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Determination of the dynamically generated Yukawa coupling in supersymmetric QCD
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We make an attempt to determine the strength of the dynamically generated Yukawa coupling among
composite fields. The system &f=1 supersymmetric S(2) gauge theory with massive three flavors is
considered as an example. We use the techniques of “integrating in” the gluino-gluino bound state in the low
energy effective theory and the instanton calculation and Shifman-Vainshtein-Zakharov su@C@esum
rule) in the fundamental theory. The obtained value of the Yukawa coupling among massive composite fields
is of the order of unity. This value does not necessarily coincide with the value of the Yukawa coupling among
massless composite fields, since the approximation breaks down in the limit of massless flavors.

PACS numbgs): 11.15~-q, 11.30.Pb, 11.55.Hx, 12.60.Rc

[. INTRODUCTION culate the squark pair condensate as a functioh ahdgy,

The recent development of the techniques for analyzinghe scale of dynamics in the effective theory and the Yukawa
supersymmetric gauge theorigd has spurred the revival of coupling, respectively, and compare it with the result given
the investigation of supersymmetric composite modeldy the instanton calculation in the fundamental theory. Since
[2—8]. One of the reasons for this revival is that the tech-the result of the instanton calculation is described by the
nigues allow us to obtain not only the particle content at lowscale of dynamics in the fundamental thedry_ = A2 3,
energy, but also the dynamically generated interactionshe Yukawa coupling,gy, is described by the ratio of
among composite particles. In many models the dynamicalln\/A, 5. In Sec. Ill the chiral superfield of the gluino-gluino
generated Yukawa interactions are identified with or relatethound state is introduced in the effective theory using the
to the Yukawa interactions among Higgs bosons and quarkgchnique of “integrating in”[11], and the mass of the
or leptons in the standard model. However, the strength obound state is calculated. In Sec. IV a condition which the
the interactions is not satisfactorily determined yet. In manymass of the bound state follows is obtained using Shifman-
cases one assumes that it is of the order of unity, but, on thgainshtein-Zakharo¥SVz) sum rule(QCD sum rulé [12]
other hand, there is a claim that it must be of the order®f 4 in the fundamental theory. Then we estimate the ratio of
[9]. Some explicit calculations on the dynamics are requiredy/A , ; using the result of the previous section, and obtain a
to determine the strength, since it includes the information ohumerical value of the Yukawa coupling. The resulting value
the Kéhler potential which cannot be determined only by thejs gy=0.5~1. This is the value of the Yukawa coupling
symmetry and holomorphy. among massive composite fields which does not necessarily

Naive dimensional analysiéNDA) of Ref.[9] is the first  coincide with the one among massless composite fields,
attempt to determine the coupling constants in the low ensince the approximation breaks down in the limit of massless

ergy effective theories of supersymmetric gauge theoriesiavors. In the last section we give a summary and conclude.
The strength of coupling constants, especially for Yukawa

couplings, is determined by the renormalization from the
Seiberg’s effective fields to the canonically normalized ef-

fective fields. In NDA the renormalization factor is deter- The Lagrangian of the fundamental theoN/,:j_ super-

mined by assuming that the magnitude of the one-loop corsymmetric SW2) gauge theory with massive three flavors, is
rection in the effective theory is comparable with the tree-yritten as follows:

level contribution, and the Yukawa coupling of the order of

41 is obtained. This criterion is effective in the chiral La- 1

grangian for real QCD. In fact the NDA value of the pion-  £= —J d*e QT‘e‘ZQOVQi+J d?65modl e, ,Q QY

nucleon Yukawa coupling, #, is close to the experimental 2

value, 13.510]. 1 _

In this paper we make an attempt to determine the +H.c.+ Zf d2e Wa”VVZJr H.c. (8]

strength of the dynamically generated Yukawa coupling

among composite fields by doing an explicit calculation in . . o

the fundamental gauge theory. We consider1 supersym- HereQ;" is the quark chiral superfield; is the gluon vector

metric SUN.=2) gauge theory witiN;=3 massive flavors superfield,W2* is the gluon field strength chiral superfield,

as an example. In the next section the relation between thg, is the bare gauge coupling constant, anglis the bare

dynamically generated Yukawa coupling and the normalizaguark masgflavor independent The indicesa,3=1,2 and

tion of the effective field is discussed. The argument is ala=1,2,3 are of the fundamental and adjoint representations

most the same as what has been given in F8f.We cal-  for SU(2) gauge group, respectiveli,j=1,2,...,6 are the
flavor indices, and=diag(e, €, €) is the Sig3) invariant ma-
trix. See the Appendix for notations. The confinement is ex-

*Email address: kitazawa@phys.metro-u.ac.jp pected at low energy, and the effective field
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G~ le)
Vi~ €asQUQ @ W=~ AU Str(30). ©
is expected to describe the lightest bound state by 't Hooft
anomaly matching conditiongl3], whereV is the canoni- Here A=Ag/a? andF=Ag/a%2
cally normalized field with dimension one. Moreover, it iS  We can determine the canonically normalized effective
well known that the effective field follows the superpotential field by imposing the condition that the coefficient of the
kinetic term is unity. Namely,

~ 1 - 1 ~
Weff: - FPN_ Emtr(JV) (3) F. A
S V= AV— FV (10
in the lowest order in the derivative expansidr. HereV,
which is proportional to the effective fieldl, is Seiberg’s
effective field with dimension two and is directly related to
the operatore,;QfQf in the fundamental theory. The Leoti= —f d*e Keff+( J d20 Wee+ H.c.) (12)
renormalization-group invariant quark mass paramsaten
the low energy effective theory is proportional to the renor-yith
malized quark mass in the fundamental theory. The first term
of the above superpotential is the Yukawa interaction. 1
Although the Kéler potential cannot be determined ex- Kett= §tF(VTV). (12
actly, we can expect

and

1A
~ al ..o Wets=—0yPfV— 5 —mtr(JV),
Keff:PEtr(VTV) (4) eff= Qv 29y (JV)
s (13

with a positive coefficiena in the lowest order in the deriva- where gy=A%/F=a%? is nothing but the Yukawa cou-

tive expansion by assuming that the effective figlgpropa-  pling.
gates without its vacuum expectation value. The effective Note that the scald in Eq. (6) does not necessarily co-
action is obtained from the following effective Lagrangian: incide with Ag. If we may setA=Ag, we havea=1 and
gy=1. This is the result of the overly strong requirement
i - that all couplings and coefficients should become of the or-
Lett= _f d%0 Kegst f d?0 WegitH.c.). ) der of unity by the scaling of Eq6) with Ag instead ofA.
In NDA the Yukawa couplingy is determined under the
Since the theory has a unique scale of the dynamics, aflequirement that the one-loop quantum effect in the Lagrang-
the couplings and coefficients in the effective Lagrangiarian of Eq.(7) is of the same order as the tree-level effect.
should become of the order of unity, if all dimensionful Namely, wherm<1 (light mattey, the requirement is
quantities are scaled appropriat¢8). In fact, if we scale

A4
2 ——==1, (14
\7:(é V. 9=6AY2  S=BAM2  and e T (4m)*F
F t H 1 A’

(6) where (47)2F?2 is the one-loop suppression factor afds
introduced as the ultraviolet cutdffThen we haveyy=4m
then the effective Lagrangian becomes for smallm<A.
The squark pair condensate is obtained using the effective

) oS . Lagrangian of Eq(11). From the supersymmetric vacuum
Let=F {—f d aKeff_l'(j d“0 Were+ H-C-)] (7)  condition

3Weff:0

with
Wy (15
N 1 ... . .
Kefi= Etr(VTV), (8)  and the assumption ¢V;;)=vJ;;, we obtain
VmA
v==% . (16)

) L ) . . Oy
Y mis kept finite, it describes the Yukawa interactions among

massive composite fields. To have the Yukawa interaction among___

massless composite fields, we have toredb zero and introduce

some gauge interactions by which the origin of the moduli space is “Note thatA =1 in the Lagrangian of Ed7), since the unit of the
chosen2,5]. energy isA.
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Therefore, we have

= /m3A3
<mOEaBAQ| lAQJ 2> m<V12> m(K )Zi—z,
Oy
17)

where AQ, is the squark field. This is a renormalization-
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9

3272

m3A 3
T,

Oy
(18)

|

Where)\ is the gluino field. This is also a renormalization-
group mvarlant quantity.

Aaa7\3> =(Moe,pAGi=1AG =2) =

group invariant quantity. The same result is obtained from The gluino pair condensate has already been reliably es-

the condition ofdW,;/dV=0. The gluino pair condensate
is also obtained through the Konishi anomgly],

timated by the instanton calculation fbr=1 supersymmet-
ric SU(N,) gauge theories witl; flavors[15]:3

2 1N,
Jdo B .
<32 AN, > (CN (ARSR™NTL+ 0@ ()5 H mp)| @M, (19
|
wherek=1,2, ... N, the s:cale/\1 '°°p is the one where the o) dg’
one-loop running coupling dlverga;;(,u) andm;(u) are the THex j ﬂ(g )’ (22)
renormalized coupling and mass, respectively, e(Bl,(;IC
=22Ne/(N,—1)!(3N,—1). This result is obtained by evalu- 9 ym(9')
ating the one-loop quantum fluctuation around the single in- [y Jiny=mi(4e) €X ; 9 B9 |’
stanton background, and the reliability of the approximation (23)
is guaranteed by the supersymmetric Ward-Takahashi iden-
tities. In the above equatio®(g(u)*) indicates the contri- whereg satisfies
bution from the higher-loop quantum fluctuation. We can
rewrite this quantity as followgl5]: N 8?2 )
g-cex ?(1+ o)) |=1 (29

N

oIl

G

(AN M1+ O(g(1)Y)]

=M3N0*Nf expl’ —

1
g(M)2N H m;(u)

= 3NN ex;{ —(3N.—Np)

Q(M)
Xex

m; ()

|

g(u)?

872
—)z[l+ O(g(w)?)]

9(w) dg’
B(g")

|

)H m; ()

g

'Ym(g )

= (A, n)*Ne Nfi[[l [MiTinw s (20
whereB(g) is the 8 function[17]
8 3N.— N+ Ny,
B(g)=— 9 t+ N ym(9) 21)

1672 1—N.g%8m%+O(g%)

and yn(g) is the anomalous dimension of mass. The
renormalization-group invariant quantitie:;stc,,\,f and

[m;]iny are defined as

Therefore, in the case ®f,=2 andN;=3 and if all masses
are degenerate we have

|

The mass parameter in the effective theamy, can be
identified with[m];,, since the mass term in the effective
theory is introduced through the replacement of
the renormalization-group invariant operator
M(1) (€,5QQP) . /[M]iny by the effective fieldV;; in the
superpotential. Therefore, by solving E¢$8) and (25) we
obtain the Yukawa coupling

oele )T

which is the function of the ratid/A , 3. These two scales
are not always equal since the scalés introduced without
any concrete relation to the fundamental theory. The Yukawa

go

)\aa)\ C.(A 3 1/2 C :1_6
3972 =+(Co(A2[M§)Y%  C, 5

(25

1

G, (26)

31t is known that this instanton calculation gives incorrect numeri-
cal coefficientd16]. However, it does not affect the result of this
paper, since the difference is a factor of the order of unity in the
case of the S(2) gauge group.
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coupling can be determined if is described by\213.4 We ~ ~ ASS
need another independent quantity which can be calculated W(’m=5( In—-—-1
both in the effective theory and the fundamental theory. The 9y
mass of the gluino-gluino bound state can be the quantity.

where the relatiom 3= A3a®= A%/g§ was used. This effec-

— %mtr(JV)+f(V), (33

I1l. GLUINO-GLUINO BOUND STATE tive superpotential correctly gives the gluino pair condensate
5
IN THE EFFECTIVE THEORY of Eq. (18). . _
_ _ _ To obtain the mass of the gluino-gluino bound state, the
We introduce the chiral superfield canonically normalized effective fiel§ has to be defined.
We assume the Kaer potential
S~— 320 Weew?, (27) -
K= I Etlr(Y/T\?) +b(S5)13 (34)
S

whose scalar component is the gluino-gluino bound state to

the low energy effective theory using the method of integrat-
ing in [11], and calculate its mass. Following the conjecturefono"vIng Ref. [18], whereb is a positive constant. If the

of Ref. [11], we consider the effective superpotential aftereffectlve fieldS is scaled appropriately to the dimensionless
integrating in as follows: one,S, together with the scalings &f to V and so on, all of
the couplings and coefficients in the effective Lagrangian
should become of the order of unity with the overall factor
F2. Since the first term of\V., is proportional toS, the
scaling has to be

whereS is Seiberg’s effective field with dimension three and

is directly related to the operater (g3/32m%)W2“W- in the 5 £~S 35)
fundamental theory. The conjecture is that in the effective CF? (
superpotential the scalkg is included only as a coefficient

of the field'S with the form of InASN Nt The function The effective Lagrangian becomes
G(V,9) satisfies

1
W =6(V,9)— —mtr(JV)+InA3 S, (28)

26 Leii= FZ{ —J d*O KL+ J d2o WL+ H.c.)] (36)
—=-InA} (29)
S .
with
due to the supersymmetric vacuum conditid,/5S=0.

2/3
On the other hand, smc,weff is equivalent toW’ff as the Aé”_ —tr(VTV)+b( ) (51513 (37
effective superpotential, the relation

Wt _ Wi =
alnAL alnAZ

. ./ S 1o e .
30 2= S| IN——1| — zmtr(JV) + FV).
(30 eff ( oR ) SM(IV)+F(V)
(39)

should be satisfied. This relation gives

- The requirement that the coefficient d'€)Y2 in K., is

InA3= Inm (31  unity givesb= gy 23,

Next we expand $'S)Y? in K/, around the vacuum ex-

pectation value of S) and define the canonical normaliza-

and we can integrate E¢R9) and obtain tion. Namely, we set

g(v,’é)z“s( In% - 1) + AV, (32) S=(5)+= (39)

~ _ and obtain
where (V) is a function ofV. Therefore, we have

51t must be noticed that this effective superpotential does not in-
4If we use the relatiom3=A§/a6=A§g$, Eq. (26) gives just a  clude any other heavy bound states which are as heavy as the
relation betweem g andA, ;. The difference betweeh s andA is gluino-gluino bound state. This fact is an uncontrolled approxima-
important. tion in the result.
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B b utda sun rulg [12] in the fundamental theoyThe bound state
KL f= — tr(VTV) T—2/3 couples to both the scalar and auxiliary components of the
Ag 3 ((S")(9)) operator
HEHYSo(ESHEN ™. (40 g5

: NSRRI Os(y,0) == 552 Wo(y, O)WE(Y, 6)
Then the canonically normalized field is defined as

/ go

b aa ..

S= — ~ S (41) 32 ?)\ (X))\ ( ) y (43)
3 ST><S>)2’3 \/—mA

Wherey=x+i§o—6. Then we consider the quantity
Therefore, the mass of the gluino-gluino bound state is ob-

tained as H(Qz)zif d*x ein<Tf d?6 Og(y,0)0s(0,0) ),
. (\EmA)Z PW, ¢ (\/_mA) 1 o (44)
Ms= )% 0

mA.
1(S)|2 whereQ?= —qg?2. This quantity can be described in the spec-
In the limit of m— the theory becomes supersymmetric p(s)

42)  tral function representation as

SU(2) Yang-Mills theory with scale\ gyy=VmAs, and the 1(Q%*)= fo ST Q?—ie (45)
mass of the gluino-gluino bound state is expected to be of the
order of A gy . Therefore, the result of E42) is correct for  with
large m>A g assuming no mass dependencegof How-
ever, it cannot be a correct formula for smal A g, since 12 _ 3

’ ’ s=k?)e(kg)=(2 8*(pn—k)(0
mg is expected to remain finite in ttre— 0 limit with finite ( (ko) =(2m) ; (Pn=k)(0]
gy . This means that the assumption of E8¢) is not justi-
fied for smallm<Ag. XJ o2

[n)(n|05(0,0)0),
=0

IV. GLUINO-GLUINO BOUND STATE (46)

IN THE FUNDAMENTAL THEORY . .
where the summation is taken over all the states. On the

We calculate the mass of the gluino-gluino bound statesther hand]1(g?) can be directly calculated in the limit of
using Shifman-Vainshtein-Zakharq®VZz) sum rule(QCD  Q2— by the operator product expansi¢@PE. Namely,

lim if dx eiQXTUd2aos(y,e),os(o,0)]

Q%

g2
=S5 4 /gX
2(3277) I|m|J'dxe

Qz—mc

[—(Ua’” 2 Fivd 2 w) (%) (NPA )(0)}

2
+TUNT0D )Ny, (NAP) o} +T %(AgTaAQ)(AgTaAQ))

, ()\b)\b)(O)H
(x)

2 2
o] 1 . " g
=A(Q2)327T2(7\a)\a)(0)+ B(QZ)E m(J e, A% iAgj)(o)+ C(Q2)327T2()\a7\aAIgAQ)(0)

+D(Q?)(€apch 20N\ 06, ) (0)+ E(Q?) (€ap A *0* NS, ) o)+ O(1IQY), (47)

where v? uv 1S the gluon field strength anday is its dual. All quantities are the renormalized quantities. The Wilsonian
coeff|C|entsA(Q2) B(Q?), C(Q?), D(Q?), and E(Q?) can be determined by the perturbation theory. Note that the gluino
number plus the squark numb@momalous U(1g symmetry is conserved in the perturbation theory.

5The mass has already been calculated using a similar technique ifilBlef.

056008-5



NORIAKI KITAZAWA PHYSICAL REVIEW D 61 056008

By estimating the vacuum expectation values of e The vacuum expectation valy&(0,0)) and the matrix
products of both sides, multiplied by two"’s or two Ag’s elements in the spectral function of E§4) can be estimated

in the first order of the perturbation theory, we obtain in the effective theory. It is clear that
2 3A3
o _aw( 3 Q) e MR
AQ@)= 5 A\l goawin 7)) (49) (000)=(F)==—7 (56)
B(Q%) =0, (49  and
where a(u)=g(u)?/47. We consider only the lowest di- «(k|04(0,0(0) = s(k|A5(0)[0)
mensional operators in OPE as an approximation. In the fol- JBmA
lowing, we take the renormalization point as=+/Q?, by _ysm «(K|A(0)[0)
which the higher-order logarithmic correction is suppressed. Oy
Then, we have the sum rule J3mA
= : (57)
des p(s) _a(@),o 00) &0 9y
o stQ%—ie 27 TS

whereAz andAg are the scalar components of the effective

for large Q2. Following Ref.[12], we consider the Borel fields S and$S respectively. Moreover,

transform of this sum rule. Namely,

a(\M?)
> (040,0)), (51 JAm

A
=g (OFsO)ks,
Y

(Ol [ 2004y.0)  [Ks=(0IFOs

X

JO ds & SM?p(s)= — M2

where M? is a parameter of dimension two which corre-

sponds toQ?. This is the SVZ sum rule in our case. If there (58

is a value ofM? so thate(y/M?) in the right hand side is -

kept small enough and so that the integral in the left handvhereFs andFs are the auxiliary components of the effec-

side is dominated by the lowest-lying state, we can reliablytive fieldsS andS, respectively. The auxiliary fiellig can be

extract the information of the lowest-lying state. In the fol- calculated using the effective superpotential of &) to be

lowing we first assume that this is the case and estimate the ~

go%dng_?fs of the _apprhoximationllatir.E ot - e Bma oWt 3ma i V3mAAL
y differentiating the sum rule of Eq51), we obtain S 9y et g g%PfAV )

scalar

o M (59
(2@_ kos00). G2

J ds & M?sp(s)=—M*
0 where Ay is the scalar component of the effective fiald

We expand this expression around its vacuum expec-
where we neglect thé(a(yVM?)?) term in the right hand  tation value: B

side. The ratio of the two sum rules of Eq81) and (52

gives _ J3ma A oA~ J3mA . V3mA(AL
* 2 * 2 ° gy (Ag S Oy g%PfA:‘,
f ds e ¥Msp(s) J dse M p(s)=M2. (53 (60)
0 0

) ) ) ) The first term describes the coupling with the one-particle
If the lowest-lying state dominates the integrals in the leftgiate. Then we obtain

hand side, we can set them as

\/§mA 31
p(s=k?)=5(k*~m3)(0| <0|f d*0 Os(y,0)  |k)s= _<T @- (61)
x=0 'S
2
Xf d°0 Os(y. 0) X:0|k>5 k|05(0.0]0), (54 Therefore, the spectral function can be written as
and obtainV?=m2, where|k)s is the one-particle state & (9)=— V3mA 4i S(s—md) 62)
with momentumk. Then the sum rule of Eq51) becomes P Oy (~S) sh

,a(\/md)

e} T . ~
f ds efs/mgp(s): ~mi—— (040,0). (55 where we usg¢Az)=(S).
0

This result and the sum rule of E(5) give
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VamA |4 1 Finally, we can determine the value of the Yukawa cou-
m3a( \/Hg)=27-r( g @ZZW' 9mA. (63)  pling gy using Eqs(68) and(26);
Y
. 5 (2’77)26 1/4
Using Eq.(42) we have Oy= 6 97 =0.5. (70
a(\md)=2m. (64)

Namely, the resultant value of the dynamically generated
o}(ukawa couplingwhich is independent from the masy is
f the order of unity for largan>Ag, which is different
rom the result of NDA, 4r~ 10, for smallm<<Ags.
Here we have to stress that the obtained value of the
2 Yukawa coupling is for the theory witm> A g, though it is
g(\/ﬁgz) :a(\/ﬁg): l (65) independent fromm. We may consider the simplen—0
(4) 4m 2 limit, but there are several problems. For example, the mass

of the gluino-gluino bound state vanishes in this lifsee

This is not much smaller than unity, and we are using th - S
erturbation theory near the limit r}:ere it is breakin dg neEq' (4.2)]’ Wh'c.h seems to contradict t H(.)Oft anomaly
perturbatl Y it W n Ing dow ‘matching conditions, although the coupling in the spectral

However, the approximation is enough for the order estimat(? nction also vanishes in this limfisee Eq.(62)] and the

since the higher-order logarithmic correction is suppresse .

) : . . ound state disappears from the spectrum. To take the mass-
by the appropriate selection of the renormalization point. o . .

. o : less limit, we have to consider the bound state which couples
Now we use the formula of Eq42). Since it is reliable o th rator P ,A%AB) in Eq.(34), for example. Sin
only for m> A g, we should not use the running coupling for tﬁ EOpZatot f‘f]“ﬁ ?h Q) q- t orexa bp e.m ce
the case oN.=2 andN;=3, but for the case dli;=2 and € bound state has the same quantum num S dhere
ust be mixing between them, and we can expect that there

N¢=0. Furthermore, we have to use the running couplin . -
which follows the3 function[17] \? no massless bound state in the limitrof->0, except for

This is the condition which has to be satisfied by the mass
the gluino-gluino bound state. The expansion parameter o
the gauge coupling in the OPE is

a? 3N,
Bla)=— 27 1-Noal2nt O(a?)’ N.=2, (66) V. CONCLUSION

. . o ) The value of the Yukawa coupling among the low energy
since the scale of dynamics which is nonperturbatively degfactive fields (composite fieldswas calculated in thé\

fined by the instanto_n calculatidrsee Eq_.(22_)] has to be _4 supersymmetric S(@2) gauge theory with massive three
introduced. The solution of the renormalization group equasayors. First. the value of the squark pair condendate
tion is gluino pair condensateand the mass of the gluino-gluino

1 3 bound state were calculated in the effective theory consider-
——+=Ina(p)= _|nL, (67) ing the uniqqgness of the ;cale of dynamics in the_ theory.
a(p) 7 Agp These quantities are described by the parameters in the ef-
) ) ) . fective theory: A, m and gy. Next, these quantities were
where theO(«°) term in the denominator of thg function  ayajyated directly in the fundamental theory using the tech-
is neglected as a small contribution. We can impose the ON&jique of the instanton calculation and SVZ sum rule. The

loop matching relationd , o= VmA 5" _ _ results are described by the parameters in the fundamental
Now we can determine the value of the ratiéA,3using  theory, A, ; andm. Then, we obtained the expression of the
Egs.(67), (64), and(42) as follows: parameters in the effective theory by those of the fundamen-
tal theory;
A 1
1~ g(2m™et=~05. (68) A1
23 —==(2m)#%ef=0.5, (72)
Az 9

The scaleA is the same order of ; ; as expected. Now it is

possible to estimate the magnitude of the higher-order opera- 5/ A \3\V4

tor correction in OPE. The expansion parameter should be Oy= 1_6(A_) =0.5. (72
2,3

2 2
(A9 = M: } A_z'?’:o_zl (69)  These results are for large mass>Ag, although they are

M? mg 9 A independent from the mass. Unfortunately, the value cannot
be directly compared with the result from NDg&y=41, for
small mass.

We made some approximations in using the SVZ sum
rule. The higher order in the perturbative gauge coupling in
Wilson coefficients and the higher-order operator were ne-

"The one-loop matching relation is satisfied in the results of theglected in the OPE. The approximations are good for the
explicit instanton calculation. order estimate, since the expansion parameters are not so

This is small and independent from the massThen the
present approximation is good for the order estimate.
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large; al(\/m2)/4m=0.5 andA 2 /m2=0.2. Note that the ap- In the following we give the correspondence between the
propriate selection of the renormalization point suppressestandard notation by Wess and Bagfed] and our own.

the higher-order logarithmic correction in Wilson coeffi- (i) On the metric and spinors:

cients.

The method which is developed in this paper can be ap- 7™ w-s=—g"". (A3)
plied to determine the effective coupling constants in the low
energy effective theories of the other supersymmetric gauge €“Pl\w_pg=€?, 6aB|W—B: —€qp- (A4)
theories.
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APPENDIX: NOTATION (A7)
The metric we use ig=diag(1-1,—1,—1), and theo
matrices for the two-component spinor are,j,z;=(1,7')

and (7,).5=(1,—7), wherer are the Pauli matrices. The (i) On the chiral superfields:
convention on the contraction of the index of the two-

d20|W*B:d2§l dzaW,B: —d20 (A8)

component spinar s W,y 0)lw-e=Wa(y",0),  Waly",0)lw-e=Waly.0).
06=6%,, 660=0%09,, (A1) (A9)
with §9=€*# 6, and 6*=e*#6,, wheree*f=¢,; and e*# Dy, 0)|w-s=2T(y",6), PT(Y",0)w-=D(y,0).
=€,p5- The integration over the spinors is defined as (A10)
2 2 2,0 ymlwaEXm‘i‘iggmalwa:yT#EX’u_iHU’ue.
f d=e o-=1, Jd 00°=1. (A2) (A11)
[1] N. Seiberg, Phys. Rev. B9, 6857 (1994). [10] T.E.O. Ericsoret al, Phys. Rev. Lett75, 1046(1995.
[2] M.J. Strassler, Phys. Lett. 876, 119(1996; A.E. Nelson and  [11] K. Intriligator, R.G. Leigh, and N. Seiberg, Phys. Rev.5D,
M.J. Strassler, Phys. Rev. B6, 4226(1997). 1092(1994).
[3] M.A. Luty, hep-ph/9611387; M.A. Luty and R.N. Mohapatra, [12] M.A. Shifman, A.l. Vainshtein, and V.l. Zakharov, Nucl.
Phys. Lett. B396, 161 (1997). Phys.B147, 385(1979; B147, 448(1979.
[4] D.B. Kaplan, F. Lepeintre, and M. Schmaltz, Phys. Re\e@)  [13] G. 't Hooft, in Recent Developments in Gauge Theqrézhted
7193(1997). by G. 't Hooft et al. (Plenum, New York, 1980
[5] N. Kitazawa and N. Okada, Phys. Rev.5B, 2842(1997); N. [14] K. Konishi, Phys. Lett135B, 439 (1984).
Okada, Prog. Theor. Phy€9, 635 (1998; N. Kitazawa, [15] D. Amati et al, Phys. Rep162, 169(1988.
hep-ph/9712223; Int. J. Mod. Phys. 14, 4237(1999. [16] D. Finnell and P. Pouliot, Nucl. PhyB453 225(1995.
[6] M. Hayakawa, Phys. Lett. B08 207 (1997). [17] V.A. Novikov, M.A. Shifman, A.l. Vainshtein, and V.I. Za-
[7] N. Haba and N. Okamura, Mod. Phys. Lett18, 759(1998. kharov, Nucl. PhysB229, 381(1983.
[8] N. Arkani-Hamed, M.A. Luty, and J. Terning, Phys. Rev. D [18] G. Veneziano and S. Yankielowicz, Phys. Lettl3B, 231
58, 015004 (1998; M.A. Luty and J. Terning, (1982.
hep-ph/9812290. [19] L. Leroy, Z. Phys. C43, 159 (1989.
[9] M.A. Luty, Phys. Rev. D57, 1531(1998; A.G. Cohen, D.B.  [20] J. Wess and J. Bagge3upersymmetry and SupergraviBrin-
Kaplan, and A.E. Nelson, Phys. Lett. /22 301(1997. ceton University Press, Princeton, New Jersey, 1992

056008-8



