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Potential for the phase of the Wilson line at nonzero quark density
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The contribution of quarks to the effective potential for the phase of the Wilson line is computed at nonzero
temperature and quark chemical potential to one and two loop order. At zero temperature, regardless of the
value of the quark chemical potential, the effective potential for the phase of the Wilson line vanishes. At
nonzero temperature, for special values of the phase the free energy of quarks equals that of bosons; at nonzero
chemical potential, such quarks can “Bose condense,” albeit with negative density.

PACS numbes): 11.10.Wx, 11.15.Kc

At nonzero temperatur§ U(N) gauge theories in the ab- deconfined phase, we can take a constant background value
sence of dynamical fermions have a deconfining phase trarfer the time-like component of the gauge potentfg,[2—9].
sition related to the spontaneous breaking of a gla{i) After a global color rotation, this can be chosen to be a
symmetry[1]. The order parameter for this transition is the diagonal matrix
Wilson line: its vacuum expectation value vanishes in the

confined, low temperature phase, and is nonzero in the de- q O 0

confined, high temperature phase. Because of the global ! N

Z(N) symmetry, in the deconfined phase thereMmquiva- 27T| 0 02 ... O

lent vacua, with the phase of the Wilson line equal to one of AO:T o o0 -~ ol ]Zl q=0. (2

the N'" roots of unity[2—5]. The interface tension between
theseN vacua is computable semiclassicdlé~9], by com-
puting the effective potential for the phase of the Wilson
line. This interface tension is measurable from numericalThe sum of they; must vanish so tha, is anSU(N), and
simulations on the latticgl0]. In the presence of dynamical not aU(N), matrix. For example, consid&(N) degenerate
quarks in the fundamental representation, the Wilson linezacua[6] in the pure glue theory. In the trivial vacuum the
acquires a vacuum expectation value at all temperatures, ampthase of the Wilson line vanisheQ,=1, so allg;=0. The

the vacuum is unique, with zero phase for the Wilson line.equivalent vacuum in which the Wilson line is the firgt"
Nevertheless, depending upon the number of colors angbot of unity, ) =exp(27i/N)1, is given byq;=---qn_1
quark flavors, metastable states in which the phase of the q/N, andgy=—(N—1)qg/N.

Wilson line is nonzero can arig&], and may be of physical At zero temperature, a constaky field can be eliminated
interest(although this is controversigf]). by a global gauge transformation. At nonzero temperature,
The effective potential for the phase of the Wilson line for the classical action is independent/y, but this degeneracy
an SU(N) gauge theory has been computed at fifleand s lifted by quantum effects, as the required gauge transfor-
two [4-7] loop order at a nonzero temperatulie,Here we  mation alters the boundary conditions for the fields in imagi-
extend this result to a nonzero quark chemical potential, nary time. Consequently, at one loop order and beyond, a

0O 0 ... oy

[11]. potential forAy, or more properly for the phase of the Wil-
The Wilson line is son line, is generated at nonzero temperature. In terms of
partition functions[3], this potential is generated because
Q(f)zPexp( ingAo(i, T)d7_>, (1) one is summing over states which differ by a global gauge
0 transformation.

We compute the quark contribution to the effective action
where P denotes path ordering, is the temperatureg the  for a single, massless flavor. At one loop order, this is just
gauge coupling constant, and the imaginary timé— 8  the free energy in the presence of a backgrodpdield:
=1/T. To represent a nonzero phase of the Wilson line in the

St=—Trlogi[D®— wy,]; (3
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the effects of a Fermi sea for quarks by introducing a chemi-

cal potential for baryon numbeg,. §= 2
In the following it helps to introduce two types of vari-

ables related tqu and theq;. One set of variables ard

color-dependent “chemical potentials”:

\2n
%) wa-2m), O

2n)'

where the» function is defined as

p=premtan J=L.. N @ =2 (- )'“ -=(1-2"9((s), Res)>1
i=1
Notice that theg; act like an imaginary chemical potential (10
for color [3]. Since theu; are complex, the effective action

Zeta function regularization is used to define the sum over
negatives. Then a wonderful simplication enterg(—2m)
=0 for any integraim, so only three terms contribute &),

is as well.
Alternately, we also use the variabl€s:

mpo 1 1

Ci=e— 4 —=qi+=+=——, j=1,...N. (5 474 7(2) (pi\* 7(0) i\
ITomT T2 4T 2 o ! © $j=—3v?[77(4)+7?‘ T

The w; are useful in comparing to the limit in which# 0 (13)

andAo—0; theC; are handy in the limit thafo#0 andu eachy; , this expression is periodic iy modulo 1 over

—0. The 1/2 in the definition o€; arises as follows. In the the mtervale( 1/2,1/2). Using the explicit values of the
|mag|nary time formalism at nonzero temperature, bosom(funchon

energiek’ are even multiples ofrT, while fermionic ener-

gies are odd multiples. In diagramszZC; enters like an 2 1 N
energy,k®; the 1/2 then turnC; from a fermlonlc into a Sl=—BV{—NT4+— 2 ,U~ 2 wh
bosonic type energy. We find thls convenient because our 180 . 127'r2 =
expressions for the effective potential of the Wilson line are (12)

written most naturally in terms of contributions from gluons,
which are bosons.

As the background gauge field is diagonal in color, at on
loop order the color trace is trivial:

The real part ofS? agrees with Actof12]; he neglected the
dmaginary part.

The second way to compu! is to start with the known
result for the potential at zero chemical potential, as function
of theq;, and then substitute thg;’s for the g;’s

=z

N
=2, §=- 2 loglio=iu;¥ol. 6)

< 4 " 1
81=—,6’V§772T42 B4(C)— 35/ (13)
We compute theS; in two different ways, first by using =
the uj's and second by using th€;’s. The first is careful HereB,(x) is the Bernoulli function,
and certainly correct, but awkward. The traceSininvolves

an integral over the loop momenturd*= (k° k), where at B4(X)=x’[1—xsgr(x)]. (14

T#0, ko=(21+1)#T for integral I=x1,=3 ... . Per- i i i

forming the sum ovel by contour integration, For real values ok, B,(x) is defined to be a function of
modulo 1. We analytically continue to complex valuesxof

43K in the simplest possible way, requiring that the real pant of
S= _,3V2-|-3j {log[ 1+e~ (k=#)/T] be defined modulo 1, and that the sign function be that for
(2m)3 the real part:

+log[ 1+e~ (krm)TTy; (7) X=Rg X]moq 1+ IM[X], sgnx)=sgnRegx]). (15

V is the volume of space, $8V is the volume of space-time. With these definitions,
To do the integration over spatial momentum, we use zeta
function regularization; this was used @0 by Actor
[12,13 and by Weldon[14]. Expanding the logarithm and

integrating ovelk gives

B4(Cj)=

2712
Hi
LT

and it is easy to see that Eq42) and(13) agree. Notice that
4 o we added a constant to the potential in Ety) so that one
4T 1 mu : _
- —BV— E (- 1)m+1—cosr( l) (8)  obtains the usual free energy fqf=0. . .
T While the first derivation was cumbersome, it has the vir-
tue that it is really no different a& # 0 than that aj.=0; all
In each cosh function we expand as a power series, intewe need in Eq(9) is the z(s) function for negative values of
change the order of the two series, and so obtain a sum over In contrast, with the second derivation it is necessary to
7z functions, analytically continue the Bernoulli functioB,(x) to com-
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plex values ofx. Both Egs.(12) and (13) are analytic con-
tinuations of the same function, E), so this continuation
is unique.
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approach, as discussed by Korthals Alfgs The effective
potentials coincide at one loop order, but at two loop order, a
finite renormalization of the Wilson line must be taken into

Once we are certain about how to analytically continue aaccount. This introduces agaBy andB;: Bs, for example,
Bernoulli fUnCtion, it is then immediate to continue on to two is the derivative of the one |00p potentiaL The gauge depen-
loop order. We simply start with the known result for the two dence from this source cancels precisely against that of the

loop potential aty;#0, w=0 [4,7], and substitute th€;’s
for the g;’s, to obtain

2 N
S=- BV T 3 BalCiulBa(C))+ Bo(Cy)]

N

N—-1 1
~Bo(C)By(Co+ —— 2 (5—82<cj))82<cj>

4 XN 5
3,2, [Bs(C)~Ba(COIBLCi + 173(N*~1) |,
17
where we introduce the variable
Cjk:Cj_Ck (18)
and the Bernoulli functions
1 1
B(X)=x— 5Sgrx), By(X)=x*=xsgrx)+ ¢,
3 1
Ba(x)=x>— Exz sgr(x) + >X (19

longitudinal part of the gluon propagator.

We draw two conclusions from our results. Consider first
the limit of zero temperature. The parameters for the phase
of the Wilson line, theg;, enter into theu;~q;T, Eq. (4).
From the effective potential in terms of thg's, Eq. (12), at
one loop order the effective potential only depends upon the
g; through terms which are at leagiadraticin the tempera-
ture, ~ 3 u’~ ;g7 u?T? [terms linear inT cancel because
2;9;=0, Eq.(2)]. This remains true at two loop order, al-
though it is less obvious for a potential written in terms of
the Cy’s, Eq. (17), than in terms of the;’s.

That the effective potential for the phase of the Wilson
line is flat at zero temperature is reasonable. A phase for the
Wilson line is parametrized by a constafy field; at non-
zero temperature this cannot be undone by a gauge transfor-
mation, because it alters the boundary conditiors-a0. At
zero temperature, however, the gauge transformation re-
quired to undo a constar, field is at infinite time and so
inconsequential.

We stress that our result implies that only giteaseof the
Wilson line is independent gft at T=0. For a theory with
dynamical quarks, the Wilson line has a nonzero vacuum
expectation value gt =T=0. If the quarks have a small but
nonzero mass, this mass will ensure that the vacuum expec-
tation value of the phase vanishes, since that is the state with

The B;, B, and B; are also Bernoulli functions; up to a even parity. At zero temperature, as the quark density in-
numerical constant, they are the third, second and first decreases, the vacuum expectation value of the Wilson line will
rivatives of B,, respectively. We analytically continue to change as well, as the effects of baryon, or equivalently

complexx as before, using the definitions of Eq45). We
only needB;(x) for real values ofx; in this case, it obeys
B1(—x)=—Bi(x). When g;=0, Eq. (17) reduces to the
~g? free energy foru, T+#0 [15].

It is useful to understand where the terms in Bdg) arise

quark, loops enter. We presume thatTat 0, the vacuum
expectation value of the Wilson line increaseswadoes; this
change can only be computed by techniques rather different
from those herein. What we can show is that nothing inter-
esting happens with the phase of the Wilson line. Remember

from. At two loop order, quarks contribute to the effective that atT#0 andu =0, there are metastable states associated
potential from a single diagram in which a gluon crosses avith the phase of the Wilson ling8]. Our results show that

quark loop. The first term in Eq(17), involving B,(Cjy),

there is nothing analogous whén=0 andu# 0.

represents the case in which the two quark lines in the loop Our second conclusion is whéin=0, any point at which
carry differentC; ; then the exchanged gluon is off diagonal, aq;= *1/2 is special. From the definition of; , Eq. (4), for

andCj = C;— Cy enters(Notice that the quark chemical po-

tential drops out ofCj,.) In contrast, the terms in E¢17)

such ag; the energyk® changes from an odd multiple efT
(plus the chemical potentiglinto an even multiple. The cor-

involving B,(C;) arise when both quark lines in the loop responding part of the free energy, is then that of a free
have the sam&;, so that the exchanged gluon is neutralboson atu,T#0. Thus whenever;=*+1/2, the quarks
with respect to the background field. This is true for the“Bose condense”: the true ground state is not a filled Fermi

gluon in Feynman gauge.
The origin of the terms-B; andBg3 in Eq. (17) is due to

sea, as for any other value gf, but a state in which there is
a macroscopic density of states with zero momentum. De-

two sources. The first is the longitudinal, and so gauge depending upon they;’s, several colors may condense at the
pendent, part of the gluon propagator, which contributesame time. For two colors, for example, one can have all

when the phase of the Wilson line is nonzero.
The second source was noted by Belyd8y. what is

colors Bose condense at the same point. Wien+ 1/2, the
two loop terms in the effective potential are just some per-

physically relevant is not the effective potential for constantturbative corrections.

Ao, but that for the phase of the Wilson line. This is most

This does not violate the spin-statistics theorem, because

efficiently computed using a constrained functional integrala system withg;#0 does not satisfy standard thermody-
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namic properties. For example, from E{), the statistical
distribution function isn(k) = 1{exd (k—uw;)/T]+1}; when
qj=*1/2, uj=p+iwT, andn(k) is minusthe statistical

PHYSICAL REVIEW D61 056007

we believe that our two principal results — that the potential
is flat for u#0 andT=0, and that there is “Bose conden-
sation” for gj= +1/2 — are true order by order in the loop

distribution function for bosons. Because of behavior such agxpansion. In particular, in going from one to two loop order,

this, some authors have argued that 0 is an artifact of the
imaginary time approacf®]. We do not think sdsee, e.g.,
Holland and Wiese, and Bronoff and Korthals Alf&3), but

do not presume to have assuaged the doubts of others.

there is no sign that the effective potential develops any sin-
gularity asT—0.
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