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Analytic continuation by duality estimation of the S parameter
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We investigate the reliability of the analytic continuation by duality~ACD! technique in estimating the
electroweakSparameter for technicolor theories. The ACD technique, which is an application of finite energy
sum rules, relates theS parameter for theories with unknown particle spectra to known OPE coefficients. We
identify the sources of error inherent in the technique and evaluate them for several toy models to see if they
can be controlled. The evaluation of errors is done analytically and all relevant formulas are provided in
appendixes including analytical formulas for approximating the function 1/s with a polynomial ins. The use of
analytical formulas protects us from introducing additional errors due to numerical integration. We find that it
is very difficult to control the errors even when the momentum dependence of the OPE coefficients is known
exactly. In realistic cases in which the momentum dependence of the OPE coefficients is only known pertur-
batively, it is impossible to obtain a reliable estimate.

PACS number~s!: 11.55.Hx, 11.55.Fv, 12.15.Lk, 12.60.Nz
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I. INTRODUCTION

The standardSU(2)L3U(1)Y gauge theory of elec
troweak interactions@1# has been very successful in explai
ing particle phenomenology at currently available accelera
energies. However, the mechanism of electroweak symm
breaking ~i.e., the Higgs sector! is yet to be understood
Though many theories have been proposed as to what
mechanism is, they cannot be tested directly by acceler
experiments for several more years, at least not until the s
of physics at the CERN Large Hadron Collider~LHC!. In the
meantime, the Higgs sector must be probed indirectly
using precision electroweak measurements.

In recent years, precision electroweak measurements
reached the level of accuracy which enables us to disc
between various Higgs sector theories from the differenc
the size of radiative corrections@2#. In Ref. @3#, it is shown
that under a small set of assumptions, vacuum polariza
~oblique! corrections from the Higgs sector and/or any n
physics beyond the standard model~SM! can be expressed i
terms of just three parameters calledS, T, and U. These
parameters are linear combinations of electroweak vacu
polarization functions and are defined in such a way thaS
represents the ‘‘size’’ of the Higgs sector, whileT and U
quantify the breaking of custodial symmetry@4#. The depen-
dence of various observables onS, T, andU can be calcu-
lated using the star formalism of Kennedy and Lynn@5# and
fitting the resulting expressions to the experimental data p
vides limits on the three parameters which can be compa
directly with theory.

*Permanent address: Department of Physics, Prirod
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Republika Srpska, Bosnia and Hercegovina.
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Unfortunately, calculating the theoretical values ofS, T,
andU for strongly interacting theories such as technicolor
not an easy task. One popular approach used by many
thors @6# has been to use the low energy effective chi
Lagrangian to calculate the size of radiative corrections
to the Goldstone and pseudo Goldstone degrees of freed1

The drawback of this approach is that the contribution of
heavier degrees of freedom cannot be determined and m
be included as undeterminable phenomenological coe
cients of the orderO(p4) terms in the chiral Lagrangian@7#.

Another method, used to calculate theT parameter@8#, is
the Jackiw-Johnson sum rule@9# which expresses the tech
nipion decay constants as an integral involving the techni
mion dynamical mass. This sum rule can be calculated in
approximation dubbed ‘‘dynamical perturbation theory’’ b
Pagels and Stokar@10# and is known to give the correct orde
of magnitude estimate of the pion decay constant in QC
Unfortunately, since theT parameter is thedifferenceof the
charged and neutral technipion decay constants, the relia
ity of the estimate forT using this method is highly suspec
Since we shall be concerned mainly with theS parameter in
this paper, we will not dwell on this problem any further.

In Ref. @3#, theSparameter for technicolor was calculate
by expressingS as a dispersion integral and using resca
QCD spectral functions in the integrand. The rescaling
different numbers of technicolors,NTC, and technidoublets
ND , was performed using large-N arguments@11# and the
result can be summarized as

S'0.1NDNTC. ~1.1!

~Note the proportionality ofS to ND and NTC: thus, the

o-

1Of the references cited in@6#, Johnson, Young, and McKay als
include the effect of techni-vector mesons coupled via vector me
dominance.
©2000 The American Physical Society06-1
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‘‘size’’ of the Higgs sector.! However, this estimate ofS is
reliable only if the technicolor theory is dynamically simila
to QCD. This condition does not hold in more realistic tec
nicolor theories where one has very little idea as to what
spectral functions should look like.2

The analytic continuation by duality3 ~ACD! technique
developed in Ref.@12# has been suggested in Ref.@13# as a
way of computing theS parameter in theories that diffe
from QCD. The ACD technique consists of using the ana
ticity of the vacuum polarization functions to convert th
dispersion integral forS, which is an integral along the reals
axis, into an integral around a large circle in the comples
plane. The value of the integrand is then estimated byana-
lytically continuing the operator product expansion~OPE!
@14# from the deep Euclidean region. In Ref.@13#, the appli-
cation of the ACD technique to QCD-like technicolor repr
duced Eq.~1.1!, while for walking technicolor theories@15#
it suggested the possibility thatS could be negative.

However, other estimations ofS for walking technicolor,
such as that of Ref.@16# which used the Bethe-Salpeter equ
tion approach, suggest thatS is positive even for walking
technicolor theories. Furthermore, the mathematical foun
tions of the ACD technique have been questioned in R
@17#.

In this paper, we investigate the reliability of the AC
estimate ofS. Our plan is as follows: In Sec. II, we firs
review the definition of theSparameter. In Secs. III and IV
we review the two methods used in the literature to estim
S, namely, the dispersion relation approach and the A
technique. In Sec. V, we discuss some puzzles pertainin
the ACD estimate ofS, and in Sec. VI, we identify the
sources of error inherent to the ACD technique. Section
is the main portion of the paper in which we apply the AC
technique to several toy models to see if it can reproduce
exact value ofS. Section VIII concludes. A portion of this
work has been presented previously in Ref.@18#. In this pa-
per, we extend and improve upon, and also correct an e4

in, the analysis reported therein.

II. DEFINITION OF S

We denote byPXY the gmn part of the vacuum polariza
tion tensor between two currentsJX

m andJY
n :

igmnPXY~s!1~qmqnterm!5E d4x eiq•x^JX
m ~x!JY

n ~0!&,

s5q2.

The S parameter is defined in Ref.@3# as

2QCD-like technicolor theories suffer from the FCNC~flavor
changing neutral current! problem. Theories that were devised
avoid this problem~e.g. walking technicolor! are supposed to hav
dynamics that are distinct from QCD. Just how distinct they ac
ally are is still unclear.

3The ‘‘duality’’ here refers to ‘‘quark-hadron duality.’’
4See Sec. VII C 2 and footnote 8.
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S524p@PVV8 ~0!2PAA8 ~0!#

where the subscriptsV and A denote the neutral isospin-
vector and axial-vector currents, respectively, and the pr
denotes a derivative with respect tos. The contribution of a
fermion doubletC5(U,D) to JV

m andJA
m is given by

JV
m 5C̄gm

t3

2
C,

JA
m 5C̄gmg5

t3

2
C,

wheret3 is the third Pauli matrix. For latter convenience, w
define the functionsFV(s) andFA(s) as

PVV~s![sFV~s!,

PAA~s![PAA~0!1sFA~s!,

and the following shorthand notation for the differences b
tween the vector and axial-vector functions:

P~s![PVV~s!2PAA~s!,

F~s![FV~s!2FA~s!.

Then,

S524p@FV~0!2FA~0!#524pF~0!.

Note that our notation is slightly different from either Re
@3# or Ref. @13#, so care is necessary when comparing f
mulas.

For weakly interacting theories,Scan be calculated using
ordinary perturbation theory. However, for strongly intera
ing theories such as technicolor, perturbation theory can
be used and some other non-perturbative technique mus
utilized. In the next sections, we will look at two differen
methods that have been used in the literature to estimaS
for technicolor theories.

III. DISPERSION RELATION FOR THE S PARAMETER

In this section, we will discuss how one can calculateS
using a dispersion relation.

The functionF(s)5FV(s)2FA(s) is analytic in the en-
tire complexs plane except for a branch cut along the po
tive real s axis starting from the lowest particle thresho
contributing toF(s). Therefore,

F~ t !5
1

2p i RC
ds

F~s!

s2t

5
1

pEs0

R

ds
Im F~s!

s2t2 i e
1

1

2p i Rusu5R
ds

F~s!

s2t
, ~3.1!

where C denotes the integration contour shown in Fig.
@19#. We have used the Schwartz principle of reflection,

F~s* !5F* ~s!,

-

6-2
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in expressing the contribution from the part ofC which
pinches the real axis as an integral involving only the ima
nary part ofF(s). In the limit t→0 we obtain

F~0!5
1

pEs0

Rds

s
Im F~s!1

1

2p i Rusu5R

ds

s
F~s!.

It is possible to show thatF(s);1/s as s→` ~using the
OPE we will be discussing later! so that the integral aroun
the circle atusu5R vanishes asR→`. Therefore,

S524pF~0!524E
s0

`ds

s
Im F~s!

524E
s0

`ds

s
@ Im FV~s!2Im FA~s!#. ~3.2!

Note that in going from the first line to the second, we us
only the analyticity ofF(s). No approximation of any sort is
involved. Therefore, if the function ImF(s) were known ex-
actly, we can calculateF(0) and, hence, the value ofS ex-
actly.

Of course, one usually does not know the exact form
the spectral function ImF(s). In the case of QCD-like tech
nicolor, it can be guessed from the QCD spectral functio
with the help of the Weinberg sum rules@20#

1

pE0

`

ds Im FTC~s!52 f TC
2 ,

E
0

`

ds sIm FTC~s!50, ~3.3!

where f TC'250 GeV is the technipion decay constant.
Another point one must consider when applying the d

persion relation, Eq.~3.2!, to technicolor ~TC! is that
Im FTC(s)→21/48p ass→0 due to exactly massless tech
Goldstone boson states and we encounter an IR diverge
However, sinceS is supposed to be the contribution ofnew
physics, we must subtract from ImFTC(s) the contribution
of the SM Higgs sector that technicolor replaces. The ex
Goldstone contribution is common to TC theories and

FIG. 1. The contourC which avoids the branch cut along th
real s axis.
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SM, so the IR divergence cancels exactly. Therefore, in
case of technicolor theories, we must calculate

STC524E
s0

`ds

s
@ Im FTC~s!2Im FSM~s!#, ~3.4!

where

Im FSM~s!52
1

48p F12S 12
mH

2

s D 3

u~s2mH
2 !G .

The lower limit of integrations0 must be chosen to be below
the point where the two spectral functions ImFTC(s) and
Im FSM(s) start to deviate from each other.

In Ref. @3#, Eq. ~3.4! was used to estimate the value
STC. First, ImFV(s) for QCD was extracted from theI 51
part of the s(e1e2→hadrons) data, while ImFA(s) for
QCD was extracted from theC51 part of theG(t2→nt
1hadrons) data. The Weinberg sum rules, Eqs.~3.3!, were
used to fix ImFA(s) aboves5mt

2 where data are unavail
able. These functions were then parametrized as superp
tions of Breit-Wigner resonances,5 whose masses and width
were rescaled according to the leading large-N approxima-
tion @11# to obtain their technicolor counterparts. The resu
ing form of ImFTC(s) was substituted into Eq.~3.4!, from
which one obtained

S'0.1NDNTC. ~3.5!

IV. ACD TECHNIQUE

In the previous section, the analyticity ofF(s) was ex-
ploited to expressF(0) as a contour integral, Eq.~3.1!, and
the radius of the contour was taken to infinity to make t
contribution of the circle aroundusu5R vanish. The result
was an integral expression forS which only involved the
imaginary part ofF(s) along the real positives axis, i.e. the
dispersion relation, Eq.~3.2!.

The ACD technique also exploits Eq.~3.1!, but instead of
making the integral aroundusu5R vanish, the integral along
the reals axis is made to vanish as follows: Let

pN~s!5 (
n50

N

an~N!sn

denote polynomials of orderN in s where the coefficients
an(N) are chosen so that asN→` the polynomialpN(s)
converges uniformly onto 1/s in the interval@s0 ,R#; i.e. for
anye.0, there exists an integerNe such that ifN.Ne , then

U1s 2pN~s!U,e, ;sP@s0 ,R#.

Since the productpN(s)F(s) is regular inside the contourC
shown in Fig. 1, we find

5The Gounaris-Sakurai form@21# was used for ther.
6-3
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IGNJATOVIĆ, WIJEWARDHANA, AND TAKEUCHI PHYSICAL REVIEW D 61 056006
05
1

2p i RC
ds pN~s!F~s!

5
1

pEs0

R

ds pN~s!Im F~s!1
1

2p i Rusu5R
ds pN~s!F~s!.

~4.1!

Subtracting Eq.~4.1! from Eq. ~3.1!, we obtain

F~0!5
1

pEs0

R

dsF1

s
2pN~s!G Im F~s!

1
1

2p i Rusu5R
dsF1

s
2pN~s!GF~s!. ~4.2!

If N.Ne , then the absolute value of the first term can
bounded from above by

U E
s0

R

dsF1

s
2pN~s!G Im F~s!U,E

s0

R

dsU1s 2pN~s!UuIm F~s!u

,~R2s0!eM,

where

M5 max
sP[s0 ,R]

uIm F~s!u.

Therefore, for sufficiently largeN, the integral along the rea
s axis can be neglected in Eq.~4.2! and we obtain

F~0!'
1

2p i Rusu5R
dsF1

s
2pN~s!GF~s!. ~4.3!

In the deep Euclidean region2s5Q2@0, the value of
F(s) can be expressed in terms of a large momentum exp
sion

F~s!5 (
m51

`
ĥm

sm
, s52Q2, ~4.4!

where the coefficientsĥm can be gleaned from the OPE o
F(s). Assumingthat Eq.~4.4! is valid all around the circle
usu5R in the complexs plane, then substitution of Eq.~4.4!
into Eq. ~4.3! gives

F~0!'
1

2p i Rusu5R
dsF1

s
2 (

n50

N

an~N!snG (
m51

`
ĥm

sm

52 (
n50

N

ĥn11an~N!.

Therefore,

S524pF~0!'4p (
n50

N

ĥn11an~N![SACD . ~4.5!

This is the ACD technique employed in Ref.@13#.
05600
e
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V. PECULIARITIES OF THE ACD TECHNIQUE

The ACD technique introduced in the previous section
peculiar in several respects.

~1! The relation, Eq.~4.5!, is not an expansion in any
small parameter~as far as we can tell!, so it is unclear
whether the ACD estimateSACD will converge to the correct
value in any limit.

~2! The coefficients of the polynomialan(N) which relate
the OPE coefficientsĥm to SACD depend on the order of th
polynomial N, the choice of fit interval@s0 ,R#, and the fit
routine used to fix them, all of which are arbitrary and n
dictated by anyphysics. It is therefore difficult to understand
what the physics is, if any, behind a relation like Eq.~4.5!.

~3! Because of theN dependence of the coefficien
an(N), the dependence ofSACD on the OPE coefficientsĥm
will change asN is increased. In fact, in the limit thatN goes
to infinity, the coefficientsan(N) diverge:

lim
N→`

an~N!5~21!n`. ~5.1!

This is due to the simple fact that 1/s cannot be Taylor ex-
panded arounds50. This means that asN is increased,SACD
will become sensitive to infinitesimal variations in the OP
coefficients ĥm . Since the OPE coefficientsĥm are only
known as products of perturbatively calculable prefact
and uncalculable vacuum expectation values of operat
any uncertainty in them may be considerably enhanced
SACD .

~4! For QCD/technicolor, the upper limit of the fit interva
R must be chosen to be well above the confinement scaleLc
so that the OPE is applicable at that scale. Then the fit p
nomial will be such thatuan(N)Lc

n11u decreases monotoni

cally asn is increased for fixedN. Sinceĥm;Lc
m , this means

that the OPE coefficientĥm for largerm will have a smaller
contribution toSACD . However, sincean(N) is the coeffi-
cient of sn, better and better accuracy is required for t
an(N)’s with largern for the fit to 1/s to be accurate near th
end points5R. This is a peculiar situation since the term
that contribute less require better precision.

~5! WhetherS is IR divergent or not should be encoded
the OPE coefficientsĥm . However, because the lower lim
of the fit intervals0 cannot be taken to zero,SACD is always
finite and totally blind to any information pertaining to IR
divergences. This is in contrast to the dispersion relation
proach in which the IR divergence was evident in the sp
tral function and the SM subtraction was crucial in getting
finite result.

As a result of these peculiarities, the reliability of th
relation, Eq.~4.5!, is far from clear.

VI. ERRORS INHERENT IN THE ACD TECHNIQUE

In this section, we will take a critical look at the ACD
technique and identify where possible errors will be intr
duced. This will clarify the problems facing the ACD tech
nique and facilitate the discussion of error in the latter s
tions.
6-4
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ACD starts from the relation

S5SN1dSfit~N!

where

SN[2
2

i R
usu5R

dsF1

s
2pN~s!GF~s!,

dSfit~N![24E
s0

R

dsF1

s
2pN~s!G Im F~s!.

For large enoughN, the dSfit term can be neglected and w
can approximateS by SN :

S'SN .

We will call the neglected termdSfit(N) the fit error. It will
depend not only onN, but also on the choice of interva
@s0 ,R#, and the fit routine.

In the next step, we assume that the large momen
expansion ofF(s) is known up toM terms:

F~s!5 (
n51

M
hn~s!

sn
1OS 1

sM11D .

In general, the coefficientshn(s) will depend ons. This ex-
pansion also may not be a convergent series but jus
asymptotic one@22#. Also, such an expansion may not ex
all around the circle atusu5R, or it may not exist at all
depending onF(s). But for the moment, let us assume th
such an expansion exists. Substituting this expansion in
expression forSN , we obtain

SN5SN,M1dStrunc~N,M !

where

SN,M52
2

i R
usu5R

dsF1

s
2pN~s!G (

n51

M
hn~s!

sn

dStrunc~N,M !52
2

i R
usu5R

dsF1

s
2pN~s!GFF~s!

2 (
n51

M
hn~s!

sn G .

Note thatM must be larger thanN in order to suppress th
neglected terms by inverse powers ofR. We call the error
introduced by neglectingdStrunc(N,M ), i.e. theO(1/sM11)
term, thetruncation error. It will depend onN andM and the
radius of the contourR.

Finally, we neglect thes dependence of the coefficien
hm(s) and replace them with their values ats52R where
they are known from the OPE:

hm~s!'hm~2R![ĥm .
05600
m
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This is a rather dangerous approximation to make since
analytic structure ofF(s) will be completely altered. In fact
under this approximation, ImF(s) will only consist of de-
rivatives of the delta function at the origin. We define

SN,M5SACD1dSAC~N,M !,

where

SACD52
2

i R
usu5R

dsF1

s
2pN~s!G (

n51

M
ĥn

sn
,

dSAC~N,M !52
2

i R
usu5R

dsF1

s
2pN~s!G (

n51

M
hn~s!2ĥn

sn
.

Reference@13# argues thatdSAC(N,M ) can be expected to
be highly suppressed and thus negligible since the differe
1/s2pN(s) is approximately zero in the vicinity of the pos
tive real s axis where the differencehn(s)2ĥn can be ex-
pected to be the largest. The expression forSACD can be
simplified to

SACD54p (
n50

min(N,M21)

ĥn11an~N!,

since we only pick up the residues of the single poles.
call the neglected termdSAC(N,M ) when approximating
SN,M with SACD the analytic continuation error.

Therefore, in contrast to the dispersion relation approa
the ACD technique relies on a series of approximations.
summarize, the relation between the exact value ofSand the
ACD estimateSACD can be written as follows:

S5SN1dSfit~N!5SN,M1dStrunc~N,M !1dSfit~N!

5SACD1dSAC~N,M !1dStrunc~N,M !1dSfit~N!.

The three different sources of error are:
~1! The fit errordSfit(N): the error that comes from ne

glecting the contribution of the integral along the reals axis.
It goes to zero in the limitN→`.

~2! The truncation errordStrunc(N,M ): the error that
comes from truncating the large momentum expansion
F(s). If the series is convergent, then it goes to zero asM
→`.

~3! The analytic continuation errordSAC(N,M ): the error
that comes from neglecting the momentum dependenc
the coefficients in the large momentum expansion. It is
clear if it goes to zero in any limit.

In practice, one does not know the numerical values of
ĥm’s exactly either since they are products of perturbativ
calculable prefactors and uncalculable vacuum expecta
values of operators, the latter of which can only be estima
to an order of magnitude. This presents another source
potentially dangerous error as we discussed in Sec. V. H
ever, our limited knowledge of theĥm’s necessary for the
ACD technique is analogous to our limited knowledge of t
spectral function necessary for the dispersion relation
proach and can be considered an independent problem
6-5
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whether the ACD technique is reliable or not. In other wor
we know that the dispersion relation gives the exact value
S if the spectral functions are known exactly. So the ques
that we shall address here is, will the ACD technique giv
reliable estimate forS if the ĥm’s were known exactly?

We will therefore follow the following strategy to estab
lish ~or refute! the reliability of the ACD technique: First, we
will introduce several toy model functions forF(s) such that
the imaginary part along the reals axis ImF(s), the large
momentum expansion coefficientsĥn , and the corresponding
value ofS are known exactly. Then, we will apply both th
dispersion relation and ACD techniques to these model fu
tions and~1! check that the dispersion relation approach
produces the exact result, and~2! calculate the three types o
05600
,
f
n
a

c-
-

error discussed above for the ACD technique to see if t
are under control. By investigating how the behavior of t
errors depends on the characteristics of the toy model fu
tions, we should be able to clarify the strengths and limi
tions of the ACD technique.

VII. COMPARISON OF DISPERSION RELATION
AND ACD APPROACHES FOR MODEL SPECTRA

A. Perturbative 1-loop function

Let us first consider the perturbative 1-loop contributi
to F(s) from a fermion doublet of degenerate mass. In t
case, it is straightforward to calculatePVV(s) andPAA(s).
Using dimensional regularization, they are given by
PVV~s!5
1

4p2E0

1

dx$x~12x!s% logFm22x~12x!s

m2 G ,

PAA~s!5
1

4p2E0

1

dx$x~12x!s2m2% logFm22x~12x!s

m2 G ,

from which we find

Fpert~s!5
1

4p2

m2

s E
0

1

dx logF12x~12x!
s

m2G55
1

4p2

m2

s Fb log
b11

b21
22G , s,0,

1

4p2

m2

s F2ubuarctan
1

ubu
22G , 0,s,4m2,

1

4p2

m2

s FbS log
11b

12b
2 ip D22G , 4m2,s,

~7.1!
of
where

b5A12
4m2

s
.

FIG. 2. The perturbative spectral function.
Hence,

Spert524pFpert~0!5
1

6p
. ~7.2!

1. Dispersion relation: Perturbative spectral function

The imaginary part of the perturbative 1-loop function
Eq. ~7.1! is given by

Im Fpert~s!52
1

4p

m2

s
bu~s24m2!, b5A12

4m2

s
.

~7.3!

Its plot is shown in Fig. 2. Inserting Eq.~7.3! into Eq. ~3.2!,
we find

Spert5
m2

p E
4m2

` ds

s2
A12

4m2

s
5

1

2pE0

1

b2db5
1

6p

which recovers Eq.~7.2! exactly.
6-6
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FIG. 3. The cubic fit for vari-
ous choices of the UV cutoffR.
The IR cutoff is fixed ats0 /m2

54. The ratios3p3(s) is shown
for thePn fit ~solid line!, theTn fit
~dashed line!, and theUn fit ~dot-
dashed line!. The vertical dotted
lines indicate the upper and lowe
limits of the fit interval.
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2. ACD technique: Perturbative spectral function

Let us now use the ACD technique to calculateSpert to see
if 1/6p can be reproduced.

We begin by choosing the integration interval@s0 ,R#.
The choice for the lower limit of the interval is clear. It
s054m2. The upper limitR is arbitrary. We will let it vary
betweenR59m2 andR5100m2. For the fit routine, we will
use the least squares fit (Pn fit!, the minimax fit (Tn fit!, and
the least-first-power fit (Un fit!, and check the routine depen
dence of the results.

Typical results of the fits for various choices of the U
cutoff R using the three fit routines are shown in Fig. 3. T
value of the fit errordSfit(N) was calculated analytically us
ing the formulas in Appendix C and the results are shown
05600
n

Fig. 4. As is evident from Fig. 4, the fit error is well unde
control for the 1-loop perturbative spectral function even
R/m25100. In particular, the least-squares fit shows the fa
est convergence for all cases with excellent agreem
achieved atN53.

This excellent control on the fit error can be understood
due to the spread out and positive definite nature of the
turbative spectral functions. The error from where the po
nomial undershoots 1/s tends to be canceled by the err
from where the polynomial overshoots it. This is in sta
contrast to thed-function model, to be considered in the ne
subsection, where due to the localized nature of the spe
function, the fit error oscillates several times before conve
ing to zero asN is increased.
6-7
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FIG. 4. The dependence of th
fit error on the order of the poly-
nomialN. The IR cutoff is fixed at
s0 /m254 while the UV cutoff
R/m2 is varied. The results are
shown for thePn fit ~solid line!,
the Tn fit ~dashed line!, and the
Un fit ~dot-dashed line!.
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Next, we evaluate the truncation error. The large mom
tum expansion of Eq.~7.1! is given in Appendix B.dStrunc
can be calculated analytically using the formulas of App
dix C. The results are shown in Fig. 5 for the least-squa
fit. We find that the truncation error is also well under co
trol.

Finally, we calculate the analytic continuation error. He
we encounter a disaster. Figure 6 shows the value ofSACD as
a function ofN and we see thatSACD actually diverges: ne-
glecting thes dependence of thehn(s)’s fails miserably as an
approximation. The reason for this can be traced to the
that even though the difference 1/s2pN(s) converges to zero
within its radius of convergence, outside it diverges@cf. Eq.
~5.1!#. The error induced by the neglect of thes dependence
of the hn(s)’s may be suppressed near the reals axis, but it
05600
-

-
s

-

,

ct

is actuallyenhancedaway from it.
What we have found here is that even though the fit a

truncation errors are well under control, the analytic contin
ation error is not.

B. Vector meson dominance I:d-function model

Next, let us consider the following vector meson dom
nance model where the vector and axial-vector channels
each saturated by a single vector meson pole:

FV~s!5 f V
2 1

s2mV
2 1 i e

,

6-8
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FA~s!5 f A
2 1

s2mA
2 1 i e

.

The value ofS in this case is

S524p@FV~0!2FA~0!#54pF f V
2

mV
2

2
f A

2

mA
2 G . ~7.4!

1. Dispersion relation:d-function model

The imaginary parts ofFV(s) andFA(s) are

Im FV~s!52p f V
2d~s2mV

2 !,

Im FA~s!52p f A
2d~s2mA

2 !.

FIG. 5. The dependence of the truncation error on the orde
the polynomialN and the UV cutoffR. The IR cutoff is fixed at
s0 /m254. The results are shown for R/m2

59, 16, 25, 36, 49, 64, 81, and 100, with larger values oR
showing faster convergence. The fit routine used was thePn fit.

FIG. 6. The ACD estimate ofS for the perturbative spectra
function using thePn fit. The IR cutoff is fixed ats0 /m254 while
the UV cutoff was given the values R/m2

59, 16, 25, 36, 49, 64, 81, and 100. Smaller values ofR
showed faster divergence.
05600
Using Eq.~3.2! recovers Eq.~7.4! as follows:

S54pE
0

`ds

s
@ f V

2d~s2mV
2 !2 f A

2d~s2mA
2 !#

54pF f V
2

mV
2

2
f A

2

mA
2 G . ~7.5!

The Weinberg sum rules, Eq.~3.3!, impose the following
conditions on the decay constants and masses:

f V
2 2 f A

2 5 f TC
2 ,

mV
2 f V

2 2mA
2 f A

2 50. ~7.6!

Solving for the decay constants, we obtain

f V
2 5

1

12r
f TC

2 , f A
2 5

r

12r
f TC

2 , r[
mV

2

mA
2

.

Then,

S54p~11r !
f TC

2

mV
2

. ~7.7!

In the leading large-N approximation, we can relate the ne
essary ratios to their QCD counterparts as

f TC
2

mV
2
'

f p
2

mr
2

NDNTC

3
'0.005NDNTC,

r 5
mV

2

mA
2
'

mr
2

ma1

2
'0.4. ~7.8!

Then,

S'0.09NDNTC, ~7.9!

which agrees with Eq.~3.5!.

2. ACD technique:d-function model

We now turn to the ACD technique to see if Eq.~7.7! can
be reproduced. We fix the value of the ratior 5mV

2 /mA
2 to the

large-N valuer 50.4. The integration interval@s0 ,R# is cho-
sen to include both resonances. We take various comb
tions of s0 /mV

2 50.5,0.25,0.125 andR/mV
2 54,8,16. For the

fit routine, we again consider the least squares fit (Pn fit!, the
least-first-power fit (Un fit!, and the minimax fit (Tn fit!.

The large momentum expansion for this model is ve
simple:

F~s!5 (
n50

` f V
2mV

2n2 f A
2mA

2n

sn11
5

f TC
2

s
1 (

n52

` f TC
2 mV

2n

sn11
X2n~r !,

where

of
6-9
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FIG. 7. The cubic polynomial
fit to 1/s for various combinations
of s0 /mV

250.5,0.25,0.125 and
R/mV

254,8,16. The product s
3p3(s) is shown for the least-
squares fit~solid line!, the least-
first-power fit ~dot-dashed line!,
and the minimax fit~dashed line!.
The positions of thed-function
resonances are shown with arrow
on thes axis. The vertical dotted
lines show the upper and lowe
limits of the fit interval.
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Xn~r ![S 12r 12n/2

12r D . ~7.10!

This series is obviously convergent fors.mA
2 .

Note that the coefficients of this expansion carry nos
dependence. Therefore, the analytic continuation error
the truncation error~for M.N) are both automatically zero
and the fit error will be the sole source of error.

The fit error is easy to calculate. Since the imaginary p
of F(s) is just twod functions,dSfit is given by

dSfit54pE
s0

R

dsF1

s
2pN~s!G@ f V

2d~s2mV
2 !2 f A

2d~s2mA
2 !#

54p f V
2F 1

mV
2

2pN~mV
2 !G24p f A

2F 1

mA
2

2pN~mA
2 !G .

In Fig. 7 we show the quality of cubic polynomial fits fo
various combination of the IR and UV cutoffs for the thr
fit routines mentioned above. As is evident from this figu
the quality of the fit degrades quickly as the fit interval
increased. It is also highly routine dependent. The dep
dence of the ratiodSfit /Sexact for various choices of the in
terval @s0 ,R#, the order of the polynomialN, and the fit
routine is shown in Fig. 8.

Notice that in contrast to the perturbative spectral funct
case discussed in the previous subsection, the fit error o
lates several times before converging to zero. This can
understood as follows: In the present case under cons
ation, ImF(s) is a superposition ofd functions. If a node of
1/s2pN(s) coincides with the position of ad function, then
the contribution to the fit error from thatd function is zero.
As the order of the fit polynomial is increased, the nodes
05600
d

rt

,

n-

n
il-
e

er-

f

1/s2pN(s) will move through thed functions, leading to the
oscillatory behavior ofdSfit seen here.

When the fit interval@s0 ,R# is small, the convergence i
good for all three fit routines and the fit error is well und
control. However, choosing a small fit interval requires pr
knowledge of where the relevant structure of the spec
function is localized. Without this knowledge, we have
guideline as to how the fit interval should be chosen, an
we take it to be too large, the oscillations can persist bey
N510 as can be seen from Fig. 8 and it will be difficult
tell whether convergence has been reached.

C. Vector meson dominance II: Breit-Wigner model

We have seen from the previous subsection that when
ACD technique is applied to a highly localized spectral fun
tion, the fit error is difficult to control. On the other hand, fo
a smooth, slowly varying spectral function, it was the an
lytic continuation error which was problematic. In this se
tion, we consider a function which can interpolate betwe
the two extreme cases to see whether a balance ca
achieved where bothdSfit anddSAC are under control.

The model function we consider here has a Breit-Wign
type imaginary part on the reals axis and the correct analy
ticity in the complexs plane:

FV~s!5 f V
2 1

s2mV
2 1 iAsGV

,

FA~s!5 f A
2 1

s2mA
2 1 iAsGA

.

In the limit GV ,GA→10, these functions reduce to the pr
vious d-function model. In the other limit whereGV andGA
6-10
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FIG. 8. The dependence of th
fit error on the order of the fit
polynomial N. Results for the
least-squares fit~solid line!, the
least-first-power fit ~dot-dashed
line!, and the minimax fit~dashed
line! are shown.
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are of the same order asmV and mA , we obtain a smooth
function reminiscent of the perturbative case. This is sho
in Fig. 9.

The expression forS in terms of the vector meson mass
and decay constant is the same as thed function case:

S524p@FV~0!2FA~0!#54pF f V
2

mV
2

2
f A

2

mA
2 G . ~7.11!

1. Dispersion relation: Breit-Wigner model

The imaginary parts are now given by

Im FV~s!52 f V
2

AsGV

~s2mV
2 !21sGV

2
u~s!,

Im FA~s!52 f A
2

AsGA

~s2mA
2 !21sGA

2
u~s!.

~7.12!

It is straightforward to check that

f 2E
0

`ds

s

AsG

~s2m2!21sG2
5

f 2

m2E0

`

dx
j

~x221!21x2j2

5p
f 2

m2
,

where

x5
As

m
, j5

G

m
, ~7.13!
05600
n
from which we can and see that Eq.~7.11! is recovered in
Eq. ~3.2!.

The constraint from the first Weinberg sum rule is giv
by

f V
2 2 f A

2 5 f TC
2 , ~7.14!

as before. The integral for the second Weinberg sum r
does not converge. However, if we recall that the seco
Weinberg sum rule is related to the non-appearance o
dimension 4 operator in the OPE ofF(2Q2), we can impose
the conditions

FIG. 9. The spectral functions for the Breit-Wigner model. T
ratio j[GV /mV5GA /mA is varied fromj50.1 to j51.0 at 0.1
intervals with smaller values ofj corresponding to more prominen
peaks. The arrows indicate the positions of the techni-r and techni-
a1 peaks.
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f V
2mV

2 2 f A
2mA

2 50,

f V
2GV

2 2 f A
2GA

2 50, ~7.15!

which has the desired effect of making the coefficient
1/Q4 vanish and make the large momentum expansion of
toy model mimic that of QCD. Since Eqs.~7.14! and ~7.15!
are the same as Eq.~7.6! with the extra condition

mV
2

mA
2

5
GV

2

GA
2

5r or
GV

mV
5

GA

mA
[j,

the estimate ofS remains unchanged from Eq.~7.9!.
Note that the value ofS is independent of the ratioj

[GV /mV5GA /mA . However, the shape of the spectr
function ImF(s) is not. In Fig. 9, we show the shape of th
spectral function for various choices ofj. For the ND
51,NTC53 case, the value ofj using the large-N relation is

j5
GV

mV
'

Gr

mr
'0.2.

2. ACD technique: Breit-Wigner model

The large momentum expansion of our model function
given by

f 2
1

s2m21 i jmAs

5
f 2

s (
n50

`

Un~j/2!S 2 i
m

As
D n

5
f 2

s (
n50

`
~21!nm2n

sn FU2n~j/2!2 i
m

As
U2n11~j/2!G

5
f 2

s
1

f 2

s (
n50

`
~21!nm2n

sn FU2n~j/2!

1 i
As

m
U2n21~j/2!G ,

whereUn(cosu)5sin(n11)u/sinu are the Chebyshev poly
nomials of the second kind.6 In the limit j→10, we find
U2n(0)5(21)n and U2n21(0)50 and all the half-integer
power terms vanish. Note that there is an ambiguity in tre
ing the half-integer power terms since we can consider it a
coefficient of either the next higher integer power term w
a As behavior or the next lower integer power term with
1/As behavior.

Imposing the conditions of Eqs.~7.14! and~7.15!, we find

6The Chebyshev polynomials of the second kindUn(x) are the
same thing as the Gegenbauer polynomialsCn

n(x) with n51. See
Appendix A 3 and Ref.@24#.
05600
f
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F~s!5
f TC

2

s (
n50

`
~21!nmV

2n

sn FX2n~r !U2n~j/2!

2 i
mV

As
X2n11~r !U2n11~j/2!G

5
f TC

2

s F12 i
mV

As
X1~r !U1~j/2!G

1
f TC

2

s (
n52

`
~21!nmV

2n

sn FX2n~r !U2n~j/2!

1 i
As

mV
X2n21~r !U2n21~j/2!G ~7.16!

whereXn(r ) is defined as in Eq.~7.10!:

Xn~r ![
12r 12n/2

12r
.

In order to make the 1/s2 term vanish completely, we hav
associated the 1/s3/2 term with the 1/s term and the 1/sn11/2

term with the 1/sn11 term for n>2.7

We have a slight problem with the choice of fit interv
since our model function has a branch cut which begins
s50 but the IR cutoffs0 must be kept non-zero. In order t
circumvent this problem, we divide the dispersion relati
integral ofS into two pieces:

S5SIR~s0!1SUV~s0!

where

SIR~s0!524E
0

s0ds

s
Im F~s!

SUV~s0!524E
s0

`ds

s
Im F~s!.

The IR piece of the dispersion integral,SIR(s0), is then cal-
culated using the exact form of the spectral function given
Eq. ~7.12!, while the ACD technique is applied only to th
UV pieceSUV(s0).

The evaluation ofSUV(s0) amounts to replacing the func
tion u(s) in the spectral function withu(s2s0) so that the
branch cut is shifted to start froms0. The coefficients of the
large momentum expansion in Eq.~7.16! must be adjusted
accordingly:

7If we associate all the 1/sn11/2 terms with the 1/sn terms so that
all the coefficientshn(s) have a 1/As behavior, then it is possible to
prove that the value ofSACD ~without any IR subtraction! in the
resulting model converges to the correct value ofSwhenj is small
even though the truncation and analytical continuation errors b
diverge. Such conspiration between the two errors is not comm
and we consider this to be a pathological case.
6-12
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hm~s!→hm~s!2dhm

where

dhm52
1

pE0

s0
ds sm Im F~s!.

In our previous paper@18#, we used an approximate form o
the spectral function to calculateSIR and the shifts in the
large momentum expansion coefficientsdhm . However, we
have discovered that this approximation introduced yet
other source of error into our analysis and that our result
Ref. @18# were in fact totally unreliable.8 In this paper, we
used the exact forms of the spectral functions to calcu
both SIR and thedhm’s analytically using the formulas in
Appendix D.

This partial use of the dispersion relation and the use
the exact spectral functions in the infrared do not go aga
ACD philosophy since, in actual technicolor models, on
the Goldstone and pseudo Goldstone bosons are dynam
at low energy and their contribution to the spectral functio
can be calculated using standard chiral Lagrangian te
niques.

In the following, we present our ACD evaluation ofSUV

with s0 /mV
2 50.2, andR/mV

2 55. The fit routine used will be
the least-squares fit (Pn-fit!. We will assumer 5mV

2 /mA
2

5GV
2 /GA

2 50.4, and let the ratioj[GV /mV5GA /mA vary.
In Fig. 10, we show theN dependence of the fit error

Different lines correspond to different values of the ratioj
5GV /mV5GA /mA which was varied fromj50.1 to j
51.0 in 0.1 intervals. As was expected, the fit error co
verges faster for larger values ofj which correspond to spec

8We also discovered a bug in our program which resulted in g
ing a 1/As dependence to the coefficientshm(s), contrary to what
was reported in Ref.@18#.

FIG. 10. TheN dependence of the fit error for the Breit-Wign
model. The ratioj[GV /mV5GA /mA is varied fromj50.1 to j
51.0 at 0.1 intervals. Larger values ofj show faster convergence
05600
-
in

te

f
st

cal
s
h-

-

tral functions which are more spread out. For the QCD-l
j50.2 case, one needsN>4 for the fit error to be within
10%.

In Fig. 11, we show theM dependence of the truncatio
error for fixed values ofN with j50.2. As expected, the
truncation error converges rapidly for each fixed value ofN.
However, an unexpected result is that if one looks at theN
dependence of the truncation error for theM5N11 case, it
diverges. This means that increasing the order of the poly
mial does not necessarily decrease the truncation e
Rather, one must keep the order of the polynomial fixed a
increase the number of terms retained in the large mom
tum expansion. This result is independent of the value
choose forj as can be seen in Fig. 12.

Finally, the N dependence of the analytic continuatio
error is shown in Fig. 13. The analytic continuation error f

-

FIG. 11. TheM dependence of the truncation error for the Bre
Wigner model withj50.2. The points connected by solid lines a
the errors for the same order of the polynomialN. The dotted line
connects the points whereM5N11.

FIG. 12. The N dependence of the truncation erro
dStrunc(N,N11) for the Breit-Wigner model. The ratioj
[GV /mV5GA /mA is varied fromj50.1 toj51.0 at 0.1 intervals.
There is no discernible pattern relating the behavior of the erro
the value ofj.
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smaller values ofj shows slower divergence as expected,
still diverges eventually. A closeup of Fig. 13 is shown
Fig. 14. Even for the smallest value ofj we considered,
namely j50.1, the analytic continuation error quickly d
verges beyond control above and includingN55.

The result of this subsection is discouraging. By comp
ing Figs. 10 and 14, it is evident that there is no intermed
value ofj for which both the fit error and analytic continu
ation error are under control. Furthermore, we have disc
ered that in order to control the truncation error, contrary
expectation, we must increase the number of terms reta
in the large momentum expansionM without increasing the
order of the polynomialN.

D. Shifman model

In the d-function and Breit-Wigner models considered
the previous subsections, both the vector and axial-ve
spectral functions were each saturated by a single me
pole. In this and the following subsection, we will look
models in which an infinite ladder of poles contribute to ea
channel. The models differ from each other in the spacing
the poles.

The model we consider in this subsection was introdu
by Shifman in Ref.@22#. Using the di-gamma functionc(z)
given by

c~z!5
d

dz
ln G~z!5

G8~z!

G~z!
52g E2 (

n50

` S 1

z1n
2

1

11nD ,

where2c(1)5g E is Euler’s constant, we define

FV~s!5 f V
2

c~12s/mV
2 !2c~1!

s
5 (

k51

` f V
2

k

1

s2kmV
2

,

FA~s!5 f A
2

c~12s/mA
2 !2c~1!

s
5 (

k51

` f A
2

k

1

s2kmA
2

.

FIG. 13. TheN dependence of the analytic continuation error
the Breit-Wigner model. The ratioj[GV /mV5GA /mA is varied
from j50.1 to j51.0 at 0.1 intervals. Smaller values ofj show
slower divergence.
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These functions can be interpreted as infinite sums over
1 meson poles of massesAkmV,A and decay constant
f V,A /Ak wherek is an integer.

The value ofS in this case is

S54pc8~1!F f V
2

mV
2

2
f A

2

mA
2 G , c8~1!5z~2!5

p2

6
.

~7.17!

1. Dispersion relation: Shifman model

The imaginary parts ofFV(s) andFA(s) are

Im FV~s!52p f V
2 (

k51

`
1

k
d~s2kmV

2 !,

Im FA~s!52p f A
2 (

k51

`
1

k
d~s2kmA

2 !.

Using Eq.~3.2!, we recover Eq.~7.17!:

S54pF f V
2

mV
2

2
f A

2

mA
2 G (k51

`
1

k2
54pz~2!F f V

2

mV
2

2
f A

2

mA
2 G .

The first and second Weinberg sum rules cannot be
posed on this model because both integrals diverge exce
the trivial limit f V5 f A andmV5mA in which caseS50. We
will nevertheless impose the condition

mV
2 f V

2 2mA
2 f A

2 50 ~7.18!

which has the effect of making the 1/s2 term in the OPE of
F(s) vanish as required by chiral symmetry. We emphas
here that this model is a toy model which is not motivated
any particular field theory. The condition imposed here
simply to make our model as a mock-up of QCD. We a
denote

FIG. 14. Closeup of Fig. 13. The ratioj[GV /mV5GA /mA is
varied fromj50.1 to j51.0 at 0.1 intervals. Smaller values ofj
show slower divergence.
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f V
2 2 f A

2 5 f
*
2 .

Then,

f V
2 5

1

12r
f
*
2 , f A

2 5
r

12r
f
*
2 , r 5

mV
2

mA
2

,

and

S54pz~2!~11r !
f
*
2

mV
2

.

There is no simple way to relatef * to f TC since the coeffi-
cient of 1/s in the large momentum expansion of this mod
diverges logarithmically for boths→0 ands→`.

2. ACD technique: Shifman model

The large momentum expansion ofF(s) can be obtained
using the following asymptotic form of the di-gamma fun
tion c(z):

c~z!; ln~z21!1
1

2~z21!
1 (

n51

M
~21!nBn

2n

1

~z21!2n
,

~7.19!

whereBn are the Bernoulli numbers. Note that, unlike t
previous cases, this is not a convergent series but
asymptotic one. In particular, the coefficients of the exp
sion increase liken!. Recalling thatc(1)52gE , we find

FV~s!; f V
2FgE1 ln~2s/mV

2 !

s
2

mV
2

2s2
1 (

n51

M
~21!nBn

2n

mV
4n

s2n11G ,

FA~s!; f A
2FgE1 ln~2s/mA

2 !

s
2

mA
2

2s2
1 (

n51

M
~21!nBn

2n

mA
4n

s2n11G ,

and

FIG. 15. TheN dependence of the fit error for the Shifma
model.
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l
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-

F~s!5
~ f V

2 2 f A
2 !gE1@ f V

2 ln~2s/mV
2 !2 f A

2 ln~2s/mA
2 !#

s

1 (
n51

M
~21!nBn

2n

f V
2mV

4n2 f A
2mA

4n

s2n11

5
f
*
2 @g~R,mV ,mA!1 ln~2s/R!#

s

1 (
n51

M f
*
2 mV

4n

s2n11 F ~21!nBn

2n
X4n~r !G ,

where

g~R,mV ,mA!5gE1
1

2
ln

R

mV
2

1
1

2
ln

R

mA
2

2
1

2 S mA
2 1mV

2

mA
2 2mV

2 D ln
mV

2

mA
2

.

In this case, onlyh1 is s dependent, and the 1/s2 term has
vanished due to Eq.~7.18!, leaving only the odd power
terms.

For the fit interval, we choses0 /mV
2 50.2 and R/mV

2

56.5. This placed 6 vector resonances and 2 axial-ve
resonances within the fit interval. The fit routine was t
least-squares fit, andr 5mV

2 /mA
2 50.4. The results are show

in Figs. 15–17. The fit and analytical continuation erro
show the standard expected behavior: the fit error conve
while the analytical continuation error diverges.

The truncation error shown is calculated forM5N11.
Since only the first coefficienth1 has anys dependence,
including more thanM5N11 terms in the large momentum

FIG. 16. TheN dependence of the truncation error for the Sh
man model.
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expansion has no effect on the truncation error. The even
divergence of the truncation error is as expected since
large momentum expansion of the Shifman model
asymptotic and not convergent as was the case with the
vious models. However, it does stay within the;1% range
up to aboutN511.

E. Cotangent model

An infinite ladder of resonances does not necessarily l
to an asymptotic expansion. Using the following converg
expansion of the cotangent function,

p

2z
cotpz2

1

2z2
5 (

n51

`
1

z22n2
,

we define

FV~s!5
f V

2

mV
2 FpmV

2As
cotS pAs

mV
D 2

mV
2

2s G5 f V
2 (

k51

`
1

s2~kmV!2
,

FA~s!5
f A

2

mA
2 FpmA

2As
cotS pAs

mA
D 2

mA
2

2s G5 f A
2 (

k51

`
1

s2~kmA!2
.

~7.20!

The vector meson poles are located atkmV,A , (k
51,2,3, . . . ), with decay constantsf V,A .

The expression forS in terms of the decay constants an
masses is given by

S54pz~2!F f V
2

mV
2

2
f A

2

mA
2 G , z~2!5

p2

6
. ~7.21!

FIG. 17. TheN dependence of the analytic continuation error
the Shifman model.
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1. Dispersion relation: Cotangent model

The imaginary parts ofFV(s) andFA(s) are

Im FV~s!52p f V
2 (

k51

`

d„s2~kmV!2
…,

Im FA~s!52p f A
2 (

k51

`

d„s2~kmA!2
….

Using Eq.~3.2!, we recover Eq.~7.21!:

S54pF f V
2

mV
2

2
f A

2

mA
2 G (k51

`
1

k2
54pz~2!F f V

2

mV
2

2
f A

2

mA
2 G .

Again, the Weinberg sum rules cannot be imposed. T
time, instead of Eq.~7.18!, we impose the condition

f V
2

mV
2

f A
2

mA
50, ~7.22!

which has the effect of making the coefficient of the 1/As
term vanish in the limit2s5Q2→`. Again, we emphasize
that our toy model is not motivated by any field theory a
this condition is just to make it mimic QCD. Note that i
contrast to all the previous models, imposing Eq.~7.22! will
make f V

2 smaller than f A
2 since we naturally assumemV

,mA . Therefore, we define

f V
2 2 f A

2 522 f
*
2 .

Then,

f V
2 5

2Ar

12Ar
f
*
2 , f A

2 5
2

12Ar
f
*
2 , r 5

mV
2

mA
2

,

and

S58pz~2!Ar
f
*
2

mV
2

.

If we identify f
*
2 with f TC

2 , set r 50.4, and use the large-N
relation Eq.~7.8!, we find

S'0.13NDNTC.

2. ACD technique: Cotangent model

The large momentum expansion of our model function
trivial since the defining equation, Eq.~7.20!, is already in
the desired form. Imposing Eq.~7.22!, we find

F~s!5
f
*
2

s F pAs

~mA2mV! H cotS pAs

mV
D 2cotS pAs

mA
D J 11G .

~7.23!

Note that this relation is exact. It does not involve any a
proximation. Since
6-16
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lim
z→ i`

cot~z!52 lim
2 iz→`

coth~2 iz!521,

Eq. ~7.23! has a particularly simple form in the deep Eucli
ean region2s5Q2@0 where

F~2Q2!;2
f
*
2

Q2
. ~7.24!

Therefore, the cotangent model is a rather unusual cas
which the large momentum expansion has only one term
a result, there is no truncation error.

The fit interval used wass0 /mV
2 50.2 andR/mV

2 55. This
choice places 2 vector resonances and 1 axial-vector r
nance within the fit interval. The fit routine was the lea
squares fit. We usedr 5mV

2 /mA
2 50.4. The results are show

in Figs. 18 and 19. Here, one does not encounter any
prises. The fit error converges while the analytic continuat
error diverges. However, one must go up toN56 for the fit
error to be within 10%.

FIG. 18. TheN dependence of the fit error for the Cotange
model.

FIG. 19. TheN dependence of the analytic continuation error
the Cotangent model.
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VIII. SUMMARY AND CONCLUSIONS

In this paper, we have investigated in detail the validity
the analytic continuation by duality method in predicting t
electroweakS parameter in technicolor models. We fir
identified the sources of error inherent in the ACD techniq
They were:

~i! the fit errordSfit(N),
~ii ! the truncation errordStrunc(N,M ), and
~iii ! the analytic continuation errordSAC(N,M ).
We then applied the ACD method to some toy mod

with spectral functions and large momentum expansi
which mimic those of QCD and technicolor. In these t
models, the spectral functions, the coefficients of the la
momentum expansion, and the actual value of S were
known exactly. Using this information, the dependence
the three errors on the order of the fit polynomialN and on
the order of truncation of the large momentum expansionM
was evaluated analytically for each model.

Based on these investigations, we conclude that the a
lytical continuation error is out of our control. This is no
surprising given the rather crude approximation involve
The situation can be improved somewhat by including ths
dependence of the large momentum expansion coefficie
However, even if thiss dependence were known exactly,
does not guarantee the convergence of the truncation e
In applications to actual field theoretical models, the mom
tum dependence of the OPE coefficients can only be ca
lated perturbatively, giving rise to an additional source
error. In fact, the error coming from the uncertainty in t
OPE coefficients may be completely uncontrollable giv
that the coefficients of the fit polynomialan(N) diverge in
the limit N→`. A further complication results from the fac
that the OPE is only an asymptotic series. Therefore goin
higher orders may not improve the accuracy of the estim
The fit error can be reduced by using a higher order fit po
nomial. Yet we find that how fast it will converge depen
greatly on the structure of the spectral function which is u
known.

We therefore conclude that the ACD technique can
yield a reliable answer when used in the computation ofS in
theories such as walking technicolor where we neither hav
good understanding of the particle spectrum nor do we kn
the OPE coefficients except approximately. Even for QC
like technicolor theories, the fact that ACD reproduced t
dispersion relation result should be considered a mere c
cidence.

In retrospect, it is not surprising that the ACD metho
fails to yield a reliable estimate ofS given that it is the 1/s
moment of the spectral function while the OPE coefficie
are all moments of order higher than 1. Mathematically,
different moments of any function are independent of o
another and one cannot calculate one from a small subs
others.
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APPENDIX A: FITTING ROUTINES

In this appendix, we present the formulas for fitting
polynomial ins,

pN~s!5 (
n51

N

ansn,

to 1/s in the intervalsP@s0 ,R#. A simple change of vari-
ables,

x52ps1q, p5
2

R2s0
, q5

R1s0

R2s0
,

converts the problem to that of fitting a polynomial inx,

p̃N~x!5 (
k51

N

bkx
k,

to the function

f ~x!5
1

x2q
, q.1,

in the intervalxP@21,1#. Once thex coefficientsbk’s are
obtained, thes coefficientsan’s can be determined from th
relation

(
n50

N

ansn52p(
k50

N

bk~2ps1q!k.

Explicitly, the expression foran is given by

an5 (
k5n

N S k

nD ~2p!n11qk2nbk , ~A1!

where

S k

nD 5
k!

n! ~k2n!!
.

In fitting p̃N(x) to f (x), the x coefficientsbk’s are deter-
mined so that somenorm9 of the difference function

d~x!5 f ~x!2 p̃N~x!

on @21,1# is minimized.

9A norm of a function f (x), which we will denotei f i , is a func-
tional of f (x) which satisfies the following properties:~1! i f i>0
with equality if and only iff (x)[0. ~2! il f i5ului f i for any scalar
l. ~3! i f 1gi<i f i1igi .
05600
.
-

It should be noted that the norm is not unique. Differe
fit routines correspond to different choices for the norm.
the following, we will look at several popular norms~i.e. fit
routines! for determining thebk’s. They are all special case
of Lp norms which are defined by

idi[F E
a

b

ud~x!upw~x!dxG1/p

,

wherew(x) is some weight function.

1. Least squares fit

Perhaps the most popular of all fit routines is the le
squares fit which minimizes theL2 norm:

idi5F E
a

b

d~x!2w~x!dxG1/2

.

The popularity of this routine is due to the ease with which
can be applied.

The unweighted least squares fit@w(x)51# to a continu-
ous functionf (x) in the interval@21,1# can be obtained by
expandingf (x) in Legendre polynomials:

Pn~x!5
~21!n

2nn!

dn

dxn
@~12x2!n#.

The explicit forms of the first few Legendre polynomials a
given by

P0~x!51

P1~x!5x

P2~x!5
1

2
~3x221!

P3~x!5
1

2
~5x221!

P4~x!5
1

8
~35x4230x213!

A

and the subsequent ones can be obtained using the recu
relation

Pn~x!5
2n21

n
xPn21~x!2

n21

n
Pn22~x!. ~A2!

Since the Legendre polynomials are orthonormal o
@21,1#,

E
21

1

Pn~x!Pm~x!dx5
2

2n11
dmn ,

we can expand any ‘‘well-behaved’’ function into a Fourie
Legendre series:
6-18
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f ~x!5 (
n50

`
2n11

2
cnPn~x!,

where

cn5E
21

1

f ~j!Pn~j!dj. ~A3!

The series is truncated afterN11 terms and the obtaine
polynomial is our approximation tof (x):

(
n50

N
2n11

2
cnPn~x!5 p̃N~x!5 (

k50

N

bkx
k.

Therefore, the problem is reduced to finding thecn’s and
converting the Fourier-Legendre series into a power seri

The expansion coefficients, Eq.~A3!, for the function

f ~x!5
1

x2q
, q.1,

can be found by the so-called Neumann’s formula@24#

Qn~q!5
1

2E21

1 Pn~ t !

q2t
dt52

cn

2
,

where

Qn~q!5
1

2
Pn~q!ln

q11

q21

2 (
j 50

Fn21
2 G

2n24 j 21

~2 j 11!~n2 j !
Pn22 j 21~q!

is the Legendre function of the second kind. By conventi
P21(q)50. Therefore,

p̃N~x!52 (
n50

N

~2n11!Qn~q!Pn~x!.

The explicit forms for the first fewQn(q)’s can be found, for
instance, in Ref.@25#. However, the easiest way to calcula
the Qn(q)’s is to use the following recursion relations:

Q0~q!5
1

2
ln

q11

q21
5

1

2
ln

R

s0
,

Q1~q!5qQ0~q!21,

Qn~q!5
2n21

n
qQn21~q!

2
n21

n
Qn22~q!, n>2.

For the more general weighted case, the integral
05600
.

,

I 5idi25E
s0

RS 1

s
2 (

n50

N

ansnD 2

w~s!ds

is minimized by choosing the coefficientsan so that they
satisfy the conditions

dI

dai
50, i 50,1, . . . ,N.

This leads to the system of linear equations

(
j 50

N

Mi j aj5v i , i 50,1, . . . ,N,

where

Mi j 5E
s0

R

si 1 jw~s!ds, v i5E
s0

R

si 21w~s!ds.

Therefore, the problem is reduced to that of inverting t
matrix M5(Mi j ).

2. Minimax fit

The minimax approximation, also called the best unifo
approximation,minimizes the maximal distance maxud(x)u
between the polynomialp̃N(x) and the functionf (x) on the
interval @a,b#. That is, it minimizes the norm

idi5 max
xP[a,b]

ud~x!u.

~This corresponds to theL` norm though it is not obvious a
first sight. See Ref.@28#.!

The minimax fit to the function

f ~x!5
1

x2q
, q.1,

on the interval@21,1# is given by~@23#, exercise 1.20, p. 45!

p̃N~x!5 (
k50

N

bkx
k5

22t

t221
1

4t

t221
(
n50

N21

tnTn~x!

2
4tN11

~ t221!2
TN~x!,

where

Tn~cosu![cosnu

are the Chebyshev polynomials10 and

10An alternative definition of Chebyshev polynomials is given

Tn~x![
~21!n

~2n21!!!
A12x2

dn

dxn
@~12x2!n21/2#.
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t5q2Aq221.

The x coefficientsbk’s are most easily obtained using th
explicit forms for the Chebyshev polynomials:

T0~x!51

T1~x!5x

T2~x!52x221

T3~x!54x323x

T4~x!58x428x211

A

Subsequent Chebyshev polynomials can be obtained f
the recursion relation

Tn11~x!52xTn~x!2Tn21~x!. ~A4!

According to the Chebyshev theorem@23#, @theorem 1.7,
p. 26# the difference functiond(x) reaches its extreme value
at N12 points: at the ends of the interval~at s0 andR) and
at N points in between. Once we have found the polynom
pN(s) we can easily find the maximal distance

dmax5ud~s0!u5
1

s0
2pN~s0!.

This distance may be used to find an upper bound of
integral containingd(s), e.g.

U E d~s!g~s!dsU<E ud~s!uug~s!uds,dmaxE ug~s!uds.

3. Least-first-power fit

The least-first-power fit minimizes theL1 norm:

idi5E
a

b

ud~x!uw~x!dx.

The unweighted least-first-power fit@w(x)[1# is of particu-
lar interest as it minimizes the area enclosed by the gra
f (x) andpN(x) for xP@a,b#. We have concentrated on th
‘‘minimal area’’ fit.

The minimal area fit for a functionf (x) can be obtained
with relative ease if the functionf (x) is such that the differ-
enced(x)5 f (x)2 p̃N(x) has at mostN11 distinct zeros in

@21,1# for any p̃N(x). In this case, the polynomialp̃N(x)
which minimizes the unweightedL1 norm in the interval
@21,1# can be shown to satisfy~@23#, corollary 3.4.1, p. 73!

p̃N~xj !5 f ~xj !, j 51, . . . ,N11, ~A5!

where

xj[cos
j p

N12
.
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For the function

f ~x!5
1

x2q
,

the polynomial which satisfies this condition is given by

p̃N~x!5 (
n50

N

cnUn~x!,

where

Un~cosu![
sin~n11!u

sinu

are the Chebychev polynomials of the second kind11 and

cn522
UN2n~q!

UN11~q!
.

Explicitly, the Un(x)’s are given by

U0~x!51

U1~x!52x

U2~x!54x221

U3~x!58x324x

U4~x!516x4212x211

A

and subsequent ones can be obtained from the recursio
lation

Un~x!52xUn21~x!2Un22~x!,

which is the same as Eq.~A4!.
To show thatp̃N(x), with the cn’s given above, does in-

deed satisfy the condition

(
n50

N

cnUn~xj !5
1

xj2q
, j 51, . . . ,N11, ~A6!

we start with the relationship

UN2n~q!5UN11~q!Tn11~q!2Un~q!TN12~q!,

which follows trivially from trigonometric identities. From
this, we find

11An alternative definition is

Un~x![
~21!n~n11!

~2n11!!!

1

A12x2

dn

dxn
@~12x2!n1 1/2#.
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2(
n50

N

UN2n~q!Un~x!52UN11~q! (
n50

N

Tn11~q!Un~x!

22TN12~q! (
n50

N

Un~q!Un~x!.

~A7!

The sums on the right-hand side of Eq.~A7! are obtained
from specializations of the Christoffel-Darboux formula
Chebyshev polynomials in literature on special functio
~e.g. in @27#!. After some rearrangements on the right-ha
side,

2(
n50

N

UN2n~q!Un~x!5
UN11~x!2UN11~q!

x2q
. ~A8!

Since

UN11~xj !50, j 51, . . . ,N11,

the formula~A8! yields

2
2

UN11~q! (
n50

N

UN2n~q!Un~xj !5
1

xj2q
,

j 51, . . . ,N11,

which proves Eq.~A6! with the cn’s given above.

4. Comparison of the fit routines

The Legendre polynomials, used in the unweighted le
squares fit, are orthonormal on@21,1# with the weight 1. On
the other hand, the orthonormality relations for the Che
shev polynomials are

~i! first kind ~minimax fit!

E
21

1 1

A12x2
Tm~x!Tn~x!dx5

p

2
~dmn1dm0dn0!,

~ii ! second kind~least-first-power fit!

E
21

1
A12x2Um~x!Un~x!dx5

p

2
dmn .

If we use the relations

Tn~cosu!5cosnu, Un~cosu!5
sin~n11!u

sinu
,

we note that the above orthonormality relations are sim
those of trigonometric functions.

Clearly, if we take the unweighted least squares fit
‘‘unbiased,’’ the minimax fit is ‘‘weighted’’ towards the
ends of the interval while the~unweighted! least-first-power
fit tends to be better in the middle of the interval.
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APPENDIX B: FORMULAS FOR CALCULATING THE
EXPANSION COEFFICIENTS FOR THE PERTURBATIVE

SPECTRAL FUNCTION

In this appendix, we present the formulas for calculati
the expansion coefficients for the perturbative spectral fu
tion.

Let us write the perturbative model function as

Fpert~s!52
x

4p2 S 22b ln
b11

b21D
52

x

4p2 F21A124xln~2x!

22A124xln
A124x11

2 G ,
where

x[
m2

s
, b5A124x.

The factorA124x can be expanded into a Taylor-McLaur
series for smallx ~i.e. for larges) using the Newton binomia
formula

A124x5 (
n50

` S 1

2

n
D ~24!nxn[ (

n50

`

gnxn

where

S 1

2

0
D 51,

S 1

2

n
D 5

1

2 S 1

2
21D •••S 1

2
2n11D

n!

5
~21!n21~2n23!!!

2nn!
~n>1!.

@We use the convention (21)!! 51.# Therefore, we find the
following recursion relation forgn :

g051, gn5
2~2n23!

n
gn21 ~n>1!.

Similarly,

f ~x![
A124x11

2
511 (

n51

`
gn

2
xn[11 (

n51

`

f nxn

so that the function ln$f(x)% can be expanded into a Taylo
McLaurin series using the formula@26#
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IGNJATOVIĆ, WIJEWARDHANA, AND TAKEUCHI PHYSICAL REVIEW D 61 056006
ln$ f ~x!%5 (
m51

`

l mxm,

where

mlm5m fm2 (
k51

m21

~m2k! f kl m2k .

Therefore,

A124xln
A124x11

2
5F (

n50

`

gnxnGF (
m51

`

l mxmG[(
i 50

`

hix
i ,

where

hi5(
j 50

i 21

gj l i 2 j .

We can of course use symbolic calculation programs s
asMATHEMATICA or MAPLE V to obtain the expansion coe
ficients explicitly. The first 10 terms of the expansion a
given by

24p2Fpert~s!5xH 2 lnS 2
1

xD12J 1x2H 2 lnS 2
1

xD12J
1x3H 2 lnS 2

1

xD21J 1x4H 4 lnS 2
1

xD
2

10

3 J 1x5H 10 lnS 2
1

xD2
59

6 J
1x6H 28 lnS 2

1

xD2
449

15 J 1x7H 84 lnS 2
1

xD
2

1417

15 J 1x8H 264 lnS 2
1

xD2
32254

105 J
1x9H 858 lnS 2

1

xD2
429697

420 J
1x10H 2860 lnS 2

1

xD2
437705

126 J 1•••.

APPENDIX C: FORMULAS FOR CALCULATING THE
ERRORS FOR THE PERTURBATIVE SPECTRAL

FUNCTION

The fit error for the perturbative spectral function

Im Fpert~s!52
1

4p

m2

s
bu~s24m2!, b5A12

4m2

s
,

can be calculated analytically as follows:
05600
h

dSfit5
m2

p E
4m2

R

dsF1

s
2 (

n50

N

an~N!snG b

s

5
1

2pE0

bR
db b2F12 (

n50

N

an~N!sn11G
5

1

2p FbR
3

3
2 (

n50

N

an~N!I nG ,

where

bR[A12
4m2

R
,

and the integrals

I n[E
0

bR
db b2sn115~4m2!n11E

0

bR
db

b2

~12b2!n11

[~4m2!n11Jn

can be calculated using the recursion relation

J05
1

2
lnS 11bR

12bR
D2bR

Jn5S 2n23

2n D Jn211
1

2n

bR
3

~12bR
2 !n

~n>1!.

The analytic continuation error is calculated as follows: No
that the coefficients of the large momentum expansion can
written as

hi~s!5 f i ln
2s

m2
1gi5 f i ln

2s

R
1S f i ln

R

m2
1gi D

5 f i ln
2s

R
1ĥi .

Therefore,

dSAC52
2

i R
usu5R

dsF1

s
2(

i 50

N

ai~N!si G(
j 51

M
f j

sj
ln

2s

R

524pF (
j 51

M

f j S 1

2p i Rusu5R
ds s2 j 21ln

2s

R D
2(

i 50

N

(
j 51

M

ai~N! f j S 1

2p i Rusu5R
ds si 2 j ln

2s

R D G .

The integrals in the above expression are straightforward

R
usu5R

ds skln
2s

R
52p i

Rk11

k11
~kÞ21!

R
usu5R

ds

s
ln

2s

R
50.
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Since the calculation ofSACD is trivial, and the exact
value of S is known, the truncation error can be obtain
from

dStrunc5S2SACD2dSAC2dSfit .

APPENDIX D: FORMULAS FOR CALCULATING THE FIT
ERROR FOR THE BREIT-WIGNER MODEL

The fit error for the Breit-Wigner model,

Im F~s!52 f V
2

AsGV

~s2mV
2 !21sGV

2
1 f A

2
AsGA

~s2mA
2 !21sGA

2
,

~D1!

can be found analytically. From the expression for the
error,

dSfit524E
s0

R

dsF1

s
2 (

n50

N

an~N!snG Im F~s!, ~D2!

and Eq.~D1! we conclude that all the involved integrals ha
the form of the following indefinite integral:

E ds
sn21As

~s2m2!21sG2
52E dq

q2n

q41bq21c
[2I n ,

where

b[G222m2, c[m4 ~b224c,0!.

It is straightforward to derive the following recursion rel
tion for the integralI n :

I n125
q2n11

2n11
2bIn112cIn , ~D3!

with I 0 and I 1 found from tables~e.g. @29#!:

I 05
1

4k3
f 1~q,k,a!,

I 15
1

4k
f 2~q,k,a!,

where12

12For q.k we must addp to the~negative! principal value of the
arctan function. This can be seen from the fact that the integran
I 01I 1 is positively definite and thusI 01I 1.0 which means that
the arctan must be positive as well.
05600
t

f 6~q,k,a!5
1

2 cos~a/2!
ln

q262kq cos~a/2!1k2

q272kq cos~a/2!1k2

1
1

sin~a/2!
arctan

2kq sin~a/2!

k22q2

and

cosa[2
b

2Ac
, k[c1/45m.

Although Eq.~D3! is convenient for calculations, we pro
ceed to derive an explicit expression forI n since, for largen,
this provides better numerical accuracy. The recursion r
tion, Eq. ~D3!, is equivalent to the following second-orde
linear difference equation:

D2I n1~b12!DI n1~b1c11!I n5
q2n11

2n11
, ~D4!

where

DI n[I n112I n .

Equation ~D4! with ‘‘boundary conditions’’ at I 0 and I 1
~which are, in turn, given by the explicit expressions abo!
is analogous to a boundary value problem for the cor
sponding differential equation. The general solution of t
homogeneous equation corresponding to Eq.~D4! is

J̄n5rn~A cosna1B sinna!,

wherer5Ac5m2 and a are the modulus and the absolu
value of the argument, respectively, of the solutions of
auxiliary equation for Eq.~D4!. The~discontinuous! Green’s
function for the problem is constructed by takingG(n; j )
50 for n. j and matching this solution to the general so
tion at n5 j 11 @30#; the result is

G~n; j !5
rn2 j

r2sina
sin~n2 j 21!a ~n< j !.

The solution of Eq.~D4! which satisfies the boundary con
ditions consists of a particular solution which accounts
the inhomogeneity (I 0Þ0;I 1Þ1) of the boundary conditions
and of a sum involving the Green’s function~analogous to
the integral that would appear in the continuous case!:

of
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I n5
rn21

sina F I 1sinna2rI 0sin~n21!a

1 (
j 50

n22
r2 j 21q2 j 11

2 j 11
sin~n2 j 21!aG ~n>2!.

~D5!
um

h
in
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05600
With a bit of clairvoyance, this result can be derived fro
the formula@31#

(
j 51

n

r jsin j a5
r sina2r n11sin~n11!a1r n12sinna

122r cosa1r 2

by switchingn→n21, takingr 5r/q2 and then integrating
over q.
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E. Brézin and S. R. Wadia~World Scientific, Singapore,
1993!.

@12# N. F. Nasrallah, N. A. Papadopoulos, and K. Schilcher, Ph
Lett. 113B, 61 ~1982!; 126B, 379~1983!; 134B, 355~1984!; Z.
Phys. C16, 323 ~1983!; K. Schilcher and M. D. Tran, Phys
Rev. D 29, 570 ~1984!; M. Kremer, N. A. Papadopoulos, an
K. Schilcher, Phys. Lett.143B, 476 ~1984!; N. A. Papadopou-
los, J. A. Pen˜arocha, F. Scheck, and K. Schilcher,ibid. 149B,
213 ~1984!; Nucl. Phys.B258, 1 ~1985!; C. A. Dominguez, M.
Kremer, N. A. Papadopoulos, and K. Schilcher, Z. Phys. C27,
481 ~1985!; M. Kremer, N. F. Nasrallah, N. A. Papadopoulo
and K. Schilcher, Phys. Rev. D34, 2127~1986!; N. A. Papa-
dopoulos and H. Vogel, Phys. Lett. B199, 113 ~1987!; Phys.
Rev. D40, 3722~1989!; Z. Phys. C51, 73 ~1991!; J. Liu and
D. Liu, Chin. Phys. Lett.9, 225 ~1992!.

@13# R. Sundrum and S. D. H. Hsu, Nucl. Phys.B391, 127 ~1993!.
The ACD technique has also been used in the technicolor c

text to calculate corrections to theZbb̄ vertex in U. Mahanta,
Phys. Rev. D51, 3557~1995!.

@14# M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Nuc
Phys.B147, 385 ~1979!; V. A. Novikov, M. A. Shifman, A. I.
Vainshtein, and V. I. Zakharov, Fortschr. Phys.32, 585
~1984!; Nucl. Phys.B249, 445 ~1985!; E. Bagan, M. R. Ah-
mady, V. Elias, and T. G. Steele, Z. Phys. C61, 157 ~1994!.
For a good collection of reprints with up to date commenta
concerning the application of the OPE to QCD, seeVacuum
Structure and QCD Sum Rules, Current Physics—Sources an
Comments, edited by M. A. Shifman~North-Holland, Amster-
dam, 1992!, Vol. 10.

@15# B. Holdom, Phys. Lett.150B, 301 ~1985!; T. Appelquist, D.
Karabali, and L. C. R. Wijewardhana, Phys. Rev. Lett.57, 957
~1986!; K. Yamawaki, M. Bando, and K. Matsumoto,ibid. 56,
1335~1986!; T. Appelquist and L. C. R. Wijewardhana, Phy
Rev. D36, 568 ~1987!.

@16# M. Harada and Y. Yoshida, Phys. Rev. D50, 6902~1994!.
@17# I. Caprini and C. Verzegnassi, Nuovo Cimento A80, 187

~1984!; P. Presˇnajder and T. D. Spearman, Czech. J. Phy
Sect. B37, 1089~1987!; S. Narison,QCD Spectral Sum Rules
~World Scientific, Singapore, 1989!.

@18# S. R. Ignjatovic´, T. Takeuchi, and L. C. R. Wijewardhana
Phys. Lett. B401, 287~1997!; T. Takeuchi, L. C. Goonetileke
S. R. Ignjatovic´, and L. C. R. Wijewardhana, inthe Proceed-
ings of SCGT’96, edited by J. Nishimura and K. Yamawak
~World Scientific, Singapore, 1997!, hep-ph/9702439; S. R
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