg)(n[hg)} = (halhy)(hslhy) + (hylhs) (halhy) + (hy|hy) (ha|hs), (55)
|
whereh, , h,, h,, andh, are deterministic functions. Let us Eo{ F(&F(&)}~1+2[(cosd(t; £)cosd (t:£))2

also observe that [
+(cosd(t; §)sin®(t;£))?

+(sind(t; £)cosd (t; &)
(SIPO(GE)~(cof D(tg)~5. (50 +HED(LHSINDEL)T, (5B

where subscript 0 means that there is no signal in the data.
For our narrow-band signal to a good approximation we have
Making use of Eqs(54), (55), and(56) one finds that

1
(cos®(t;£)cosd(t;£))~ E(cos{fb(tf) —-d(t;€)]),
Eo{ F(§)}~1, (57) (59
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1
(cos®(t;§)sin®(t;£'))~ — S (si (t;§)— D(t;£)]),
(60)

1
(sind(t;§)cosd (t:€))~ (s (1, ~ (L £)]),
(61)

1
(sind®(t;§)sin®(t;£))~ 5 (cog D (t;) — D(t:£)]).

(62
Collecting Egs(57)—(62) together one gets
C(&&)=Ef{HEHFAE )}~ Eo{ FHIEAF (&)}
~(cog @(t;6) ~ d(t;)])?
+H(si @ (t;6) - d(t;€)])% (63)

The phaseb given by Eq.(49) is a linear function of the
parameters;, hence the autocovariance functi@from Eq.
(63) depends only on the differenee=£— ¢ and it can be
written as

C(n)~(cod®(t;n])°+(sif®(t; D2 (69

To calculate the volume of the elementary cell by means

of Eq. (34) we need to compute the matr@ defined in Eq.
(33). Substituting Eq(64) into Eq. (33) we obtain

G=2TI, (65)

where the matrid" has the components
T LN b\ [ oD 66
7=\ Gn a7 ) \om\ar,)- (68

The matrixT is the reduced Fisher information matrix for

our signal where the initial phase paramebey[cf. Eq.(48)]
has been reduced; see Appendix B.

PHYSICAL REVIEW D 61 062001

As the mear(57) of the random fieldF is constant and its
autocovariancés3) depends only on the differenée- & the
random fieldF is a homogeneous random field. Let us ob-
serve that for the fixed values of the parametgttse random
variablesx. andxg are zero mean and unit variance Gaussian
random variables. However the correlation between the
Gaussian fieldg, andxgs does not vanish:

E{X(§)Xs(&)}=(siNP(t;§) - P(t;£)]), (67

and thus the Gaussian random fieldsand x; are not inde-
pendent. ThereforeF is not a x? random field but only a
generalizedy? random field. Our formula for the number of
cells[Eq. (35)] and the formula for the false alarm probabil-
ity [Eq.(36)] apply to any homogeneous random fields; how-
ever, formula(41) applies only toy? fields. Nevertheless by
examining the proof of formuléd1) [14,19 we find that it is
very likely that the formula holds for generalized random
fields as well if we replace the determinant of the maitkix

by the determinant of the reduced Fisher mattix

The total volume of the parameter space depends on the
range of the individual parameters. Following REf] we
assume that

27T of in=<= 0o=<27T o max:

(68)

— Brwo< o< Prwg, k=1,...5, (69

where By :=1/(k+ 1) (To/ Tmin) ¥, fmin and f. are respec-
tively the minimum and the maximum value of the
gravitational-wave frequency,, is the minimum spindown
age of the neutron star. The parametersand «, defined in
Eq. (5)) fill, for the fixed value of the frequency parameter
g, a two-dimensional ball concentrated around the origin in
the (a1, a5) plane, with radius equal teqy/(27T,):

(C(l,a’z)EBz(O,wo/(z’ﬂ'To)). (70)

Taking Egs. (68)—(70) into account the total volume

Vfﬂ'm(s) of the parameter space for all-sky searches \gith

spindowns included can be calculated as follows:

all 27T of max Byog Bswo
Viotals) = d wg daj;da, do;... d o
27T of min B,(0,wg/(27Ty)) —B1wg — Bswg
2s+1,__s+2 s(s+1)/2
:2—77 s+1 i (fs+3_fs1—3 (71)
(s+3)(s+1)! ° \ 7min max ' min /-

all

The volumeV3l, ., of one cell we calculate from E¢34) for M =s+3 andG=2T'h , wherel % is the reduced Fisher matrix
(66) for the phaseb given by Eq.(49) with s spindowns included:

(77./2)(S+ 3)/2

VaII

cell(s) — po——
I'[(s+5)/2]\detl't§

(72

In Appendix B we have given formulas needed to calculate matff@és‘or s=0, ... ,4analytically.
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FIG. 2. Number of cells in all-sky searches as a function of the observationTijnfier different values of the minimum spindown age
Tmin @nd the maximum gravitational-wave frequerigy, (the minimum gravitational-wave frequen€y;,=0). The lines shown in the plots
correspond to different numbes®f spindowns includeds=4 (solid), s= 3 (dotted, s= 2 (dasheg, s=1 (dotted-dashegdands=0 (double
dotted-dashed We have assumed the Laser Interferometric Gravitational Wave Obseryat@®) Hanford detector and we have put
¢,=1.456 and¢,=0.123.

The numbemNZy of cells for all-sky searches is given by

cells(s
yal 2(3s+1)/2_s2+1 - s(s+1)12
o _ “totalls) / [ 0 1 3 3
N?ells(s)_ VaII - F(S/2+ 1) detr?s) - ) Tng (f?ntix_ frsnTn ) (73)
cell(s) min

In Fig. 2 we have plotted the numbﬁﬁgns@ of cells as a function of the observation tiffig for various models of the signal
depending on the minimum spindown agg,, and the maximum gravitational-wave frequerigy,, and for various numbers

s of spindowns includedassuming the minimum gravitational-wave frequerigy,=0). We see that for a given,,, and
fmax, curves corresponding to different numbermtersect. This effect was observed and explained by Beddl. [7]. To
obtain the number of cells for a given observation timewe always take the number of cells given by the uppermost curve.
We have calculated the observation tim‘Eﬁossk) for which the numbers of cells with and k+1 spindowns included
coincide:

Il Il ] Il
N?ells(k+ 1)(TO: T?rossk)) = Ngells(k)(Toz Tgrossk))' k=0,...s-1 (74)

In Table | we have given the values Bfrossiy for all the terva). We find that the determinant cféj‘g'% and conse-
signal models considered. quently the number of cells does not depend on this choice.

The Fisher matriX (y depends on the phasés, ¢,,  The dependence on the remaining parameters is studied in
and the latitude\ of the detector(see Appendix B We  Fig. 3. The dependence on the phaggsand ¢, is quite
know from paper Il(see Appendix C of paper)lithat the  weak. The dependence anis quite strong; however, for the
Fisher matrix also depends on the choice of the instant ofletectors under construction for whighvaries from 35.68°
time at which the instantaneous frequency and spindown paTAMA300) to 52.25° (GEO60Q the number of cells
rameters are define@n the present paper this moment is changes by a factor of 2 for 7 days of observation time and
chosen to coincide with the middle of the observational in-by around 10% for 120 days of observation time.
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TABLE I. The observation times for which the numbers of cells viitmdk + 1 spindowns included coincide for various models of the
signal depending on the minimum spindown agg, and the maximum gravitational-wave frequerfgy,,. The minimum gravitational-
wave frequency ,;,=0. In the case of all-sky searches we have used the latited$6.45° of the LIGO Hanford detector and we have put
$0=0.123 and¢, = 1.456.

Tomssciy (days) Tomssxy (days)
Tmin (years) Fuax (H2) k=0 k=1 k=2 k=3 k=0 k=1 k=2 k=3
40 10° 021 3.11 116 311 0.03 3.53 405 175
40 200 0.31 5.19 158 389 0.06 6.04 605 242
10° 10° 0.46 114 575 2210 0.14 30.2 452 2300
10° 200 0.69 157 725 3040 0.32 517 676 3180

In Sec. V of paper Il we have shown that for directed searches the constant amplitude signal given (49)Eqel (49)
can be further simplified by discarding in the ph&4®) terms due to the motion of the detector with respect to the SSB. Such
a signal reads

S k+1
. t
h(t;ho, @0, 6 =hoSiM® (L + Do), P(LH= 2, wk(T—) : (75
= [0}
The vectoré has nows+ 1 componentsé= (wg, . . . ,ws). Using Eqs(68) and(69) the total volume\/d'{aKs) of the parameter

space for directed searches wilspindowns included is calculated as follows:

dir 27T of max Biwo Bs®o
Vtotal(s): d wy dow;... dwg

27T of min —B1wg ~Bswg

2s+1 1 1)/2
:_2 > 7T5+ s+1 TO s (fs+1 fS+1 (76)
(s+1)(st1) ©

min
Tmin

The volumeVir ., of one cell we calculate from E¢34) for M=s+1 andG =21 , wherel (3 is the reduced Fisher matrix
(66) for the polynomial phasé75) with s spindowns included:

(77/2)(5+ 1)/2

Vggu(s): —. (77
I'[(s+3)/2]\detl'{§
The matrixl“?g’) for s=0, ... ,4 can bealculated analytically by means of formulas given in Appendix B.
The numbelNce”S(S) of mdependent cells is given by
_ lel’ 2(3s+1)/2si2+1 : s(s+1)/2
dir total(s) _ [ 4 o4 Todir o s+1,es+1_ gs+1
Ncells(s) ler (S+ 1)F(S/2+ 1) detr(s)( Tmin) To (fmax_ fmin ) (78)

cell(s)

In Fig. 4 we have plotted the number of cdﬂggns(s) as a function of the observation tinig for various models of the signal
depending on the minimum spindown agg;,, the maximum gravitational-wave frequenéy,.,, and the numbes of
spindowns includedassuming the minimum gravitational-wave frequeihgy,=0). We see that, like for all-sky searches, for
a g|ven Tmin @Nd f 1, CUrves corresponding to different numbersitersect. We have calculated analytically the observation
tlmesTcrossk) for which the numbers of cells witk andk+1 spindowns included coincide:

Ncells(k+1)(T Tcrossk)) Ncells(k)(T Tcrossk)) k=0, S8 (79)

Using Eq.(78) one obtains

dir o _ - S+l
wos0 | 22 (k+ DT [(k+2)/2] Y detl'dr, ) flo2— k2 m

— 1/(k+2)
k+2)T[(k+3)/2 detlfl) fli—fit
(k+2)I'[(k+3)/2] () "max " Tmin , k=0,...s-1 (80)
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FIG. 3. Dependence of number of cells in all-sky searches on the atglesp,, and the latituden of the detector’s site. We have
chosen the minimum spindown age,,=40 years, the maximum gravitational-wave frequerfgy,,=1 kHz, and the minimum
gravitational-wave frequenci;,;,=0. The plots(a), (c), and(e) are for the observation tim&,=7 days(and the number of spindowns
s=2); (b), (d), and(f) are forT,=120 days(and the number of spindowrss=3). In the plots(a), (b), (c), (d) we have used the latitude
\=46.45° of the LIGO Hanford detector; i@), (b), (e), (f) we have puip,=0.123; and in(c), (d), (e), (f) we have used),=1.456.

In Table | we have given the values mﬁ;[m@ for all the  denc@. By means of Eqs(27) and(36) for n=2 (what cor-
signal models considered. responds to a one-component sigrihk relation between the

In Table Il we have given the number of cells both for thresholdF, and the false alarm probability=0.01 reads
all-sky and directed searches for various models of the signal
depending on the minimum spindown agg,, and the maxi- Fo=—IN[1—(1—a)Ne], (82)
mum gravitational-wave frequendy,,,, and for the obser-
vation timeT, of 7 and 120 daygassuming the minimum WwhereN, is the number of cells. Following the relation be-
gravitational-wave frequenck,,=0). The number of cells tween the expectation value of the optimum statistics when
is calculated from Eq(73) for all-sky searches and from Eq. the signal is present and the signal-to-noise ratio which is
(78) in the case of directed searches. For a given observatiogiven by
time T, the numbess of spindowns one should include in the
signal's model is obtained as such numiseshosen out of
s=0,... .4 forwhich N3 (Or Noiise) is the greatest.

We have also calculated the threshgigifor the 1% false
alarm probability(or equivalently for 99% detection confi- we have calculated the “threshold” signal-to-noise ratio

1
E{F =1+ Edz, (82

062001-13



PIOTR JARANOWSKI AND ANDRZEJ KRQAK PHYSICAL REVIEW D 61 062001

1045 ALLLU R B R B BRI B A 1045 ALLLLU BN ERLLL) B AL B R R RLULL B R L B
0% E E 10 E 3
10% é Tmin = 40 years E 10% E Tmin = 40 years g
- frax = 1 H R = frax = 200 H 23
E 100 E max 000 Hz A E 1030 5 max 00 Hz /" 3
g 10% E TR 8 10t E //§
Y 102 E -3 % 1w E
g 10 E = 3 108 E E
g o =S -3 g 0t E LT 3
e A T 3 - IRl 3
10° Pid 3 10° B '/// . 3
- 3 r P 2
0 e 3 0 - 3
100 E ' 3 10 :// ' 3
'_lll\lll |'\IIHII| IIHIIIl L \IHIIIl 1 \IIIIIIl 1 IY: :|IIIII| II’\'IHIIl 1 I\I\Ill IIIIIH\l 1 \III\I\l II;

1001 10° 10' 102 10° 100' 10° 10" 102 10°

To (days) T, (days)

1035 AL L L L B B 1030 AL B L L B L B L B ¢
103 E a 25 = 3
T tmin = 1000 years = 10 - Tmin = 1000 years A
1025 & 7 r 3
ﬂ = frax = 1000 Hz 3 ﬂ 1020 = frax = 200 Hz 3
° 102 F a0 8 =
© = 3 Y o E 3
g 10 & = 9% - ) E
= P 3 10 e .
2 1010 E - 3 b 10 - A h
-g - ,/‘//__»:- 3 -g = =T 3
Y S . 3 - 3
=4 — - e . . 108 — 7/ 5
5 = . 3 .~ 3
& 10° F e . ] & : L 3
2 3 o B 7 3
10° 3 LU - E
o . E -/ . 3
. 3 - - R
_IIIHI| 1 \IIHIIl' 1 IIHIIIl Il \IHIIIl 1 \IIIIIIl LT '_Ilfllll II\IHIIl l'II\HIIl IIIIHI\l 1 \III\I\l 117

100t 10° 10 10° 103 100! 10° 10! 107 103

T, (days) T, (days)

FIG. 4. Number of cells in directed searches as a function of the observatiof §ifoe different values of the minimum spindown age
Tmin @nd the maximum gravitational-wave frequerigy, (the minimum gravitational-wave frequenty;,=0). The lines shown in the plots
correspond to different numbes®f spindowns includeds=4 (solid), s= 3 (dotted, s= 2 (dashed, s=1 (dotted-dashegdands=0 (double
dotted-dashed

dgi= m' (83 V. NUMBER OF FILTERS FOR THE ONE-COMPONENT
SIGNAL
where F, is given by Eq.(81). The values ofl, for various
models of the signal and observation times of 7 and 120 days To calculate the number of fast Fourier transfoiRE TS
are given in Table Il. If the signal-to-noise ratiods then  to do the search we first need to calculate the volume of the
there is roughly a 50% probability that the optimum statisticelementary cell in the subspace of the parameter space de-
will cross the threshold, . fined by wg=const. This subspace we call tfiker space

TABLE II. Number of cells for all-sky and directed searches for various models of the signal depending
on the minimum spindown age,,,, and the maximum gravitational-wave frequenty,,, and for the
observation timd , of 7 and 120 days. The minimum gravitational-wave frequeigy=0. To calculate the
Fisher matrixf?é') we have used the latitude=46.45° of the LIGO Hanford detector and we have gyt
=0.123 and¢,=1.456. For each case we also give the 99% confidence threshold signal-to-nois#, ratio
calculated by virtue of Eq(83).

—— —-—
All-sky Directed

T,(days) T (years)  fum (Hz) | s Naweg do | s Naws 4o
7 40 10° 2 42x10"% 96 2 3.7X10% 86

7 40 200 2 1310 88 2 29%102 80

7 10° 10° 1 1.5X10% 90 1 1.9x10? 80

7 10° 200 1 24x102 83 1 7.6X10° 76
120 40 10° 3 3.8%10% 12 3 72x% 102 11
120 40 200 2 1.1x10% 11 3 1.2x10# 10
120 10° 10° 2 2.2%x10% 11 2 6.0%X107 94
120 10° 200 1 2.7x 107 11 2 48%x10¥% 89

— e —
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We would like to stress the conceptual difference betweemvhere
the number of cells of the parameter space and the number of
filters. The number of cells determines the false alarm prob-

ability whereas the number of filters determines computa-

tional requirements to do the search.
Let us expand the autocovariance functiorof Eq. (64)
around7=0 up to terms of second order in

M

C(n=1- 21 Tijnir,

(84)

wherel“IJ are defined in Eq(66) and M is the number of
phase parameters. In E@4) we have used the property tha
C attains its maximum value of 1 for=0. Let us assume

that 7, corresponds to frequency parameter and let us maxi-

mize C given by Eq.(84) with respect tor;. It is easy to

show thatC attains its maximum value, keeping, ... ,7y
fixed, for
= E Ty (85)
111
Let us define
E(TZ, ...,TM)==C(?1,7'2, Ce T (86)
Substituting Eqs(84) and (85) into Eqg. (86) we obtain
M
Cra, ... i) =1= 2 Tymy, (87)

i,j=2

. (88
1_‘11
We define an elementary cell in the filter space by the re-

quirement that at the boundary of the cell the correlaion
equals 1/2:

(89

— 1
C(Tz, PR ,TM):E.

¢ Substituting Eq(87) into Eq. (89 we arrive at the equation

describing the surface of the elementary hyperellipsoid in the
filter space:

1

M
|Jz:2 :2

The volume of the elementary cell is thus equal¢b Eg.
(34)]

(90

(’77/2)(M 1)/2
Vcell
T[(M+1)/2] Vdetl

The volumeV of the elementary cell in the filter space is
independent of the value of the frequency parameter.
Taking Egs. (68)—(70) into account the total volume

Vil Of the filter space for all-sky searches withspin-
downs included can be calculated as follows:

(91)

— B1wg Bswg
Viotalts) = dai;da, doq... d wg
B,(0,0g/(27Ty)) —B1wg = Bswo on=2aT i
0 0’ max
2 1 1)/2
B 2 s,n_s+ . To s(s+1) fs+2 (92)
(st o\, max:
|
Putting in EQ.(92) wo=27T,f nax We have defined/ Al _Vfg'tal(s)
as that slicewg=const of the parameter space which has Nfiterss) = =1
maximum volume. The vqum‘ece”(s) of one cell in the filter celll)
space we calculate from E¢91) for M =s+3: 23755+ 2)
C (s+1)T[(s+1)/2]
(ar/2)(sT2)72 M| To |92 ¢ s
VaII (93) X detr(s) - Tofmax (94)

cell(s) — —
I[(s+4)/2]\ detl"?

where the matrixI"sh

Fall
()
The numbeNmters(S) of filters for all-sky searches is given
by

is calculated from EQq{(88) for T

In Fig. 5 we have plotted the numbhifi, .« of filters as a
function of the observation tim€&, for various models of the
signal depending on the minimum spindown agg, and the
maximum gravitational-wave frequendy,,,, and for vari-
ous numberss of spindowns included. We see that for a
given 7, and f ,,,, curves corresponding to different num-
berss intersect. This effect was observed and explained in
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FIG. 5. Number of filters in all-sky searches as a function of the observationTijmer different values of the minimum spindown age
Tmin @nd the maximum gravitational-wave frequerfGy,,. The lines shown in the plots correspond to different numkess spindowns
included:s=4 (solid), s=3 (dotted, s=2 (dashedl s=1 (dotted-dashed ands=0 (double dotted-dash@dwWe have assumed the LIGO
Hanford detector and we have p#it=1.456 and¢,=0.123.

Ref.[7]: in the regime where adding an extra parameter re- For directed searches, the total volulg,, of the filter

duces the number of filters the parameter space in the extighace withs spindowns included we calculate using Egs.
dimension extends less than the width of the elementary celgg) and (69):

in this dimension. To obtain the number of filters for a given
observation timeT, we always take the number of filters
! . B1wg Bswo
given by the uppermost curve. We have also calculated the V?c;;al(s): dow; ... d ws
0g=27T,

observation times . for which the numbers of filters ~F1eo ~hswo o max
with k andk+ 1 spindowns included coincide:
225775 To )s(s+ 1)/2
I _ Tl _nall _ Tl =— |- (fmaxTo)®- (96)
N?illters(kJr 1)(T0_ Tgrossk)) - Nﬁlters(k)(To_ T?rossk))! (S+ 1)! Tmin maxto

k=0,...s—1 (99 .
. The volumevg'er”(s) of one cell in the filter space for directed
In Table Ill we have given the values Gﬁl'ossk) for all the  searches witts spindowns included we calculate from Eqg.

signal models considered. (92) for M=s+1:

TABLE IIl. The observation times for which the numbers of filters witAndk+ 1 spindowns included
coincide for various models of the signal depending on the minimum spindowm,ggand the maximum
gravitational-wave frequendiy,,,. In the case of all-sky searches we have used the latkue46.45° of the
LIGO Hanford detector and we have p¢it=0.123 andp, = 1.456.

Toesy (days) Tony (days)
Tmin (ye2rs)  fmax (H2) k=0 k=1 k=2 k=3 k=1 k=2 k=3
40 10° 0.19 3.01 113 307 3.26 38.8 171
40 200 0.30 5.07 156 384 5.58 58.0 236
10° 10° 0.45 111 566 2170 279 434 2250
10° 200 0.66 153 715 2900 | 477 649 3100
— e
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FIG. 6. Number of filters in directed searches as a function of the observatiof gifioe different values of the minimum spindown age
Tmin @nd the maximum gravitational-wave frequerfGy,,. The lines shown in the plots correspond to different numbkess spindowns
included:s=4 (solid), s=3 (dotted, s=2 (dashed s=1 (dotted-dashed

— (m/2)%? Using Eq.(98) one obtains
Veels) = , 97
=T —
I'[(s+2)/2] detl“(s) . I[(k+4)/2] detF‘(’l'(r) TrnTnlr/(kn)
. ~ crossk) —dir f )
where the matrixI'(y is calculated from Eq(88) for T 2y27l[(k+3)/2] N detl’ ) Tmax
=T. k=1,...5-1 (100

The numberNfi. . Of filters in the case of directed

searches is thus given by In Table Il we have given the values Eﬂgssk) for all the

—r signal models considered.

N ~ Viotal(s) In Table IV we have given the number of filters both for
filters(s) — Vdir”( ) all-sky and directed searches for various models of the signal
cell(s

depending on the minimum spindown agg,, and the maxi-
mum gravitational-wave frequendy,.,, and for the obser-
vation timeT, of 7 and 120 days. The number of filters is
calculated from Eq(94) for all-sky searches and from Eq.
(98) in the case of directed searches. For a given observation
time T, the numbess of spindowns one should include in the
In F|g 6 we have pIOtted the number of filters for VariOUSSigna|’s model is obtained as such numBearhosen out of
models of the signal depending on the minimum spindowrs—q, . 4 forwhich N?illl:ers(s) (or N?ill{ers(s)) is the greatest.
age 7pyin and the maximum gravitational-wave frequency \ye shall next compare the number of filters obtained
fmax, and for various numbersof spindowns included. We  apove with the number of filters calculated by Braglyal.
have also calculated analytically the observation time$7) |n their calculations they have assumed a constant am-

2(35-2)/2(s+1)/2

s(s+1)/2
~ T[(s+3)/2] )

s
(s) Tmin

( f maxTo)s-

(99)

lel’

spindowns included coincide:

di _Tdi _
Nfilltrers(k+ 1)(To - Tcul'z)ss(()) -

di
N fi II{e rs(k)

k=1,...s—1.

(To= ﬁg)ss(()) ,

crossk) 1O Which the numbers of filters with and k+1

(99

plitude of the signal; however, they have used a full model of
the phase. To calculate the number of templates they have
used the so-called metric approach of OJ&6]. They have
assumed a certain geometry of spacing of the templates:
combination of a hexagonal and a hypercubic spacing, and
they have introduced an additional parameter—a mismatch
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TABLE IV. Number of filters for all-sky and directed searches for various models of the signal depending
on the minimum spindown age,,, and the maximum gravitational-wave frequenty,,, and for the
observation timeT, of 7 and 120 days. To calculate the Fisher mal?@g) we have used the latitude
=46.45° of the LIGO Hanford detector and we have pgyt=0.123 and$,=1.456. For each case we also
give the numbefP of floating point operations per secofftbps) needed to do the search;is calculated by
means of Eq(101).

All-sky Directed
T, (days) Tmp (years) fma (H2) | s Nilberscs) P (T) s Niwws P
7 40 10° 2 14X10°  26x10° 2 95X10°  1.7x107!
7 40 200 2 23%x107 78x107'| 2 3.8x10* 13x1073
7 10° 10° 1 4.6X107 8.5 1 38x10° 7.0x107*
7 10 200 1 3.7X10° 13X1072 | 1 70X10* 26X1073
120 40 10° 3 84x10°  17x108 | 3 13x10% 2.7x107
120 40 200 2 L1x107  43%10° 3 1.0Xx10% 39x10*
120 10° 10° 2 44x10%  92x108 2 90x10" 1.8%X10
120 10° 200 1 24%x10®  9.3x10° 2 36x10° 14x107!

m, which was the measure of the correlation of the twoproximation of the time derivative of the frequency as
neighboring templates. Also in their calculation they havef ../ Tmin that is used to estimate the maximum value of the
assumed that the data processing method involves resarspindowns is probably an order of magnitude estimate. This
pling of the time series so that the resampled signal is monamplies that the size of the parameter space and consequently
chromatic. We shall compare the number of filters in Tablethe number of filters is accurate withgfs+1)/2 orders of

IV of our paper with the corresponding number of filters magnitude, whersis the number of spindowns in the phase
given in Table | of[7]. Our calculations correspond to mis- of the signal. Even this large uncertainty does not change the
match = 0.5. This means that to compare our numbers ofconclusion that all-sky searches for 120 days of observation
filters with the corresponding numbers of Bradial. our  time are computationally too prohibitive.

numbers have to be multiplied by 2.4, 5.8, 15, and 40 for the To estimate the computational requirement to do the sig-
signal with 0, 1, 2, and 3 spindowns, respectively, for all-skynal search we adopt a simple formiiee Eq(6.11) of [7]]
searches and by 1.3, 1.7, and 2.2 for 1, 2, and 3 spindownfgr the numberP of floating point operations per second
respectively, for directed searches. The difference in the voltflops) required assuming that the data processing rate should
ume of our hyperellipsoidal cells and their volumes of el-be comparable to the data acquisition rfatés assumed that
ementary patches meafsee Ref[7], Eq. (5.18 for all-sky  fast Fourier transforntFFT) algorithm is used

searches and the paragraph above &q2) for directed

searchepthat our numbers additionally have to be multiplied P=6f madNi[1002(2f paxT o) + 1/2], (101

by 1.7, 2.2, 2.8, and 3.6 for all-sky searches and by 1.0, 1.4,

and 1.3 for directed searches for comparison. After introducwhere N¢ is the number of filters. The above formula as-
ing the corrections for the mismatch parameter and the sizeumes that we calculate only one modulus of the Fourier
of an elementary cell we find that our corrected number ofransform. Calculation of the optimal statisti#sfor the am-
templates is greater than the number of templates given iplitude modulated signal requires two such moduli for each
Table | of [7] by (going from top to bottom of the table component of the signésee Eq(99) of paper I; we assume
2.8x10% 14, 2.7, and 1.5 for all-sky searches and by 2.2that the observation time is an integer multiple of the sidereal
1.7, 0.31, and 0.25 for directed searches. We thus concludday so thatC=0] and several multiplications. Moreover if
that considering the differences in the way the calculationglechirping operations are used instead of resampling, the
were done there is a reasonable agreement between the nud@ta processing would involve complex FFTs. All these op-
ber of filters obtained by the two approaches except for onerations will not increase the complexity of the analysis, i.e.,
case: all-sky searches with the maximum frequemgy, the number of floating point operations will still go as
=200 Hz and the minimum spindown agery,, O(NIlogy(N)), whereN is the number of points to be pro-
=1000 years where the difference is 4 orders of magnitudecessed.

We would also like to point out the uncertainties in the In Table IV we have given the computer powgr (in
calculation of the number of filters. Our model of the intrin- Teraflops, Tf required for all the cases considered. We see
sic spin frequency evolution of the neutron star is extremelyfthat for 120 days of observation time all-sky searches are
simple: we approximate the frequency evolution by a Taylorcomputationally too prohibitive whereas for directed
series. In reality the frequency evolution will be determinedsearches only one case,f,=1000 years, f =200 Hz)
by complex physical processes. The size of the parameté$ within reach 6 a 1 Teraflops computer. For 7 days of
space is likewise uncertain. The range for the spindown paebservation time all cases except for the most demanding
rametergsee Eqs(68) and(69)] was chosen so that the total all-sky search withr,;,=40 years andf,,—=1 kHz are
size of our parameter space is the same a&nThe ap- within a reach da 1 Teraflops computer.
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We would like to mention that by applying a standardties will be the same as for the optimal case, i.&5,2 has a
heterodyne techniqug21] we can split the data from the central or a noncentral? distribution with 2 degrees of free-
detector of bandwidth f(yn,fna) iNto M data sequences dom depending on whether the signal is absent or present.
each of bandwidtt8 and each shorter than the original seriesFrom the narrow-band property of the suboptimal filter we
by a factorf./B. This reduces the memory and storageget the following expressions for the expectation values and
requirements for data processing systems. the variances ofF,,, (0 means that signal is absent and 1

We have calculated the computational requirements fomeans that signal is presgnt
the case of one-component model. For lkeomponent sig-
nal the computational requirements do not substantially in-
crease as each filtéwhich is essentially a Fourier transform
of the data picks up all spectral components of a multicom-
ponent signal. Varg{ Foug =1, Van{Fyg=1+d2, (104

It is interesting to consider the case of directed search for
a known source. If the parameters of the source are perfectiyhere
known, that is if we know completely its frequency and spin-
down parameters, we could simply fold the data with the dsupi=0d{(cog @ (t; ) — @' (t;£)])?
known period of the source as it is done in radio astronomy . . L e et 2112,
in timing of known pulsars(However, before folding we (i@ (L) =" (1:4) )T (109
would first_need to resam_ple the time series to correct for th?lered is the optimal signal-to-noise ratio.

Earth motion and the spindown parametefswe know a We see that for the suboptimal filter introduced above the
frequency within a certain narrow range we could apply hetygse ajarm probability has exactly the saedistribution
erodyning technique to reduce the amount of data to analyz@g i the optimal case whereas the probability of detection

The computational power needed for this case would be cor; o noncentrak? distribution but with a different noncen-

siderably reduced with respect to directed search of source Q ality parameted .. We shall calld,, (the square root of
completely unknown frequency. sub su

the noncentrality paramejethe suboptimal signal-to-noise
ratio. It is clear that when the phases of the signal and the
VI. SUBOPTIMAL FILTERING suboptimal filter are different the suboptimal signal-to-noise

It will very often be the case that the filter we use to ratio is strictly less and the probability of detection is less

extract the signal from the noise is not optimal. This may béhan for the optimal filter.

the case when we do not know the exact form of the signal When the parametess are unknown the functionaf,,
(this is almost always the case in praciice we choose a 'S @ random field and we can obtain the false alarm probabili-

suboptimal filter to reduce the computational cost and sim!€S as in the case of an optimal filter. Here we only quote the

plify the analysis. We shall consider here an important spefo'mula based on the number of independent cells of the

cial case of a suboptimal filter that may be useful in thef@ndom field. One thing we must remember is that the num-

analysis of gravitational-wave signals from a spinning neu_ber of cells fqr the suboptimal and the optimal f|[ters will in
general be different because they may have a different func-

1
Eo{ Foun =1, E{Fsuy=1+ Edgub (103

tron star.
tional dependence and a different humber of parameters.
A. General theory Thus we havécf. Egs.(27) and(36) for n=2]
We shall assume a constant amplitude one-component Pir(Fo)=1-[1—exp —F,) Vs, (109

model of the signal. Then the optim@haximum likelihood

statistics is given by Eq52) Let us suppose that we do not WhereNsc is the number of cells for the SUbOptimal filter.
model the phase accurately and instead of the two optimal The detection probability for the suboptimal filter is given
filters cogd(t;£) ] and sifid(t;&)] we use filters with a phase by [cf. Egs.(26) and(28) for n=2]

D' (t;¢&"), where functiond’ is different from® and the set

of filter parameterg’ is in general different frong, i.e. Fp P.n(der F ,=f°° d dF 10
has the forn{cf. Egs.(52) and(53)] ol dsup Fo) fopSl( sur ) A7, (107

fsub:%ﬁx Cosq)’(t;gr»z_'_ (x Sil’l@'(t;f’))z], where

(102) psl(dsubv]:) = IO(dsub\/ﬁ)eX% - F- ;diub) . (108)

where we have assumed that the suboptimal filters are nar-

row band at some “carrier” frequenci, as in the case of The probability of detection for the suboptimal filter is ob-

optimal filters. tained from the probability of detection for the optimal one
Let us first establish the probability density functions of by replacing the optimal signal-to-noise raticby the sub-

Fsup When the phase parametegs are known. Since the optimal onedg,y,.

dependence on the data random process is the same as in theWhen we design a suboptimal filtering scheme we would

optimal case the false alarm and detection probability densiike to know what is the expected number of false alarms
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with such a scheme and what is the expected number of 2 o
detections. As in the optimal case the expected nuriher (hl|h2)~mf h
of false alarms with suboptimal filter is given hgf. Egs. 0/ J —Tof2
(27) and (37) for n=2]

Tol2
1(Dhy(t)dt, (114

whereS,, is the one-sided noise spectral density dgds the
Ngr=Ngexp — Fp). (109  Observation time.
Let us assume that the signal and the filter can be written
To obtain the expected number of detections we assum@S

that the signal-to-noise ratibvaries inversely proportionally
to the distance from the source and that the sources are unin(t;9)=h,sinW(t;£), h'(t;0')= h, sinW®' (t;¢'),
formly distributed in space. We also assume that the space is (115
Euclidean. Let us denote hy; the signal-to-noise ratio for
which the number of events is one. Then the number o
events corresponding to the signal-to-noise ratlois
(d,/d)3. The expected number of the detected events i
given by

r/vhereh0 andh/ are constant amplitudesand¢’ denote the
arameters entering the phasksand ¥’ of the signal and
he filter, respectively. We substitute Eq4.15 into Eq.
(113. Using Eqg.(114) we obtain

T2

FmeaxTif cogV(t;)—w'(t;¢)]dt. (116
gl o

~Tyl2

» d
ND(dlufo):3f XZPD(;l,fo)dx (110
0

in the case of the optimal filter, and by

It is easy to maximize the FA.16) with respect to the initial
phase of the filter. Let us denote the initial phases of the
functionsW and ¥’ by ®4 and®, respectively. Then

* d
Nl drsu Fo) =3 fo xzpsD(%“",fo)dx (113

for the suboptimal filter. Let us note thgtf. Eq. (105] V()=D(t; 8+ Dy, V' (1;0)=D'(t;&)+ D},

’ ! 2 (117)
dysu=daf(cog ®(t;6)—P'(t;€)])
+(siM®(t;§)—D'(t; g/)]>2}1/2_ (112 where& and&’ denote the remaining parameters of the signal
and the filter, respectively. After substitution of Eq$17)

Because of the statistical nature of the detection any sighto Eq.(116) we easily get
nal can only be detected with a certain probability less than
1. In the case of Gaussian noise for signals with the signal-  FF~ max(co§ ®(t;&)—®'(t;£)+(Dy—P})])

to-noise ratio around the threshold this probability is roughly ®).¢

1/2 and it increases exponentially with increasing signal-to-

noise ratio. In Appendix C we give a worked example of the = max{cog ®,— Pg){cod d(t;&)—P'(t;£)])
application of the statistical formulas for the suboptimal fil- Dg,¢

tering derived above.

—sinN(@o— D )(SID(t; ) — D' (t;€)])}

B. Fitting factor :ma){<c0i(‘b(t;§)—(l)’(t;g’)])z
To study the quality of suboptimal filtef®r search tem- &
plates as they are sometimes callede of the present au- H(sifD(t; 6 — D' (1,£)])2M2 (118

thors[22,23 introduced an factor defined as the square root
of the correlation between the signal and the suboptimal fil- h in that th . hi | h i of th
ter. It turned out that a more general and more natural quanT us we obtain that the FF is nothing else but the ratio of the

tity is the fitting factor introduced by Apostolatof24]. The ~ Maximized value of the suboptimal signal-to-noise ralig,
fitting factor (FF) between a signah(t;@) and a filter ~2nd the optimal signal-to-noise ratib[cf. Eq. (105]. We
h'(t;0') (@ and @ are the parameters of the signal and thestress however that the va}lge of the flttln.g factor by |t§elf is
filter, respectively is defined as not adequate for determining the quality of a particular
search template—one also needs the underlying probability

(h(t;0)|h'(t:0)) distributions(both the false alarm and the detechialerived
F:=max . : . (113  in the previous subsection. This is clearly shown by an ex-
o V((t;0)[h(t;0)V(h'(t;0)[h'(t;6')) ample in Appendix C.

In the remaining part of this subsection we shall propose a
If both the signah and the filterh” are narrow band around way of approximate computation of the fitting factor. Let us
the same frequency, the scalar products-{-) from Eq. now assume that the filter and the signal coincide, ®é.
(113 can be computed from the formula =®, and the filter paramete& differ from the parameters
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£ of the signal by small quantitieAé ¢ =§+A& Then  Where
Eqg. (118 can be rewritten as 9D b 9B\ | 9d
=5 5e) (G 5
One can employ the formul@ 20 to estimate the FF in
. . the case when the filtab’ is obtained from the signab by
H(SINO(LH-P(HEFAH])T (119  replacing some of the signal parameters by zeros, provided

the signal® depends weakly on these discarded parameters.

Obviously the FR119) attains its maximum value of 1 when L_et the,s!gnatb_ depend om parameters;, . .. &, and the
filter ®' is defined by

A&=0. Let us expand the expression in curly brackets on the
right-hand side of Eq(119 with respect toA £ aroundA &

(121)
FF~max(cod ®(t;&)— P (t;+AH)])?
A

. — . !
=0 up to terms of second order in&. The result is O'(t;€1, -, 6) = (641, "’fk’w’ (122
n—-k
1/2
FF~ 1min< > FijAfiASJ‘) , (120  Where k<n, so the filter ®' depends onk parameters
IYANN &1, ... &k One can write
B(t1;6) — ' (5€) = B(t6r,. . &) = B, €0, ., 0) = B(t;€) — B(t; € + AL) (123
n—k
with
&-&, i=1,... Kk
A& = 12
gl _gi, |:k+1,,n ( 4)

We want to approximate the differendg(t; &) — @ (t; &+ A &) with A£ given by Eq.(124) by its Taylor expansion around
A&=0. Itis reasonable provided the two following conditions are satisfied. First, the filter parameters differ slightly from the
respective parameters of the signal, i.e. the quanttigsare small compared t§ fori=1, ... k. Secondly, the functiod
depends on the parametdis, 1, . . . ,&, (discarded from the filtgrweakly enough to make a reasonable approximation by
Taylor expansion upta ¢;=—¢; fori=k+1, ... n. If the above holds, one can use the formdla0 to approximate the FF.
Taking Egs.(123) and(124) into account, from Eq(120) one gets

n

|:|:~[1— min (E [ijA&A¢
Afl Agk

i,j=1

1/2
1= —fgrre - A§n=§n) } : (125

C. Fitting factor vs 1/4 of a cycle criterion =40 years, the phase moddl26) meets the criterion for
Let us consider the phase of the gravitational-wave signa@n appropriate choice of the numbess, s,, ands;. We

of the form[cf. Eq. (5)] have also shown that the effect of the star proper motion in
the phase is negligible if we assume that the star moves with
respect to the SSB not faster thar? 10m/s and its distance
O'rES(t)kgo foﬁ to the Earthr,=1 kpc. In Table V, which is Table | of
paper Il, one can find the numbess, s,, ands; needed to
meet 1/4 of a cycle criterion for different observation times
T,, maximum valuesf ., of the gravitational-wave fre-
quency, and minimum values,,;, of the neutron star spin-
In paper | we have introduced the following criterione  down age.
exclude an effect from the model of the signal in the case In Appendix A of paper | we have indicated that the 1/4
when it contributes less than 1/4 of a cycle to the phase 0bf a cycle criterion is only a sufficient condition to exclude a
the signal during the observation timb paper Il we have parameter from the phase of the signal but not necessary. In
shown that if we restrict to observation time$, this subsection we study the effect of neglecting certain pa-
<120 days, frequenciek, <1000 Hz, and spindown ages rameters in the template by calculating FFs. We employ the

S1o(k) gkt 2 52 (k) gk
—n

q)(t)ZZWgO fo(k+—1)!+ c

53 (k) gk

2
+—ng-re(t) >, f
C Kk

2, Ty (126
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TABLE V. The number of spindown terms needed in various  TABLE VI. Coordinates of the regions of convergence for the
contributions to the phase of the signal depending on the type gbolynomial phase signals withspindowns included in the units of
population of neutron stars searched]fcft Eq.(126)]. The number  the square roots of diagonal elements of the inverse of the nttrix
s, refers to the dominant polynomial in time term in E26), s, given by Eq.(33). The region of convergence for thiegh (k
refers to the Earth orbital motion contribution, asgdrefers to the =0, ..., 3) spindown is the intervdl—r,r,].

Earth diurnal motion contribution.

S ) r I M3
To(days) Tmin (YeQrs) fmax (HZ2) S1 Sz S3 0 10 _ _ _
120 40 16 4 3 0 1 0.7 0.5 - -
120 40 200 4 2 0 2 0.2 0.08 0.1 -
120 16 10° 2 1 0 3 ~0.08 ~0.02 ~0.01 ~0.03
120 16 200 2 1 0
7 40 16 2 1 0
7 40 200 2 1 0 . 4)
7 16 108 1 1 0 Haos s and the fourth spindown parametég are ne-
7 16 200 1 1 0 glected, the FF is greater than 0.99 for both all-sky and di-

rected searches. Thus we conclude that neglecting the fourth
spindown and the proper motion does not reduce appreciably

approximate formulg125 developed in the previous sub- the probability of detection of the signal. _

section to calculate FF between the one-component constant 't IS @IS0 interesting to compare the results obtained from
amplitude signals with the phases given by EtR6) for the calculation of the fitting factor with the results summa-
numberss,, s,, ands; taken from Table V and the same rized in Table | for the observation times when the number
signals with a smaller numbéas compared to that given in ©f Cells for models withk andk+1 spindowns coincides.
Table V) of spindowns included. We have found that for the The obsclarvatllon times given in Table | can be interpreted as
first two models of Table V if in the template one neglectsOPservation times at which one should include khel pa-

the fourth spindown, FF is greater than 0.99, both for a"_sky_rameter in the template. We see that for the first two models
and directed searches. For other cases in Table V we hayg Table V, Table I says that only 3 spindowns are needed as

found that neglecting any spindown parameter can result ifpdicated by the calculation of the FF. The remaining cases
the FF appreciably less than one. also agree except for the cases of 120 days of observation

In paper Il we have considered the effect of the propeIIim_e and 200 Hz frequency where Table | indicates one less
motion of the neutron star on the phase of the signal assun#Pindown than Table V. Finally we note that the crossover
ing that it moves uniformly with respect to the SSB referencePPServation times in Table | agree within a few percent with
frame. We have found that for the observation timg t"0Se for the number of filters given in Table II.
=120 days and the extreme case of a neutron star at a dis-

tancer,=40 pc moving with the transverse velocitys | VIl. MONTE CARLO SIMULATIONS AND THE

=10® km/s (wherev, is the component of the star’s ve- CRAME R-RAO BOUND

locity v, perpendicular to the vectary), gravitational-wave _ . i . .
frequency f,=1 kHz, and spindown ager=40 years As signal-to-noise ratio goes to infinity the maximum-

proper motion contributes only-4 cycles to the phase of likelihood estimators become unbiased and their rms errors
the signal. We have shown in paper Il that in this extremdend to the errors calculated from the covariance matrix. The

case the phase model consistent with the 1/4 of a cycle crfMS €rrors calculated from the covariance matrix are the

terion readgcf. Eq. (33) in paper I smallest error achievable for unbiased estimators and they
give what is called the Cramd&ao bound.

4 H el o 3 otk In this section we shall study some practical as_pects qf

D) =27, for——r+ —nNp Tegt) D for detecting phase modulated and multiparameter signals in

=0 “(k+1)! ¢ K=o k! noise and estimating their parameters. For simplicity we con-

sider the polynomial phase signal with a constant amplitude.
2m Vs, Our aim is to estimate th ters of the signal -
+—{ ng- Te(D) +—= . reg Ot | f,. (127 ur aim is to estimate the parameters of the signal accu

c I'o rately. We compare the results of the Monte Carlo simula-

tions with the CrameRao bound.
The ratiov,g /r, determines the proper motion of the star We consider a monochromatic signal and signals with 1,
and can be expressed in terms of the proper motiopand 2, and 3 spindown parameters. In our simulations we add
s in right ascensiorr and declinations, respectively(see  white noise to the signals and we repeat our simulations for
Sec. IV of paper I). several values of the optimal signal-to-noise ratiolo de-

For the extreme case described above we have appligéct the signal and estimate its parameters we calculate the
formula (125 to calculate the FF between the one-optimal statisticsF derived in Sec. Ill. The maximum like-
component constant amplitude signal with the phase givetihood detection involves finding the global maximumj&f
by Eqg.(127) and the same signal with a simplified phase. WeOur algorithm consists of two parts: @arsesearch and a
have found that when both proper motion parametersine search. The coarse search involves calculatiotF @n
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FIG. 7. Simulations of the biaséplots on the left and the rms erroréplots on the rightfor a monochromatic signal. The results of the

simulations are marked by the circles. Thaxes are labelled by the optimal signal-to-noise ratio. The thin solid lines in the plots on the right
are calculated from the covariance matrix and the thick lines follow from B@®) and (132).

an appropriate grid in parameter space and finding the maximented infmin (1-parameter cageand fmins (n-parameter
mum value ofF on the grid and the values of the parameterscase routines. Both algorithms involve only calculation of
of the signal that give the maximum. This gives coarse estithe function to be maximized at certain points but not its
mators of the parameters. Fine search involves finding théerivatives. For the multiparameter case the regions of con-
maximum of F using optimization routines with the starting vergence are approximately parallelepipeds. We have sum-
value determined from the coarse estimates of the paranmarized our results in Table VI. We have given the values of
eters. The grid for the coarse search is determined by théne intersection of the parallelepipeds with the coordinate
region of convergence of the optimization routine used in theaxes in the parameter space. We have expressed these values
fine search. We have determined the regions of convergende the units of square roots of diagonal values of the inverse
of our optimization routines in the noise free case. For theof the matrixG given by Eq.(33). In the case of the signal
case of a monochromatic signal wh&rdepends only on one with 3 spindowns our estimation of the radius of conver-
parameter(frequency our optimization algorithm is based gence is very crude because the computational burden to do
on the golden section search and the parabolic interpolatiorsuch a calculation is very heavy. The above results hold for
For a signal with some spindowns includé¢tldepends on the statistics# calculated when data is only signal and no
s+ 1 parametersgis the number of spindowpsind we use noise.
the Nelder-Mead simplex algorithm. In the coarse search we have chosen a rectangular grid in
To perform our simulations we have usedTLAB soft-  the spindown parameter space with the nodes separated by
ware where the above optimization algorithms are impletwice the values given in Table VI and we have chosen the
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FIG. 8. Simulations of the biaséplots on the left and the rms errorgplots on the rightfor a 1-spindown signal. The results of the
simulations are marked by the circles. Thaxes are labelled by the optimal signal-to-noise ratio. The thin solid lines in the plots on the right
are calculated from the covariance matrix and the thick lines follow from 84@$) and(132).

spindown parameter ranges to be fron8 to 3 times the been observed in numerical simulations for the case of a
square roots of the corresponding diagonal elements of maoalescing binary chirp sign@l6,27]. There exist more re-
trix G given by Eq.(33). We have made fOsimulations in  fined theoretical bounds on the rms errors that explain this
the case of a monochromatic signal, 1-spindown, ancffect and they were also studied in the context of the
2-spindown signals and for each signal-to-noise ratio. Theravitational-wave signal from a coalescing bindi38].
case of 3 spindowns turned out to be computationally todHere we present a simple model that explains the deviations
prohibitive. In each case we have taken the length of thérom the covariance matrix and reproduces well the results of
signal to be 2 points. the Monte Carlo simulations. The model makes use of the
In our simulations we have observed that above a certainoncept of the elementary cell of the parameter space that we
signal-to-noise ratio that we shall call the threshold signalintroduced in Sec. Ill. The calculation given below is a gen-
to-noise ratio, the results of the Monte Carlo simulationseralization of the calculation of the rms error for the case of
agree very well with the calculations of the rms errors froma monochromatic signal given by Rife and Boorsfg9)].
the covariance matrix; however, below the threshold signal- When the values of parameters of the template that corre-
to-noise ratio they differ by a large factor. This thresholdspond to the maximum of the functionalfall within the cell
effect is well known in signal processif@5] and has also in the parameter space where the signal is present, the rms
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FIG. 9. Simulations of the biasédplots on the left and the rms errorgplots on the rightfor a 2-spindown signal. The results of the
simulations are marked by the circles. Thaxes are labelled by the optimal signal-to-noise ratio. The thin solid lines in the plots on the right
are calculated from the covariance matrix and the thick lines follow from E4@$) and(132).

error is satisfactorily approximated by the covariance matrixhigher the lower the signal-to-noise ratio. lgebe the prob-
However sometimes as a result of noise the global maximurability that an outlier occurs. Then the total variane® of

is in the cell where there is no signal. We then say that anhe estimator of a parameter is the weighted sum of the two
outlier has occurred. In the simplest case we can assume thatrors

the probability density of the values of the outliers is uniform

over the search interval of a parameter and then the rms error
is given by o?=0g,d+ oer(1-0q), (129

2
, A

_ whereocg is the rms errors calculated from the covariance
out_ﬁl (128

matrix for a given parameter.

Let us now calculate the probability Let 7 be the value
whereA is the length of the search interval for a given pa-of F in the cell where the signal is present andJgtbe its
rameter. The probability that an outlier occurs will be thevalue in the cells where the signal is absent. We have

o
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1-qg=P{all: F,<F} tional to the modulu$§(| of the Fourier transform of the data

. and in the case of the amplitude we have calculatgg for

=j P{all: Fo< Fy| Fs= F}P{Fs= F}dF, (130 the probability density ofX| assuming that there is no signal

0 in the data. We see that the agreement between the simulated
and calculated errors is very good. This confirms that our
simple model is correct. We also give biases of the estima-
fors in our simulations. We see from Figures 7-9 that as
signal-to-noise ratio increases the simulated biases tend to
Plall: Fo< Fo Fo= Fy = [ P{Fo< Fo| Fs= F N1, zero and the standard deviations tend to rms errors calculated

(131  from the covariance matrices.

whereP stands for probability. Since the values of the output
of the filter in each cell are independent and they have th
same probability density function we have

whereN_. is the number of cells of the parameter space. Thus ACKNOWLEDGMENTS
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APPENDIX A: FUNCTIONS A, B, AND C

1 1 1 1
Alt,=n zﬁ,ﬂrzﬁsinZZy 9 coé \ coss+ Esin2 2\ sir? 25+3—2(3— cos 2)?(3—cos 26)?|+ 3—2cos2 2y[4 cog \ sir? 26

+sir? N\ (3—cos 25)?],
1 , _ 1
B|T0:n27,,9r=3—23|nz27[(3—0052\) Sir? 8+ 4 sirf 2\ co 8]+ Zco§27(1+0032\cos25),

C|T0:n 27, T 0.

We see that the functions B, andC depend only on one searches calculated from the linear model reproduces well
unknown parameter of the signal—the declinatidof the  the number of templates calculated from the nonlinear phase
gravitational-wave source. They also depend on the latitudeodel in Ref.[7]. Thus we see that the Fisher matrix pre-

\ of the detector’s location and the orientatigrof the de-  sented below can be used in the theoretical studies of data
tector’s arms with respect to local geographical directions. analysis of gravitational-wave signals from spinning neutron
stars instead of a very complex Fisher matrix for the full
model.

In paper Il we have found that the Fisher matrix depends

In this appendix we give the explicit analytic formula for on the choice of the initial time within the observational
the Fisher matrix for the simplified model of the interval (initial time is that instant of time at which the in-
gravitational-wave signal from a spinning neutron star. Thestantaneous frequency and the spindown parameters are de-
model is defined by Eq€$48) and (49) in Sec. IV. It has a fined, see Appendix C of paper.lIHowever one finds that
constant amplitude and its phase is linear in the parameterthe determinant of the transformation between the two Fisher
In paper Il we have shown that this model reproduces welmatrices with different values of the initial time chosen is 1.
the accuracy of the estimators of the parameters calculatedonsequently the number of cells and the number of filters
from the full model which has amplitude modulation and do not depend on the choice of initial time. We present our
nonlinear in parameters phase. In this paper in Sec. V wanalytic formula for the initial time chosen to coincide with
show that the number of templates needed to perform all-skthe middle of the observation interval. This simplifies the

APPENDIX B: THE FISHER MATRIX
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where
Vise

analytic expressions considerably.
The Fisher matrix'l“f‘é') for all-sky searches witls spin-
downs included is defined by

1 fT o2 9V (60 IV (10

raly, — 2 dt, B1
(T)i= To) 120G  9 (B

Fisher

1 F‘I)oal Fq)()az

PHYSICAL REVIEW D 61 062001

gZ(CDo,g), gz(a’laa’z,wo, -

qual to

V() =P+ P(t;8);

matrixI"%y) for s=4. The result is

ralal Falaz Falwo Falwl Falwz Cklws Falw4
a2a2 azwo azwl azwz Fazwa a2w4
1 1 0 1
12 80 448
all _ 1 1
I'ay= — 0 — 0 )
80 448
1 1
i 0 _
448 2304
! 0
2304
1
1126
where(hereE,:=Q,T, andE,:=Q,T,)
I Amres  Bo  4mre \ Si =
= ——SiNn ¢, Sin— + —=—C0Se COS\ Sin ¢, sin—,
CIJOal C:0 d)o 2 C:fr ¢r 2
r TlEs Eo  4mrg N -
= ———C0S¢, Sin—= + —=—COS\ C0S¢, Sin—,
(Doaz 0:0 ¢)O 2 C:ir ¢I’ 2
27%r sinZ, 2772 z sinZ,
e 1—cos 2p,—=— Ecod s co@ \| 1—cos 24, ——
1 1 = =
C ~o C ~r
sins(2,— & sins (E,+2
87T2rErES 2( r O) 2( r O)
———,—C0S& COSA| CO o= br) —= —coq ¢+ d’r)T ,
c —_ —~0 —-r =~o0
2morig sing, 2mrZ _ sin2,  8m’reregg
aja,= —5 SiN 2¢g—=— + ———C0Se COS \ SiN 2¢h—=— + —————_-COSA
c =o c =r c(Er—Ejg
H ] e . el e Er . EO
X [cosq&rsmqso(nrCOSS—:0)+cos¢osm¢r(:r—zOCOSs)]cos?S|n7
H ] e H e o H Er EO
+[cosg, S|n¢0(zr—:ocos;-;)+cos¢osm¢>r(:r0058—:0)]sm7c037 ,
27l g Eo Eo\ 2mrg B =
Falwo cos¢0 25|n7—z00037 + COSS COS\ COS¢, 25|n7 :rcos-‘,? ,
CE

*—'r
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TlES —_ Eo —2 =
Uojw,= C~3S'n¢0 4:0c037—(8—:0)sm7}
e _ E, -1
+—cos.s COSA Sin ¢, 4zrcos?—(8—:r)sm? ,
=N
o Fo o 2 o
aqoy= = cos¢o Ho(24 0)cos7 6(8 Ho)sm7}
Tle =2 Er —_2 _E,
+ ,COSe COSA COS¢y| E (24— Ef)cos5-—6(8—Ef)sin—-|,
2¢E} 2 2
TlEs . —t —2 E0 — 2 E0
Ty 0. =——28iNdg| 8E o — 24+ E2)cos— + (384 4822+ Ed)sin—-
13" 423 2 2
WrE . — —2 Er — 2 Er
+ 0:50058 COSA Sin ¢, 8zr(—24+zr)cos?+(384—48:r+:r)sm?
=r
™ Eo 2 —a =P
Uon,= 80( cos¢0 E,(1920- 8022+ = )0037—10(384—4SEO+ :O)S|n7}
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+ —=c0Se COSA COS¢h,| =, (1920~ 80E2+ Ef)cos?r —10(384— 4822+ E})si r} ]

—~r
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2
2722 sinZ, szré 2 sinE,
apn,= 2 COS 2py—=— = COS A 1+c052¢>rE—r
sins(BE,—E sins (E,+2
877 rE ES 2( r [0} 2( r O)
——5 COS\| cos o= )z +C0Sdot )z = |,
=r =0 =r =0
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ar E =)
Ty .= ——2C0Seho| 8E o — 24+ E2)cos—2 + (384— 4852+ E4)sin—
9" 40ES 2 2
WrE — —2 Er 2 =l - Er
+ 0:5005)\ COSo, 8:,(—24+:,)cos?+(384—48’5r+:r)sm7 ,
~r

|

T | TES . = —2 = = P
Lo, = 5[?63m bo| E(1920- 8052+ E4)cos—- — 10(384— 4852+ :g‘)smﬂ
(o)

—
Ll

N

il

' E
+ ZgCOSA sin¢b,| Z,(1920-80E7+ E{)cos, — 10(384- 4857 + Ef)sin—rH .

=r

The above formulas could further be simplified if we as-obtained from the matri)l“?g by means of the same proce-
sume that the observation time is an integer multiple of onelure as described above for the case of all-sky searches.
sidereal day. We also note that if we have data corresponding
to a full year we can start our observation at a time corre-
sponding to any position of the detector in its motion around

the Sun. This means that in such a case we can choose the

APPENDIX C: SUBOPTIMAL FILTERING

phasesp, and ¢, arbitrarily.
The Fisher matriif‘é') for s=0, ... ,3equals the subma-

trix of F?ﬂ) consisting of the firss+3 columns and the first

s+ 3 rows ofF?z'l'). The reduced matrif?é') defined in Eq.

(66) can also be obtained from the matE?é' by means of
the following procedure: take the inverse ') remove the

Very often suboptimal filtefor a search templatés pro-
posed in hierarchical signal searches. In such a search one
passes the data through a suboptimal filter that requires much
less computational cost than the optimal filter and one regis-
ters the candidate events. Then one passes the data through
optimal filters, however only for the valudsr around the
values of the parameters of the candidate events to assess

first column and the first row of the inverse, take again thghe significance of the candidate events. In such a search one

inverse of such a submatrix—it equdr%') . _

In the case of directed searches the Fisher m&tj’g( is
also defined by Eg.(B1), but now {=(dg,%), &
=(wog, ... wg), and the phasé is given by Eq.(75). The
Fisher matrixI(;) with s=4 spindowns included reads

1 0 ! 0 L 0
12 80
1 1 1
~— 0 — o0 —
12 80 448
1 1
— 0 — 0
dir 80 448
= 1 . . (B4)
— 0
448 2304
1
— 0
2304
1
11264
The Fisher matrixl“?;; for s=0, ... ,3equals the submatrix

of F?j{) consisting ofs+ 1 first columns andg+ 1 first rows
of I'(s, . The reduced matrif?g) defined by Eq(66) can be

would like to ensure that there is no loss of events. A way to
achieve this when using a suboptimal filter is to lower the
threshold with respect to the threshold chosen for the optimal
filter so that the number of expected significant events is the
same as with the optimum filter. The probability densities
derived in Sec. VIA can be used to calculate what the low-
ered threshold should be.

To illustrate the general theory developed in Sec. VI we
have considered the following example. We have assumed
the observation tim@ , to be 3 days and we have restricted
ourselves to directed searches. For such a case the model of
the phase consistent with the 1/4 of a cycle criterion fias
=2 spindowns in the dominant terrs,=1 spindown in the
contribution due to the Earth orbital motion and no contribu-
tion due to the Earth diurnal motiors{=0), cf. Eq.(126).

We have correlated this signal with a template that $as
=1, s,=1, ands;=0. Assuming the gravitational-wave fre-
quencyf,=1 kHz and the maximum values of the spin-
downs for the spindown age=40 yr the fitting factor is
0.91, the number of cellll; for the optimal random field is
2.3x 10" and the number of celldlg, for the suboptimal
random field is 3.% 102 We have found that the fitting
factor is practically independent on the right ascension and
the declination of the gravitational-wave source.

In our computations we assume that we lower the thresh-
old according to the law

FoL=(Fs—1)FFP+1. (CY
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FIG. 10. Suboptimal filtering. In the upper left plot we show the ratig(d, g For)/Np(dy,F,) of the expected number of the detected
events for the suboptimal filterinfcalculated from Eq(111)] and the optimal ongcalculated from Eq(110)] as a function of the
signal-to-noise ratial; (the signal-to-noise ratio for which the number of events is).ovwe have assumed that in the suboptimal filter we
lower the threshold according to EqC1l). We have also put FF0.91. In the right upper plot we give the ratio
=[Ngp(d;suFor)/Np(dy,Fo) J/FF as a function of the fitting factoiwe have used;=16.6). In the left lower plot diamonds mark the
ratio Ngp(d1sup For)/Np(dy,F,) of the number of the detected events for the suboptimal filter with lowered threfstadddilated from Eqgs.
(11D and (C1)] and the number of events detected with the optimum filtaiculated from Eq.110)]; squares denote the ratio
Nsp(d1sun Fo)/Np(dy,F,) of the number of events detected by suboptimal filtering without lowering the threshold and the number of events
detected with the optimum filter; the solid line gives the fraction of the detected events calculated fréaw &l dependencies are shown
as functions of the fitting factawe have putd;=16.6). The lower plot on the right gives the ratio of the expected number of false alarms
with the suboptimal filter and lowered threshold and the expected number of false alarms for the optimal filter.

The above rule is motivated by the relation between the ex- To assess the number of events that one loses using a
pectation value of the statistics and the optimal signal-to- search template Apostolatf®4] assumed that the number of
noise ratio given by Eq82). detected events decreases as. AR the right upper plot of
The numerical results obtained using formulas derived irFig. 10 we have compared the number of detected events
Sec. VIA are presented in Fig. 10. We have assumed thealculated from Eq(111) and the ones calculated using®FF
false alarm probability for the optimal filter to be 1%. There law. We see that in general EFaw underestimates the event
is one more input parameter that we need in order to calcuess. However, for the fitting factors close to one the differ-
late the numbers of expected events: the signal-to-noise ratience is small.
d, for which the number of events is 1. In the upper left plot We have calculated the numbers of expected detections
in Fig. 10 we have shown the ratio of the expected number oéind false alarms for the optimal and suboptimal filter both
the detected events for the suboptimal filterflgculated  with original and lowered thresholds. The results are pre-
from Eqg. (111)] and the optimal on¢calculated from Eq. sented in the two lower plots in Fig. 10. In the plot on the left
(110] as a function ofd;. We have assumed that in the diamonds mark the ratio of the number of the detected events
suboptimal filter we lower the threshold according to Eq.for the suboptimal filter with lowered thresholdalculated
(C1). We have also put FF0.91. from Egs.(111) and(C1)] and the number of events detected
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with the optimum filtef calculated from Eq(110]; squares «;, «, instead ofa, & to label the templates needed for
denote the ratio of the number of events detected by subopnatched filtering. To do this the family of templates labeled
timal filtering without lowering the threshold and the numberby «, § (and the other parametgnmsust be replaced biyvo
of events detected with the optimum filter; the solid linetemplate families labeled by;, «, (and the other param-
gives the fraction of the detected events calculated fro FFeters. The first family arises when in the original family one
law; all dependencies are shown as functions of the fittingeplaces si@, cosé, sina, and cosy by the right-hand sides
factor. The lower plot on the right gives the ratio of the of Egs.(D1)—(D4) with plus sign chosen in the front of the
expected number of false alarms with the suboptimal filtersquare root in Eq(D1). In the second family the replace-
and lowered threshold and the expected number of falsments are made with minus sign chosen. The filters labeled
alarms for the optimal filter. by parametersy; and «, will to a good approximation be
From our example we see that when using a suboptimédlnear and the theory of data processing developed in this
filter by appropriate lowering of the threshold we can detecpaper applies to such a filtering scheme.
all those events that can be detected with an optimal filter. When as a result of filtering of the data one gets a signifi-
There is, however, a limitation to threshold lowering arisingcant event one obtains at the same time the maximum like-
from the fact that below a certain threshold the false alarmihood estimators of the parametess, a,, f, (and the
rate can increase to an unmanageable level. In the real dadéhers. One can obtain the maximum likelihood estimators
analysis there may be other limitations. For example below @&f the position ¢, ) of the gravitational-wave source in the
certain threshold a forest of non-Gaussian events may agky by means of EqgD1)—(D4). Note that one should ex-

pear, completely obscuring the real signals. pect to get the maximum correlation for a template belonging
to one out of two families described above, which means that
APPENDIX D: THE USE OF PARAMETERS a; AND a, after filtering one would also know which sign on the right-
TO LABEL THE FILTERS hand side of Eq(D1) should be chosen.

The covariance matrix for the parametersd, andf, can
If one knows the values of the parametess a,, andf,  he gptained from the covariance matrix for the parameters

it is possible to solve Eqs51) with respect to the angles , , “andf, by means of the law of propagation of errors.
andé. One can show that each triple{, @, ;) gives two | ot s introduce

such solutions which can be written as follosote that
because e[ — 7/2,7m/2] to determine § uniquely it is x:=(ag,a0,f0), yi=(a,éf,). (D6)
enough to know sid):

Let C, be the covariance matrix for the parameterghen

sino= Bisine = y1-B1— 65, (D1)  the covariance matric, for the parameterg can be calcu-
lated as follows:
cosd=/1—sir’s, (D2)
C,=JCJT, (D7)
] B1—sine sind
Sina=— 058’ (D3)  whereT denotes matrix transposition and the Jacobi makrix
has components:
COoSa = E’ (D4) 07_01 (9_01 (?_a
(96!1 (96!2 &fo
where J=| 96 96 94 |. (D8)
@ @y o day da, df,
ﬁl._ﬁ, Bz-—ﬁ- ( ) 0 0 1

The correspondence between the parametgrsa,, f,  All derivatives entering Eq(D8) can be calculated using
anda, & given by Eqs(D1)—(D4) implies that one can use Egs.(D1)—(D4).
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