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Orthogonal ensemble of random matrices and QCD in three dimensions

U. Magnea*
INFN, Via P. Giuria, 1, I-10125 Torino, Italy

~Received 23 September 1999; published 8 February 2000!

We consider the parity-invariant Dirac operator with a mass term in three-dimensional QCD forNc52 and
quarks in the fundamental representation. We show that there exists a basis in which the matrix elements of the
Euclidean Dirac operator are real. Assuming that there is spontaneous breaking of flavor and/or parity, we read
off from the fermionic action the flavor symmetry-breaking pattern Sp(4Nf)→Sp(2Nf)3Sp(2Nf) that might
occur in such a theory. We then construct a random matrix theory with the same global symmetries as
two-color QCD3 with fundamental fermions and derive from here the finite-volume partition function for the
latter in the static limit. The expected symmetry-breaking pattern is confirmed by the explicit calculation in
random matrix theory. We also derive the first Leutwyler-Smilga-like sum rule for the eigenvalues of the Dirac
operator.

PACS number~s!: 11.10.Kk, 11.30.Er, 11.30.Fs, 11.30.Hv
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I. INTRODUCTION

It has been known for several years that the eigenva
of the Dirac operatorgmDm , derived from QCD in a finite
volume, are constrained by sum rules@1#. These sum rules
originally derived by Leutwyler and Smilga, can also be o
tained from a random matrix theory with the same glo
symmetries as QCD. This was originally demonstrated
Shuryak and Verbaarschot@2# for QCD in four dimensions
with quarks in the fundamental representation and co
group SU~3!. Subsequently it has also been demonstrated
SU~2! with fundamental fermions and for adjoint fermion
(Nc>2) @3#.

The random matrix ensembles corresponding to th
various types of theory reflect the respective structures of
matrix elements of the Dirac operator in the three cases
are labeled by a parameterb. For the case ofNc52 ~where
Nc denotes the number of colors! and fundamental fermions
there exists a basis in which the matrix elements ofgmDm
are real. The corresponding matrix ensemble has orthog
symmetry and is labeledb51. For Nc>3 and fundamenta
fermions, and for arbitraryNc>2 and adjoint fermions, the
corresponding matrix ensembles have unitary and symple
symmetry, respectively, and are labeled byb52, 4.

The sum rules can be expressed using the so-called
croscopic spectral density, denotedrS(l), of the distribution
of eigenvalues of the random matrix model. It is obtained
magnifying the spectral density in the vicinity of the orig
(l50) on the scale of the average eigenvalue spac
which for interacting quarks and a nonvanishing spec
density at the origin is given byN21 (N here is the size of
the random matrices!. This microscopic limit is to be con
trasted with the largeN limit, in which the eigenvalue den
sity smoothes out to some distribution whose macrosco
shape depends on the matrix potential.

Originally, it was conjectured on the basis of the work
@2,4,5# that rS(l) is a universal quantity that depends on
on symmetry. The sum rules were determined for a num
of cases and further evidence for the proposed scenario
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compiled@6,7#. It was also demonstrated, by incorporating
schematic temperature dependence corresponding to the
est Matsubara frequency into the matrix model, thatrS is
independent of temperature up to the critical temperature
the model@8,9#. A discussion of universality in the presenc
of a nonzero chemical potential was given in@10#. The uni-
versality was also demonstrated numerically in a numbe
papers. More recently, it was shown thatrS(l) does not
depend on the matrix potential chosen for the random ma
theory ~RMT! @11#. This comes about because the differe
tial equation determining the orthogonal polynomials cor
sponding to the matrix model is independent of the choice
~polynomial! potential in the microscopic limit. The orthogo
nal polynomials in turn completely determinerS(l) and
higher-order correlatorsrS(l1 , . . . ,ln) in the microscopic
limit.

The reason for this universality is that both QCD and t
corresponding RMT can be mapped onto the same l
energy, effective partition function. This was first noticed
@2# and further elaborated on in@3,4,6,12#. This partition
function expresses the quark mass dependence in the s
limit and in a finite volume. The range of volumes consi
ered is the so-called ‘‘mesoscopic range.’’ We can think
this as a box of sizeL such thatL@LQCD

21 , whereLQCD is
the QCD scale paramenter, so that only the low-lying ex
tations ~Goldstone modes! contribute to the partition func-
tion, butL!lp

C ~wherelp
C is the Compton wavelength of th

Goldstone modes!, so that we are dealing with the static lim
of this partition function~no kinetic terms!.

In fact, this effective partition function is a function o
one scaling variableMVS, whereM is a mass matrix,V the
space-time volume, andS the chiral condensate~assumed to
be nonzero!. In the RMT the space-time volume correspon
to the sizeN of the random matrices. The Banks-Cash
relation @13#

S5
pr~0!

V
~1!

relates the density of eigenvalues of the Dirac operator at
origin, r(0), to this condensate in the thermodynamic a
©2000 The American Physical Society05-1
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U. MAGNEA PHYSICAL REVIEW D 61 056005
chiral limits ~taken in this order!. The spacing between e
genvalues is thus;V21, as opposed to;V21/4 for free
quarks in 4D.

The relationship between random matrix theory a
finite-volume partition functions has been clarified further
Damgaard, and by Akemann and Damgaard in a serie
papers@14#.

In this paper we will consider QCD in three Euclidea
dimensions and we will takeNc , the number of quark colors
equal to 2. The quarks are in the fundamental representa
We will show that also in three dimensions, there exist
basis in which the Dirac operator forNc52 has real matrix
elements. In the spirit of the universality conjecture, we w
construct a random matrix theory with the same global sy
metries as the gauge field theory. The average of the ferm
determinant over the gluon field configurations is in this a
proach replaced by a Gaussian average over an ensemb
random Hermitian matrices. From this average we will o
tain, using a supersymmetric formalism and through
same kind of steps as in@2,3#, and in @8# for QCD in four
space-time dimensions, the form of the low-energy QC
partition function. Assuming that spontaneous breaking
global flavor symmetry may occur in such a theory, we w
obtain the pattern of such a symmetry breaking.

Except for being of purely theoretical interest, thre
dimensional QCD may be relevant for studying the behav
of QCD near the deconfining phase transition and for lat
computations. In Euclidean field theory, at finite temperat
the integral over the four-momentum componentk4 is re-
placed by a sum over Matsubara frequencies and one is
with an effective three-dimensional field theory. On the l
tice, it is faster to simulate two colors than three. Theref
the sum rules derivable fromNc52 may be easily checke
numerically.

In the next section a basis is constructed in which
Dirac operator for SU~2! color is real. In Sec. III the
symmetry-breaking pattern is discussed. In Secs. IV and
random matrix theory is used as a starting point for deriv
the low-energy partition function and the flavor symme
breaking pattern. In Sec. VI the corresponding sum rules
derived.

II. DIRAC OPERATOR IN 3D

In three-dimensional Minkowski space the QCD Lagran
ian is given by

L52
1

4
trF21(

f 51

Nf

c̄ f~ iD” 2mf !c f , ~2!

where F is the gauge field tensor,D” [gmDm , Dm5]m

1 iAm
a ta/2 is the covariant derivative for SU~2!, and mf is

the quark mass corresponding to flavorf. c f are quark
spinors in the fundamental representation andf is the flavor
index ~the indices corresponding to color and spin are s
pressed!. The lowest-dimensional representation ofgm is
given by the Pauli matricesg05s3 , g15 is1 , g25 is2. In
this 2D representation, there is no chiral symmetry, si
there is no 232 matrix that anticommutes with thesk .
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For all themf50, the above Lagrangian is invariant und
parity P, but the mass term breaks thisP invariance. The
parity transformation in 3D is defined by

c~ t,x1 ,x2!→g1c~ t,2x1 ,x2!,

A0~ t,x1 ,x2!→A0~ t,2x1 ,x2!,

A1~ t,x1 ,x2!→2A1~ t,2x1 ,x2!, ~3!

A2~ t,x1 ,x2!→A2~ t,2x1 ,x2!.

We can define a parity-invariant Lagrangian with a nonz
mass term if we take, instead of thesk a four-dimensional
representation of thegm ,

g05S s3 0

0 2s3
D , g15S is1 0

0 2 is1
D ,

g25S is2 0

0 2 is2
D ~4!

and moreover introduce a 434 mass matrix correspondin
to flavor f:

M f5mf S 1 0

0 21D . ~5!

The Dirac operator is then sandwiched between four-spin
(f fx f). In terms of two-spinors, this representation cor
sponds toNf two-spinorsf f with mass1mf , andNf two-
spinorsx f with mass2mf . UnderP the mass terms for the
two-spinors change sign, so that if the two sets of tw
spinors transform into each other in aZ2 transformation
f f↔x f , the total Lagrangian is invariant under the com
bined transformationsP andZ2 @15#. We can use this fact to
write down a (P,Z2)-invariant Lagrangian in the fundamen
tal representation with an appropriate choice of mass ter

L52
1

4
trF21(

f 51

2Nf

c̄ f iD” c f2(
f 51

Nf

mc̄ fc f1 (
f 5Nf11

2Nf

mc̄ fc f .

~6!

~We could also have some components with zero mass,
in the following we will not consider this possibility.!

We now proceed to discuss QCD in three-dimensio
Euclidean space. The part of the Lorentz-invariant Lagra
ian involving fermion fields is given by( f c̄ f(D” 1mf)c f

where c̄ denotes the Hermitean conjugate, the masses
chosen in pairs of opposite sign like in Eq.~6!, and from now
on D” denotesgmDm with the Euclidean gamma matrice
g05s3 , g15s1 , g25s2 satisfying$gm ,gn%52dmn .

In four dimensions, we can find a basis such that
Euclidean Dirac operatoriD” has real matrix elements. Th
reason is that this operator possesses~for Nc52) an antiuni-
tary symmetry@3# expressed by
5-2
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ORTHOGONAL ENSEMBLE OF RANDOM MATRICES AND . . . PHYSICAL REVIEW D61 056005
@ iD” ,Ct2K#50. ~7!

HereC is the ~Minkowski space! charge conjugation opera
tor, t2 is a Pauli matrix in color space, andK denotes com-
plex conjugation. It is easy to show that in 3D, an identi
relation~7! holds for the fundamental representation. For E
~7! to hold,C should satisfyCgm* C2152gm ~wheregm are
the Pauli matrices,g05s3 , g15s1 , g25s2) which is pre-
cisely the condition for the charge conjugation matrix
Minkowski space. By explicit calculation we find

C5 is2 , ~8!

whereC is the 232 charge conjugation matrix satisfying
2C5CT5C†5C21, C2521. As we will now show, the
antiunitary symmetry operatorCt2K defines a basis in which
the matrix elements ofiD” are real. This basis is simply de
fined by

Ct2Kck5ck . ~9!

Since (Ct2K)251, such a definition makes sense.~By con-
trast, in trying to define adjoint fermions in Euclidean spa
the square of the corresponding antiunitary operator is21.
The Majorana condition then makes sense only if one in
duces conjugation of the second kind,c** 52c.! From the
antiunitary condition it follows that

t2CiD” Ct252~ iD” !* . ~10!

By using Eqs.~9!, ~10! and the properties ofC it immedi-
ately follows that the quantityck

†iD” c l is real, whereck
denotes the basis vectors in Eq.~9!. Therefore, the matrix
elementŝ cku iD” uc l& are real in this basis. The fact that th
Dirac operator can be real was also used in@16#.

III. DISCUSSION OF THE FLAVOR
SYMMETRY-BREAKING PATTERN

Before doing the calculation in random matrix theory, w
will now discuss the symmetry-breaking pattern we expec
obtain. This can be read off@17# from the form of the fermi-
onic action

SF5E d3x(
f 51

2Nf

c̄ f~D” 1mf !c f , ~11!

where theg matrices areg05s3 , g15s1 , g25s2 andDm
is the covariant derivative for the SU~2! color group. Now it
is easy to verify thatDm

T52t2Dmt2 and sm
T52s2sms2

and therefore, keeping in mind that thec f are anticommut-
ing,

c̄ fD” c f52s2t2c fD” s2t2c̄ f , ~12!

where thet ’s are in color space and thes ’s in Dirac space.
We can then rewrite the fermionic action as
05600
l
.

,

-

o

SF5E d3x
1

2 (
f 51

2Nf S s2t2c f

c̄ f
D S 0 2D”

D” 0 D S c f

s2t2c̄ f
D

~13!

5E d3x
1

2 (
f 51

2Nf S c f

s2t2c̄ f
D S 0 2s2t2D”

s2t2D” 0 D
3S c f

s2t2c̄ f
D . ~14!

This expression is invariant under Sp(4Nf) transformations
in flavor space@18#. This is similar toNf flavors with color
symmetry group SU~2! in four dimensions, where the flavo
symmetry group for zero mass gets enlarged to U(2Nf) @17#.
The vacuum state will break this symmetry. Assuming t
complete axial group is broken~maximal breaking of chiral
symmetry!, only the symmetry subgroup of Sp(4Nf) that
leavesc̄c invariant will be unbroken. The chiral condensa
for each flavorf has the same sign as the massmf . Rewriting
the mass term in the form

(
f 51

2Nf

mf c̄ fc f5
1

2 (
f 51

2Nf S c f

c̄ f
D S 0 2mf

mf 0 D S c f

c̄ f
D ~15!

and remembering@cf. Eq. ~6!# that themf form a diagonal
2Nf32Nf matrix in flavor space,

S m 0

0 2mD , ~16!

with Nf of the masses equal to1m andNf equal to2m, one
immediately sees that Eq.~15! is invariant under the sub
group Sp(2Nf)3Sp(2Nf). The symmetry-breaking patter
Sp(4Nf)→Sp(2Nf)3Sp(2Nf) will be confirmed below by
an explicit calculation in random matrix theory.

IV. RANDOM MATRIX THEORY

The Dirac operatorgmDm in the 232 representation is
anti-Hermitian. To construct a random matrix ensem
which is Hermitian and has orthogonal symmetry, we the
fore substitute the average over gluon field configurations
the Euclidean fermion determinant

Z~M !5E dA)
f 51

2Nf

det~D” 1mf !e
2S[A] ~17!

„where S@A# denotes the Yang-Mills action for SU~2! in
three Euclidean dimensions,mf5m for f 51, . . . ,Nf and
mf52m for f 5Nf11, . . . ,2Nf… in the partition function
defining QCD3 with an average over a real Hermitian ra
dom matrixR. We then get a matrix model

Z~m!5E DRe2NS2tr(R2))
f 51

2Nf

det~ iR1mf !. ~18!
5-3
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U. MAGNEA PHYSICAL REVIEW D 61 056005
R is here taken to be a matrix of sizeN3N, andDR is the
invariant ~Haar! measure. We take the total density of ze
modes~number of small eigenvalues per space-time volum!
to be fixed, so we can identifyN with the space-time volume
@2#. We call the total number of flavors 2Nf , since we have
Nf fermion species with massm and Nf with mass2m.
Assuming there is a spontaneous breaking of flavor an
parity, we will find the pattern of flavor symmetry breakin
while parity will remain unbroken. It was shown in@19# that
parity is spontaneously broken by the appearance of
anomalous parity-odd Chern-Simons term at the quan
level in QCD in three dimensions~indeed, in any odd dimen
sion! for an odd number of massless fermion species. Fo
even number of flavors, the anomaly does not appear,
with our choice ofP-invariant masses, parity remains unbr
ken also at the quantum level.

As we will see,S is the value of the order parameter f
spontaneous symmetry breaking,

S52 lim
mf→0

lim
N→`

1

N

]

]mf
ln Z~m1 , . . . ,m2Nf

!. ~19!

Its absolute value will be the same for each flavor@12#. In
order to evaluateZ(m) and perform the integration over th
random matricesR, we write the product of fermion deter
minants as an integral over Grassmann fields:

)
f

det~R2 imf !

5E )
f

Df fexpF2(
f

f f
i * ~R2 imf ! i j f f

j G . ~20!

Here the indicesi, j run from 1 toN. We will make use of the
supersymmetric formalism developed in@20#. We use conju-
gation of the second kind,f** 52f, for Grassmann vari-
ables ~see Appendix A of the reference just quoted!. This
formalism was developed to deal with integrals over b
commuting and Grassmann variables, involving graded v
05600
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tors and matrices. In Eq.~20! we have only the ‘‘fermion-
fermion block’’ of @20#, since our integration variables ar
pure fermionic. Our integration measure is

)
f

Df f5)
f 51

2Nf

)
i 51

N

df f
i * df f

i . ~21!

To perform the integral over the random matrixR, we com-
plete the square in the exponent of Eq.~18! according to

ANSRi j →ANSRi j 1
1

2ANS
Ci j

Ci j [
1

2 (
f

~f f
i * f f

j 1f f
j * f f

i ! ~22!

and perform the Gaussian integral. Here we take care tha
matrix C has the same properties asR ~real in the extended
sense of the supersymmetric formalism and Hermitia!.
Therefore we have symmetrized the indicesi, j and used
Ri j 5Rji in completing the square. Since Grassmann in
grals are always convergent, and the integrals inDR are
uniformly convergent in the fermionic variables,

E DRE )
f

Df f5E )
f

Df fE DR. ~23!

The substitution~22! yields, after performing the Gaussia
integration,

Z~m!;E )
f

Df fexpH 1

4NS2 (
i , j

F1

2 (
f

S f f
i

f f
i * D S 0 21

1 0 D
3S f f

j

f f
j * D G2

1 imf(
i

(
f

f f
i* f f

i J . ~24!

Now introduce a block-diagonal 4Nf34Nf matrix I such
that
(
f

2Nf S f i

f i* D
f

S 0 21

1 0 D S f j

f j* D
f

5S S f i

f i* D
f 51

S f i

f i* D
f 52

A

S f i

f i* D
f 52Nf

D 1
0 21

1 0

0 21

1 0

.

.

.

0 21

1 0

2 1
S f j

f j* D
f 51

S f j

f j* D
f 52

A

S f j

f j* D
f 52Nf

2
[(

f ,g

4Nf

F f
i I f gFg

j . ~25!
5-4
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In I, each 232 block is labeled by a flavor indexf, but
rearranging the 2Nf two-component Grassmann vectors in
large vectors of size 4Nf , we get now a doubling of the
indices so that hereafterf, g go from 1 to 4Nf and simply
label the components in Eq.~25!. We now rewrite the square
in the exponent as the difference of two terms~while remem-
bering that thef f

i are anticommuting!:

F (
f 51

2Nf S f i

f i* D
f

S 0 21

1 0 D S f j

f j* D
f
G 2

5F(
f ,g

4Nf

F f
i I f gFg

j G2

52
1

4
~F f

i Fg
i 1I f f 8F f 8

j Fg8
j I g8g

T
!2

1
1

4
~F f

i Fg
i 2I f f 8F f 8

j Fg8
j I g8g

T
!2

[2
1

4
F f g

2 1
1

4
F̃ f g

2 ~26!
-
in
o

th

n

05600
~in the last two expressions a sum over repeated flavor i
ces f , f 8,g,g851, . . . ,4Nf is understood!. Performing a
Hubbard-Stratonovitch transformation@20#

exp@2aF f gF f g#;E ds f gexpF2
1

4a
s f gs f g2 is f gF f gG ,

~27!

wheres f g is a real variable, the integral in Eq.~24! becomes

Z~m!;E )
f

Df fDs1Ds2expH 216NS2tr @~s11 is2!

3~s1
T2 is2

T!#2 i(
i

(
f g

F f
i ~s11 is2! f gFg

i

1 i(
j

(
f 8 f g8g

Fg8
j I g8g

T
~s1

T2 is2
T!g fI f f 8F f 8

j

1 i(
i

(
f g

F f
i 1

2
M f gFg

i J ~28!

where the masses have been rearranged into an antisym
ric matrix
M51
0 m

2m 0

�

0 m

2m 0

0 2m

m 0

�

0 2m

m 0

2 . ~29!
g

is
on
a

In Eq. ~28!, Ds i is the Haar measure for the real antisym
metric matrixs i . Thes i should be chosen antisymmetric
flavor indices sinceF f g and F̃ f g are antisymmetric, so as t
preserve the symmetry ofZ(m). Setting 2s12 is2[A,
whereA is an antisymmetric complex matrix, we end up wi

Z~m!;E )
f

Df fE DA expH 216NS2 tr~AA†!

1 i(
i

F i S A1I TA* I 1
M
2 DF iJ . ~30!

Interchanging again the order of the fermionic integratio
 s

and the integration overDA, and subsequently performin
the Grassmann integrations, we arrive at

Z~m!;E DA exp$24NS2tr~AA†!%PfN~A1I TA* I 1M!,

~31!

where we have rescaledA by a factor of 2. In Eq.~31! ‘‘Pf’’
denotes the Pfaffian~square root of the determinant! of the
matrix. Note that the Pfaffian of an antisymmetric matrix
always well defined. This is our expression for the partiti
function. In the next section we will evaluate it using
saddle point analysis.
5-5



U. MAGNEA PHYSICAL REVIEW D 61 056005
V. SADDLE POINT ANALYSIS OF THE PARTITION FUNCTION

To begin evaluating the partition function, we will now decompose the antisymmetric matrixA in ~31! into ‘‘polar’’
coordinates@21#. This can be achieved for an arbitrary antisymmetric matrix by setting

A5ULUT, L5S 0 l1

2l1 0

0 l2

2l2 0

�

0 l2Nf

2l2Nf
0

D
~l1>l2> . . . >l2Nf

>0!. ~32!
in
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U is unitary. The integration measurea priori becomes

E DA5E
UPU(4Nf )/[Sp(2)]2Nf

DUDLJ~L!. ~33!

The integration over the coset U(4Nf)/@Sp(2)#2Nf ensures
that there is a one-to-one correspondence between the
gration variables inA and those inULUT ~cf. @21#, Chap. 3!.
The JacobianJ(L) was not found in@21#. We calculated it
and found that it is indeed a function ofL only, and that it is
of orderNf . Indeed, it could never be of orderN; therefore it
must drop out at the saddle point inL asN gets large. This
will always happen in any similar calculation, so that it is n
necessary to know the exact form of the JacobianJ(L), as
long as it is a function ofl f only.

However, the presence of the matricesI limits the U in-
tegration to be over the subgroup Sp(4Nf). This is evident
when we consider that the matrixU that block-diagonalizes
A also block-diagonalizesA8[A1I TA* I 5A2IA* I :

A5ULUT, A85UL8UT, ~34!

since the values of the matrix elements ofA andA8 do not
enter in the ‘‘angular’’ matricesU, but only determineL and
L8. Therefore,

L85L2U†IU * L U†IU * . ~35!

We can chooseU such that the eigenvalues ofL are ordered
like in Eq. ~32!. But bothL andL8 have the block-diagona
form appearing in Eq.~32!. Therefore also the second ter
in Eq. ~35! has to have this form. SinceILI 52L @note that
we could have chosen any one of three equivalent forms
I that are all invariant under the symplectic group, by sim
rearranging the components inF f

i ~ @18#, paragraph 10-8!,
and all of these forms satisfyILI 52L], that means that in
Eq. ~35! U†IU * }I . But UIU T5I is equivalent to U
PSp(4Nf). ThenL852L. Like in @2,3# we will determine
05600
te-

t

or
y

the saddle point inL at M50 and then expand the Pfaffia
at this saddle point to first order inM to see the symmetry
breaking pattern. AtM50 the integral takes the simpl
form

Z~m50!;E DUDLJ~L!e24NS2 tr(LL†)detN/2~U2LUT!

;E DUE )
f 51

2Nf

dl f expH ln J~l1 , . . . ,l2Nf
!

24NS2(
f

~2l f !
21N(

f
ln l f J , ~36!

where we have used that the symplectic matrices are uni
dular. The saddle point is at

l f56
1

4uSu
. ~37!

We will now discuss the choice of saddle point manifold.
@20#, the saddle point with an equal number of1 and 2
signs was singled out because for the other potential sa
points, the integrand and measure became independe
some Grassmann variables in the supersymmetric Hubb
Stratonovitch matrices. Integrating over these Grassm
fields then setsZ(m) to zero. Here, we get the same sadd
point, but for a different reason, since ours ’s have only
commuting variables. We can always redefine the ang
matricesU so thatl f>0 @cf. Eq. ~32!#. Therefore, we can
choose the positive sign in Eq.~37!. However, assuming the
flavor symmetry is broken spontaneously, the condensate
each flavor has to have the same sign as the mass. Th
clear from the proof of the Banks-Casher formula@13#; see
also Ref. @12#. Since half of the masses are negative
should chooseuSu52S for half, anduSu51S for half of
the l f at the saddle point.

Therefore, our saddle point should be
5-6
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We now expand the determinant for smallMÞ0 at L
5Lsp . In Eq.~31! the matrixA1I TA* I 1M is antisymmet-
ric. This means that the square root of its determinant
positive real number. This is confirmed by inspection of
explicit form. We can therefore write

detN/2~A1I TA* I 1M!5detN/4~A1I TA* I 1M!detN/4

3~A* 1I TAI1M!. ~39!

This way our final expression for the partition function w
be manifestly real after expanding the integrand. We then

Z~m!;E DUdetN/4~U2LspU
T1M! detN/4

3~U* 2LspU
†1M!

;E DU detN/4~U2LspU
T! detN/4~U* 2LspU

†!

3expFN

4
tr lnS 11U*

1

2
Lsp

21U†MD
1

N

4
tr lnS 11U

1

2
Lsp

21UTMD G
}E DUeNS Re tr(UJUTM) ~40!

to first order inM, where we have used that for a symplec
matrix det(U)51 @18#. The matrixM was given in Eq.~29!
andJ is defined in Eq.~38!. In the final expression forZ(m),

Z~m!'E
Sp(4Nf )/[Sp(2Nf )3Sp(2Nf )]

DUeNS Re tr(UJUTM),

~41!

the DU integral goes over the coset spa
Sp(4Nf)/@Sp(2Nf)3Sp(2Nf)#, due to the structure of the
matrix J: it is invariant under the unbroken subgrou
Sp(2Nf)3Sp(2Nf). We have thus obtained the flavo
symmetry-breaking pattern Sp(4Nf)→Sp(2Nf)3Sp(2Nf).
05600
a

et

The number of broken generators is 4Nf
2 , which is also the

number of unbroken generators.

VI. SUM RULES

To derive the first sum rule we will closely follow th
method explained in@3#. The sum rules are obtained by e
panding the expression forZ(m), Eq. ~41!, and comparing
the coefficients order by order inm2 to the ~normalized!
expectation value of the fermion determinant:

K)
f

)
lk.0

S 11
m2

lk
2 D L . ~42!

The expectation value is defined as

^ f ~l,m!&5

E DA e2S[A] S)
k, f

l f
k2D f ~l,m!

E DA e2S[A] S)
k, f

l f
k2D f ~l,0!

, ~43!

where A is the gauge field andS@A# the Euclidean Yang-
Mills action. Expanding the integrand in Eq.~41! the O(m)
term is destroyed by the group integration. The survivi
group integrals at orderm2 have the form~using the same
notation as in@3#!

z~X!5E
UPG/H

DU tr~UJUTX!tr~U* JU†X!, ~44!

whereG/H is the coset andX[2NSmJ. We now choose
generatorstk , k51, . . . ,M , for the U ’s that are real and
antisymmetric.M is the dimension of the coset:

M5
4Nf~4Nf11!

2
22

2Nf~2Nf11!

2
54Nf

2 . ~45!

We also wish to chooset1 such thatM[2mJ5mt1 . M is
a 4Nf34Nf size matrix. Therefore we normalize the gene
tors so that
5-7
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tr~ tkt l !524Nfdkl . ~46!

@Note that for anti-Hermitian generators~real and antisym-
metric! the minus sign is necessary.# It is then easy to show
that for any two matricesA andB,

(
k51

M

tr~Atk!tr~Btk!524Nf tr~AB!. ~47!

It was proved in @3# that z(t1)5z(t2)5•••5z(tM) and
therefore

z~ t1!5
1

M (
k51

M E DU tr~UJUTtk! tr~U* JU†tk!. ~48!

Using Eq.~47! and tr(J2)524Nf we now immediately see
that

z~X!5
1

M
vol~G/H !~NSm!2~4Nf !

2. ~49!

Inserting this into the expansion we get

Z~m!

Z~0!
5K 11m22Nf (

lk.0

1

lk
2

1•••L
511

1

2
~NSm!2

1

M
~4Nf !

21•••, ~50!

where the volume of the coset cancels in the ratio. Inser
the value ofM we therefore arrive at the sum rule

K (
lk.0

1

~NSlk!
2L 5

2

2Nf
. ~51!

Note that the original number of flavors is 2Nf . This sum
rule could be checked numerically. In Refs.@3,6# a universal
formula was found describing the first sum rule for theb
51, 2, and 4 cases in four dimensions. This universal f
mula relateŝ (k@1/(NSlk)

2#& to Nf , the dimension of the
cosetM, and the winding number in four dimensions. W
can identify a similar formula

)
f

K (
lk.0

1

~NSlk!
2L 5

d2

2M
~52!

for the three-dimensional casesb51, 2 ~the caseb54 re-
mains to be done! by comparing the above result to the su
rule for an even number of flavors given in@12# and noting
that this sum rule is given for SU(Nf) and not for the cose
05600
g

r-

U(Nf)/@U(Nf /2)3U(Nf /2)#. In Eq. ~52!, d is the size of the
matrices of the coset. These two factors ofd come from the
normalization of the generators~46! and from tr(J2), and the
factor of 1

2 comes from the expansion of the exponential
Eq. ~41!. As shown by Eq.~39!, tr(UJUTM) must be real in
our case, so there should not be any additional factors o1

2

@as seems to be the case in 4D, probably because the g
integrals of the type*dVtr2(VX) vanish ~at least for large
enoughNf); cf. @3##.

VII. SUMMARY AND OUTLOOK

We have derived the mass dependence of the low-en
effective partition function for parity-invariant QCD in thre
dimensions with two quark colors using as a starting poin
random matrix theory with the global symmetries of th
gauge theory. The motivation for this was a universality co
jecture according to which the global symmetries of t
gauge theory determine the low-lying spectrum of the the
in the microscopic limit. We assumed that flavor symme
breaking occurs, and saw that in that case the pattern of
symmetry breaking is Sp(4Nf)→Sp(2Nf)3Sp(2Nf), while
parity is unbroken.

We also indicated how to derive the sum rules constra
ing the small eigenvalues in the spirit of Leutwyler an
Smilga, and obtained the first sum rule. Similar results h
previously been obtained by other authors~see the Introduc-
tion! for QCD in four space-time dimensions for the e
sembles labeled byb51, 2, and 4~orthogonal, unitary, and
symplectic ensembles! and in three dimensions forb52.
Even though these latter ensembles may be more intere
for the real world, the 3Db51 case treated here may be o
of the easiest to simulate on the lattice. The only case
physical interest remaining is the 3Db54 case. A similar
treatment of this case requires defining Majorana fermion
Euclidean space. Some work in this direction was perform
in @3#. Other interesting directions of work include finit
temperature and chemical potential studies~see @8–10# in
this context!. Another, very ambitious project might be to tr
similar techniques at the multicritical points of the matr
model where the condensate goes to zero~cf. @22#!.
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