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Determination of the dynamically generated Yukawa coupling in supersymmetric QCD

Noriaki Kitazawa*
Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan

~Received 10 August 1999; published 9 February 2000!

We make an attempt to determine the strength of the dynamically generated Yukawa coupling among
composite fields. The system ofN51 supersymmetric SU~2! gauge theory with massive three flavors is
considered as an example. We use the techniques of ‘‘integrating in’’ the gluino-gluino bound state in the low
energy effective theory and the instanton calculation and Shifman-Vainshtein-Zakharov sum rule~QCD sum
rule! in the fundamental theory. The obtained value of the Yukawa coupling among massive composite fields
is of the order of unity. This value does not necessarily coincide with the value of the Yukawa coupling among
massless composite fields, since the approximation breaks down in the limit of massless flavors.

PACS number~s!: 11.15.2q, 11.30.Pb, 11.55.Hx, 12.60.Rc
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I. INTRODUCTION

The recent development of the techniques for analyz
supersymmetric gauge theories@1# has spurred the revival o
the investigation of supersymmetric composite mod
@2–8#. One of the reasons for this revival is that the tec
niques allow us to obtain not only the particle content at l
energy, but also the dynamically generated interacti
among composite particles. In many models the dynamic
generated Yukawa interactions are identified with or rela
to the Yukawa interactions among Higgs bosons and qu
or leptons in the standard model. However, the strength
the interactions is not satisfactorily determined yet. In ma
cases one assumes that it is of the order of unity, but, on
other hand, there is a claim that it must be of the order ofp
@9#. Some explicit calculations on the dynamics are requi
to determine the strength, since it includes the information
the Kähler potential which cannot be determined only by t
symmetry and holomorphy.

Naive dimensional analysis~NDA! of Ref. @9# is the first
attempt to determine the coupling constants in the low
ergy effective theories of supersymmetric gauge theor
The strength of coupling constants, especially for Yuka
couplings, is determined by the renormalization from t
Seiberg’s effective fields to the canonically normalized
fective fields. In NDA the renormalization factor is dete
mined by assuming that the magnitude of the one-loop c
rection in the effective theory is comparable with the tre
level contribution, and the Yukawa coupling of the order
4p is obtained. This criterion is effective in the chiral La
grangian for real QCD. In fact the NDA value of the pio
nucleon Yukawa coupling, 4p, is close to the experimenta
value, 13.5@10#.

In this paper we make an attempt to determine
strength of the dynamically generated Yukawa coupl
among composite fields by doing an explicit calculation
the fundamental gauge theory. We considerN51 supersym-
metric SU(Nc52) gauge theory withNf53 massive flavors
as an example. In the next section the relation between
dynamically generated Yukawa coupling and the normali
tion of the effective field is discussed. The argument is
most the same as what has been given in Ref.@9#. We cal-
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culate the squark pair condensate as a function ofL andgY ,
the scale of dynamics in the effective theory and the Yuka
coupling, respectively, and compare it with the result giv
by the instanton calculation in the fundamental theory. Sin
the result of the instanton calculation is described by
scale of dynamics in the fundamental theoryLNc ,Nf

5L2,3,

the Yukawa coupling,gY , is described by the ratio o
L/L2,3. In Sec. III the chiral superfield of the gluino-gluin
bound state is introduced in the effective theory using
technique of ‘‘integrating in’’ @11#, and the mass of the
bound state is calculated. In Sec. IV a condition which
mass of the bound state follows is obtained using Shifm
Vainshtein-Zakharov~SVZ! sum rule~QCD sum rule! @12#
in the fundamental theory. Then we estimate the ratio
L/L2,3 using the result of the previous section, and obtai
numerical value of the Yukawa coupling. The resulting val
is gY.0.5;1. This is the value of the Yukawa couplin
among massive composite fields which does not necess
coincide with the one among massless composite fie
since the approximation breaks down in the limit of massl
flavors. In the last section we give a summary and conclu

II. DYNAMICALLY GENERATED YUKAWA COUPLING

The Lagrangian of the fundamental theory,N51 super-
symmetric SU~2! gauge theory with massive three flavors,
written as follows:

L52E d4u Q†ie22g0VQi1E d2u
1

2
m0Ji j eabQi

aQj
b

1H.c.1
1

4E d2u WaȧWȧ
a
1H.c. ~1!

HereQi
a is the quark chiral superfield,V is the gluon vector

superfield,Waȧ is the gluon field strength chiral superfield
g0 is the bare gauge coupling constant, andm0 is the bare
quark mass~flavor independent!. The indicesa,b51,2 and
a51,2,3 are of the fundamental and adjoint representati
for SU~2! gauge group, respectively,i , j 51,2, . . . ,6 are the
flavor indices, andJ5diag(e,e,e) is the Sp~3! invariant ma-
trix. See the Appendix for notations. The confinement is
pected at low energy, and the effective field
©2000 The American Physical Society08-1
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Vi j ;eabQi
aQj

b ~2!

is expected to describe the lightest bound state by ’t Ho
anomaly matching conditions@13#, whereV is the canoni-
cally normalized field with dimension one. Moreover, it
well known that the effective field follows the superpotent

W̃e f f52
1

LS
3PfṼ2

1

2
m tr~JṼ! ~3!

in the lowest order in the derivative expansion@1#. HereṼ,
which is proportional to the effective fieldV, is Seiberg’s
effective field with dimension two and is directly related
the operatoreabQi

aQj
b in the fundamental theory. Th

renormalization-group invariant quark mass parameterm in
the low energy effective theory is proportional to the ren
malized quark mass in the fundamental theory. The first te
of the above superpotential is the Yukawa interaction.1

Although the Kähler potential cannot be determined e
actly, we can expect

K̃e f f5
a

LS
2

1

2
tr~Ṽ†Ṽ! ~4!

with a positive coefficienta in the lowest order in the deriva
tive expansion by assuming that the effective fieldṼ propa-
gates without its vacuum expectation value. The effect
action is obtained from the following effective Lagrangian

Le f f52E d4u K̃e f f1S E d2u W̃e f f1H.c.D . ~5!

Since the theory has a unique scale of the dynamics
the couplings and coefficients in the effective Lagrang
should become of the order of unity, if all dimensionf
quantities are scaled appropriately@9#. In fact, if we scale

V̂5S L

F D 2

Ṽ, û5uL1/2, uC5 ūL1/2, and m̂5
m

L
,

~6!

then the effective Lagrangian becomes

Le f f5F2H 2E d4û K̂e f f1S E d2û Ŵe f f1H.c.D J ~7!

with

K̂e f f5
1

2
tr~V̂†V̂!, ~8!

1If m is kept finite, it describes the Yukawa interactions amo
massive composite fields. To have the Yukawa interaction am
massless composite fields, we have to setm to zero and introduce
some gauge interactions by which the origin of the moduli spac
chosen@2,5#.
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Ŵe f f52Pf V̂2
1

2
m̂ tr~JV̂!. ~9!

HereL5LS /a2 andF5LS /a5/2.
We can determine the canonically normalized effect

field by imposing the condition that the coefficient of th
kinetic term is unity. Namely,

V5
F

L
V̂5

L

F
Ṽ ~10!

and

Le f f52E d4u Ke f f1S E d2u We f f1H.c.D ~11!

with

Ke f f5
1

2
tr~V†V!, ~12!

We f f52gYPfV2
1

2

L

gY
m tr~JV!,

~13!

where gY[L2/F5a23/2 is nothing but the Yukawa cou
pling.

Note that the scaleL in Eq. ~6! does not necessarily co
incide with LS . If we may setL5LS , we havea51 and
gY51. This is the result of the overly strong requireme
that all couplings and coefficients should become of the
der of unity by the scaling of Eq.~6! with LS instead ofL.

In NDA the Yukawa couplinggY is determined under the
requirement that the one-loop quantum effect in the Lagra
ian of Eq. ~7! is of the same order as the tree-level effe
Namely, whenm̂,1 ~light matter!, the requirement is

L4

~4p!2F2 .1, ~14!

where (4p)2F2 is the one-loop suppression factor andL is
introduced as the ultraviolet cutoff.2 Then we havegY.4p
for small m,L.

The squark pair condensate is obtained using the effec
Lagrangian of Eq.~11!. From the supersymmetric vacuum
condition

]We f f

]Vi j
50 ~15!

and the assumption of^Vi j &5vJi j , we obtain

v56
AmL

gY
. ~16!

g

is 2Note thatL51 in the Lagrangian of Eq.~7!, since the unit of the
energy isL.
8-2
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Therefore, we have

^m0eabAQ
a

i 51AQ
b

j 52&5m^Ṽ12&5mS F

L
v D56

Am3L3

gY
2 ,

~17!

where AQ
a

i is the squark field. This is a renormalizatio
group invariant quantity. The same result is obtained fr
the condition of]W̃e f f /]Ṽ50. The gluino pair condensat
is also obtained through the Konishi anomaly@14#,
-
in

io
e

an

he

05600
K g0
2

32p2laȧlȧ
a L 5^m0eabAQ

a
i 51AQ

b
j 52&56

Am3L3

gY
2 ,

~18!

wherelȧ
a is the gluino field. This is also a renormalization

group invariant quantity.
The gluino pair condensate has already been reliably

timated by the instanton calculation forN51 supersymmet-
ric SU(Nc) gauge theories withNf flavors @15#:3
K g0
2

32p2laȧlȧ
a L 5S CNc

~LNc ,Nf

1-loop !3Nc2Nf@11O„g~m!4
…#

1

g~m!2Nc)i 51

Nf

mi~m!D 1/Nc

e2p ik/Nc, ~19!
e
of

or

wa

ri-
is
the
wherek51,2, . . . ,Nc , the scaleLNc ,Nf

1-loop is the one where the

one-loop running coupling diverges,g(m) andmi(m) are the
renormalized coupling and mass, respectively, andCNc

[22Nc/(Nc21)!(3Nc21). This result is obtained by evalu
ating the one-loop quantum fluctuation around the single
stanton background, and the reliability of the approximat
is guaranteed by the supersymmetric Ward-Takahashi id
tities. In the above equationO„g(m)4

… indicates the contri-
bution from the higher-loop quantum fluctuation. We c
rewrite this quantity as follows@15#:

~LNc ,Nf

1-loop !3Nc2Nf@11O„g~m!4
…#

1

g~m!2Nc)i 51

Nf

mi~m!

5m3Nc2Nf expH 2
8p2

g~m!2@11O„g~m!2
…#J

3
1

g~m!2Nc)i 51

Nf

mi~m!

5m3Nc2Nf expS 2~3Nc2Nf !E
g

g(m) dg8

b~g8! D
3expS 2NfE

g

g(m)

dg8
gm~g8!

b~g8! D)
i 51

Nf

mi~m!

5~LNc ,Nf
!3Nc2Nf)

i 51

Nf

@mi # inv , ~20!

whereb(g) is theb function @17#

b~g!52
g3

16p2 •
3Nc2Nf1Nfgm~g!

12Ncg
2/8p21O~g4!

~21!

and gm(g) is the anomalous dimension of mass. T
renormalization-group invariant quantitiesLNc ,Nf

and

@mi # inv are defined as
-
n
n-

LNc ,Nf
5m expS 2E

g

g(m) dg8

b~g8! D , ~22!

@mi # inv5mi~m!expS 2E
g

g(m)

dg8
gm~g8!

b~g8! D ,

~23!

whereg satisfies

g2Nc expS 8p2

g2 „11O~g2!…D51. ~24!

Therefore, in the case ofNc52 andNf53 and if all masses
are degenerate we have

K g0
2

32p2laȧlȧ
a L 56„C2~L2,3!

3@m# inv
3
…

1/2, C25
16

5
.

~25!

The mass parameter in the effective theory,m, can be
identified with @m# inv since the mass term in the effectiv
theory is introduced through the replacement
the renormalization-group invariant operat
m(m)(eabQi

aQj
b)m /@m# inv by the effective fieldṼi j in the

superpotential. Therefore, by solving Eqs.~18! and ~25! we
obtain the Yukawa coupling

gY5X 1

C2
S L

L2,3
D 3C1/4

, ~26!

which is the function of the ratioL/L2,3. These two scales
are not always equal since the scaleL is introduced without
any concrete relation to the fundamental theory. The Yuka

3It is known that this instanton calculation gives incorrect nume
cal coefficients@16#. However, it does not affect the result of th
paper, since the difference is a factor of the order of unity in
case of the SU~2! gauge group.
8-3
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NORIAKI KITAZAWA PHYSICAL REVIEW D 61 056008
coupling can be determined ifL is described byL2,3.4 We
need another independent quantity which can be calcul
both in the effective theory and the fundamental theory. T
mass of the gluino-gluino bound state can be the quantit

III. GLUINO-GLUINO BOUND STATE
IN THE EFFECTIVE THEORY

We introduce the chiral superfield

S;2
g0

2

32p2 WaȧWȧ
a , ~27!

whose scalar component is the gluino-gluino bound stat
the low energy effective theory using the method of integr
ing in @11#, and calculate its mass. Following the conjectu
of Ref. @11#, we consider the effective superpotential af
integrating in as follows:

W̃e f f8 5G~Ṽ,S̃!2
1

2
m tr~JṼ!1 ln LS

3
•S̃, ~28!

whereS̃ is Seiberg’s effective field with dimension three a
is directly related to the operator2(g0

2/32p2)WaȧWȧ
a in the

fundamental theory. The conjecture is that in the effect
superpotential the scaleLS is included only as a coefficien
of the field S̃ with the form of lnLS

3Nc2Nf . The function

G(Ṽ,S̃) satisfies

]G
]S̃

52 ln LS
3 ~29!

due to the supersymmetric vacuum condition]W̃e f f8 /]S̃50.

On the other hand, sinceW̃e f f is equivalent toW̃e f f8 as the
effective superpotential, the relation

]W̃e f f

] ln LS
3 5

]W̃e f f8

] ln LS
3 5S̃ ~30!

should be satisfied. This relation gives

ln LS
35 ln

PfṼ

S̃
~31!

and we can integrate Eq.~29! and obtain

G~Ṽ,S̃!5S̃S ln
S̃

PfṼ
21D 1F~Ṽ!, ~32!

whereF(Ṽ) is a function ofṼ. Therefore, we have

4If we use the relationL35LS
3/a65Ls

3gY
4 , Eq. ~26! gives just a

relation betweenLS andL2,3. The difference betweenLS andL is
important.
05600
ed
e

to
t-

r

e

W̃e f f8 5S̃S ln
L3S̃

gY
4PfṼ

21D 2
1

2
m tr~JṼ!1F~Ṽ!, ~33!

where the relationLS
35L3a65L3/gY

4 was used. This effec-
tive superpotential correctly gives the gluino pair condens
of Eq. ~18!.5

To obtain the mass of the gluino-gluino bound state,
canonically normalized effective fieldS has to be defined
We assume the Ka¨hler potential

K̃e f f8 5
a

LS
2

1

2
tr~Ṽ†Ṽ!1b~S̃†S̃!1/3 ~34!

following Ref. @18#, whereb is a positive constant. If the
effective fieldS̃ is scaled appropriately to the dimensionle
one,Ŝ, together with the scalings ofṼ to V̂ and so on, all of
the couplings and coefficients in the effective Lagrang
should become of the order of unity with the overall fact
F2. Since the first term ofW̃e f f8 is proportional toS̃, the
scaling has to be

Ŝ5
L

F2S̃. ~35!

The effective Lagrangian becomes

Le f f5F2H 2E d4û K̂e f f8 1S E d2û Ŵe f f8 1H.c.D J ~36!

with

K̂e f f8 5
1

2
tr~V̂†V̂!1bS L2

F D 2/3

~Ŝ†Ŝ!1/3, ~37!

Ŵe f f8 5ŜS ln
Ŝ

PfV̂
21D 2

1

2
m̂ tr~JV̂!1F̂~V̂!.

~38!

The requirement that the coefficient of (Ŝ†Ŝ)1/3 in K̂e f f8 is
unity givesb5gY

22/3.

Next we expand (S̃†S̃)1/3 in K̃e f f8 around the vacuum ex

pectation value of̂ S̃& and define the canonical normaliza
tion. Namely, we set

S̃5^S̃&1S̃q ~39!

and obtain

5It must be noticed that this effective superpotential does not
clude any other heavy bound states which are as heavy as
gluino-gluino bound state. This fact is an uncontrolled approxim
tion in the result.
8-4
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K̃e f f8 5
a

LS
2

1

2
tr~Ṽ†Ṽ!1

b

3

S̃q†S̃q

~^S̃†&^S̃&!2/3

1~^S̃†&^S̃&!1/3
•O„~^S̃†&^S̃&!22

…. ~40!

Then the canonically normalized field is defined as

S5Ab

3

1

~^S̃†&^S̃&!2/3
S̃5

gY

A3mL
S̃. ~41!

Therefore, the mass of the gluino-gluino bound state is
tained as

mS
25USA3mL

gY
D 2K ]2W̃e f f8

]S̃2 L U2

5SA3mL

gY
D 4 1

u^S̃&u2
59mL.

~42!

In the limit of m→` the theory becomes supersymmet
SU~2! Yang-Mills theory with scaleLSYM5AmLS, and the
mass of the gluino-gluino bound state is expected to be of
order ofLSYM . Therefore, the result of Eq.~42! is correct for
large m.LS assuming no mass dependence ofgY . How-
ever, it cannot be a correct formula for smallm!LS , since
mS is expected to remain finite in them→0 limit with finite
gY . This means that the assumption of Eq.~34! is not justi-
fied for smallm!LS .

IV. GLUINO-GLUINO BOUND STATE
IN THE FUNDAMENTAL THEORY

We calculate the mass of the gluino-gluino bound st
using Shifman-Vainshtein-Zakharov~SVZ! sum rule~QCD
05600
-

e

e

sun rule! @12# in the fundamental theory.6 The bound state
couples to both the scalar and auxiliary components of
operator

OS~y,u!52
g0

2

32p2Waȧ~y,u!Wȧ
a
~y,u!

5
g0

2

32p2laȧ~x!lȧ
a
~x!1•••, ~43!

wherey5x1 i ūsu. Then we consider the quantity

P~Q2!5 i E d4x eiqxK TE d2u OS~y,u!OS~0,0!L ,

~44!

whereQ252q2. This quantity can be described in the spe
tral function representation as

P~Q2!5E
0

`

ds
r~s!

s1Q22 i e
~45!

with

r~s5k2!e~k0!5~2p!3(
n

d4~pn2k!^0u

3E d2u OS~y,u!U
x50

un&^nuOS~0,0!u0&,

~46!

where the summation is taken over all the states. On
other hand,P(q2) can be directly calculated in the limit o
Q2→` by the operator product expansion~OPE!. Namely,
ian
ino
lim
Q2→`

i E d4x eiqxTH E d2u OS~y,u!,OS~0,0!J
52S g2

32p2D 2

lim
Q2→`

i E d4x eiqxFTH 1

4
~vamnvmn

a 1 ivamnṽmn
a !(x) , ~lblb!(0)J

1T$„~l†ismDQ m!ala
…(x) , ~lblb!(0)%1TH S 2

g2

2
~AQ

† TaAQ!~AQ
† TaAQ! D

(x)

, ~lblb!(0)J G
5A~Q2!

g2

32p2~lala!(0)1B~Q2!
1

2
m~Ji j eabAQ

a
iAQ

b
j !(0)1C~Q2!

g2

32p2~lalaAQ
† AQ!(0)

1D~Q2!~eabcl
as̄mnlbvmn

c !(0)1E~Q2!~eabcl
as̄mnlbṽmn

c !(0)1O~1/Q4!, ~47!

where vmn
a is the gluon field strength andṽmn

a is its dual. All quantities are the renormalized quantities. The Wilson
coefficientsA(Q2), B(Q2), C(Q2), D(Q2), andE(Q2) can be determined by the perturbation theory. Note that the glu
number plus the squark number@anomalous U(1)R symmetry# is conserved in the perturbation theory.

6The mass has already been calculated using a similar technique in Ref.@19#.
8-5
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By estimating the vacuum expectation values of theT
products of both sides, multiplied by twol†’s or two AQ

† ’s
in the first order of the perturbation theory, we obtain

A~Q2!5
a~m!

2p
X11

3

2p
a~m!lnS Q2

m2D C, ~48!

B~Q2!50, ~49!

wherea(m)5g(m)2/4p. We consider only the lowest di
mensional operators in OPE as an approximation. In the
lowing, we take the renormalization point asm5AQ2, by
which the higher-order logarithmic correction is suppress
Then, we have the sum rule

E
0

`

ds
r~s!

s1Q22 i e
52

a~AQ2!

2p
^OS~0,0!& ~50!

for large Q2. Following Ref. @12#, we consider the Bore
transform of this sum rule. Namely,

E
0

`

ds e2s/M2
r~s!52M2

a~AM2!

2p
^OS~0,0!&, ~51!

where M2 is a parameter of dimension two which corr
sponds toQ2. This is the SVZ sum rule in our case. If the
is a value ofM2 so thata(AM2) in the right hand side is
kept small enough and so that the integral in the left ha
side is dominated by the lowest-lying state, we can relia
extract the information of the lowest-lying state. In the fo
lowing we first assume that this is the case and estimate
goodness of the approximation later.

By differentiating the sum rule of Eq.~51!, we obtain

E
0

`

ds e2s/M2
sr~s!52M4

a~AM2!

2p
^OS~0,0!&, ~52!

where we neglect theO„a(AM2)2
… term in the right hand

side. The ratio of the two sum rules of Eqs.~51! and ~52!
gives

E
0

`

ds e2s/M2
sr~s!Y E

0

`

ds e2s/M2
r~s!5M2. ~53!

If the lowest-lying state dominates the integrals in the l
hand side, we can set them as

r~s5k2!.d~k22mS
2!^0u

3E d2u OS~y,u!U
x50

uk&S Ŝ kuOS~0,0!u0&, ~54!

and obtainM25mS
2 , whereuk&S is the one-particle state ofS

with momentumk. Then the sum rule of Eq.~51! becomes

E
0

`

ds e2s/mS
2
r~s!52mS

2
a~AmS

2!

2p
^OS~0,0!&. ~55!
05600
l-
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The vacuum expectation value^OS(0,0)& and the matrix
elements in the spectral function of Eq.~54! can be estimated
in the effective theory. It is clear that

^OS~0,0!&5^S̃&56
Am3L3

gY
2 ~56!

and

S^kuOS~0,0!u0&5 S^kuAS̃~0!u0&

5
A3mL

gY
S^kuAS~0!u0&

5
A3mL

gY
, ~57!

whereAS̃ andAS are the scalar components of the effecti
fields S̃ andS, respectively. Moreover,

^0u E d2u OS~y,u!U
x50

uk&S5^0uFS̃~0!uk&S

5
A3mL

gY
^0uFS~0!uk&S ,

~58!

whereFS̃ andFS are the auxiliary components of the effe
tive fieldsS̃ andS, respectively. The auxiliary fieldFS can be
calculated using the effective superpotential of Eq.~33! to be

FS52
A3mL

gY

]W̃e f f8 †

]S̃† U
scalar

52
A3mL

gY
ln

A3mLAS
†

gY
2PfAV

† ,

~59!

whereAV is the scalar component of the effective fieldV.
We expand this expression byAS

† around its vacuum expec
tation value:

FS52
A3mL

gY

AS
q†

^AS
†&

1O~1/̂ AS
†&2!2

A3mL

gY
ln

A3mL^AS
†&

gY
2PfAV

† .

~60!

The first term describes the coupling with the one-parti
state. Then we obtain

^0u E d2u OS~y,u!U
x50

uk&S52SA3mL

gY
D 3 1

^AS̃
†
&

. ~61!

Therefore, the spectral function can be written as

r~s!.2SA3mL

gY
D 4 1

^S̃&
d~s2mS

2!, ~62!

where we usêAS̃
†
&5^S̃&.

This result and the sum rule of Eq.~55! give
8-6
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mS
2a~AmS

2!52pSA3mL

gY
D 4 1

^S̃&2
52p•9mL. ~63!

Using Eq.~42! we have

a~AmS
2!52p. ~64!

This is the condition which has to be satisfied by the mas
the gluino-gluino bound state. The expansion paramete
the gauge coupling in the OPE is

g~AmS
2!2

~4p!2 5
a~AmS

2!

4p
5

1

2
. ~65!

This is not much smaller than unity, and we are using
perturbation theory near the limit where it is breaking dow
However, the approximation is enough for the order estim
since the higher-order logarithmic correction is suppres
by the appropriate selection of the renormalization point.

Now we use the formula of Eq.~42!. Since it is reliable
only for m.LS , we should not use the running coupling f
the case ofNc52 andNf53, but for the case ofNc52 and
Nf50. Furthermore, we have to use the running coupl
which follows theb function @17#

b~a!52
a2

2p
•

3Nc

12Nca/2p1O~a2!
, Nc52, ~66!

since the scale of dynamics which is nonperturbatively
fined by the instanton calculation@see Eq.~22!# has to be
introduced. The solution of the renormalization group eq
tion is

1

a~m!
1

1

p
ln a~m!5

3

p
ln

m

L2,0
, ~67!

where theO(a2) term in the denominator of theb function
is neglected as a small contribution. We can impose the o
loop matching relation,L2,05AmL2,3.

7

Now we can determine the value of the ratioL/L2,3 using
Eqs.~67!, ~64!, and~42! as follows:

L

L2,3
5

1

9
~2p!2/3e1/3.0.5. ~68!

The scaleL is the same order ofL2,3 as expected. Now it is
possible to estimate the magnitude of the higher-order op
tor correction in OPE. The expansion parameter should

~L2,0!
2

M2 5
~L2,0!

2

mS
2 5

1

9

L2,3

L
.0.2. ~69!

This is small and independent from the massm. Then the
present approximation is good for the order estimate.

7The one-loop matching relation is satisfied in the results of
explicit instanton calculation.
05600
of
n

e
.
te
d

g

-

-

e-

a-

Finally, we can determine the value of the Yukawa co
pling gY using Eqs.~68! and ~26!;

gY5S 5

16

~2p!2e

93 D 1/4

.0.5. ~70!

Namely, the resultant value of the dynamically genera
Yukawa coupling~which is independent from the massm) is
of the order of unity for largem.LS , which is different
from the result of NDA, 4p;10, for smallm,LS .

Here we have to stress that the obtained value of
Yukawa coupling is for the theory withm.LS , though it is
independent fromm. We may consider the simplem→0
limit, but there are several problems. For example, the m
of the gluino-gluino bound state vanishes in this limit@see
Eq. ~42!#, which seems to contradict ’t Hooft anoma
matching conditions, although the coupling in the spec
function also vanishes in this limit@see Eq.~62!# and the
bound state disappears from the spectrum. To take the m
less limit, we have to consider the bound state which coup
to the operator Pf(eabAQ

a AQ
b ) in Eq. ~34!, for example. Since

the bound state has the same quantum number ofS, there
must be mixing between them, and we can expect that th
is no massless bound state in the limit ofm→0, except for
V.

V. CONCLUSION

The value of the Yukawa coupling among the low ener
effective fields~composite fields! was calculated in theN
51 supersymmetric SU~2! gauge theory with massive thre
flavors. First, the value of the squark pair condensate~or
gluino pair condensate! and the mass of the gluino-gluin
bound state were calculated in the effective theory consid
ing the uniqueness of the scale of dynamics in the theo
These quantities are described by the parameters in the
fective theory: L, m and gY . Next, these quantities wer
evaluated directly in the fundamental theory using the te
nique of the instanton calculation and SVZ sum rule. T
results are described by the parameters in the fundame
theory,L2,3 andm. Then, we obtained the expression of t
parameters in the effective theory by those of the fundam
tal theory;

L

L2,3
5

1

9
~2p!2/3e1/3.0.5, ~71!

gY5X 5

16S L

L2,3
D 3C1/4

.0.5. ~72!

These results are for large massm.LS , although they are
independent from the mass. Unfortunately, the value can
be directly compared with the result from NDA,gY.4p, for
small mass.

We made some approximations in using the SVZ s
rule. The higher order in the perturbative gauge coupling
Wilson coefficients and the higher-order operator were
glected in the OPE. The approximations are good for
order estimate, since the expansion parameters are no

e

8-7
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large;a(AmS
2)/4p50.5 andL2,0

2 /mS
2.0.2. Note that the ap

propriate selection of the renormalization point suppres
the higher-order logarithmic correction in Wilson coef
cients.

The method which is developed in this paper can be
plied to determine the effective coupling constants in the l
energy effective theories of the other supersymmetric ga
theories.
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APPENDIX: NOTATION

The metric we use isg5diag(1,21,21,21), and thes
matrices for the two-component spinor are (sm)aḃ5(1,t i)
and (s̄m) ȧb5(1,2t i), wheret i are the Pauli matrices. Th
convention on the contraction of the index of the tw
component spinor is

uu5uȧuȧ , ū ū5 ūaūa , ~A1!

with uȧ5eȧḃuḃ and ūa5eabūb , whereeȧḃ5eȧḃ and eab

5eab . The integration over the spinors is defined as

E d2u u251, E d2ū ū251. ~A2!
a,

D

05600
s

-

e

,

In the following we give the correspondence between
standard notation by Wess and Bagger@20# and our own.

~i! On the metric and spinors:

hmnuW2B52gmn. ~A3!

eabuW2B5eab, eabuW2B52eab . ~A4!

~sm!aḃuW2B52~sm!aḃ , ~ s̄m!ȧbuW2B52~ s̄m!ȧb.
~A5!

uauW2B5 ūa, ū ȧuW2B5uȧ. ~A6!

uuuW2B5 ū ū5 ūaūa , ū ūuW2B52uu52uȧuȧ .
~A7!

d2uuW2B5d2ū, d2ūuW2B52d2u. ~A8!

~ii ! On the chiral superfields:

Wa~y,u!uW2B5W̄a~y†,ū !, W̄ȧ~y†,ū !uW2B5Wȧ~y,u!.
~A9!

F~y,u!uW2B5F†~y†,ū !, F†~y†,ū !uW2B5F~y,u!.
~A10!

ymuW2B[xm1 iusmūuW2B5y†m[xm2 i ūsmu.
~A11!
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