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Analytic continuation by duality estimation of the S parameter
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We investigate the reliability of the analytic continuation by dual®yCD) technique in estimating the
electrowealkS parameter for technicolor theories. The ACD technique, which is an application of finite energy
sum rules, relates th® parameter for theories with unknown particle spectra to known OPE coefficients. We
identify the sources of error inherent in the technique and evaluate them for several toy models to see if they
can be controlled. The evaluation of errors is done analytically and all relevant formulas are provided in
appendixes including analytical formulas for approximating the functisiwith a polynomial ins. The use of
analytical formulas protects us from introducing additional errors due to numerical integration. We find that it
is very difficult to control the errors even when the momentum dependence of the OPE coefficients is known
exactly. In realistic cases in which the momentum dependence of the OPE coefficients is only known pertur-
batively, it is impossible to obtain a reliable estimate.

PACS numbgs): 11.55.Hx, 11.55.Fv, 12.15.Lk, 12.60.Nz

[. INTRODUCTION Unfortunately, calculating the theoretical values)fT,
andU for strongly interacting theories such as technicolor is

The standardSU(2), X U(1)y gauge theory of elec- not an easy task. One popular approach used by many au-
troweak interaction§l] has been very successful in explain- thors [6] has been to use the low energy effective chiral
ing particle phenomenology at currently available accelerator agrangian to calculate the size of radiative corrections due
energies. However, the mechanism of electroweak symmetny the Goldstone and pseudo Goldstone degrees of freédom.
breaking (i.e., the Higgs sectgris yet to be understood. The drawback of this approach is that the contribution of the
Though many theories have been proposed as to what thigeavier degrees of freedom cannot be determined and must
mechanism is, they cannot be tested directly by acceleratqje included as undeterminable phenomenological coeffi-
experiments for several more years, at least not until the stagianis of the orde®(p?) terms in the chiral Lagrangidf].

of physics at the CERN Large Hadron CollideHC). In the Another method, used to calculate thigparametef8], is
meantime, the Higgs sector must be probed indirectly byhe jackiw-Johnson sum rulé] which expresses the tech-
using precision electroweak measurements. nipion decay constants as an integral involving the technifer-

In recent years, precision electroweak measurements haygion dynamical mass. This sum rule can be calculated in the
reached the'level pf accuracy Whlc;h enables us to d'sce_rﬁpproximation dubbed “dynamical perturbation theory” by
between various Higgs sector theories from the difference ibagels and Stokdl0] and is known to give the correct order
the size of radiative correctionig]. I_n Ref.[3], it is shown _ of magnitude estimate of the pion decay constant in QCD.
that under a small set of assumptions, vacuum polarizatioynfortunately, since th@ parameter is theifferenceof the
(oblique corrections from the Higgs sector and/or any NéWcharged and neutral technipion decay constants, the reliabil-
physics beyond the standard mod&M) can be expressed in iy of the estimate fofT using this method is highly suspect.
terms of just three parameters call&l T, and U. These  gjyce we shall be concerned mainly with tB@arameter in
parameters are linear combinations of electroweak vacuugp;g paper, we will not dwell on this problem any further.
polarization functions and are defined in such a way #iat |y Ref.[3], the S parameter for technicolor was calculated
represents the “size” of the Higgs sector, whileand U,y expressingS as a dispersion integral and using rescaled
quantify the breaking of custodial symmefd]. The depen-  Gcp spectral functions in the integrand. The rescaling to

dence of various observables 81T, andU can be calcu- gitferent numbers of technicolordlyc, and technidoublets,
lated using the star formalism of Kennedy and LyBhand Np, was performed using large-argumentg11] and the
fitting the resulting expressions to the experimental data progag it can be summarized as

vides limits on the three parameters which can be compared
directly with theory. S~0.INpNtc. (1.1

(Note the proportionality ofS to Np and N¢¢: thus, the
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“size” of the Higgs secton. However, this estimate d is S=—4x[I1},,(0)—TIj,(0)]

reliable only if the technicolor theory is dynamically similar

to QCD. This condition does not hold in more realistic tech-where the subscript¥ and A denote the neutral isospin-1

nicolor theories where one has very little idea as to what theector and axial-vector currents, respectively, and the prime

spectral functions should look like. denotes a derivative with respectgoThe contribution of a
The analytic continuation by duality(ACD) technique  fermion doublet¥ = (U,D) to J{ andJ} is given by

developed in Ref[12] has been suggested in REE3] as a

way of computing theS parameter in theories that differ

from QCD. The ACD technique consists of using the analy-

ticity of the vacuum polarization functions to convert the

dispersion integral fof, which is an integral along the regl — T3

axis, into an integral around a large circle in the compex Ja :‘1’7’“7’55‘1’1

plane. The value of the integrand is then estimateciy-

lytically continuing the operator product expansi¢®PE)  wherer; is the third Pauli matrix. For latter convenience, we

[14] from the deep Euclidean region. In RgL3], the appli-  define the functions,(s) and Fa(s) as

cation of the ACD technique to QCD-like technicolor repro-

— T
e x}rwgqf,

duced Eq(1.1), while for walking technicolor theoriefsl 5] Hyy(s)=sFy(s),
it suggested the possibility th&could be negative.
However, other estimations & for walking technicolor, HAa(S)=HAn(0) +SFA(S),

such as that of Ref16] which used the Bethe-Salpeter equa- and the following shorthand notation for the differences be-

tion approach, suggest th&tis positive even for walking aween the vector and axial-vector functions.
technicolor theories. Furthermore, the mathematical founda- )

Ei%n]s of the ACD technique have been questioned in Ref. T1(S)=IT\y(S) — M pa(S),
In this paper, we investigate the reliability of the ACD F(S)=Fy(S)— Fa(s).
estimate ofS Our plan is as follows: In Sec. Il, we first
review the definition of th& parameter. In Secs. lll and IV, Then,
we review the two methods used in the literature to estimate
S namely, the dispersion relation approach and the ACD S=—4a[F(0) = Fa(0)]= —47FO0).
technique. In Sec. V, we discuss some puzzles pertaining to L ) )
the ACD estimate ofS, and in Sec. VI, we identify the Note that our notation is slightly different from elthe_r Ref.
sources of error inherent to the ACD technique. Section VIIL3] OF Ref.[13], so care is necessary when comparing for-

is the main portion of the paper in which we apply the ACD Mu'as.

technique to several toy models to see if it can reproduce the O Weakly interacting theorie§ can be calculated using
exact value ofs. Section VIII concludes. A portion of this ordinary perturbation theory. However, for strongly interact-

work has been presented previously in H&8J. In this pa- ing theories such as technicolor, perturbation theory cannot

per, we extend and improve upon, and also correct an‘erroP€ Used and some other non-perturbative technique must be
in, the analysis reported therein. utilized. In the next sections, we will look at two different

methods that have been used in the literature to esti@ate

for technicolor theories.
Il. DEFINITION OF S

We denote byllyy, the g*” part of the vacuum polariza-  ll. DISPERSION RELATION FOR THE S PARAMETER

H v .
tion tensor between two currenly andJy : In this section, we will discuss how one can calcul&te

using a dispersion relation.
igﬂVHXY(S)_{_(quVterm):f d*x é9%(J& (x)J% (0)), ~ The function7{(s) = Fy(s) — Fa(s) is analytic in the en-
tire complexs plane except for a branch cut along the posi-
tive real s axis starting from the lowest particle threshold
S=q-. contributing toF(s). Therefore,

The S parameter is defined in Rdf3] as 1 F(s)
Ft)==— 3€ ds——
27 Jc s—t

2QCD-like technicolor theories suffer from the FCN@avor 1 Rdslm}—(s) n 1 d F(s) (3.0

changing neutral currenproblem. Theories that were devised to ) s, s—t—ie 2mi ;=R S—t ’
avoid this problem(e.g. walking technicolgrare supposed to have
dynamics that are distinct from QCD. Just how distinct they actu-where C denotes the integration contour shown in Fig. 1

ally are is still unclear. [19]. We have used the Schwartz principle of reflection,
3The “duality” here refers to “quark-hadron duality.”
4See Sec. VII C 2 and footnote 8. F(s*)=F*(s),
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Ims SM, so the IR divergence cancels exactly. Therefore, in the
case of technicolor theories, we must calculate
C =ds
Src=—4 g[lm Fre(s)—ImFgy(s)], (3.9
So
= R Res where
Im Fsp(S)=— ——| 1— 1—m—a 3t9(s—m2)
SM 487 s R

The lower limit of integratiors, must be chosen to be below
. _ the point where the two spectral functions fac(s) and
FIG. 1. The contouC which avoids the branch cut along the Im Fey(S) start to deviate from each other.

reals axis. In Ref. [3], Eq. (3.4 was used to estimate the value of

. . I . Stc. First, ImFy(s) for QCD was extracted from thie=1
in expressing the contribution from the part 6f which part of the o(ete —hadrons) data, while IFF(s) for

pinches the real axis as an integral involving only the imagi- _ -
nary part of/(s). In the limitt—0 we obtain QCD was extracted from th€=1 part of thel'(7~ — v,

+hadrons) data. The Weinberg sum rules, E§s3), were

1 (Rds 1 ds used to fix ImF,(s) aboves= mf where data are unavail-
F(O0)= —J' —Im F(s)+ > 3& —F(S). able. These functions were then parametrized as superposi-
TJso S m Jis|=R S tions of Breit-Wigner resonanc@syhose masses and widths

. . ) were rescaled according to the leading lalyepproxima-
It is possible to show tha#(s)~1/s as s—= (using the  {ion [11] to obtain their technicolor counterparts. The result-
OPE we will be discussing lateso that the integral around ing form of ImF;(s) was substituted into Eq3.4), from
the circle at/s|=R vanishes aRR— . Therefore, which one obtained

=ds -
S=—477.7—"(O)=—4J < ImAs) S~0.INpNrc. 3.9
So

ods IV. ACD TECHNIQUE
= _4f ?[Im Fy(s)—Im Fa(s)]. (3.2

S In the previous section, the analyticity @f(s) was ex-

ploited to expressH(0) as a contour integral, E¢3.1), and

Note that in going from the first line to the second, we usedhe radius of the contour was taken to infinity to make the
only the analyticity ofF(s). No approximation of any sort is contribution of the circle aroun¢s|=R vanish. The result
involved. Therefore, if the function Ii#(s) were known ex- was an integral expression f& which only involved the
actly, we can calculaté(0) and, hence, the value &fex- imaginary part ofF(s) along the real positive axis, i.e. the
actly. dispersion relation, Eq3.2).

Of course, one usually does not know the exact form of The ACD technique also exploits E.1), but instead of
the spectral function InF(s). In the case of QCD-like tech- making the integral arouni$| =R vanish, the integral along
nicolor, it can be guessed from the QCD spectral functionghe reals axis is made to vanish as follows: Let

with the help of the Weinberg sum rul§20] N

1 (= Pn(s)= 2, an(N)s"
;J dslm Fre(s)=—f2, =0
0

denote polynomials of ordeX in s where the coefficients
% a,(N) are chosen so that &§—« the polynomialpy(s)
fo ds slm Frc(s) =0, (3.3 converges uniformly onto &/in the interval[sy,R]; i.e. for
any e>0, there exists an integél, such that ifN>N_, then

wheref;c~250 GeV is the technipion decay constant.
Another point one must consider when applying the dis-
persion relation, Eq.(3.2), to technicolor (TC) is that
Im F1o(s)— — 1/487 ass— 0 due to exactly massless techni
Goldstone boson states and we encounter an IR divergen
However, sinceSis supposed to be the contribution réw
physics, we must subtract from & (s) the contribution
of the SM Higgs sector that technicolor replaces. The exact
Goldstone contribution is common to TC theories and the 5The Gounaris-Sakurai forfi21] was used for the.

1

g_pN(S) <61 VSE[S(),R]

caince the producpy(s) F(s) is regular inside the conto@
shown in Fig. 1, we find
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1 V. PECULIARITIES OF THE ACD TECHNIQUE

0=-— fﬁ ds py(s)F(s . . . . L
2mi Jc A(S)F(s) The ACD technique introduced in the previous section is

1 (R 1 pec(:u)liarhin selveral respt(actSS).
_ - il 1) The relation, Eq.(4.5), is not an expansion in any

Trjsods A(S)Im F(s)+ 2mi ﬁs—RdS P(S)7(S)- small parameteas far as we can t@ll so it is unclear
@.) whether the ACD estimat8,cp will converge to the correct

' value in any limit.

Subtracting Eq(4.1) from Eq. (3.1), we obtain (2) The coefficienAts of the polynomial,(N) which relate
the OPE coefficienth,, to Sycp depend on the order of the
polynomial N, the choice of fit interval sy,R], and the fit
s, routine used to fix them, all of which are arbitrary and not
dictated by anyhysics It is therefore difficult to understand
N 1 3€ q 1 what the physics is, if any, behind a relation like E4.5).

2mi Jis—r 1S Pn(S) (3) Because of theN dependence of the coefficients

a,(N), the dependence &,cp on the OPE coefficientﬁm

If N>N,, then the absolute value of the first term can bewill change as\ is increased. In fact, in the limit th&t goes
bounded from above by to infinity, the coefficientsa,(N) diverge:

R

1 1
F(0)=— ds[g— pn(S) [Im F(s)

F(s). 4.2

R I1 R |11 lim a,(N)=(—1)". 5.1
f dS[——pN(S) Im F(s) <f ds - —pn(s)|[Im F(s)| Neoo (N)=(=1)%e G5
s LS so IS
<(R—sp) €M, This is due to the simple fact thatsl¢annot be Taylor ex-
panded around=0. This means that dsis increasedSycp
where will become sensitive to infinitesimal variations in the OPE

coefficientshy,,. Since the OPE coefficients,, are only
known as products of perturbatively calculable prefactors
and uncalculable vacuum expectation values of operators,

Therefore, for sufficiently largd, the integral along the real &Ny uncertainty in them may be considerably enhanced in

s axis can be neglected in EG}.2) and we obtain Sacp - ) o .
(4) For QCD/technicolor, the upper limit of the fit interval

R must be chosen to be well above the confinement stale
F(s). (4.3 so that the OPE is applicable at that scale. Then the fit poly-
nomial will be such thata,(N)A2*!| decreases monotoni-

In the deep Euclidean regior s=Q?>0, the value of cally asnis increased for fixed. Sinceﬁm~A2“, this means

F{(s) can be expressed in terms of a large momentum expanhat the OPE coefficierfi,, for largerm will have a smaller
sion contribution toS,cp. However, sincea,(N) is the coeffi-
- b cient of s", better and better accuracy is required for the
_ Nm A2 an(N)’s with largern for the fit to 15 to be accurate near the
]:(S)_mzl sm’ s=-Q% @9 ond points=R. This is a peculiar situation since the terms
that contribute less require better precision.
where the coefficients,, can be gleaned from the OPE of (5 WhetherSis IR divergent or not should be encoded in
F(s). Assumingthat Eq.(4.4) is valid all around the circle the OPE coefficienth,,. However, because the lower limit
|s|=R in the complexs plane, then substitution of E¢4.4)  of the fit intervals, cannot be taken to zer8cp is always
into Eq. (4.3 gives finite and totally blind to any information pertaining to IR
divergences. This is in contrast to the dispersion relation ap-

M= max |ImF(s)|.

se[sp,R]

_ 1 1
f<0>~—3§“d S PN

2i

N

1 1 m proach in which the IR divergence was evident in the spec-
FO)~5— jg ds=— > a,(N)s"| > — tral function and the SM subtraction was crucial in getting a
2mi Jis=r |S n=0 m=1 gM -
finite result.
N As a result of these peculiarities, the reliability of the
=— > hpsr1as(N). relation, Eq.(4.5), is far from clear.
n=0

Therefore, VI. ERRORS INHERENT IN THE ACD TECHNIQUE

In this section, we will take a critical look at the ACD

N
_ . ° _ technique and identify where possible errors will be intro-
S=—4mH0) 477,120 hne18n(N)=Saco- (49 g ced. This wil clarify the problems facing the ACD tech-
nique and facilitate the discussion of error in the latter sec-
This is the ACD technique employed in RE¢L3]. tions.
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ACD starts from the relation This is a rather dangerous approximation to make since the
analytic structure ofF(s) will be completely altered. In fact,
S=Sy+ 8Su(N) under this approximation, I#(s) will only consist of de-

rivatives of the delta function at the origin. We define
where

Sn,m = Sacpt 6Sac(N,M),

F(s), where

2 1
5N=—i—ngI=Rd E—DN(S)

2 ds[l
Im Z(s). SACD__i_ﬁS_R g_pN(S)

M

PO

n=1 Sn '

R |1
5Sm(N)E—4JS ds[g_pN(s)

M ~
2 1 h,(s)—h
For large enougiN, the 5.Sm term can be neglected and we 55 (N M)=— = jg ds[—— on(s)| S n(S) n
can approximat& by Sy : I Jisi=r |[S n=1 s"
S~Sy. Referencd 13] argues thatsS,c(N,M) can be expected to
be highly suppressed and thus negligible since the difference
We will call the neglected termdSy;;(N) thefit error. It will 1/s— pn(s) is approximately zero in the vicinity of the posi-

depend not only orN, but also on the choice of interval e reals axis where the differench,(s)—h, can be ex-

[so,R], and the fit routine. pected to be the largest. The expression $gkp can be
In the next step, we assume that the large momenturgimpjified to

expansion ofF(s) is known up toM terms:
min(N,M—1)

1) Saco=4m 20 Ans1an(N),

M
hn(s) -
]—'(s)znzl - O\ o n=

since we only pick up the residues of the single poles. We
In general, the coefficients,(s) will depend ons. This ex-  call the neglected termdS,c(N,M) when approximating
pansion also may not be a convergent series but just afiy,w With Sacp the analytic continuation errar
asymptotic ong22]. Also, such an expansion may not exist  Therefore, in contrast to the dispersion relation approach,
all around the circle afs|=R, or it may not exist at all the ACD technique relies on a series of approximations. To
depending onF(s). But for the moment, let us assume that summarize, the relation between the exact valug afd the
such an expansion exists. Substituting this expansion in thACD estimateSacp can be written as follows:

expression foiSy, we obtain S= St 0Su(N) = Sy st + 3Syund Ny M) + 85 (N)
SN= St OSund NM) = Spcpt ISac(N, M)+ 3Syund N, M) + 88 (N).

where The three different sources of error are:
" (1) The fit error §S;;;(N): the error that comes from ne-
2 1 hn(s) glecting the contribution of the integral along the realxis.
Swm="7 ds = —pn(s)| >
[s|=R S n=1
1
O0Syund N,M) = — - §s|=Rd g_pN(S)

g" It goes to zero in the limiN—oo.
(2) The truncation erroréS;,,d N,M): the error that
{ comes from truncating the large momentum expansion of

—N

A(s) F(s). If the series is convergent, then it goes to zerdvas

— 0,

(3) The analytic continuation erra¥Syc(N,M): the error
that comes from neglecting the momentum dependence of
the coefficients in the large momentum expansion. It is not
clear if it goes to zero in any limit.
Note thatM must be larger thal in order to suppress the In practice, one does not know the numerical values of the
neglected terms by inverse powers Rf We call the error  h,’s exactly either since they are products of perturbatively
introduced by neglectingS,,,d{N,M), i.e. theO(1/sM*1)  calculable prefactors and uncalculable vacuum expectation
term, thetruncation error. It will depend onN andM and the  values of operators, the latter of which can only be estimated
radius of the contouR. to an order of magnitude. This presents another source of
Finally, we neglect thes dependence of the coefficients potentially dangerous error as we discussed in Sec. V. How-

hn(s) and replace them with their values st —R where  ever, our limited knowledge of th,,'s necessary for the

5 hi(s)
_nzl no|

S

they are known from the OPE: ACD technique is analogous to our limited knowledge of the
R spectral function necessary for the dispersion relation ap-
hm(s)~hn(—=R)=h,. proach and can be considered an independent problem from
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whether the ACD technique is reliable or not. In other words.error discussed above for the ACD technique to see if they
we know that the dispersion relation gives the exact value ore under control. By investigating how the behavior of the
S ifthe spectral functions are known exactly. So the questiomrrors depends on the characteristics of the toy model func-
that we shall address here is, will the ACD technique give dions, we should be able to clarify the strengths and limita-

reliable estimate fo if the h,,’s were known exactly? tions of the ACD technique.

We will therefore follow the following strategy to estab-
|ISh .(OI' refute the reliability of the ACD technique: First, we VII. COMPARISON OF DISPERSION RELATION
will introduce several toy model functions fdé(s) such that AND ACD APPROACHES FOR MODEL SPECTRA

the imaginary part along the realaxis ImZ(s), the large

momentum expansion coefficierfts, and the corresponding
value of S are known exactly. Then, we will apply both the  Let us first consider the perturbative 1-loop contribution
dispersion relation and ACD techniques to these model functo F(s) from a fermion doublet of degenerate mass. In this
tions and(1) check that the dispersion relation approach re-case, it is straightforward to calculaké,(s) and I1x(S).
produces the exact result, af®) calculate the three types of Using dimensional regularization, they are given by

A. Perturbative 1-loop function

1 (1 m?—x(1—x)s
va(5)=4—7_r2fo dx{x(1—x)s}log T ,

1 (1 m?—x(1—x)s
[ an(s)= ﬁfo dx{x(1—x)s—m?}log m—x(1-x)s

u? '
from which we find
[ 1 m? | B+1 ) <=0
4n2 s |PlO9g—1 72 '
L m 1d I S ! m2’2 - 2 0<s<4m?
}'pe,l(s)—ﬁ?fo xlog 1—x(1—x)? @25 Iﬂlarctam , \ (7.2
1 m?| | 1+8 ) Aries
| 2275 [Pl 717 2] !
|
where Hence,
4m? 1
B= 1- T Spert: _477]:pert(0): G (7.2

00100 T 1T T T T T 1 T T T . . . . .
r ' 1. Dispersion relation: Perturbative spectral function

The imaginary part of the perturbative 1-loop function of
Eq. (7.1 is given by

1 m? ) am?
Im]—"pen(s)=—E?,80(s—4m ), ,3: 1_?-

(7.3

0.0075

0.0050

- Imeert

0.0025

Its plot is shown in Fig. 2. Inserting E@7.3) into Eq.(3.2),

0.0000 ] we f|nd
:....I....I....I....I..‘.: 2 o 2 1
0008 10 20 30 40 50 S rt:m_f d_Sw [1— ﬂ: if pBdp= i
s/m? o ) ameg? s 2m)o 6
FIG. 2. The perturbative spectral function. which recovers Eq(7.2) exactly.
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2. ACD technique: Perturbative spectral function

Let us now use the ACD technique to calculdtg,to see

if 1/67 can be reproduced.
We begin by choosing the integration internja,,R].

The choice for the lower limit of the interval is clear. It is
Sp=4m?. The upper limitR is arbitrary. We will let it vary
betweenR=9m? andR= 100m?. For the fit routine, we will

use the least squares fR( fit), the minimax fit (T, fit), and

the least-first-power fit{, fit), and check the routine depen-

dence of the results.

Typical results of the fits for various choices of the UV contrast to thej-function model, to be considered in the next
cutoff R using the three fit routines are shown in Fig. 3. Thesubsection, where due to the localized nature of the spectral
value of the fit errorsS;(N) was calculated analytically us- function, the fit error oscillates several times before converg-
ing the formulas in Appendix C and the results are shown iring to zero asN is increased.

PHYSICAL REVIEW D 61 056006

FIG. 3. The cubic fit for vari-
ous choices of the UV cutofR.
The IR cutoff is fixed atsy/m?
=4. The ratiosX p3(s) is shown
for the P, fit (solid line), the T, fit
(dashed ling and theU,, fit (dot-
dashed ling The vertical dotted
lines indicate the upper and lower
limits of the fit interval.

Fig. 4. As is evident from Fig. 4, the fit error is well under
control for the 1-loop perturbative spectral function even for
R/m2=100. In particular, the least-squares fit shows the fast-
est convergence for all cases with excellent agreement
achieved alN=3.

This excellent control on the fit error can be understood as

056006-7

due to the spread out and positive definite nature of the per-
turbative spectral functions. The error from where the poly-
nomial undershoots 4/tends to be canceled by the error
from where the polynomial overshoots it. This is in stark
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Y ] C
L2] S,
AN (I
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e I R/m?=16 " FIG. 4. The dependence of the
! fit error on the order of the poly-
ST N R B B i i is fi
010 —L—] . . - o o1, nomialN. The IR cutoff is fixed at

So/m?=4 while the UV cutoff
R/m? is varied. The results are
shown for theP, fit (solid line),
the T, fit (dashed ling and the
U, fit (dot-dashed ling

0.10

0.00—

0S4/S

=0.06—

-0.10

0.10

0.00—

0Sy/S

-0.05—

=0.10

Next, we evaluate the truncation error. The large momenis actuallyenhancecaway from it.
tum expansion of Eq(7.1) is given in Appendix B.5S;nc What we have found here is that even though the fit and
can be calculated analytically using the formulas of Appentruncation errors are well under control, the analytic continu-
dix C. The results are shown in Fig. 5 for the least-squaresation error is not.
fit. We find that the truncation error is also well under con-

trol.

Finally, we calculate the analytic continuation error. Here, B. Vector meson dominance I:6-function model
we encounter a disaster. Figure 6 shows the valuggf as _ _ _
a function ofN and we see thaB,cp actually diverges: ne- Next, let us consider the following vector meson domi-

glecting thes dependence of thie,(s)’s fails miserably as an hance model where the vector and axial-vector channels are
approximation. The reason for this can be traced to the fadtach saturated by a single vector meson pole:
that even though the differencest py(s) converges to zero

within its radius of convergence, outside it diverdges Eq. 1
(5.1)]. The error induced by the neglect of teelependence Fy(s)= f\z, >
of the h,(s)’'s may be suppressed near the realis, but it S—mytie

056006-8
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Using Eq.(3.2) recovers Eq(7.4) as follows:

T
—
1
T
]
i

0.004 \—\ \ \\ (/\
\ \

0.002

»ds
S= 4wf ?[f\z,é(s— m2)—fas(s—m3)]
0

v fa

2 2
my My

=45 . (7.5

0.000

6strunc/s

The Weinberg sum rules, E¢3.3), impose the following
conditions on the decay constants and masses:

—0.002

2 2__¢2
-0.004 fv_ fA_ fTC!

=)
-
w
3
'S
]

mZfZ—mafa=0. (7.6

FIG. 5. The dependence of the truncation error on the order 0§0|Vmg for the decay constants, we obtain
the polynomialN and the UV cutoffR. The IR cutoff is fixed at )
So/m?=4, The results are shown for R/m? 2 1, 2 2 _ My
=9, 16, 25, 36, 49, 64, 81, and 100, with larger valuegRof =1 fa=i5fe =5
showing faster convergence. The fit routine used wa$thét. A

Then,
2

f
S=4m(1+1)—. 7.7
my

Fa(s)=f2 ————.
A As—mi+ie
The value ofSin this case is

In the leading largeN approximation, we can relate the nec-
(7.4 essary ratios to their QCD counterparts as

S  fa
S=—4a[ Fy(0)— Fa(0)|=dm| —5 — —|.
my, A

fic  f% NpNrc

1. Dispersion relation:&-function model m m2 3 ~0.005NpN+c,
v p
The imaginary parts ofr,(s) and F,(s) are

2 2

2 2 my m,
Im Fy(s)=—wfyd(s—my), r=—~—~04. (7.9

My My

Im Fa(s)=—wfad(s—ma).
Then,
150_ T

S~0.09NpN+c, (7.9

125 —

which agrees with Eq(3.5).

00— 2. ACD technique:é-function model

Q.:. ”s F j We now turn to the ACD technique to see if Ed.7) can
g ; ] be reproduced. We fix the value of the ratie m&/m4 to the
C largeN valuer =0.4. The integration intervalsy,R] is cho-
sor- ] sen to include both resonances. We take various combina-
: ] tions of s,/m3=0.5,0.25,0.125 an®/m=4,8,16. For the
s ] fit routine, we again consider the least squaresHitfit), the
L ] least-first-power fit ,, fit), and the minimax fit T, fit).
°<; 5 1'0 1'5 ;o The large momentum expansion for this model is very
N simple:
FIG. 6. The ACD estimate of for the perturbative spectral 2 f2m2N_f2m2n  §2 *§2 m2n
function using theP, fit. The IR cutoff is fixed at,/m?=4 while Fe=> Y AR _TCL TV % (1),
the UV  cutoff was given the values R/m? n=0 S S n=2 !

=9, 16, 25, 36, 49, 64, 81, and 100. Smaller values Rof
showed faster divergence. where

056006-9
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R/m%=4
T T T
;- S 1R 18,
] Jo . .
)\ FIG. 7. The cubic polynomial
b Lo \ fit to 1/s for various combinations
of s,/m2=0.5,0.25,0.125 and
R/mZ=4,8,16. The products
] Ja X p3(s) is shown for the least-
0 T squares fit(solid line), the least-
& ] BBl first-power fit (dot-dashed ling
i ] 1R and the minimax fifdashed ling
The positions of thed-function
resonances are shown with arrows
on thes axis. The vertical dotted
lines show the upper and lower
B 1¢ limits of the fit interval.
z 5
£ ’ 18
1—rl-n2 1/s— pyn(s) will move through thes functions, leading to the
XM=\ (7.10  oscillatory behavior of5S;, seen here.

When the fit interval sq,R] is small, the convergence is
good for all three fit routines and the fit error is well under
control. However, choosing a small fit interval requires prior
ﬁjnowledge of where the relevant structure of the spectral

nction is localized. Without this knowledge, we have no
guideline as to how the fit interval should be chosen, and if
e take it to be too large, the oscillations can persist beyond
=10 as can be seen from Fig. 8 and it will be difficult to
tell whether convergence has been reached.

This series is obviously convergent febmf\.

Note that the coefficients of this expansion carry $10
dependence. Therefore, the analytic continuation error an
the truncation erroffor M>N) are both automatically zero
and the fit error will be the sole source of error.

The fit error is easy to calculate. Since the imaginary par}v\\ll
of F(s) is just two 6 functions, 8§S;; is given by

[f\2/5(5_ m\Z/)_ ff\g(s_ mf\)] C. Vector meson dominance II: Breit-Wigner model

R 1
5Sfit:47TJ ds{g —pn(s)
%0 We have seen from the previous subsection that when the
ACD technique is applied to a highly localized spectral func-
. tion, the fit error is difficult to control. On the other hand, for
a smooth, slowly varying spectral function, it was the ana-
lytic continuation error which was problematic. In this sec-
In Fig. 7 we show the quality of cubic polynomial fits for tion, we consider a function which can interpolate between
various combination of the IR and UV cutoffs for the threethe two extreme cases to see whether a balance can be
fit routines mentioned above. As is evident from this figure achieved where bottS;, and §S,c are under control.
the quality of the fit degrades quickly as the fit interval is  The model function we consider here has a Breit-Wigner
increased. It is also highly routine dependent. The depenype imaginary part on the realaxis and the correct analy-
dence of the ratiadSy;/Sexact fOr various choices of the in- ticity in the complexs plane:
terval [sy,R], the order of the polynomiaN, and the fit
routine is shown in Fig. 8. ) 1
Notice that in contrast to the perturbative spectral function Fu(s)= fVT’J—F'
case discussed in the previous subsection, the fit error oscil- sTMyTivsty
lates several times before converging to zero. This can be
understood as follows: In the present case under consider-
ation, ImZ(s) is a superposition of functions. If a node of
1/s—pn(s) coincides with the position of & function, then
the contribution to the fit error from that function is zero. In the limitT'y,,I'y— + 0, these functions reduce to the pre-
As the order of the fit polynomial is increased, the nodes ofvious §-function model. In the other limit wherE,, andI" 5

=47f? —4xfa

1 2
> pN(mA)
m

1 2
— —Pn(my)
m A

\

1
Fa(s)=f2 ——————.
A(s) As—m2+iysTa

056006-10
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88 /S

084/S

§8g/S

R/mZ=4
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lz‘ux/os

§'0=

FIG. 8. The dependence of the
fit error on the order of the fit
polynomial N. Results for the
least-squares fi(solid ling), the
least-first-power fit (dot-dashed
line), and the minimax fi{dashed
line) are shown.

=Aw /%

S2'0

=Am /%

e Al

are of the same order as, andm,, we obtain a smooth from which we can and see that E{.11) is recovered in
function reminiscent of the perturbative case. This is showrEd. (3.2.

in Fig. 9.
The expression foBin terms of the vector meson masses by
and decay constant is the same as dHenction case:

f
S=—4a[ Ay (0)— Fa(0)]=4m
m

2 2
VA
2 2
v Ma

. (7.1D

1. Dispersion relation: Breit-Wigner model

The imaginary parts are now given by

Im Fy(s)=—f2

Im Fa(s)=—f2a

VsT'y

(s—m2)?+sl'

VsT'a

(s—m3)?+sl'4

It is straightforward to check that

) »ds \/SF

0 S (s—=m?)?+sI'> m?Jo

where

2 [

o(s),

o(s).

3

(7.12

X—
(X*=1)?+x%¢

(7.13

The constraint from the first Weinberg sum rule is given

fi—fa=fi (7.14

as before. The integral for the second Weinberg sum rule
does not converge. However, if we recall that the second
Weinberg sum rule is related to the non-appearance of a
dimension 4 operator in the OPE &t — Q?), we can impose
the conditions

0.25

0.20

0.15

0.10

—ImF

0.05

0.00

-0.05

'S

FIG. 9. The spectral functions for the Breit-Wigner model. The
ratio ¢é&=I"y/my=T,/m, is varied from¢&=0.1 to £=1.0 at 0.1
intervals with smaller values @f corresponding to more prominent
peaks. The arrows indicate the positions of the teghaird techni-

a, peaks.
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f2mZ—fami=0, f2. & (—1)"md"
A= 2 | Xen(Uzn(£/2)
212 _ 272 n=0 S
m

which has the desired effect of making the coefficient of —i—VX2n+1(r)U2n+l(§/2)
1/Q* vanish and make the large momentum expansion of this Vs
toy model mimic that of QCD. Since Eq&l.14) and(7.15 £2 m
are the same as E(7.6) with the extra condition - ﬂ{ 1—i T\s’xl(r)ul(glz)

mg T§ I'v Ta 2 = 20

—S=—,=r or —=-—=¢ frc (=1)"'m§

mi I my My s AT e Xon(r)Uzn(£12)

the estimate ofs remains unchanged from E(.9). Js
Note that the value of is independent of the ratig +i—X2nl(r)U2n1(§/2)} (7.1
=I'y/my=I'o/m,. However, the shape of the spectral My
function ImZ(s) is not. In Fig. 9, we show the shape of the ; : ; .
spectral function for various choices @f. For the Np whereX(r) is defined as in Eq.7.10:

=1,N1c=3 case, the value @f using the largeN relation is 1—rl-n2
Xp(r)=———
(=5
eIV T,
my m, In order to make the & term vanish completely, we have
associated the 472 term with the 1¢ term and the &' %2
2. ACD technique: Breit-Wigner model term with the 18" term forn=2."

The large momentum expansion of our model function is We have a slight problem with the choice of fit interval

since our model function has a branch cut which begins at

iven b
g y s=0 but the IR cutoffs, must be kept non-zero. In order to
circumvent this problem, we divide the dispersion relation
f 1 integral of Sinto two pieces:

2
s—m2+iémys
S=Sir(Sp) + Syv(So)

2 o n
s “20 Un(§/2)< B %) where
sods
f2 —1)n 2n - 0_
:Enzo% U2n<§/2>—i%uzn+1(§/z> Sr(S0) 4f0 SImA(s)
5 ™ =ds
:§+g 2, ﬂ[uzn(flz) SUV(SO):_‘]-J’S S mAs).
n=0 gn )

s The IR piece of the dispersion integr&z(sy), is then cal-
+i —U2n1(§/2)}, culated using the exact form of the spectral function given in
m Eq. (7.12, while the ACD technique is applied only to the
_ ) UV piece Syy(Sp) -
where Un(cosf)=sin(n+1)d/sind are the Chebyshev poly-  The evaluation 0Sy(s,) amounts to replacing the func-
nomials of then second kintIn the limit ¢&—+0, we find  tion 6(s) in the spectral function witl9(s—sy) so that the
U2n(0)=(—1)" and U,_1(0)=0 and all the half-integer pranch cut is shifted to start fromy. The coefficients of the

power terms vanish. Note that there is an ambiguity in treatrarge momentum expansion in E7.16 must be adjusted
ing the half-integer power terms since we can consider it as g¢cordingly:

coefficient of either the next higher integer power term with
a /s behavior or the next lower integer power term with an
1/{/s behavior.

7 H +1/2 H
Imposing the conditions of Eqé7.14) and(7.15), we find If we associate all the &7 terms with the 18" terms so that

all the coefficients,(s) have a 1{/s behavior, then it is possible to
prove that the value 08,cp (without any IR subtractionin the
resulting model converges to the correct valu&aefhené is small

5The Chebyshev polynomials of the second kidg(x) are the  even though the truncation and analytical continuation errors both
same thing as the Gegenbauer polynom@léx) with v=1. See  diverge. Such conspiration between the two errors is not common
Appendix A 3 and Ref[24]. and we consider this to be a pathological case.
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5Strunc/SUV
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®

FIG. 10. TheN dependence of the fit error for the Breit-Wigner  F|G. 11. TheM dependence of the truncation error for the Breit-
model. The ratio¢=I"y /my=I's/m, is varied from§=0.1t0&  wigner model withé=0.2. The points connected by solid lines are
=1.0 at 0.1 intervals. Larger values éfshow faster convergence. the errors for the same order of the polynomialThe dotted line

connects the points wheM=N+1.
him(S)—hm(s) —dhy, . . .
tral functions which are more spread out. For the QCD-like
£=0.2 case, one need$=4 for the fit error to be within
where 10%.
In Fig. 11, we show thé/l dependence of the truncation
1 (so error for fixed values ofN with £=0.2. As expected, the
ohp=— ;J'o ds s"Im (s). truncation error converges rapidly for each fixed valuélof
However, an unexpected result is that if one looks atNhe
) ) dependence of the truncation error for fe=N+1 case, it
In our previous paperl8], we used an approximate form of giverges. This means that increasing the order of the polyno-
the spectral function to calculatr and the shifts in the mjal does not necessarily decrease the truncation error.
large momentum expansion coefficiedlis,,. However, we  Rather, one must keep the order of the polynomial fixed and
have discovered that this approximation introduced yet anmcrease the number of terms retained in the large momen-

other source of error into our analysis and that our results ifum expansion. This result is independent of the value we
Ref. [18] were in fact totally unreliabl.In this paper, we choose for¢ as can be seen in Fig. 12.

used the exact forms of the spectral functions to calculate Finally, the N dependence of the analytic continuation
both Sr and theshy's analytically using the formulas in  error is shown in Fig. 13. The analytic continuation error for
Appendix D.

This partial use of the dispersion relation and the use of 1.0 —
the exact spectral functions in the infrared do not go againsi
ACD philosophy since, in actual technicolor models, only
the Goldstone and pseudo Goldstone bosons are dynamici 5 05
at low energy and their contribution to the spectral functions 22
can be calculated using standard chiral Lagrangian techZ
niques.

In the following, we present our ACD evaluation 8fy
with s,/m2=0.2, andR/mZ=5. The fit routine used will be
the least-squares fitP(,-fit). We will assumer=m2/ma4
=T'2/T%2=0.4, and let the ratig=T, /my=T,/m, vary.

In Fig. 10, we show theN dependence of the fit error.
Different lines correspond to different values of the ragio
=T'y/my=T,/m, which was varied from{=0.1 to ¢ -1.0 '
=1.0 in 0.1 intervals. As was expected, the fit error con-
verges faster for larger values §fvhich correspond to spec-

I

m
711\

-0.5

6Strunc(N:N+

TR

o
[

FIG. 12. The N dependence of the truncation error
8Syund N,N+1) for the Breit-Wigner model. The ratio¢
8We also discovered a bug in our program which resulted in giv=I'y/my=T,/m, is varied fromé=0.1toé=1.0 at 0.1 intervals.
ing a 1A/s dependence to the coefficierts,(s), contrary to what  There is no discernible pattern relating the behavior of the error to
was reported in Ref.18]. the value ofé.

056006-13



IGNJATOVIé, WIJEWARDHANA, AND TAKEUCHI PHYSICAL REVIEW D 61 056006

8o These functions can be interpreted as infinite sums over spin

1 meson poles of masseéEmV,A and decay constants
fya/Vk wherek is an integer.

100 The value ofSin this case is

2

aa
W (D=L2)=
(7.17

i fa
S:4W¢"(l) —2— —2
my My

1. Dispersion relation: Shifman model

The imaginary parts ofr,(s) and Fx(s) are

1
Im Fy(s)=— wf@kzl E5(s—km\2,),

FIG. 13. TheN dependence of the analytic continuation error for c 1
the Breit-Wigner model. The ratig=I"y,/my=1I"o/m, is varied Im Fa(s)=— Wfiz —5(s—km,§).
from £=0.1 to £=1.0 at 0.1 intervals. Smaller values éfshow k=1 K
slower divergence.
Using EQq.(3.2), we recover Eq(7.17):
smaller values of shows slower divergence as expected, but

still diverges eventually. A closeup of Fig. 13 is shown in 2 2125 1 2 f2
Fig. 14. Even for the smallest value ¢fwe considered, S=dn|—-—|> —=4m{(2)| — —— |

namely £=0.1, the analytic continuation error quickly di-
verges beyond control above and includidg5.

The result of this subsection is discouraging. By compar-
ing Figs. 10 and 14, it is evident that there is no intermediat C R : e
value of ¢ for which both the fit error and analytic continu- he trivial limit fy = f,, andmy =m, in which case5=0. We
ation error are under control. Furthermore, we have discov\—NIII nevertheless impose the condition
ered that in order to control the truncation error, contrary to
expectation, we must increase the number of terms retained
in the large momentum expansidm without increasing the
order of the polynomiaN.

The first and second Weinberg sum rules cannot be im-
osed on this model because both integrals diverge except in

mZfZ—mafa=0 (7.18

which has the effect of making thest/term in the OPE of

F(s) vanish as required by chiral symmetry. We emphasize

here that this model is a toy model which is not motivated by

any particular field theory. The condition imposed here is
In the §-function and Breit-Wigner models considered in simply to make our model as a mock-up of QCD. We also

the previous subsections, both the vector and axial-vectaienote

spectral functions were each saturated by a single meson

D. Shifman model

pole. In this and the following subsection, we will look at ar ]
models in which an infinite ladder of poles contribute to each L i
channel. The models differ from each other in the spacing of i ]
the poles. 1 -
The model we consider in this subsection was introduced i 1
by Shifman in Ref[22]. Using the di-gamma functiot(z) (,? L i
given by ™~ 1
= ]
d I'(2) “ 1 1 122 ]
¢/(Z)—d—z|nr(2)—ﬁ——75—ngo(m—m), i
-1 —]
where— ¢(1)= y ¢ is Euler's constant, we define ]
1-simd)—p(1) & 2 1 - ]

Foe)= 2 PASMD 9 ):Erv y S i SV S B S|

S k=1 s—kmy, N
¢(1_s/mi)_ W1 fi 1 FIG. 14. Closeup of Fig. 13. The ratig=I"y,/my,=T,a/m, is
Fa(s)= f,2_\ = 2 varied fromé=0.1 to £=1.0 at 0.1 intervals. Smaller values &f

~“ K s—kmd )
S k=1 K s—kmj show slower divergence.
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e e e A —0.10 I T T
0 5 10 15 20 ' 5 10 15 20
N N
FIG. 15. TheN dependence of the fit error for the Shifman  FIG. 16. TheN dependence of the truncation error for the Shif-
model. man model.
2_f2_ g2
fV_fA_f*' f2_f2 f2| —g/ 2 _f2| —g/ 2
Fs)= (fy=fa) ye+[fUIn(=s/m§) — faln(—s/mj)]
Then, B S
M 2 2
2 1 2 r m\Z/ 2 1) Bn fV fA
fo= ﬁf*’ fa= ﬁf*' f=m—i, = S2n+1
and _ f2lg(Rimy,my) +In(—S/R)]

2
S= 477§(2)(1+r)—2
my
There is no simple way to relate, to f1c since the coeffi-

cient of 15 in the large momentum expansion of this model

diverges logarithmically for bots—0 ands—o°. where

2. ACD technique: Shifman model

S

"[(-1)"B,

M
2—x4n< )}

+E

n=1 S

2n+1

The large momentum expansion B{s) can be obtained _ 1 R
using the following asymptotic form of the di-gamma func- g(R,my,ma)=ye+ Elnm_ Elnm_
tion ¢(2): v A

M 1{mi+m3\ md
~In(z—1)+ +2> (CU%, 1 2 m-md) m2

#(z)~In(z—1) 5 2 o A~ My A

(7.19

where B,, are the Bernoulli numbers. Note that, unlike the

previous cases, this is not a convergent series but aYIamShed due to Eq

asymptotic one. In particular, the coefficients of the expani€™MS-

sion increase liken!. Recalling thaty(1)= — vy, we find

In this case, onlyh, is s dependent, and the sf/term has

(7.18, leaving only the odd power

For the fit interval, we chose,/m3=0.2 and R/mZ

and

[ ye+In(—s/m?)
fV(S)Nf\% YE(—V_

S

[ ye+In(—s/m?)
fA(S)Nfi YeT TR SA)

S

my,

2s?

M-, m{" ]

n=1

2n S2n+l

=6.5. This placed 6 vector resonances and 2 axial-vector
resonances within the fit interval. The fit routine was the
least-squares fit, and=m2/mz=0.4. The results are shown
in Figs. 15-17. The fit and analytical continuation errors
show the standard expected behavior: the fit error converges
while the analytical continuation error diverges.

The truncation error shown is calculated flghr=N+1.
Since only the first coefficienh,; has anys dependence,
including more thatM =N+ 1 terms in the large momentum
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1. Dispersion relation: Cotangent model

The imaginary parts ofr,(s) and F(s) are

20 —

Im Fy(s)=— wfsgl 8(s—(kmy)?),

%

Im Fa(s)=— wff\gl 8(s—(kmp)?).

6Ssc/S

Using Eq.(3.2), we recover Eq(7.2):

N|||||||||||||||||||||||||

2 fila 1 f2 14

I BT I R = - - — = L~
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_ S Again, the Weinberg sum rules cannot be imposed. This
FIG. 17. TheN dependence of the analytic continuation error for tjme instead of Eq(7.18, we impose the condition
the Shifman model. ' '
2 13
Y _ Ay, (7.22

expansion has no effect on the truncation error. The eventual my My

divergence of the truncation error is as expected since the
large momentum expansion of the Shifman model iswhich has the effect of making the coefficient of the/d/
asymptotic and not convergent as was the case with the prgerm vanish in the limit-s=Q?— . Again, we emphasize
vious models. However, it does stay within thel% range  that our toy model is not motivated by any field theory and
up to aboutN=11. this condition is just to make it mimic QCD. Note that in
contrast to all the previous models, imposing Eg22 will
make f2 smaller than f4 since we naturally assumm,
<m, . Therefore, we define

An infinite ladder of resonances does not necessarily lead
to an asymptotic expansion. Using the following convergent
expansion of the cotangent function,

E. Cotangent model

f2—f2=—2f2,

Then,
™ ot 1 < 1
—cotmz— —=2, ——, 2
2z 7 222 n=1 Zz—ﬂ2 f\2/: 2\/? f2 fIZA_ 2 f2 r:ﬂ
*x ! * ! [l
1—\r 1—\r ma
we define and
- f2
2[amy  [mys) m2] 1 S=8m¢(2)\r 5.
Fuls)= —5| —mcotl ——| - 2| =53 ————, my
m2| 24/s my ) 2s] k=1 s—(kmy)?
If we identify f2 with f2., setr=0.4, and use the larg¥-
] ] relation Eq.(7.8), we find
fa | mma [<7r\/§> ma - 1
A(9) m2| 2vs My | 25| AELs—(kmy)2 eTe
(7.20

The vector meson poles are located &my A, (k

=1,2,3...),with decay constant, .

2. ACD technique: Cotangent model

The large momentum expansion of our model function is
trivial since the defining equation, E¢7.20, is already in
the desired form. Imposing E¢7.22), we find

The expression fo8 in terms of the decay constants and
masses is given by

(m:—\/l—ilv) l C‘"( Tnf) B C‘“( %g

Note that this relation is exact. It does not involve any ap-
proximation. Since

5
.7:(8): ?

1
(7.23

2

f2 14 ™
S=4m{(2) - —| (2=5. (72D
my My
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VIIl. SUMMARY AND CONCLUSIONS

In this paper, we have investigated in detail the validity of
the analytic continuation by duality method in predicting the
electroweakS parameter in technicolor models. We first
identified the sources of error inherent in the ACD technique.
They were:

(i) the fit error 6Sg(N),

(i) the truncation errobS;,,{N,M), and

(iii ) the analytic continuation erra#S,c(N,M).

We then applied the ACD method to some toy models
with spectral functions and large momentum expansions
) N which mimic those of QCD and technicolor. In these toy
0 5 10 15 20 models, the spectral functions, the coefficients of the large

N momentum expansion, and the actual value of S were all
known exactly. Using this information, the dependence of
the three errors on the order of the fit polynoniiabnd on
the order of truncation of the large momentum expansibn
was evaluated analytically for each model.

limcot(z)=— lim coth(—iz)=-1, Based on these investigations, we conclude that the ana-
Zie —iz—e lytical continuation error is out of our control. This is not
surprising given the rather crude approximation involved.
Eq. (7.23 has a particularly simple form in the deep Euclid- The situation can be improved somewhat by _including_s:_he
ean region—s=Q2>0 where dependence of _the .Iarge momentum expansion coefﬁue_nts.
However, even if thiss dependence were known exactly, it
does not guarantee the convergence of the truncation error.
In applications to actual field theoretical models, the momen-
(7.2 tum dependence of the OPE coefficients can only be calcu-
lated perturbatively, giving rise to an additional source of
error. In fact, the error coming from the uncertainty in the
Therefore, the cotangent model is a rather unusual case RPE coefficients may be completely uncontrollable given
which the large momentum expansion has only one term. Athat the coefficients of the fit polynomial,(N) diverge in
a result, there is no truncation error. the limit N—oo. A further complication results from the fact

The fit interval used Waso/m\Z/:o,z andR/m\Z,: 5. This thatthe OPE is only an asymptotic series. Therefore going to
choice places 2 vector resonances and 1 axial-vector resbigher orders may not improve the accuracy of the estimate.
nance within the fit interval. The fit routine was the least- The fit error can be reduced by using a higher order fit poly-
Squares fit. We used= m\%/m%\: 0.4. The results are shown n0m|a|. Yet we f|nd that hOW fast it W|" Conyerge qep_ends
in Figs. 18 and 19. Here, one does not encounter any sugfeatly on the structure of the spectral function which is un-
prises. The fit error converges while the analytic continuatiorknown.

6Sfit/s

FIG. 18. TheN dependence of the fit error for the Cotangent
model.

2
*

A=) o

error diverges. However, one must go upNte=6 for the fit ~We therefore conclude that the ACD technique cannot
error to be within 10%. yield a reliable answer when used in the computatiof iof

theories such as walking technicolor where we neither have a

—_— good understanding of the particle spectrum nor do we know

the OPE coefficients except approximately. Even for QCD-
like technicolor theories, the fact that ACD reproduced the
dispersion relation result should be considered a mere coin-
cidence.

In retrospect, it is not surprising that the ACD method
fails to yield a reliable estimate @& given that it is the §
moment of the spectral function while the OPE coefficients
are all moments of order higher than 1. Mathematically, all
different moments of any function are independent of one
another and one cannot calculate one from a small subset of
others.

ACKNOWLEDGMENTS

We would like to thank L. C. Goonetileke, W. Loinaz, M.
FIG. 19. TheN dependence of the analytic continuation error for E. Peskin, D. Sundrum, and K. Takeuchi for helpful discus-
the Cotangent model. sions. T.T. would also like to thank the hospitality of the

056006-17



IGNJATOVIé, WIJEWARDHANA, AND TAKEUCHI PHYSICAL REVIEW D 61 056006

Fermilab Theory Group where a portion of this work was It should be noted that the norm is not unique. Different

carried out. This work was supported in part by the U.Sfit routines correspond to different choices for the norm. In

Department of Energy under Grant No. DEFGO02-the following, we will look at several popular nornise. fit

84ER40153S.R.l. and L.C.R.W. routines for determining theb,’s. They are all special cases
of L, norms which are defined by

APPENDIX A: FITTING ROUTINES 1p

fb|d(x)|pw(x)dx

In this appendix, we present the formulas for fitting a Idll=
polynomial ins,
N wherew(x) is some weight function.
s)= a,s", ,
Pn(S) n; n 1. Least squares fit

Perhaps the most popular of all fit routines is the least

to 1k in the intervalse[sy,R]. A simple change of vari- squares fit which minimizes thie, norm:

ables,
1/2
2 ~ R+sg =

b
— _pst _ fd(x)zw(x)dx
X=-pstd, P=g—c — .

The popularity of this routine is due to the ease with which it
can be applied.
N The unweighted least squares[fit(x)=1] to a continu-
BN(X): 2 bxX, ous functionf(x) in the interval[ — 1,1] can be obtained by
k=1 expandingf (x) in Legendre polynomials:

converts the problem to that of fitting a polynomialxn

to the function (—1)" d" -
Pn(x)= e ﬁ[(l—x )"

1
f(x)=——, q>1,
X—q The explicit forms of the first few Legendre polynomials are

. . - iven b
in the intervalx e[ —1,1]. Once thex coefficientsb,’s are g y

obtained, thes coefficientsa,’s can be determined from the Po(x)=1
relation

N N Pi(x)=x
D a,s"=—p> b(—pstq)* 1
A=0 =0 P,(X)= E(BXZ_ 1)

Explicitly, the expression foa,, is given by

1
P3(x)= 5 (5x*~1)

N
anzg

n

k
(n)(—p)”“q"‘”bk, (A1)

1
where Pa(x)= 5(35x4—30x2+ 3)

k k!
(n) - nl(k—n)!"

In fitting py(X) to f(x), thex coefficientsb,’s are deter-
mined so that somaorn® of the difference function on—1 n-1
Pn(x)= n XPp_1(X) = Tpn—Z(X)- (A2)

and the subsequent ones can be obtained using the recursion
relation

d(x)=f ()~ pn(x)
o Since the Legendre polynomials are orthonormal on
on[—1,1] is minimized. [—1,1],

fl Pr(X)Pm(X)dx= Omn»
-1

°A norm of a functionf(x), which we will denote|f||, is a func- 2n+1
tional of f(x) which satisfies the following propertieét) ||f[|=0 o _
with equality if and only iff (x)=0. (2) |\ f|=|\[||f]| for any scalar ~we can expand any “well-behaved” function into a Fourier-

N ) [f+al=llfll+]gl. Legendre series:

056006-18



ANALYTIC CONTINUATION BY DUALITY ESTIMATION . .. PHYSICAL REVIEW D 61 056006

©

2n+1 ?
(0= 3, 5 —caPr(x), == | (——E . ) (s)ds

where is minimized by choosing the coefficiengs, so that they
satisfy the conditions

1
Cn:f f(§)Pn(£)dé. (A3)
-1

o =0, i=0.1
6—ai—, 1=0,1,...N.

The series is truncated aftéf+1 terms and the obtained

po'ynomia' is our approximation tb(x) This leads to the SyStem of linear equations

N 2n+1 " . ,
2 5 CnPn(X):pN(X):kZO bkxk_ Z =UVj, |:0111 PR N!

Therefore, the problem is reduced to finding s and ~ Where
converting the Fourier-Legendre series into a power series. R R
The expansion coefficients, EGA3), for the function Mij:f s tiw(s)ds, Ui:J -1y (s)ds.
So So
1
=— >
fo=s—5 a>1L

q Therefore, the problem is reduced to that of inverting the

matrix M= (Mj;).
can be found by the so-called Neumann’s form{#4]

L(1PyD) G
Qn<q>=zjlq_tdt——5,

2. Minimax fit

The minimax approximation, also called the best uniform
approximation,minimizes the maxmal distance ma3gi(x)|

between the polynomig(x) and the functiorf(x) on the

where interval[a,b]. That is, it minimizes the norm
o (@ p qnd*] Il = max [a(0].
n(d _2 n(d q—l xe[a,b]
n—-1

} (This corresponds to thie,, norm though it is not obvious at
_22:_ 2n—4j— first sight. See Ref.28].)
2j+1)(n— J) Pn—2j-1(q) The minimax fit to the function

is the Legendre function of the second kind. By convention, f(x) = 1 q>1

P_,(q)=0. Therefore, x—q’ ’
N on the interva] —1,1] is given by([23], exercise 1.20, p. 45
== 2, (2n+1)Qn(q)P(x).

N N—1
~ -2t 4t
Pu(X) = 2, byxt= t"Th(X)
i : 2 2
The explicit forms for the first fev®,,(q)’s can be found, for k=0 t°=1 t°—1n=0
instance, in Ref[25]. However, the easiest way to calculate N1
the Q,(q)’s is to use the following recursion relations: B 4t T(X)
B 1I q+1l 1I R ( )
Qo(@)=7 =1 2"y where

T,(cosd)=cosnd

Q1(a)=9Q(q) —

are the Chebyshev polynomi#lsand

2n—1
Qn(@)=——09Qn-1(a)
n—1 1%n alternative definition of Chebyshev polynomials is given by
— = Qu-2(a),
(—1)"
T.(X)= — \/1x—1x“1’
For the more general weighted case, the integral () (2n—=1)!t L g
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t=q—o’—1. For the function
The x coefficientsb,’s are most easily obtained using the fx)— 1
explicit forms for the Chebyshev polynomials: (X)= x—q’
To(x)=1 the polynomial which satisfies this condition is given by
T1(x)=x N
P00 =2 CaUn(x),
T,(x)=2x2—1 A=
Ta(x)=4x3—3x where
=8x%—8x2 sin(n+1)6
Ta(x)=8x*—8x?+1 U, (cosh)= n(sme )

are the Chebychev polynomials of the second Kirehd
Subsequent Chebyshev polynomials can be obtained from

the recursion relation Un_n(Q)
Ch=—20——.
To 100 =2XTo(X) ~ Ty _1(). (A4) T Una(@

According to the Chebyshev theordi2B], [theorem 1.7, EXplicitly, the U,(x)’s are given by
p. 26| the difference function(x) reaches its extreme values

atN+2 points: at the ends of the interv@t s, andR) and Uo(x)=1
at N points in between. Once we have found the polynomial
pn(S) we can easily find the maximal distance U (X)=2x

1 Uy(x)=4x>—1

dmax= |d(30)| = S_O —Pn(So)-

Us(x)=8x3—4x

This distance may be used to find an upper bound of an

integral containingl(s), e.g. Usx)=16x*—12x2+1

[ datsrds = [ Iacs)lots)lds< du Ia(slas

and subsequent ones can be obtained from the recursion re-
3. Least-first-power fit lation

The least-first-power fit minimizes t norm:
P ey Un(3)=2xUp_3(x) = Uy (),

b
Hd||=f |d(x)|w(x)dx. which is the same as E¢A4).
2 To show thaipy(x), with thec,’s given above, does in-

The unweighted least-first-power fitv(x)=1] is of particu- deed satisfy the condition

lar interest as it minimizes the area enclosed by the graphs N L

f(x) andpy(x) for xe[a,b]. We have concentrated on this .

“Eni)nimalpaNr(e;" fit, bl 2 cUn(x))= x—q JTheNTLo(AB)
The minimal area fit for a functiof(x) can be obtained

with relative ease if the functiofi(x) is such that the differ- we start with the relationship

enced(x) = f(x) —pn(x) has at mosN+ 1 distinct zeros in

[—1,1] for any py(X). In this case, the polynomigiy(x) Un—n(®) =Un+1(@) Tha1(q) —Un(@) T 2(9),

which minimizes the unweightetd; norm in the interval

[—1,1] can be shown to satisf§23], corollary 3.4.1, p. 78 which follows trivially from trigonometric identities. From

this, we find
PO =F(x), j=1,... N+1, (A5)
where AN alternative definition is
_ (=D)"(n+1) 1 d"
X-—CO‘V. — 2\n+ 1/2
J +2 Un(X)_ (2n+1)|| md n[(l X) ]

056006-20



ANALYTIC CONTINUATION BY DUALITY ESTIMATION . .. PHYSICAL REVIEW D 61 056006

N N APPENDIX B: FORMULAS FOR CALCULATING THE
2 Unon(@DUn()=2Upns1(Q) 2 Trsr(@)UA(X) EXPANSION COEFFICIENTS FOR THE PERTURBATIVE
n=0 n=0 SPECTRAL FUNCTION
N In this appendix, we present the formulas for calculating
_ZTN+2(Q)nZO Un(@)Un(x). the expansion coefficients for the perturbative spectral func-
tion.
(A7) Let us write the perturbative model function as

The sums on the right-hand side of E4\7) are obtained B+1
from specializations of the Christoffel-Darboux formula to FpedS)= 2— ’Bln,B 1)

Chebyshev polynomials in literature on special functions

(e.g. in[27]). After some rearrangements on the right-hand
side, —[2+V1-4xin(—x)
N
Un+1(X) =Upn+2(a)

2 Uno Un(x)= . (A8 1-4x+1

2 Un-n(@Un(X) — (A8) _zman
Since where

UN+1(X]')=O, J=1,,N+1, m2
XE?, B=+1—4x.

the formula(A8) yields

The factory1—4x can be expanded into a Taylor-McLaurin

N
z U (xi)= 1 series for smalk (i.e. for larges) using the Newton binomial
UN+1 o N @Un(x; xi—q’ formula

ji=1,...N+1,

=2 | 2](-x=3 g
n=0 n=0

S5 N

which proves Eq(A6) with the c,,’'s given above.

4. Comparison of the fit routines where

The Legendre polynomials, used in the unweighted least 1
squares fit, are orthonormal ¢r-1,1] with the weight 10n >
the other hand, the orthonormality relations for the Cheby-
shev polynomials are 0

(i) first kind (minimax fit)

1 1 ™
f T T Ta(0X= 5 (Bt S0,

(i) second kindleast-first-power fijt (- 1)"Y(2n—3)!!

(n=1).
1 T 2"n!

f \/1—x2Um(x)Un(x)dx=§5mn. _ _
-1 [We use the convention{1)!! =1.] Therefore, we find the

_ following recursion relation fog,,:

If we use the relations

2(2n—-3)
sin(n+1)6 9=l = %1 (N=1)
T,(cosf)=cosnd, U,(cosh)=———,
siné
Similarly,
we note that the above orthonormality relations are simply -
those of trigonometric functions. F(x)= v1—4x+ 2 9n =1+ f "
Clearly, if we take the unweighted least squares fit as 2 n=1 2 ="

“unbiased,” the minimax fit is “weighted” towards the
ends of the interval while thaunweightedl least-first-power so that the function f(x)} can be expanded into a Taylor-
fit tends to be better in the middle of the interval. McLaurin series using the formu(26]
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In{f(x)}= mE:l o X™,

where

m—1
mly=mf,— > (M=Kl .

k=1

Therefore,

Vi-4x+1 - - -
1—4xIn = 2 g X Inx"| =2 hix,

n= m= i=0

where
i—1

hizz gJII—J

j=0

PHYSICAL REVIEW D 61 056006

2 rR 1 N
5Sm=m—f4m2d5[—— > a,(N)s" |~

K S n=0

_i Pr 2|4 . n+1
—quo d,BB[l 2 ay(N)s

N

Br
27T|:?_2 an(N)In 1
where
B 4m?
ER_ - R 1

and the integrals

_[*r 2an+1_ 2n+1fﬁFa B
In_fo dg s (4m?) . dﬁ(l—ﬂz)““

E(4m2)”+1Jn

We can of course use symbolic calculation programs sucf@" be calculated using the recursion relation

asMATHEMATICA or MAPLE V to obtain the expansion coef-
ficients explicitly. The first 10 terms of the expansion are

given by
2 1 2 1
— 47 Fped S)=X) —In X +21+x52In X +2
1 1
x3{2In<——)—1 +x4 4In(——
X X
sl 101 1)\ 59
3" "% "6
+x%) 28] +x'1 841 !
x8 n 15 X n X
141 of 2641 1\ 3225
T “x)” 105

ool gog ] L] 42969
X x|~ 420
sssorl L] 43770
X" |t

APPENDIX C: FORMULAS FOR CALCULATING THE
ERRORS FOR THE PERTURBATIVE SPECTRAL
FUNCTION

+x10

The fit error for the perturbative spectral function

2

1 m 4m?
———Bb’(s 4m?),

p=\1- 4~

IM FoeS)= S

can be calculated analytically as follows:

1+ Br
1-6r

:—In

|-
(2n—3) . 1 B (n=1)

=l——1Jh 1t = ——— (n=1).

n 2n /" 2n (1-p2)"

The analytic continuation error is calculated as follows: Note

that the coefficients of the large momentum expansion can be
written as

- - R
hi(s)=f,lnﬁ+gi=filn?+ filnﬁ+gi
-s .
=f||nﬁ+h,
Therefore,
=—zjg ds——EN: ai(N)s' EM: hIn_—
ne i Jis=r |s =0 =1s R

The integrals in the above expression are straightforward:

Rk+l

—S
fﬁ ds In—=2i (k#—1)
lsI=R R

3§ dsI -s 0
—In—-=0.
si=rS R

k+1
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Since the calculation oS,¢p is trivial, and the exact
value of S is known, the truncation error can be obtained
from

OSyunc= S~ Sacp— 9Sac— 05t -

APPENDIX D: FORMULAS FOR CALCULATING THE FIT
ERROR FOR THE BREIT-WIGNER MODEL

The fit error for the Breit-Wigner model,

\/EI‘V 2 \/EFA
(s—md)2+sTZ  A(s—m2)2+s2’
(D1)

Im F(s)=—f2

PHYSICAL REVIEW D 61 056006

g2+ 2kqcog a/2) + k2
fi(qikva): n
2 cosal2) g% 2kqcod al2) + k?
. 1 t“2kqsin(a/2)
sin(a/Z)“rca" o q?
and
b
cosa=— ——, k=c¥=m.
2\c

Although Eq.(D3) is convenient for calculations, we pro-

can be found analytically. From the expression for the fitceed to derive an explicit expression fqrsince, for largen,

error,

N

> a,(N)s"

n=0

ImFA(s), (D2

g_

R |1
5sm:—4J ds
So

and Eq.(D1) we conclude that all the involved integrals have
the form of the following indefinite integral:

Sn—l s 2n
PSR . S,
(s—m?)2+sl'? q*+bo?+c
where
b=T2?-2m? c=m* (b%>-4c<0).

It is straightforward to derive the following recursion rela-
tion for the integrall ,,:

2n+1

q

2n+1 (D3)

Ins2 —blpii—cly,

with 15 andl, found from tablege.g.[29]):

1
f+(q’k7a)l

|:_
O 4x3

1
|1:@f—(q.k,a),

wheré?

2For g>k we must addr to the (negativé principal value of the

this provides better numerical accuracy. The recursion rela-
tion, Eq. (D3), is equivalent to the following second-order
linear difference equation:

2n+1

2 P
A%+ (b+2) Al + (bt e+ D)l p= 5,

(D4)

where

Alp=lni1—1y.

Equation (D4) with “boundary conditions” atl, and I,
(which are, in turn, given by the explicit expressions above
is analogous to a boundary value problem for the corre-
sponding differential equation. The general solution of the
homogeneous equation corresponding to &4) is

J,=p"(Acosna+Bsinna),

wherep=\c=m? and a are the modulus and the absolute
value of the argument, respectively, of the solutions of the
auxiliary equation for Eq(D4). The (discontinuousGreen’s
function for the problem is constructed by takitg(n;j)

=0 for n>j and matching this solution to the general solu-
tion atn=j+1 [30]; the result is

n-—j
<

=

G(nij)=——sinn—j-1)a (n<j).

p-Sina

The solution of Eq(D4) which satisfies the boundary con-
ditions consists of a particular solution which accounts for

arctan function. This can be seen from the fact that the integrand dhe inhomogeneityl+ 0;1,# 1) of the boundary conditions

o+ 14 is positively definite and thuky,+1,>0 which means that
the arctan must be positive as well.

and of a sum involving the Green’s functiganalogous to
the integral that would appear in the continuous tase
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n—1 With a bit of clairvoyance, this result can be derived from
I”:sina I;sinna—plgysin(n—1)«a the formula[31]
n i n+lq; n+2q;
_ rsinag—r""=sin(n+1)a+r""“sinna
n-2 pim1gi+t E risinja= n ) 5
+> 2j—+lsin(n—j—1)a (n=2). =1 1-2rcosa+r
i=o0

(D5)

by switchingn—n—1, takingr = p/q? and then integrating
overq.
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