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Potential for the phase of the Wilson line at nonzero quark density
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The contribution of quarks to the effective potential for the phase of the Wilson line is computed at nonzero
temperature and quark chemical potential to one and two loop order. At zero temperature, regardless of the
value of the quark chemical potential, the effective potential for the phase of the Wilson line vanishes. At
nonzero temperature, for special values of the phase the free energy of quarks equals that of bosons; at nonzero
chemical potential, such quarks can ‘‘Bose condense,’’ albeit with negative density.

PACS number~s!: 11.10.Wx, 11.15.Kc
-
ra

e
th
d

ob

o
n

on
ca
l

lin
a

ne
an
t

l

or

,

th

alue

a

e

re,

for-
gi-
, a

l-
s of
se
ge

on
ust

n-
de
At nonzero temperature,SU(N) gauge theories in the ab
sence of dynamical fermions have a deconfining phase t
sition related to the spontaneous breaking of a globalZ(N)
symmetry@1#. The order parameter for this transition is th
Wilson line: its vacuum expectation value vanishes in
confined, low temperature phase, and is nonzero in the
confined, high temperature phase. Because of the gl
Z(N) symmetry, in the deconfined phase there areN equiva-
lent vacua, with the phase of the Wilson line equal to one
the Nth roots of unity@2–5#. The interface tension betwee
theseN vacua is computable semiclassically@6–9#, by com-
puting the effective potential for the phase of the Wils
line. This interface tension is measurable from numeri
simulations on the lattice@10#. In the presence of dynamica
quarks in the fundamental representation, the Wilson
acquires a vacuum expectation value at all temperatures,
the vacuum is unique, with zero phase for the Wilson li
Nevertheless, depending upon the number of colors
quark flavors, metastable states in which the phase of
Wilson line is nonzero can arise@8#, and may be of physica
interest~although this is controversial@9#!.

The effective potential for the phase of the Wilson line f
an SU(N) gauge theory has been computed at one@2# and
two @4–7# loop order at a nonzero temperature,T. Here we
extend this result to a nonzero quark chemical potentialm
@11#.

The Wilson line is

V~xW !5P expS igE
0

b

A0~xW ,t!dt D , ~1!

whereP denotes path ordering,T is the temperature,g the
gauge coupling constant, and the imaginary timet:0→b
51/T. To represent a nonzero phase of the Wilson line in
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deconfined phase, we can take a constant background v
for the time-like component of the gauge potential,A0 @2–9#.
After a global color rotation, this can be chosen to be
diagonal matrix

A05
2pT

g F q1 0 . . . 0

0 q2 . . . 0

0 0 � 0

0 0 . . . qN

G , (
j 51

N

qj50. ~2!

The sum of theqj must vanish so thatA0 is anSU(N), and
not aU(N), matrix. For example, considerZ(N) degenerate
vacua@6# in the pure glue theory. In the trivial vacuum th
phase of the Wilson line vanishes,V51, so all qj50. The
equivalent vacuum in which the Wilson line is the firstNth

root of unity, V5exp(2pi/N)1, is given by q15•••qN21
5q/N, andqN52(N21)q/N.

At zero temperature, a constantA0 field can be eliminated
by a global gauge transformation. At nonzero temperatu
the classical action is independent ofA0, but this degeneracy
is lifted by quantum effects, as the required gauge trans
mation alters the boundary conditions for the fields in ima
nary time. Consequently, at one loop order and beyond
potential forA0, or more properly for the phase of the Wi
son line, is generated at nonzero temperature. In term
partition functions@3#, this potential is generated becau
one is summing over states which differ by a global gau
transformation.

We compute the quark contribution to the effective acti
for a single, massless flavor. At one loop order, this is j
the free energy in the presence of a backgroundA0 field:

S 152Tr logi @D” cl2mg0#; ~3!

D” cl5]”2 igA” is the covariant derivative, and the trace i
cludes color, Dirac indices, and a loop integral. We inclu
©2000 The American Physical Society07-1
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the effects of a Fermi sea for quarks by introducing a che
cal potential for baryon number,m.

In the following it helps to introduce two types of var
ables related tom and theqj . One set of variables areN
color-dependent ‘‘chemical potentials’’:

m j5m12p iT qj , j 51, . . . ,N. ~4!

Notice that theqj act like an imaginary chemical potentia
for color @3#. Since them j are complex, the effective actio
is as well.

Alternately, we also use the variablesCj :

Cj5
m j

2p iT
1

1

2
5qj1

1

2
1

m

2p iT
, j 51, . . . ,N. ~5!

The m j are useful in comparing to the limit in whichmÞ0
andA0→0; theCj are handy in the limit thatA0Þ0 andm
→0. The 1/2 in the definition ofCj arises as follows. In the
imaginary time formalism at nonzero temperature, boso
energiesk0 are even multiples ofpT, while fermionic ener-
gies are odd multiples. In diagrams, 2pTCj enters like an
energy,k0; the 1/2 then turnsCj from a fermionic into a
bosonic type energy. We find this convenient because
expressions for the effective potential of the Wilson line a
written most naturally in terms of contributions from gluon
which are bosons.

As the background gauge field is diagonal in color, at o
loop order the color trace is trivial:

S 15(
j 51

N

Sj52(
j 51

N

log@ i ]”2 im jg0#. ~6!

We compute theSj in two different ways, first by using
the m j ’s and second by using theCj ’s. The first is careful
and certainly correct, but awkward. The trace inSj involves
an integral over the loop momentum,Km5(k0,kW ), where at
TÞ0, k05(2l 11)pT for integral l 561,63 . . . . Per-
forming the sum overl by contour integration,

Sj52bV2T3E d3k

~2p!3
$ log@11e2(k2m j )/T#

1 log@11e2(k1m j )/T#%; ~7!

V is the volume of space, sobV is the volume of space-time
To do the integration over spatial momentum, we use z
function regularization; this was used atTÞ0 by Actor
@12,13# and by Weldon@14#. Expanding the logarithm and
integrating overkW gives

Sj52bV
4T4

p2 (
m51

`

~21!m11
1

m4
coshS mm j

T D . ~8!

In each cosh function we expand as a power series, in
change the order of the two series, and so obtain a sum
h functions,
05600
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Sj52bV
4T4

p2 (
n50

`
1

~2n!! S m j

T D 2n

h~422n!, ~9!

where theh function is defined as

h~s!5(
i 51

`

~21! i 11
1

i s
5~12212s!z~s!, Re~s!.1.

~10!

Zeta function regularization is used to define the sum o
negatives. Then a wonderful simplication enters:h(22m)
50 for any integralm, so only three terms contribute toSj ,

Sj52bV
4T4

p2 H h~4!1
h~2!

2 S m j

T D 2

1
h~0!

4! S m j

T D 4J .

~11!

For eachm j , this expression is periodic inqj modulo 1 over
the intervalP(21/2,1/2). Using the explicit values of theh
function,

S 152bVH 7p2

180
NT41

T2

6 (
j 51

N

m j
21

1

12p2 (
j 51

N

m j
4J .

~12!

The real part ofS 1 agrees with Actor@12#; he neglected the
imaginary part.

The second way to computeS 1 is to start with the known
result for the potential at zero chemical potential, as funct
of the qj , and then substitute theCj ’s for the qj ’s:

S 152bV
4

3
p2T4(

j 51

N S B4~Cj !2
1

30D . ~13!

HereB4(x) is the Bernoulli function,

B4~x!5x2@12x sgn~x!#2. ~14!

For real values ofx, B4(x) is defined to be a function ofx
modulo 1. We analytically continue to complex values ox
in the simplest possible way, requiring that the real part ox
be defined modulo 1, and that the sign function be that
the real part:

x[Re@x#mod 11Im@x#, sgn~x![sgn~Re@x# !. ~15!

With these definitions,

B4~Cj !5F1

4
1S m j

2pTD 2G2

, ~16!

and it is easy to see that Eqs.~12! and~13! agree. Notice that
we added a constant to the potential in Eq.~14! so that one
obtains the usual free energy forqj50.

While the first derivation was cumbersome, it has the v
tue that it is really no different atmÞ0 than that atm50; all
we need in Eq.~9! is theh(s) function for negative values o
s. In contrast, with the second derivation it is necessary
analytically continue the Bernoulli functionB4(x) to com-
7-2



e
o
o

a
d
o

ve
s

oo
l,
-

p
ra
he

d
te

n
s
ra

r, a
to

en-
the

rst
ase

the

l-
of

on
the

sfor-

re-

um
t
pec-
with
in-

will
tly

rent
er-
ber
ted

t

-

mi

De-
he
all

er-

use
y-

POTENTIAL FOR THE PHASE OF THE WILSON LINE . . . PHYSICAL REVIEW D 61 056007
plex values ofx. Both Eqs.~12! and ~13! are analytic con-
tinuations of the same function, Eq.~7!, so this continuation
is unique.

Once we are certain about how to analytically continu
Bernoulli function, it is then immediate to continue on to tw
loop order. We simply start with the known result for the tw
loop potential atqjÞ0, m50 @4,7#, and substitute theCj ’s
for the qj ’s, to obtain

S 252bV
g2

4
T4F (

j Þk51

N

B2~Cjk!@B2~Cj !1B2~Ck!#

2B2~Cj !B2~Ck!1
N21

N (
j 51

N S 1

3
2B2~Cj ! DB2~Cj !

2
4

3 (
j ,k51

N

@B3~Cj !2B3~Ck!#B1~Cjk!1
5

144
~N221!G ,

~17!

where we introduce the variable

Cjk5Cj2Ck ~18!

and the Bernoulli functions

B1~x!5x2
1

2
sgn~x!, B2~x!5x22x sgn~x!1

1

6
,

B3~x!5x32
3

2
x2 sgn~x!1

1

2
x. ~19!

The B1 , B2 and B3 are also Bernoulli functions; up to
numerical constant, they are the third, second and first
rivatives of B4, respectively. We analytically continue t
complexx as before, using the definitions of Eqs.~15!. We
only needB1(x) for real values ofx; in this case, it obeys
B1(2x)52B1(x). When qj50, Eq. ~17! reduces to the
;g2 free energy form,TÞ0 @15#.

It is useful to understand where the terms in Eq.~17! arise
from. At two loop order, quarks contribute to the effecti
potential from a single diagram in which a gluon crosse
quark loop. The first term in Eq.~17!, involving B2(Cjk),
represents the case in which the two quark lines in the l
carry differentCj ; then the exchanged gluon is off diagona
andCjk5Cj2Ck enters.~Notice that the quark chemical po
tential drops out ofCjk .) In contrast, the terms in Eq.~17!
involving B2(Cj ) arise when both quark lines in the loo
have the sameCj , so that the exchanged gluon is neut
with respect to the background field. This is true for t
gluon in Feynman gauge.

The origin of the terms;B1 andB3 in Eq. ~17! is due to
two sources. The first is the longitudinal, and so gauge
pendent, part of the gluon propagator, which contribu
when the phase of the Wilson line is nonzero.

The second source was noted by Belyaev@5#: what is
physically relevant is not the effective potential for consta
A0, but that for the phase of the Wilson line. This is mo
efficiently computed using a constrained functional integ
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approach, as discussed by Korthals Altes@7#. The effective
potentials coincide at one loop order, but at two loop orde
finite renormalization of the Wilson line must be taken in
account. This introduces againB1 andB3 : B3, for example,
is the derivative of the one loop potential. The gauge dep
dence from this source cancels precisely against that of
longitudinal part of the gluon propagator.

We draw two conclusions from our results. Consider fi
the limit of zero temperature. The parameters for the ph
of the Wilson line, theqj , enter into them j;qjT, Eq. ~4!.
From the effective potential in terms of them j ’s, Eq. ~12!, at
one loop order the effective potential only depends upon
qj through terms which are at leastquadraticin the tempera-
ture, ;( jm j

3;( jqj
2m2T2 @terms linear inT cancel because

( jqj50, Eq. ~2!#. This remains true at two loop order, a
though it is less obvious for a potential written in terms
the Cj ’s, Eq. ~17!, than in terms of them j ’s.

That the effective potential for the phase of the Wils
line is flat at zero temperature is reasonable. A phase for
Wilson line is parametrized by a constantA0 field; at non-
zero temperature this cannot be undone by a gauge tran
mation, because it alters the boundary conditions atTÞ0. At
zero temperature, however, the gauge transformation
quired to undo a constantA0 field is at infinite time and so
inconsequential.

We stress that our result implies that only thephaseof the
Wilson line is independent ofm at T50. For a theory with
dynamical quarks, the Wilson line has a nonzero vacu
expectation value atm5T50. If the quarks have a small bu
nonzero mass, this mass will ensure that the vacuum ex
tation value of the phase vanishes, since that is the state
even parity. At zero temperature, as the quark density
creases, the vacuum expectation value of the Wilson line
change as well, as the effects of baryon, or equivalen
quark, loops enter. We presume that atT50, the vacuum
expectation value of the Wilson line increases asm does; this
change can only be computed by techniques rather diffe
from those herein. What we can show is that nothing int
esting happens with the phase of the Wilson line. Remem
that atTÞ0 andm50, there are metastable states associa
with the phase of the Wilson line@8#. Our results show tha
there is nothing analogous whenT50 andmÞ0.

Our second conclusion is whenTÞ0, any point at which
a qj561/2 is special. From the definition ofm j , Eq. ~4!, for
such aqj the energyk0 changes from an odd multiple ofpT
~plus the chemical potential!, into an even multiple. The cor
responding part of the free energy,Sj , is then that of a free
boson atm,TÞ0. Thus wheneverqj561/2, the quarks
‘‘Bose condense’’: the true ground state is not a filled Fer
sea, as for any other value ofqj , but a state in which there is
a macroscopic density of states with zero momentum.
pending upon theqj ’s, several colors may condense at t
same time. For two colors, for example, one can have
colors Bose condense at the same point. Whenqj561/2, the
two loop terms in the effective potential are just some p
turbative corrections.

This does not violate the spin-statistics theorem, beca
a system withqjÞ0 does not satisfy standard thermod
7-3
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namic properties. For example, from Eq.~7!, the statistical
distribution function isn(k)51/$exp@(k2mj)/T#11%; when
qj561/2, m j5m1 ipT, and n(k) is minus the statistical
distribution function for bosons. Because of behavior such
this, some authors have argued thatqjÞ0 is an artifact of the
imaginary time approach@9#. We do not think so~see, e.g.,
Holland and Wiese, and Bronoff and Korthals Altes@3#!, but
do not presume to have assuaged the doubts of others.

While we have only computed at one and two loop ord
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we believe that our two principal results — that the poten
is flat for mÞ0 andT50, and that there is ‘‘Bose conden
sation’’ for qj561/2 — are true order by order in the loo
expansion. In particular, in going from one to two loop ord
there is no sign that the effective potential develops any
gularity asT→0.

The work of R.D.P. is supported in part by DOE gra
DE-AC02-98CH10886.
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