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Orthogonal ensemble of random matrices and QCD in three dimensions
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We consider the parity-invariant Dirac operator with a mass term in three-dimensional QGR=f& and
quarks in the fundamental representation. We show that there exists a basis in which the matrix elements of the
Euclidean Dirac operator are real. Assuming that there is spontaneous breaking of flavor and/or parity, we read
off from the fermionic action the flavor symmetry-breaking pattern $§4-Sp(2N¢) X Sp(2N;) that might
occur in such a theory. We then construct a random matrix theory with the same global symmetries as
two-color QCD; with fundamental fermions and derive from here the finite-volume partition function for the
latter in the static limit. The expected symmetry-breaking pattern is confirmed by the explicit calculation in
random matrix theory. We also derive the first Leutwyler-Smilga-like sum rule for the eigenvalues of the Dirac
operator.

PACS numbse(s): 11.10.Kk, 11.30.Er, 11.30.Fs, 11.30.Hv

I. INTRODUCTION compiled[6,7]. It was also demonstrated, by incorporating a

It has b K f | that the ei | schematic temperature dependence corresponding to the low-
as been known for several years that e eigenvalu€sq vatsubara frequency into the matrix model, thatis
of the Dirac operatory,D,,, derived from QCD in a finite

) independent of temperature up to the critical temperature of
volume, are constrained by sum rufed. These sum rules, o model8,9]. A discussion of universality in the presence
originally derived by Leutwyler and Smilga, can also be 0b-4f 5 nonzero chemical potential was given[ir0]. The uni-
tained from a random matrix theory with the same globalyersality was also demonstrated numerically in a number of
symmetries as QCD. This was originally demonstrated b)bapers. More recently, it was shown tha(\) does not
Shuryak and Verbaarschfz] for QCD in four dimensions  depend on the matrix potential chosen for the random matrix
with quarks in the fundamental representation and colotheory (RMT) [11]. This comes about because the differen-
group SU3). Subsequently it has also been demonstrated fofial equation determining the orthogonal polynomials corre-
SU(2) with fundamental fermions and for adjoint fermions sponding to the matrix model is independent of the choice of
(N.=2) [3]. (polynomia) potential in the microscopic limit. The orthogo-

The random matrix ensembles corresponding to thessal polynomials in turn completely determine(\) and
various types of theory reflect the respective structures of thhigher-order correlatorpg(\, ... \,) in the microscopic
matrix elements of the Dirac operator in the three cases anlimit.
are labeled by a parametgr For the case oN.=2 (where The reason for this universality is that both QCD and the
N, denotes the number of colorand fundamental fermions, corresponding RMT can be mapped onto the same low-
there exists a basis in which the matrix elementsygD , energy, effective partition function. This was first noticed in
are real. The corresponding matrix ensemble has orthogong?] and further elaborated on if8,4,6,13. This partition
symmetry and is labele@=1. ForN.=3 and fundamental function expresses the quark mass dependence in the static
fermions, and for arbitrarfjN.=2 and adjoint fermions, the limit and in a finite volume. The range of volumes consid-
corresponding matrix ensembles have unitary and symplectiered is the so-called “mesoscopic range.” We can think of
symmetry, respectively, and are labeled®y 2, 4. this as a box of siz& such thaﬂ_>A5éD, whereAqcp is

The sum rules can be expressed using the so-called mihe QCD scale paramenter, so that only the low-lying exci-
croscopic spectral density, denoteg{\), of the distribution  tations (Goldstone modegscontribute to the partition func-
of eigenvalues of the random matrix model. It is obtained bytion, butL<)\§ (where)\g is the Compton wavelength of the
magnifying the spectral density in the vicinity of the origin Goldstone modgsso that we are dealing with the static limit
(A=0) on the scale of the average eigenvalue spacingof this partition function(no kinetic termg
which for interacting quarks and a nonvanishing spectral In fact, this effective partition function is a function of
density at the origin is given b~ ! (N here is the size of one scaling variablé1Vs,, where M is a mass matrixy the
the random matrices This microscopic limit is to be con- space-time volume, andl the chiral condensat@ssumed to
trasted with the largéN limit, in which the eigenvalue den- be nonzerp In the RMT the space-time volume corresponds
sity smoothes out to some distribution whose macroscopit the sizeN of the random matrices. The Banks-Casher
shape depends on the matrix potential. relation[13]

Originally, it was conjectured on the basis of the work in
[2,4,5 that pg(\) is a universal quantity that depends only

, mp(0)
on symmetry. The sum rules were determined for a number S=
of cases and further evidence for the proposed scenario was v

@

relates the density of eigenvalues of the Dirac operator at the
*Email address: blom@to.infn.it origin, p(0), to this condensate in the thermodynamic and
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chiral limits (taken in this order The spacing between ei- For all them;=0, the above Lagrangian is invariant under
genvalues is thus-V ™1, as opposed to~V~Y# for free  parity P, but the mass term breaks thsinvariance. The
quarks in 4D. parity transformation in 3D is defined by

The relationship between random matrix theory and
finite-volume partition functions has been clarified further by P(1,X1,X0) — y1h(t,— Xq1,X5),
Damgaard, and by Akemann and Damgaard in a series of
paperql4]' Ao(t,xl,XZ)—>A0(t,_Xl,Xz),

In this paper we will consider QCD in three Euclidean
dimensions and we will tak;, the number of quark colors,
equal to 2. The quarks are in the fundamental representation.
We will show that also in three dimensions, there exists a
basis in which the Dirac operator fof;=2 has real matrix
elements. In the spirit of the universality conjecture, we will
construct a random matrix theory with the same global sym . . . .
metries as the gauge field theory. The average of the fermioff @SS term .'f we take, instead of the a four-dimensional
determinant over the gluon field configurations is in this ap_representatlon of the,
proach replaced by a Gaussian average over an ensemble of .
random Hermitian matrices. From this average we will ob- 02(03 0 ) 1:('01 0 )
tain, using a supersymmetric formalism and through the Y 0 -—o3)’ Y 0 —ioy)’
same kind of steps as {2,3], and in[8] for QCD in four
space-time dimensions, the form of the low-energy QCD (iaz 0 )

V2=

Al(t,xl,XZ)g’_A]_(ty_xlixz)! (3)
Ax(t,X1,X2) = Ax(t, —X1,X2).

We can define a parity-invariant Lagrangian with a nonzero

partition function. Assuming that spontaneous breaking of (4)

global flavor symmetry may occur in such a theory, we will

obtain the pattern of such a symmetry breaking. . . .
Except for being of purely theoretical interest, three-and moreover introduce a>44 mass matrix corresponding

dimensional QCD may be relevant for studying the behaviof© flavorf:

of QCD near the deconfining phase transition and for lattice

computations. In Euclidean field theory, at finite temperature

the integral over the four-momentum componénptis re-

placed by a sum over Matsubara frequencies and one is left

with an effective three-dimensional field theory. On the lat-The Dirac operator is then sandwiched between four-spinors

tice, it is faster to simulate two colors than three. Thereforg ¢;y,). In terms of two-spinors, this representation corre-

the sum rules derivable froMN =2 may be easily checked sponds taN; two-spinors¢ with mass+m;, andN; two-

0 _i0'2

®)

1 0)
0o —-1)°

Mf:mf<

numerically. spinorsy; with mass—m;. UnderP the mass terms for the
In the next section a basis is constructed in which thQWo-Spinors Change Sign7 so that if the two sets of two-
Dirac operator for S() color is real. In Sec. lll the spinors transform into each other inZ transformation

symmetry-breaking pattern is discussed. In Secs. IV and Vg, v, the total Lagrangian is invariant under the com-
random matrix theory is used as a starting point for derivinghined transformation® andz, [15]. We can use this fact to
the low-energy partition function and the flavor symmetry yrite down a @,Z,)-invariant Lagrangian in the fundamen-
Srefiklgg pattern. In Sec. VI the corresponding sum rules argy| representation with an appropriate choice of mass term:
erived.
1 2N N 2N
Il. DIRAC OPERATOR IN 3D L=— ZtrF2+fE iD w—fE msihit > My
= = “Np+1
In three-dimensional Minkowski space the QCD Lagrang- (6)
ian is given by

N (We could also have some components with zero mass, but
f

1, — . in the following we will not consider this possibility.
L=—ZtF +f§=:l e(iD —my) iy , ) We now proceed to discuss QCD in three-dimensional
Euclidean space. The part of the Lorentz-invariant Lagrang-
where F is the gauge field tensofp=y*D,, D,=d, ian involving fermion fields is given by (DD +my) i

+iAZTa/2 is the covariant derivative for SB), andm; is  where ¢ denotes the Hermitean conjugate, the masses are
the quark mass corresponding to flavory; are quark chosen in pairs of opposite sign like in E6), and from now
spinors in the fundamental representation &iglthe flavor on D denotesy,D, with the Euclidean gamma matrices
index (the indices corresponding to color and spin are supy,=03, y1=01, v,=0, satisfying{y, ,y,}=248,,.

pressefl The lowest-dimensional representation of is In four dimensions, we can find a basis such that the
given by the Pauli matrices’=o3, y'=ioy, y*=io,. In  Euclidean Dirac operatdid has real matrix elements. The
this 2D representation, there is no chiral symmetry, sincegeason is that this operator posseg$esN.=2) an antiuni-
there is no X 2 matrix that anticommutes with the, . tary symmetry[ 3] expressed by
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HereC is the (Minkowski spacg charge conjugation opera- 7272 (13
tor, 7, is a Pauli matrix in color space, addenotes com-

plex conjugation. It is easy to show that in 3D, an identical 2N

relation(7) holds for the fundamental representation. For Eq. :f d3x3 D l/ff_ 0 — 0,7

(7) to ho_ld,C s_hould satisf;CyZC*: — Yy (wh(_areyﬂ are 2 =1\ oprpif) \ 027D 0

the Pauli matricesyg=o03, y1=01, y,=0a,) which is pre-

cisely the condition for the charge conjugation matrix in % P 14
Minkowski space. By explicit calculation we find oomoti] (14
C=ioy, ®  This expression is invariant under SpN4 transformations

in flavor spacd18]. This is similar toN; flavors with color
whereC is the 2<2 charge conjugation matrix satisfying symmetry group S(2) in four dimensions, where the flavor
—C=CT=C'=C™", C*>=—1. As we will now show, the  symmetry group for zero mass gets enlarged toNi)Z17].
antiunitary symmetry operat@r,K defines a basis in which  The vacuum state will break this symmetry. Assuming the
the matrix elements ofld are real. This basis is simply de- complete axial group is brokefmaximal breaking of chiral
fined by symmetry, only the symmetry subgroup of SpP) that

B leavesy ¢ invariant will be unbroken. The chiral condensate
CroKihe= . 9 for each flavorf has the same sign as the mags Rewriting

. . the mass term in the form
Since C,K)?=1, such a definition makes sen$By con-

trast, in trying to define adjoint fermions in Euclidean space, 2Ng 2N; _

) T — 1 i\ [ 0 mg\ [ ¥
the square of the corresponding antiunitary operator is E Mys == 2 _ _ (15)
The Majorana condition then makes sense only if one intro- f=1 271 g/ \mp 0 s
duces conjugation of the second kingl* = — .) From the _ _
antiunitary condition it follows that and rememberingicf. Eq. (6)] that them; form a diagonal

2N¢ X 2Ns matrix in flavor space,
7CiDCr,=—(iD)*. (10
m O

By using Egs.(9), (10) and the properties of it immedi- 0 —-m/’ (16)

ately follows that the quantity,'iD ¢ is real, wherey,
denotes the basis vectors in E§). Therefore, the matrix with N; of the masses equal tom andN; equal to—m, one
elements(y,|iD | ) are real in this basis. The fact that the immediately sees that Eq15) is invariant under the sub-

Dirac operator can be real was also used1i]. group Sp(MN¢) X Sp(2N¢). The symmetry-breaking pattern
Sp(4N¢) — Sp(2N¢) X Sp(2N¢) will be confirmed below by
. DISCUSSION OF THE FLAVOR an explicit calculation in random matrix theory.

SYMMETRY-BREAKING PATTERN

. L . IV. RANDOM MATRIX THEORY
Before doing the calculation in random matrix theory, we © ©

will now d[scuss the symmetry-breaking pattern we expe_ct to The Dirac operatory,D, in the 2X2 representation is
obtain. This can be read dft7] from the form of the fermi-  anti-Hermitian. To construct a random matrix ensemble

onic action which is Hermitian and has orthogonal symmetry, we there-
fore substitute the average over gluon field configurations of
2Ng the Euclidean fermion determinant
SF:J d* 2, gr(D+mp) gy, (12)
f=1 2N¢
Z(M)= dAle det( D+ m,)e SIAl (17)

where they matrices areyp= o3, y1=01, y,=0, andD,
is the covariant derivative for the $2) color group. Now it
is easy to verify tha'D,TL:—TzDﬂz and O—;I;:—O-za'#a'z (where S[A] denot_es tht_a Yang-Mills action for SP) in
and therefore, keeping in mind that til¢ are anticommut- three Euclidean dimensionsy;=m for f=1,... N and

ing, m;=—m for f=N;+1,...,N;) in the partition function
defining QCL} with an average over a real Hermitian ran-

7Y R — (12) dom matrixR. We then get a matrix model

2N¢
where ther’s are in color space and thes in Dirac space. Z(m)=f DRe—NEZIr(RZ)H detiR+m;). (18)
We can then rewrite the fermionic action as f=1 f
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R is here taken to be a matrix of sidxX N, andDR is the  tors and matrices. In E¢20) we have only the “fermion-
invariant (Haa) measure. We take the total density of zerofermion block™ of [20], since our integration variables are
modes(number of small eigenvalues per space-time volumepure fermionic. Our integration measure is
to be fixed, so we can identifyl with the space-time volume N N
[2]. We call the total number of flavors\2, since we have B %
N; fermion species with mass and N; with mass —m. H Dd’f_fl:[l i[[l dep*depy @D
Assuming there is a spontaneous breaking of flavor and/or i
parity, we will find the pattern of flavor symmetry breaking, 10 Perform the integral over the random matfxwe com-
while parity will remain unbroken. It was shown ja9] that  Plete the square in the exponent of E48) according to
parity is spontaneously broken by the appearance of an
anomalous parity-odd Chern-Simons term at the quantum
level in QCD in three dimensior{indeed, in any odd dimen- VNIR;— VNIR; +
sion) for an odd number of massless fermion species. For an
even number of flavors, the anomaly does not appear, and 1 o o
with our choice ofP-invariant masses, parity remains unbro- Cij=5 2 (o ph+ di* o) (22
ken also at the quantum level. f

As we will see,, is the value of the order parameter for and perform the Gaussian integral. Here we take care that the
spontaneous symmetry breaking, matrix C has the same properties Bqreal in the extended
sense of the supersymmetric formalism and Hermjtian
Therefore we have symmetrized the indideg and used
Rij=R;i in completing the square. Since Grassmann inte-

. grals are always convergent, and the integralDiR are
Its absolute value will be the same for each flafb2]. In  yniformly convergent in the fermionic variables,
order to evaluat&(m) and perform the integration over the

1
Ci
2Ny, "

1 9
S=—lim lim—=—=—=InZ(my, ... my). (19
mf—0 NN dMg f

random matrice®, we write the product of fermion deter-
minants as an integral over Grassmann fields: J DRJ l_f[ Dd’f:f l_f[ D‘i’ff DR. (23
I1 detR—im;) The substitution(22) yields, after performing the Gaussian
f integration,
. . i
=JH D@exp[—E " (R=img);; 6. (20 f 1 g [ ¢ (0 —1)
Z(m)~ D ¢iexpy —— = ;
f T (m) l—f[ bt ANSZ 22 11 o
Here the indices, j run from 1 toN. We will make use of the R
supersymmetric formalism developed[R0D]. We use conju- J imS S .
gation of the second kindp** = — ¢, for Grassmann vari- X ix +imy 4 bt Pt - (24)

ables(see Appendix A of the reference just quotedhis
formalism was developed to deal with integrals over bothNow introduce a block-diagonal Nk X 4N; matrix | such
commuting and Grassmann variables, involving graded vechat

' 0 -1 i
PR b
¢y 0 -1 ¢ i
. _ @ Py
B s L [
T ¢i* f 1 0 d)j* f— : f=2 . | | f=2
b ool |
¢ f=2N; 0 -1 ¢ f=2N;
1 0
4N¢ . .
=3 i@} (25
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In I, each 22 block is labeled by a flavor indek but  (in the last two expressions a sum over repeated flavor indi-
rearranging the ®; two-component Grassmann vectors intoces f,f’,g,g’=1, ... AN is understood Performing a
large vectors of size M;, we get now a doubling of the Hubbard-Stratonovitch transformati¢20]
indices so that hereaftdr g go from 1 to 4N; and simply 1
!abel the components in_qu5). We now rewritg the square  exg — angng]~f dafgexp{ ~ 2,101 ioigFigls
in the exponent as the difference of two tertwhile remem- 27)
bering that thep; are anticommuting

whereoy is a real variable, the integral in E(24) becomes

2N¢ [ _ i 5
{E ( ; ) (O 1)( ; ) 1 Z(m)NJ H D¢fD"1D‘TzeXp|’—16N22tr[(al+iaz)
f f

=il \1 0"
4N¢ 2 ) ) ) ) )
:{2 q)if|fgq)4 x(aI—mg)]—.Z fZg Di(o1+i07) gDy
f.g
1 i i i igT T i T j
:—Z(CID'f@'nglff/CI)Jf,tbg,I;g)z +'; f,%,g Pyl grglor=ia)gil 11 Pt
1o i il T \2 +i22<1>i£/\/l P! (28)
+Z(beq)g—|ff/q)f,q)g,|g,g) T f2 fg¥g
=_£|:2 +EI~:2 (26) where the masses have been rearranged into an antisymmet-
4949 ric matrix
0 m
-m O
0 m
-m O
M= 0 -m . (29)
m O
0 —m
m O

In Eq. (28), Do; is the Haar measure for the real antisym-and the integration oveDA, and subsequently performing

metric matrixo; . The o; should be chosen antisymmetric in the Grassmann integrations, we arrive at

flavor indices sincéd¢ andl~:fg are antisymmetric, so as to

preserve the symmetry oZ(m). Setting —o;—io,=A,

whereA is an antisymmetric complex matrix, we end up with Z(m)~f DA exp{—ANZ2tr(AATPRN(A+ITA* | + M),
(31

Z(m)~f 11 D@f DAexW'—lBNEZtr(AAT)
f where we have rescaleklby a factor of 2. In Eq(31) “Pf”

denotes the Pfaffiafsquare root of the determinardf the
@i} (30 matrix. Note that the Pfaffian of an antisymmetric matrix is

always well defined. This is our expression for the partition

function. In the next section we will evaluate it using a

Interchanging again the order of the fermionic integrationssaddle point analysis.

M
A+|TA*|+7

+iY, O
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V. SADDLE POINT ANALYSIS OF THE PARTITION FUNCTION

To begin evaluating the partition function, we will now decompose the antisymmetric n#atirix (31) into “polar”
coordinateg21]. This can be achieved for an arbitrary antisymmetric matrix by setting

0 M
_)\l 0

0 X\,

A=UAUT, A= —A O

0 Ao,
—Aon, O
A =N\o= .>)\2Nf>0). (32
|
U is unitary. The integration measuaepriori becomes the saddle point in\ at M =0 and then expand the Pfaffian

at this saddle point to first order i to see the symmetry-
breaking pattern. AtM =0 the integral takes the simple
f DAIJ DUDAJ(A). (33 form
U e U(4Ng)/[Sp(2)] 2Nt

The integration over the coset I[Sp(2))>Nt ensures 2 T

that therg is a one-to-one corregslgztgenpc(e )k])etween the inte-Z(mzo)NJ DUDAJ(A)e N 14 det5U2AUT)
gration variables ifA and those iU AU (cf. [21], Chap. 3.

The Jacobiad(A) was not found if21]. We calculated it

and found that it is indeed a function af only, and that it is Nf DUJ
of orderN; . Indeed, it could never be of ordisk therefore it

2Ng

11 d)\fexp[m\]()\l, A,
f=1

must drop out at the saddle point inasN gets large. This 2 2

will always happen in any similar calculation, so that it is not —4NZ Zf (2hp)"+ NZ e (36)
necessary to know the exact form of the Jacokién), as

long as it is a function ok only. where we have used that the symplectic matrices are unimo-

However, the presence of the matrideimits the U in-  dular. The saddle point is at

tegration to be over the subgroup Sp@. This is evident

when we consider that the matrix that block-diagonalizes 1

A also block-diagonalized’=A+1TA* | = A—1A*I: Ne=+— (37)

N
A=UAUT, A’=UA'UT, (34 we will now discuss the choice of saddle point manifold. In

[20], the saddle point with an equal number 6f and —

signs was singled out because for the other potential saddle

points, the integrand and measure became independent of

some Grassmann variables in the supersymmetric Hubbard-

Stratonovitch matrices. Integrating over these Grassmann

A'=A-UTIU* AUTIU*. (350  fields then set&(m) to zero. Here, we get the same saddle

point, but for a different reason, since oats have only

We can choos#l such that the eigenvalues Afare ordered commuting variables. We can always redefine the angular

like in Eg. (32). But bothA andA’ have the block-diagonal matricesU so that\{=0 [cf. Eq. (32)]. Therefore, we can

form appearing in Eq(32). Therefore also the second term choose the positive sign in E(B7). However, assuming the

in Eq. (35) has to have this form. Sinde\| = — A [note that  flavor symmetry is broken spontaneously, the condensate for

we could have chosen any one of three equivalent forms fogach flavor has to have the same sign as the mass. This is

I that are all invariant under the symplectic group, by simplyclear from the proof of the Banks-Casher form{i&]; see

rearranging the components ; ( [18], paragraph 1098 also Ref.[12]. Since half of the masses are negative we

and all of these forms satisfyA| = — A], that means that in should chooséZ|=—3 for half, and|>|=+3 for half of

Eq. (35) UTIU*«=l. But UIUT=1 is equivalent toU the \¢ at the saddle point.

e Sp(4N¢). ThenA’=2A. Like in [2,3] we will determine Therefore, our saddle point should be

since the values of the matrix elementsfofind A’ do not
enter in the “angular” matrices), but only determine\ and
A'. Therefore,
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0 1
-1 0

0 1
1 -1 0
(38)

m>
=i
IN
7l
o
|
H
I
|
Al
(&)

We now expand the determinant for smallt#0 at A The number of broken generators isl%l, which is also the
=Asp. In Eq.(31) the matrixA+1TA*1 + M is antisymmet-  number of unbroken generators.
ric. This means that the square root of its determinant is a
positive real number. This is confirmed by inspection of its VI. SUM RULES
explicit form. We can therefore write
To derive the first sum rule we will closely follow the
det2(A+I1TA* | + M) =detV*(A+ I TA* | + M)detV* method explained ifi3]. The sum rules are obtained by ex-
T panding the expression fat(m), Eq. (41), and comparing
X (AT AL+ M). (39) the coefficients order by order im? to the (normalized
This way our final expression for the partition function will expectation value of the fermion determinant:
be manifestly real after expanding the integrand. We then get < >
. (42

I1 11

f N0

Z(m)~f DUdet(U2A U+ M) det'

The expectation value is defined as

X (U*2A5,UT+M)
— S[A] k2
~f DU def(U2A 4, UT) det(U*2A,,U") JDAe (lk]f M )f("’m)
(f(A,m))= , (43
N 1 DAe A ] 2| £(\,0
xex;{—trln 1+U*—A51UTM) f lkl )TN0
4 2 P
N 1 where A is the gauge field an® A] the Euclidean Yang-
+ Ztrln 1+U EAS;UTM” Mills action. Expanding the integrand in EGt1) the O(m)
term is destroyed by the group integration. The surviving
T group integrals at ordem? have the form(using the same
OCJ DUEN* Re UM (400 notation as if3])
to fir;t order inM, where we haye used thgt for_a symplectic {(X)= f DU tr(UJUTX)tr(U*JUTX),  (44)
matrix detU) =1 [18]. The matrixM was given in Eq(29) UeGH

andJ is defined in Eq(38). In the final expression faz(m),
whereG/H is the coset ank=—NXmJ. We now choose
Z(m)~ DUENS Re trUIUTA) generatorsty, k=_1, . M for_the U’s that are real and
SHAN)/[SH2Np) X SK2Ny)] ' antisymmetricM is the dimension of the coset:
41
“1 _ AN¢(4N¢+1) 22Nf(2Nf+1)
the DU integral goes over the coset space - 2 B 2
Sp(4AN;)/[ Sp(2N;) X Sp(2Nf) ], due to the structure of the
matrix J: it is invariant under the unbroken subgroup We also wish to choosg such thatM=—mJ=mt;. M is
Sp(2N;) XSp(2N¢). We have thus obtained the flavor a 4N;X4N; size matrix. Therefore we normalize the genera-
symmetry-breaking pattern Sp{¢) — Sp(2N;) X Sp(2N;).  tors so that

=4N?. (45
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tr(tyt;)) = —4N¢dy . (46) U(N;)/[U(N¢/2) X U(N¢/2)]. In Eq.(52), d is the size of the

matrices of the coset. These two factorsdafome from the

[Note that for anti-Hermitian generatofeeal and antisym-  normalization of the generato(46) and from trg2), and the
metric) the minus sign is necessafyt is then easy to show factor of 1 comes from the expansion of the exponential in

that for any two matriceé\ andB, Eq. (41). As shown by Eq(39), tr(UJUT M) must be real in
M our case, so there should not be any additional factors of
z tr(At)tr(Bty) = — 4N(tr(AB). (47) [as seems to be the case in 4D, probably because the group
k=1 integrals of the typefdVtr2(VX) vanish (at least for large
_ enoughNy); cf. [3]].
It was proved in[3] that {(t;)={(ty)="--={(ty) and
therefore
VIl. SUMMARY AND OUTLOOK
M
1 .
t)= — DU tr(UJUTt,) tr(U*JU't,). (48 We have derived the mass dependence of the low-energy
{(ty) M k§=:1 J ( ) tr( 0 (48) effective partition function for parity-invariant QCD in three

. 5 . ) dimensions with two quark colors using as a starting point a
Using Eq.(47) and trg“) = —4N; we now immediately see random matrix theory with the global symmetries of this
that gauge theory. The motivation for this was a universality con-

jecture according to which the global symmetries of the
1 . )
{(X)=—vol(G/H)(NZm)?(4N;)?2. (490  gauge theory determine the low-lying spectrum of the theory
M in the microscopic limit. We assumed that flavor symmetry
breaking occurs, and saw that in that case the pattern of this
symmetry breaking is Sp(d;) — Sp(2N;) X Sp(2N;), while
> parity is unbroken.

Inserting this into the expansion we get

We also indicated how to derive the sum rules constrain-
ing the small eigenvalues in the spirit of Leutwyler and
1 1 Smilga, and obtained the first sum rule. Similar results had
=1+ = (NSM)2— (4N;)2+ - - -, 50 prewously beeq obtained by o'gher aL_Jth(Beg the Introduc-

2( xm) M( ) (50 tion) for QCD in four space-time dimensions for the en-

) ) . sembles labeled bg=1, 2, and 4(orthogonal, unitary, and
where the volume of the coset cancels in the ratio. '”Sem”%ymplectic ensemblgsand in three dimensions fo8=2.

Z(m) 1
———={ 1+m?2N —+-
Z(0) < kaz>o N

the value ofM we therefore arrive at the sum rule Even though these latter ensembles may be more interesting
for the real world, the 308=1 case treated here may be one
2 1 _ i (51) of the easiest to simulate on the lattice. The only case of
N0 (NSA)2) 2Ny physical interest remaining is the 3B=4 case. A similar

treatment of this case requires defining Majorana fermions in
Note that the original number of flavors ifN2. This sum  Euyclidean space. Some work in this direction was performed
rule could be checked numerically. In Reff8,6] a universal  in [3]. Other interesting directions of work include finite
formula was found describing the first sum rule for t8e  temperature and chemical potential studisse[8—10 in
=1, 2, and 4 cases in four dimensions. This universal forthis context. Another, very ambitious project might be to try
mula relateg =, 1/(N2\,)?]) to Ny, the dimension of the similar techniques at the multicritical points of the matrix
cosetM, and the winding number in four dimensions. We model where the condensate goes to 2efo[22]).
can identify a similar formula
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