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Chern-Simons number diffusion and hard thermal loops on the lattice
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We develop a discrete lattice implementation of the hard thermal loop effective action by the method of
added auxiliary fields. We use the resulting model to measure the sphaleron rate~topological susceptibility! of
Yang-Mills theory at weak coupling. Our results give parametric behavior in accord with the arguments of
Arnold, Son, and Yaffe, and are in quantitative agreement with the results of Moore, Hu, and Mu¨ller.

PACS number~s!: 11.10.Wx, 11.15.Ha, 12.60.Jv, 98.80.Cq
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I. INTRODUCTION

Baryon number is not a conserved quantity in the stand
model. Rather, because of the anomaly, its violation is
lated to the electromagnetic field strength of the weak SU~2!
group @1#

]mJB
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32p2
emnabTr FmnFab5NG

g2

8p2
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aBi
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~1.1!

whereNG53 is the number of generations.1 In vacuum the
efficiency of baryon number violation through this mech
nism is totally negligible@1#, but at a sufficiently high tem-
perature this is no longer true@2,3#. This can have very in-
teresting cosmological significance, since it complica
grand unified theory~GUT! baryogenesis mechanisms a
opens the possibility of baryogenesis from electroweak ph
ics alone. This motivates a careful investigation of bary
number violation in the standard model at high temperatu

The baryon number violation rate relevant in cosmolo
cal settings can be related by a fluctuation dissipation r
tion @4–6# to the ‘‘Minkowski topological susceptibility’’ of
the electroweak theory, also called the ‘‘sphaleron rate:’’

G[E d3xE
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b~0,0!#&,

~1.2!
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1There is also a contribution from the hypercharge fields, bu

will not be relevant here because the topological structure of
Abelian vacuum does not permit a permanent baryon num
change.
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where ^ & means an expectation value with respect to
equilibrium thermal density matrix. Heret is Minkowski
time. This quantity isnot simply related to the Euclidean
topological susceptibility@7#, and we do not possess eith
perturbative tools or Euclidean tools to carry out its calcu
tion.

It has been argued by Grigoriev and Rubakov@8# that the
value of the susceptibilityG in the quantum theory will be
the same as its value in classical Yang-Mills field theo
This would open a new avenue for measuringG, since clas-
sical Yang-Mills theory can be put on the lattice@9#. There
has been some progress on measuringG on the lattice@10–
13#; in particular two different methods have been develop
for dealing with the right hand side of Eq.~1.2! in a topo-
logical way which eliminates lattice artifacts in its measu
ment @14,15#.

At the same time our qualitative understanding of Gr
oriev and Rubakov’s claim has improved. A complicatio
with their proposal is that~311!-dimensional classical Yang
Mills theory contains ultraviolet~UV! divergences, which
Bödeker, McLerran, and Smilga have argued may be imp
tant in settingG @16#. Subsequently, Arnold, Son, and Yaff
have demonstrated that a particular class of diagrams,
hard thermal loops~HTL’s!, are essential to establishingG
@17#. The amplitude of the HTL’s in the classical theory
linearly divergent, and therefore linearly cutoff dependent.
the full quantum theory the HTL’s are finite, with almost a
of the contribution arising from excitations with momentu
k.pT; such highk excitations are not properly described b
the classical theory. Arnold, Son, and Yaffe argue that
cause of the HTL’s, the effective infrared~IR! theory
‘‘feels’’ the ‘‘cutoff’’ which quantum mechanics provides
for the classical theory, and that the value ofG scales in-
versely with the cutoff momentum scale. As a result, rat
than the naive dimensional estimate ofG;a4T4, the para-
metric behavior ofG should beG;a5T4; and in particularG
is inversely proportional to the strength of the HTL’s, whic
is conveniently parametrized by the Debye mass squa
mD

2 . On the lattice this means thatG should depend on the
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lattice spacinga asG}ag2Ta4T4, a behavior which has re
cently been verified numerically@18#. Arnold, Son, and
Yaffe’s argument has been carefully re-analyzed by Bo¨deker,
who has shown that there is an additional, logarithmic
pendence on the Debye mass, and that, permitting an ex
sion in log(1/g)@1, the leading behavior is actuallyG
;a5log(1/g)T4 @19#.

If we take the limit log(1/g)@1, Bödeker presents an ef
fective theory for evaluating the coefficient of th
a5log(1/g)T4 law @19#. The effective theory is UV safe@20#
and the coefficient can be found accurately by lattice me
@21#. However, in practice the expansion in log(1/g)@1
turns out to be very poorly behaved. To get a reasona
accurate value forG at the physical value for the electrowea
coupling, a.1/30, it is necessary to treat the dynamics
the classical field theory with a full inclusion of the HT
effects. This is challenging, because the HTL effective act
is nonlocal@22#. However, it is possible to rewrite the HT
action in terms of a local theory with added degrees of fr
dom, as we will discuss below. Thus, it could be possible
determineG by measuring the topological susceptibility
lattice regulated, classical Yang-Mills theory, supplemen
by added degrees of freedom which correctly generate
hard thermal loop effects. Doing so would both test Arno
Son, and Yaffe’s claim, and determine the numerical coe
cient of thea5T4 law, and therefore tell us how efficientl
baryon number is violated at high temperatures.

One way of realizing this goal was presented in@23# and
implemented and used to measureG in @24#. The purpose of
this paper is to present an alternative and in some resp
more efficient implementation of classical Yang-Mills theo
plus hard thermal loops, and to use it to check the result
@24#. Our approach is based on a way of writing the ha
thermal loops in terms of auxiliary fields which was fir
proposed in@25#. Using this formulation to incorporate th
HTL action on the lattice has been advocated by Bo¨deker,
McLerran, and Smilga@16#. This paper represents a concre
numerical realization of that idea.

In Sec. II we review the local formulation of classic
Yang-Mills field theory supplemented by the HTL action d
to Blaizot and Iancu and due to Nair. Their theory conta
an infinite set of fields, so in Sec. III we perform a transfo
mation and a truncation to make the number of fields in
model finite, without losing spherical symmetry. The resu
ing theory does not quite give the correct HTL equations
motion; we study the difference, and how it vanishes in
limit as the truncation leaves in more and more fields, in S
IV. Then we discretize space and time in Sec. V, and rev
how to measureG topologically in Sec. VI. We study the
numerical behavior ofG as a function of the strength of th
HTL’s and the truncation point in Sec. VII.

Our conclusions are in Sec. VIII, but we summarize th
here. The HTL effective theory shows a dependence on
strength of HTL’s which is consistent with Arnold, Son, an
Yaffe’s arguments, and grossly inconsistent with HTL ind
pendence. The dependence on the truncation point is sur
ingly weak, so only a few new fields need to be added
approximate the correct HTL behavior. Thus, our algorith
proves quite an efficient way of incorporating HTL’s. O
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final results forG are consistent with those of Moore, Hu
and Müller @24#, and for the physical value ofmD

2 in the
minimal standard model,mD

2 5(11/6)g2T2 and a51/30,
they give approximatelyG5(25.462.0)a5T4.

II. HARD THERMAL LOOPS IN THE CONTINUUM

In this section we discuss the origin of the hard therm
loops in terms of kinetic theory, and we present a lo
theory in which extra degrees of freedom generate the h
thermal loops. Nothing in this section is original; rather it
a review of Blaizot and Iancu’s and of Nair’s work@25–28#.
We include it for completeness and because our numer
implementation of classical Yang-Mills theory with har
thermal loops will be built directly from it.

Two controlled approximations make the dynamics of
fields in the electroweak theory tractable numerically, a
both arise because the theory is weakly coupled. First, the
degrees of freedom can to a good approximation be tre
asclassicalfields. Using this fact to perform calculations o
nonperturbative IR correlators was first proposed by Gr
oriev and Rubakov@8#, and the accuracy of the approxima
tion has been addressed in@16,29,30#. The conclusion of@30#
is that the classical approximation is an excellent approxim
tion in the infrared, but UV divergences in the classic
theory are potentially dangerous and must be handled c
fully.

The solution to this problem is to regulate the classi
theory in some way, which for the moment we will no
specify, and then to treat the UV degrees of freedom se
rately by perturbation theory. Here the other controlled a
proximation enters; the UV degrees of freedom are descri
by linearized kinetic theory, up to corrections subleading
g.

Since the equilibrium distribution of UV modes,N0(k), is
color neutral, it does not directly enter in the field equatio
of the classical IR fields. Rather, it is necessary to expand
UV mode distribution function~one particle density matrix!
up to first order in fluctuations from equilibrium,

N~x,k!5N0~k!1dNsinglet~x,k!1dNadj.~x,k!1•••.
~2.1!

Fields in a representation higher than fundamental lead
addition to the singlet and adjoint representation terms
have written, to higher representation departures from e
librium; but neither these, nor the singlet deviation fro
equilibrium dNsinglet, directly interact with the IR classica
fields, and at the linearized level they can be dropped; o
N0 anddNadj. will be relevant. Note also thatN should have
a spin index, and if there are scalar or fermionic degrees
freedom then it also has a species index. At leading or
corresponding to the HTL approximation, the contributi
from each spin and species are of the same form excep
the statistics forN0, so we will not write them in what fol-
lows.

At leading order in the coupling the IR classical field
evolve under the Yang-Mills field equations with a sour
arising from the UV modes@25#,
3-2
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~DnFnm!a5 j m
a , ~2.2!

j m
a ~x!52gCAE d3k

~2p!3
vmdNa~x,k!, ~2.3!

with vm5(1,v), v5k/uku the ~ultrarelativistic! 3-velocity of
the particles~note thatvm is not a Lorentz covariant quan
tity!, andCA52 for SU~2! gauge theory. We have only writ
ten the contribution of gauge excitations here, there are
ditional terms of the same form for scalars and fermio
where appropriate. The distribution function evolves via
convective covariant derivative equation which reflects
ultrarelativistic propagation of the UV degrees of freedo
The interactions betweendNa and the IR classical field
strength is subdominant because the coupling is weak; h
ever, the electric field polarizes the equilibrium distributio
providing a source term fordNa . The equation for the evo
lution of dNa, at leading order ing, is

ddNa

dt
5~vmDx

m!abdNb~x,k!1gvmF0m
a ~x!

]N0

]uku
50.

~2.4!

Note that this equation is not Lorentz covariant; it involv
only the electric field, not the magnetic field. The reason
that the equilibrium distributionN0 has a rest frame. A mag
netic field in that frame changes trajectories of individu
particles, but it does not disturb the~rotationally symmetric!
equilibrium distribution, whereas an electric field polariz
the plasma.

One approach to making a numerical model for the
classical fields plus UV modes is to simulate the distribut
function N with a large number of charged particle degre
of freedom. In the limit that the number of particles is lar
and their charges are small, one recovers the above e
tions. This is the approach proposed by@23# and imple-
mented in@24#. Here we will deal instead with the distribu
tion functions. This complementary approach can test
reliability of the results of@24# and may also prove simple
and more efficient. This is particularly true because E
~2.3! and ~2.4! carry extra redundant information;dNa is
actually a function ofk̂ times a fixed function ofuku, namely
@26,27#

dNa~x,k!52g
]N0

]uku
Wa~x,v!, ~2.5!

wherev5 k̂ takes on values over the unit sphere. In terms
W, the convective evolution of the departure from equil
rium is

~vmDm!abWb~x,v!5vmF0m
a ~x!, ~2.6!

and the current felt by the IR classical fields is

j m
a ~x!5mD

2E dVv

4p
vmWa~x,v!, ~2.7!
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wheredVv means thatv is integrated over the unit spher
with its natural measure. HeremD

2 is the square of the Deby
mass. These equations can be viewed as genera
Hamilton-Jacobi equations arising from the conserv
energy2

H5E d3xS 1

4
Fi j

a Fi j
a 1

1

2
F01

a F01
a

1
1

2
mD

2E dVv

4p
Wa~x,v!Wa~x,v! D , ~2.8!

and rather nontrivial Lie-Poisson brackets@28#. HereVv is
the integration measure for integratingv over the sphere.

When there are more than one species,Wa represents the
deviation from equilibrium felt by each, andmD

2 is a sum of
a contribution from each species of charge carrier,

mD
2 5g2T2S N

3
1

Ns

6
1

Nf

12D , ~2.9!

with Ns the number of fundamental representation, comp
scalars andNf the number of fundamental representatio
chiral fermions. In the SU~2! weak sector of the minima
standard model,N52, Ns51, and Nf512, so mD

2

5(11/6)g2T2. This is also a lower bound for all extension
of the standard model.

Our approach will be to find a discrete implementation
Eqs. ~2.3!, ~2.6!, and ~2.7!, and to study their evolution to
determine the diffusion constant for Chern-Simons numb

III. EXPANSION IN SPHERICAL HARMONICS

Unfortunately, the representation of the hard therm
loops in terms ofWa(x,v) does not provide a set of equa
tions which are easy to implement numerically. The probl
is thatWa(x,v) is a function not only of space-time, but als
over the sphere. Even if we discretize space onto a latticeW
still ‘‘lives’’ on a sphere at each lattice point, so it still take
an infinite amount of information to specifyW completely. It
is necessary to defineW over the sphere in some way requi
ing only a finite number of degrees of freedom. Since
want to recover spherical symmetry on scales long compa
to our lattice spacing, we should choose to do so in a sph
cally symmetric way. Our choice is to expandW in spherical
harmonics,

Wa~x,v!5(
l 50

`

(
m52 l

l

Wlm
a ~x!Ylm~v!, ~3.1!

whereWlm
a (x) is a function over space-time only. Becau

Wa(x,v) is real valued, theWlm
a satisfy the relations

Wlm
a 5~21!mWl ,2m

a* , ~3.2!

2Throughout this paper Roman direction indices run over th
spatial directions with positive metric, while Greek direction ind
ces run over all 4 spacetime indices with signature (1222).
3-3
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so only the real part ofWl0, and the real and imaginary par
of Wlm for m.0, should be viewed as independent variabl
Here we use the Condon-Shortley phase convention and
malizeYlm so that

E dV Ylm* Yl 8m85d l ,l 8dm,m8 . ~3.3!

Inserting the expansion~3.1! into Eq. ~2.6!, multiplying by
Ylm* , and integrating over angles, gives the equation of m
tion for Wlm

a ,

]Wlm
a

]t
52Clm,l 8m8,i~Di !

abWl 8m8
b

1d l ,1vmiEi
a , ~3.4!

wherevmi is the vectorv expressed in spherical componen

vmi5E dVvY1m* ~v!v i ~3.5!

andClm,l 8m8,i is an integral over 3 spherical harmonics:

Clm,l 8m8,i5E dVvYlm* ~v!v iYl 8m8~v!. ~3.6!

We give explicit expressions forvmi and Clm,l 8m8,i in Ap-
pendix A.

Furthermore, in terms of the spherical components
current is

j i
a5

mD
2

4p
vmi* W1m

a , j 0
a5

mD
2

A4p
W00

a , ~3.7!

and the conserved energy density is

H5E d3xS 1

2
~Ei

aEi
a1Bi

aBi
a!1

1

2

mD
2

4p (
lm

uWlm
a u2D .

~3.8!

As written, Eqs.~3.4!, ~3.7!, and~3.8! are equivalent to Eqs
~2.6!, ~2.7!, and ~2.8!. They still contain an infinite numbe
of degrees of freedom. However, they are in a form m
amenable to a spherically symmetric truncation.

The meaning ofmD
2Wa(x,v) is that it represents the ne

charge of all excitations moving in thev direction at pointx.
What we have done is to transform to angular mome
mD

2W00
a (x) is the total charge of all excitations at sitex.

mD
2W10

a (x) is roughly the net charge moving in the1z di-
rection minus charge moving in the2z direction, and
mD

2Wlm
a with l>2 represent higher tensor moments in t

distribution of excitations. For instance, a positivemD
2W20

a

means, roughly, that there are more charges of typea mov-
ing either up or down thez axis than in thex,y plane. Note
that onlyW00

a andW1m
a interact with the IR fields, and only

W1m
a is directly sourced by those fields. All the higher m

ments are important only in propagating the charge distri
tion through the convective derivative term in Eq.~3.4!.

The model still contains a countably infinite number
degrees of freedom, namelyWlm

a , l 51,2,3, . . . . Most of
05600
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these degrees of freedom are describing extremely su
high tensor fluctuations in the distribution of movin
charges. It is reasonable to think that smearing the ang
resolution of the distribution of charges by truncating t
series ofYlm at some finitel max will not significantly change
the physics. In particular, forl max>1 it will not change the
way the charge current interacts with the Yang-Mills field
but only the way the charges propagate; and for sufficien
large l max we expect the effect of angular smearing to
unimportant. Therefore, to render the set of fields finite,
truncate the series ofWlm

a at some finitel max. The evolution
equation forWlm

a is still Eq. ~3.4!, but with all Wl 8m8
a with

l 8. l max fixed to zero. Equivalently, we could set a
Clm,l 8m8,i with eitherl . l max or l 8. l max to zero. The number
of independent adjointWlm matrices is (l max11)2.

As long asClm,l 8m8,i satisfies the relation

Clm,l 8m8,i5Cl 8m8,lm,i
* ~3.9!

and the terms involvingvmi are either both present or bot
absent~they are absent ifl max50), then the Hamiltonian, Eq
~3.8!, and the phase space measure are conserved by
evolution equations. Hence it makes sense to speak of e
and unequal time, equilibrium thermal correlation function
When l max is finite we are no longer considering a theo
which is strictly equivalent to classical Yang-Mills fiel
theory with added hard thermal loops, but the behav
should approach the correct behavior in the limitl max→`
and we can consider taking this limit numerically.

IV. PROPAGATOR AND THERMODYNAMICS
AT FINITE l max

Before moving on to the numerical implementation of t
effective theory described in the last section in discr
space, we should pause to see how well or how badly
theory with finite l max cutoff reproduces the hard therm
loops. To do so we first look at whether it reproduces th
correctly at the thermodynamic level; it does so perfectly
all l max>0. Then we examine the propagator of the theo
which will only be reproduced properly in thel max→` limit.

A. Thermodynamics

As discussed at the end of the last section, the theory w
an l max cutoff possesses well defined thermodynamics
scribed by a Hamiltonian which is quadratic and diagona
the Wlm’s. The only complication is that the phase space
constrained due to Gauss’ law:

~D•E!a5
mD

2

A4p
W00

a , ~4.1!

and the partition function reads

Z5E DAiDEiDWlmd„~D•E!a2mD
2W00

a /A4p…

3exp~2H/T!, ~4.2!
3-4
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H5
1

2E d3xS Bi
aBi

a1Ei
aEi

a1
mD

2

4p (
lm

uWlm
a u2D .

~4.3!

Every Wlm exceptW00 is Gaussian and they can all be int
grated out immediately. It is also convenient to introduc
Lagrange multiplier for Gauss’ law,

d„~D•E!a2mD
2W00

a /A4p…

5E DA0exp$ iA0
a@~D•E!a2mD

2W00
a /A4p#/T%.

~4.4!

Doing so makesE andW00 Gaussian as well, and they ca
now be integrated out, yielding

Z5E DAiDA0exp~2H8/T!, ~4.5!

H85
1

2E d3x@Bi
aBi

a1~DiA0!a~DiA0!a1mD
2A0

aA0
a#,

~4.6!

where the wave function term forA0 arises from integrating
out theE field and the Debye mass squared term arises f
integrating outW00.

The sole thermodynamic consequence of theW fields is
the introduction of a Debye mass, and its magnitude is gi
exactly by the coefficient in theW field equations of motion.
This corresponds exactly with what the complete hard th
mal loop thermodynamic contribution should be. Furth
more, the Debye mass is introduced even forl max50, the
absolute minimum value. We do not recommend usingl max
50, however, because in this case theW fields have no
dynamics and everyW00

a is a conserved quantity. Therefor
the system is not ergodic and a Hamiltonian trajectory w
not densely sample the microcanonical ensemble. Howe
to the best of our knowledge the only conserved quanti
~besides the Gauss constraints! in the non-Abelian theory
with l max>1 are energy and momentum,3 and we expect er-
godicity in this case. The conclusion is that the techniq
reproduces the thermodynamics of the full HTL theory e
actly, for all l max>1.

B. Propagator

Now we turn to the study of the propagator in thel max
cutoff theory. We work only to linear order, or equivalentl
we will study the propagator only in the Abelian theory.
this case we can study onek mode in isolation.

Since the spherical harmonic expansion does not br
rotational invariance~even when we restrictl< l max), it is
sufficient to study the propagation of modes for whichk is in

3On a discrete lattice the total momentum is not conserved, du
the Umklapp effect.
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the 3-direction. The Fourier transformed equations of mot
are

v2Am2k2Am5
mD

2

3
W1m , ~4.7!

vWlm2kClm,l 8m8,3Wl 8m85vd l ,1Am , ~4.8!

where we have definedAm5615A4p/6(7A11 iA2) and
Am505A4p/3A3. TheA61 are the transverse components
the gauge field andAm50 is longitudinal.

Since Clm,l 8m8,3}dm,m8 , cf. Eq. ~A4!, the equations of
motion do not mix differentm sectors~this is the advantage
of choosing ki ê3). We also note thatWl maxl max

and

Wl max,2 l max
do not evolve at all. In general, the componen

with mÞ61 do not couple to the transverse gauge fiel
We will not be concerned here with the propagator in t
longitudinal sector, or with any sector which does not cou
to any gauge fields, so the only ‘‘interesting’’ modes a
those withm561. It should be noted that this decouplin
occursonly in the Abelian theory.~It also allows a more
efficient representation for hard thermal loops than the
we use here, see@31#.!

In the following we choosem51, which is the sector
which couples to the transverse gauge fields. The ma
Cll 85Cl1,l 81,3 is a symmetric and traceless matrix of sizel max

2

with non-zero~positive! elements only ifl 85 l 61. ~Note
that, becauseumu< l , l is restricted here to the interval 1< l
< l max, hence the dimensionality ofCll 8 .) As a result, in the
eigenvalue problem

Cxa5laxa, ~4.9!

the eigenvaluesla are real and non-degenerate, and th
come in positive and negative pairs: ifl is an eigenvalue, so
is 2l. If l max is odd, the matrix has one zero eigenvalu
otherwise the eigenvalues are non-zero. The eigenvectorxa

are real and orthogonal, and we will normalize them to
orthonormal.

Writing the matrixCll 8 in terms of the eigenvectors an
eigenvalues,

Cll 85(
a

x l
alax l 8

a , ~4.10!

we can solve forWl1 in Eq. ~4.8!:

Wl15(
a

v

v2kla
x l

ax1
aA1 . ~4.11!

Inserting this in Eq.~4.7!, we obtain the inverse transvers
propagator

D l max

21 52v21k21
mD

2

3 (
a51

l max v

v2kla
~x1

a!2. ~4.12!

Let us now compare the propagator~4.12! to the theory
without the l cutoff. Remember that in this case the prop

to
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FIG. 1. Left: The inverse propagator Eq
~4.12! with l max510, plotted againstv/mD with
fixed k50.4mD . Right: The positive frequency
poles of the propagator atl max510. In these fig-
ures, one can clearly see the development of
cut in the interval2k<v<k, and the two plas-
mon poles atv2'mD

2 /316k2/5.
s
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r.
e

gator has acut in the interval2k<v<k @32#, and, in the
limit v!k!mD , it describesoverdampedbehavior with
damping coefficientt21;k3/mD

2 . Thus, the damping rate i
;g4T whenk;g2T, which is the relevant momentum sca
for non-perturbative physics.

What does the propagator look like at different values
l max? If l max50, the gauge fields are decoupled from theW
fields, except through Gauss’ law@see Eqs.~2.3! and ~3.7!#;
transverse physics is the same as in the absence of thW
fields. At l max51 the ‘‘matrix’’ Cll 850 is a scalar, and the
propagator describes a massive vector particle:D1

2152v2

1k21mD
2 /3.

The first interesting case isl max52. The propagator is stil
easy to solve analytically, and@using Eq.~A4!# the inverse
propagator becomes

2v21k21
mD

2

3

v2

v22k2/5
. ~4.13!

The propagator has two zeros given byv25k2/5, and 4
poles at

v25
3k2

5
1

mD
2

6
6

1

2
AS 6k2

5
1

mD
2

3 D 2

2
4k4

5
. ~4.14!

In the limit k2!mD
2 the poles are

v25
mD

2

3
1

6

5
k21O~k4!, v25

3

5

k4

mD
2

1O~k6!.

~4.15!

The first 2 poles correspond to the plasmon, and give it
right dispersion relation up to corrections of orderk4/mD

2 .
The second 2 poles are atv;g3T for k;g2T and mD
;gT. Thus, instead of the correct overdamped behavior,
l max52 propagator~4.13! describesoscillatorybehavior with
v;g3T. At first sight, this may look like a fatal flaw in the
l-mode cutoff method. However, as we will argue below,
practice this is not a serious drawback.

For odd values ofl max the matrixCll 8 has one eigenvalue
equal to zero. As withl max51, the self-energy contribution
to Eq. ~4.12! has a constant ‘‘mass term,’’
05600
f

e

e

mD
2

3
~x1

(0)!21
mD

2

3 (
a:laÞ0

v

v2kla
~x1

a!2. ~4.16!

What this means is that there is a linear combination ofW
and A fields, namely Wl15Wx l

(0) , A5(mD
2 /3k2)Wx1

(0) ,
which is strictly static. Thus, part of the ‘‘power’’ in theA
fields is lost to the dynamics of the system. There are a
propagating modes, both at the plasmon frequency and
v,k. For l max53, the poles are at

v25
mD

2

3
1

6

5
k21O~k4!, v25

8

35
k21O~k4!.

~4.17!

We can identify the same plasmon pole as withl max52, Eq.
~4.15!, but the other pole behaves asuvu;k instead ofuvu
;k2. For relevant values ofk, the poles of thel max52 propa-
gator are at much smalleruvu than for l max53.

This pattern is seen to be true also for largerl max. While
we have been unable to find a general analytic expression
the poles of the propagator, it is easy enough to solve
eigenvalue problem~4.9! and find the poles of the propaga
tors numerically. In Fig. 1 we show the inverse propaga
and the location of the poles whenl max510. In general, we
can state the following about the poles of the propagator

~i! For l max even, there arel max poles andl max zeros of the
propagator in the interval2k,v,k. For odd values of
l max, the number of poles and zeros isl max21. In either
case, asl max→`, the poles and zeroes merge into a cut in t
propagator.

~ii ! There is a pair of plasmon poles atv2'mD
2 /3

1(6/5)k21O(k4/mD
2).

~iii ! When l max is even andk!mD /Al max, the lowest pair
of poles behaves as

v'6
k2

mDAl max

, ~4.18!

whereas the other poles in the regionuvu,k depend linearly
on k. For l max odd, all of the poles in this region are linea
As we makel max larger, the power lost to the static mod
becomes smaller roughly asl max

2 .
3-6
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The absence of cuts means that the gauge field prop
tion is non-dissipative. We should expect this behavior in
Abelian theory because the equations are linear. Howev
need not concern us, because at largel max the behavior dif-
fers from thel max5` limit only over very long time scales
and the nonlinearities in the non-Abelian case should
come important on shorter time scales ifl max is sufficiently
large.

The spectral power density

r~v,k!/v5~2/v!Im D~v1 i e,k! ~4.19!

for fixed k50.4mD is plotted in Fig. 2, both for the full
propagator without thel cutoff and for several~even! values
of l max. In the finite l max case the spectral density gets co
tributions only from the poles of the propagator~4.12!:

r l max
~v,k!/v5 (

poles
2

2p

v
d„v2vpole~k!…

3ResD l max
„vpole~k!,k…. ~4.20!

The spectral power is strongly concentrated aroundv50
with a peak widthdv'4k3/(pmD

2). The spectral power o
the l max propagator closely follows thel max5` curve; how-
ever, in order to have enough power in the central peak
gion, l max should be large enough so that there are poles w
within the bulk of the peak, which is the relevant region f
the propagator to describe the correct damping.

We can use this property to derive an approximate ‘‘ru
of-thumb,’’ which tells how largel max should be for a given
value ofk ~which, for the relevant physics, should be set
g2T): we simply require thatl max is large enough so tha
lowest positive frequency pole satisfies

FIG. 2. The spectral densityr/v at k50.4mD for propagators
without the l cutoff and with various values ofl max. The spectral
density for finitel max is a sum of form(aCad(v2va). The plot
symbols are plotted at coordinates@va ,2Ca /(va112va21)#,
which makes it possible to compare the differentl max values.
05600
a-
e
it
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e-
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vpole~k!,
4k3

pmD
2

. ~4.21!

Numerically, this corresponds to

l max
even.0.62mD

2 /k220.8, l max
odd.1.86mD

2 /k221.1,
~4.22!

with good accuracy. Strikingly, one has to use 3 times lar
values forl max in the odd sector than in the even one. This
due to the lack of thev;k2 pole in the odd sector, as em
phasized above. While for modest values ofg2T/mD
50.3 . . .0.5, l max56 or 4 should be sufficient, for very
weak coupling or largemD the requiredl max-value becomes
impractical for numerical work, since the numerical effo
will rise as (l max11)2.

Naturally, one has to remember that Eq.~4.22! is based on
an ad hoc requirement that the lowest positive freque
pole should be within the peak of the spectral density, a
different criteria would lead to very different requiremen
@but the overall pattern in Eq.~4.22! should remain#. What
value of l max one really needs in non-Abelian simulation
may differ from Eq. ~4.22! by a large factor; indeed, the
numerical results for non-Abelian theory in Sec. VII seem
imply that Eq.~4.22! is overly strict.

We also note that the poles of theW field coincide with
the A field poles, so we have gotten them for free. For o
l max, there is one pole not accounted for yet: the mode c
responding to theCll 8 zero eigenvalue, which does no
propagate at all. Naturally, the spectral power of theW
propagator is very different from theA propagator.

So, what do these results tell us about the sphaleron
in the non-Abelian theory? We conclude the following:

~A! When l max is odd, a component of the gauge field
static and not fluctuating, and therefore does not contrib
to real time processes. Since the static component is lar
in the infrared, we expect this to reduceG relative to large
l max limit. This behavior is worse for smalll max and should
go away at largel max as the static component contains le
and less of the total gauge field amplitude.

~B! In the evenl max sector, the location and density of th
poles is relevant for the correctdampingin hot plasma: the
larger l max is, the more the poles are able to reproduce
concentration of spectral power at smallv, and so the stron-
ger the damping and the smaller the sphaleron rate. T
when l max increases, the sphaleron rate should approach
physical one from above. The approach should be m
faster than in the oddl max sector, see Eq.~4.22!.

This behavior is indeed close to what we observe in S
VII.

Obviously, the results in this section imply that for fixe
l max onecannothave the correct leading order~in g) behav-
ior of the gauge field propagator in the strict smallg limit.
We expect this to be true also for the non-Abelian gau
propagator, and hence for the sphaleron rate. Neverthe
for realistic values ofg andmD we expect a modestl max to
be sufficient.
3-7
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V. LATTICE EQUATIONS OF MOTION

In this section we discuss the discretization of the c
tinuum equations of motion Eqs.~2.3!, ~3.4! and~3.7!. Natu-
rally, not all of the properties of the continuum evolution c
be satisfied on a discrete lattice, but the update rule of
lattice system should satisfy at least the following criteria

~i! Gauge invariance, lattice translational and rotatio
symmetry andC, P, andT symmetries are preserved,

~ii ! Gauss’ law is identically satisfied,
~iii ! The total energy is conserved.
Naturally, we also require that the small lattice spac

and smooth field limit gives the correct continuum behavi
The discretization of the system is very similar to the pu

Yang-Mills theory, developed by Kogut and Susskind@33#.
The lattice is a 3-dimensional torus of sizeL35N3a3, with
lattice spacinga. As is customary in real-time simulation
we useA050 gauge4 and discretize the gauge fields in term
of spatial parallel transportersUi(x)5exp(igaAi)PSU~2!,
and electric fieldsEi(x) which belong to the Lie algebra o
SU~2!. Ui(x) andEi(x) live on the links connecting pointsx
and x1 i ~here we use the shorthandx1 i for x1aêi). The
Wlm fields are located on lattice sites. Thus, for each lat
site the total number of field variables is 3 SU~2! matrices
and 31( l max11)2 adjoint matrices.

On the lattice we want to use dimensionless field va
ables. We absorb the lattice spacing andg in lattice fields as
follows:

gaA→A, ga2E→E, gaW→W. ~5.1!

For compactness, we also use dimensionless lattice co
nates,xi→xia, xi integer, reintroducinga when necessary
We shall consider the evolution of the lattice fields both
continuous and discrete time. In discrete time, one upd
step consists of evolving the fields from timet to t1d t ,
whered t!1 in order to keep the evolution stable and in
gration errors small.

A. Gauge field update

We shall use the standard single plaquette definition
the magnetic field strength:

1

TE d3x
1

4
Fi j

a Fi j
a →bL(

h
F12

1

2
Tr UhG . ~5.2!

HereUh is the ordered product of the link variables arou
a plaquette,

Uh,i j ~x!5Ui~x!U j~x1 i !Ui
†~x1 j !U j

†~x!. ~5.3!

At the tree levelbL54/(g2Ta). However, this receives ra
diative corrections; these will be discussed below.

4We emphasize that this choice is just a convenient way to fix
gauge ambiguity in the field update laws, and that any alterna
choice would give the same value for gauge invariant correlato
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Let us now consider the lattice gauge field equations
motion both in continuous and discrete time. The~continu-
ous! time derivative of the link matrixU is given in terms of
the electric field as5

] tUi~x,t !5 iEi~x,t !Ui~x,t !. ~5.4!

The ‘‘gauge force’’ term in the evolution equation of th
electric field is fixed by the magnetic Hamiltonian~5.2!, by
varying Eq.~5.2! with respect toAi . When we add the cur-
rent term due to theWlm fields, we obtain the evolution
equation forEi :

] tEi
a~x,t !52 i

1

2
Tr FtaUi~x,t ! (

u j uÞ i
Si j

† ~x,t !G1
1

2
@ j i

a~x,t !

1P i
abj i

b~x1 i ,t !#. ~5.5!

Here Si j is the gauge link ‘‘staple’’ which connects th
pointsx andx1 i around the plaquette:

Si j 5U j~x!Ui~x1 j !U j
†~x1 i !. ~5.6!

The summation indexj in Eq. ~5.9! goes over both positive
and negative directions; a negative value means that the
is traversed in the opposite direction as in Eq.~5.6!:
U2 j (x)5U j

†(x2 j ).
The current terms in Eq.~5.5! are given by j i

a

5(mDa)2/(4p)vmi* W1m
a . SinceEi(x) is located between the

pointsx andx1 i , the currentj i(x) is averaged between th
beginning and the end of the link. The current atx1 i has to
be parallel transported to pointx, and we use the shorthan
expression

P i
abFb~x1 i ,t !5@Ui~x,t !F~x1 i ,t !Ui

†~x,t !#a ~5.7!

for the adjoint field parallel transport from pointx1 i to
point6 x.

In discrete time, the adjoint fieldEi transports the link
matrix Ui(t) to Ui(t1d t). In order to keep the evolution
symmetric in time, it is natural to placeEi in the half-
timestep valuet1 1

2 d t . Integrating Eq.~5.4!, we obtain the
discrete time evolution equation forUi :

Ui~x,t1d t!5expF iEi S x,t1
1

2
d tD d tGUi~x,t !. ~5.8!

e
e
.

5Ei(x) appears on the left in Eq.~5.4! because we choose t
recordEi(x) so that it transforms under gauge fields as an adjo
object at the basepointx rather than the endpointx1 i of the link

from x to x1 i . Alternately we could work in terms ofẼi(x)
5Ui

†(x)Ei(x)Ui(x), in which case the expression would involv

UẼ rather thanEU; similar changes would appear in other expre
sions involvingE. There is no physical difference between the tw
choices.

6If we worked in terms ofẼ, the other current would require
parallel transportation to the end point of the link.
3-8
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Alternatively, one can think of exp(iEidt) as being the time-
like plaquette in the (t,i ) plane, which updatesU as shown
because we have chosenA050 gauge.~In another gauge
there would be an extraA0 dependent term in theU field
update, and in the updates of theE andW fields as well; it is
the convenience of leaving these out which encourages
choice of temporal gauge.!

The discrete time electric field update can be obtain
now from Eq.~5.5! by substituting

] tEi
a~x,t !→ 1

d t
FEi

aS x,t1
1

2
d tD2Ei

aS x,t2
1

2
d tD G .

~5.9!

The lhs of Eq.~5.5! remains as is even at discrete time. A
formulated, the discrete time update steps~5.8! and~5.9! are
symmetric under time reversal and they give an algorit
accurate to orderO(d t

2).
As mentioned above, the relationbL54/(g2Ta) receives

corrections because UV modes behave differently on the
tice than in the continuum. This has been calculated in A
pendix B of @24# ~see also@34#!, with the result

bL5
4

g2aT
1S 1

3
1

37j

6p D2S 4

3
1

2mD
2 a2

3
1

mD
4 a4

18 D j~mDa!

4p

1S 1

3
1

mD
2 a2

18 DS~mDa!

4p
. ~5.10!

Here j50.152859 . . . , andS(mDa) and j(mDa) are inte-
gral functions:

S~m!5E
2p

p d3k

~2p!3

1

k̂21m2
,

j~m!5E
2p

p d3k

~2p!3

1

~ k̂21m2!2
, ~5.11!

where k̂25( i4 sin2ki/2. To 5% accuracy, this can be e
pressed asbL.4/(g2aT)10.61 for values ofmDa used in
this work. However, we shall use the full expression in o
analysis. In the sequel we will writebL for the variable ap-
pearing in Eq.~5.10!, and writeb for 4/g2aT.

Further subtleties related to this thermodynamic corr
tion arise when we convertG to continuum limits; we will
address this in Appendix C.

B. Wlm update and doublers

TheWlm equation of motion Eq.~3.4! has only first order
derivatives in time and space. In order to preserve the e
P andT symmetries on the lattice, the first order derivati
terms should be replaced bysymmetricfinite differences.
Thus, the continuous time lattice equation of motion forWlm
is
05600
he

d

t-
-

r

-

ct

] tWlm~x,t !52
1

2
Clm,l 8m8,i@PiWl 8m8~x1 i ,t !

2P2 iWl 8m8~x2 i ,t !#1
1

2
d l ,1vmi@Ei~x,t !

1P2 iEi~x2 i ,t !#. ~5.12!

The electric field contribution is symmetrized from each
the links which connect to pointx.

As was done with the spatial derivative, we substitute
time derivative ] tW with a symmetric finite difference
@W(t1d t)2W(t2d t)#/(2d t), and the value ofW at time t
1d t will depend on values at timest and t2d t . Explicitly,
the update rule becomes a ‘‘leapfrog’’

Wlm~x,t1d t!5Wlm~x,t2d t!1d t$2d l ,1vmiEave,i

2Clm,l 8m8,i@PiWl 8m8~x1 i ,t !

2P2 iWl 8m8~x2 i ,t !#%. ~5.13!

HereEave is the average electric field influencing the prop
gation of Wlm from t2d t to t1d t . Since this is over two
time steps, there are 4 timelike ‘‘plaquettes’’ to each dire
tion i:

Eave,i~x,t !5
1

4 FEi S x,t2
1

2
d tD1P2 iEi S x2 i ,t2

1

2
d tD

1Ei S x,t1
1

2
d tD1P2 iEi S x2 i ,t1

1

2
d tD G .

~5.14!

Note that, due to Eq.~5.8!, the parallel transportP2 iEi(x,t
1 1

2 d t) can be made withU matrices either at timet or time
t1d t with the same result. In practice, one does theEi trans-
port once for each time step, and stores the result for the
time step.

To summarize, the discrete time update step (t→t1d t)
goes as follows:

~1! start withU(t), E(t2d t/2), W(t) andW(t2d t),
~2! evaluateE(t1d t/2) with Eqs.~5.9! and ~5.5!,
~3! calculateW(t1d t) with Eq. ~5.13! @and forgetW(t

2d t) andE(t2d t/2)], and finally
~4! calculateU(t1d t) with Eq. ~5.8!.
A generic feature of a first order differential operator on

discrete lattice is the decoupling of ‘‘odd’’ and ‘‘even’’ co
ordinate sectors:Wlm(x,t1d t) depends only onWlm at
points (x,t2d t) and (x6 i ,d t); in particular it doesnot de-
pend onWlm(x,t), which is its immediate predecessor. Mo
precisely, if we label the coordinates with an integer valu
parity labelp5( ixi1t/d t , the Wlm fields at odd and even
values ofp do not interact, except through their coupling
the gauge fields. This causes aspecies doubling problem, in
analogy to the one familiar from lattice QCD~the Dirac
equation is of first order!. The properties of the doublers in
linearized theory are discussed in detail in Appendix B.

There are 15 extra low-energy doubler modes, livi
around the corners of the 4-momentum space hypercubki
3-9
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5(0,p/a), v5„0,p/(d ta)…, with at least one ofki ,v non-
zero. The continuous time equation of motion (5.12) h
only 7 spatial doublers; the rest are introduced by the t
discretization~and can be avoided, see Sec. V D!. However,
in contrast to lattice QCD, in our case the doublers are
nign: first, they couple only very weakly to the gauge field
decoupling completely at the corners of the Brillouin zo
~see Appendix B!. Second, they couple only to gauge fiel
at very high wave numbersk;1/a and/or frequenciesv
;1/(ad t). Thus, the doublers do not influence at all t
physically interesting smallk and v gauge field dynamics
and their effect on modes close to the lattice cutoff rema
small.

Because the time step is small (d t!1), the timelike dou-
bler modesv;p/ad t are especially weakly coupled to low
frequency modes. Indeed, in simulations we usedd t50.05
and observed no appreciable energy transfer between
timelike doublers and low-frequency modes. However, si
the timelike doublers are low-energy excitations ofW fields
which are not present in continuous time, they can ca
problems in thermalization of the system and, as it turns
in counting the active degrees of freedom. This will be d
cussed below in Sec. V F.

Before leaving the update we should comment on ene
conservation. In continuous time, we can write down
lattice version of the Hamiltonian~3.8!:

H~ t !5bL(
h

F12
1

2
Tr Uh~ t !G1

1

2 (
x,i

Ei
2~x,t !

1
~mDa!2

8p (
x,lm

uWlm~x,t !u2. ~5.15!

This Hamiltonian is exactly conserved by the equations
motion ~5.4!, ~5.5! and ~5.12!. However, in discrete time
there is no equivalent conserved expression. A good appr
mation to the energy can be obtained by symmetrizing
contribution of the electric fields in Eq.~5.15! with respect to
t:

Ei
2~x,t !→FEi

2S x,t2
1

2
d tD1Ei

2S x,t1
1

2
d tD GY2.

~5.16!

The energy obtained this way fluctuates with an amplitu
}d t

2 , but the mean value is stable. The conservation of m
energy is guaranteed by the time reversal symmetry of
discrete time equations of motion: if, at some point in t
evolution of the fields, we invert the sign ofE (E→2E)
and conjugate and reverse sign for the hard particle cha
@Wlm→2Wlm* 52(21)lWlm#, the system will exactly re-
trace its evolution backwards. If the energy had a tendenc
increase, inverting the time would cause it to decrease. S
the configurations (U,E,W) and (U,2E,2W* ) are just as
likely to appear in a thermal distribution, the system can
exhibit any systematic tendency for the average energ
change. The stability of the system is a necessary prop
for long Hamiltonian evolutions.
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C. Gauss’ constraint

The Gauss’ law is given by the 0-component of the eq
tions of motion~2.3!:

DiF
i 05 j 05

mD
2

A4p
W00. ~5.17!

On the discrete spatial lattice and discrete time, care ha
be taken to make the appropriate symmetrizations to
fields Fi05Ei and W appearing in Eq.~5.17!. SinceEi is
living on half time step time valuest1 1

2 d t , we symmetrize
W00 from timest and t1d t :

(
i

FEi S x,t1
1

2
d tD2P2 iEi S x2 i ,t1

1

2
d tD G

1
~mDa!2

A4p

1

2
@W00~x,t !1W00~x,t1d t!#50.

~5.18!

This condition~or rather, the constancy of the violation o
this condition! is satisfied exactly by the evolution equatio
~5.8!, ~5.9! and~5.13!. To see this consider the change of E
~5.18! under one time step. It gets contributions from ea
dE/dt and fromdW00/dt. @There are no contributions from
the time derivativedU/dt of the U appearing in the paralle
transporterP2 i becausedU/dt commutes withE and can-
cels between theU andU† in Eq. ~5.7!.# In the absence ofW
fields, the time derivative of Eq.~5.18! is zero, as shown by
Ambjo”rn and Krasnitz@10#. The addition ofW fields adds
new terms to theW00 field andE field updates. First there is
a contribution toEi(x) andP2 iEi(x2 i ) from W1m(x). Ac-
cording to Eq. ~5.5! these are equal; butEi(x) and P
2 iEi(x2 i ) appear in Eq.~5.18! with opposite sign, so there
is no contribution here. There is also no contribution
dW00(x)/dt due toW1m(x). Second,W1m at each neighbor-
ing site contributes both todE/dt on the link between the
neighboring site andx, and todW00/dt, through Eqs.~5.9!
and~5.13! respectively; but the two contributions to the tim
derivative of Eq. ~5.18! cancel, becauseC00,1m,i5vmi* .
Hence the update preserves Gauss’ law if it is satisfied by
initial conditions. Enforcement of Gauss’ law is therefore
problem for the thermalization algorithm, not the evolutio

D. A way to eliminate temporal doublers

There is an alternative way to write the update ru
which eliminates all the high frequency doubler mode
which we now discuss. First, note that the reason there
doublers is that the update as specified in the previous
sections requires and maintains twice as much informa
about theW fields as is necessary. As discussed in the su
mary at the end of Sec. V B, the update needs the valu
Wlm at two time slices. However, onlyW and not its time
derivative appear in the Hamiltonian, so a complete spec
cation of the fields should only requireWlm to be specified
once at each site. The excess information describes the
of the doublers. Eliminating the doublers will require elim
3-10
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nating half of this information. This is possible since,
noted earlier, the update rule forW does not mix theW fields
on odd and even sublattices. Therefore, it is possible to
fine W only at every other spacetime point; we can define
only at the even sites, that is, points for whichp5@ t/d t
1( ixi # is even. Equation~5.14! remains unchanged, but Eq
~5.9! has the modification

@ j i
a~x,t !1P i

abj i
b~x1 i ,t !#

→5
j i
a~x,t !, t/d t1(

i
xi even,

P i
abj i

b~x1 i ,t !, t/d t1(
i

xi odd;

~5.19!

that is, we use whicheverj is defined. Similarly, in Gauss
law, Eq. ~5.18! involves eitherW00(x,t) or W00(x,t1d t),
whichever is defined. The time derivative of the Gauss c
straint remains conserved, for the same reasons as befo

Updating the fields in this way removes 8 of the 15 do
blers and cuts the number of computations, and hence
CPU time, almost in half. It may slightly increase time st
errors because of the even-odd alternation of the curren
the E field update rule; but this can be compensated for
reducingd t , which is not problematic because of the redu
tion in the number of computations per time step. We ha
compared the update with and without this modification a
find that the results for physical measurables agree wi
statistical errors.

E. Lattice thermodynamics

In continuous time the equations of motion~5.4!, ~5.5!,
and~5.12! describe a Hamiltonian evolution which conserv
energy and phase space volume. We can study the the
dynamics of the system by using the Hamiltonian~5.15! to
write down the canonical partition function

Z5E F)
x,i

dUi~x!dEi~x!G
3F )

x,lm
dWlm~x!G)

x
d„G~x!…e2H/T, ~5.20!

whereG(x) is Gauss’ law, Eq.~5.18! ~in continuous time!.
Introducing a Lagrange multiplier fieldA0 in exact analogy
with what we did in continuous space in Sec. IV A, we c
integrate out theE andW fields to obtain the lattice partition
function

Z5E F)
x,i

dUi~x!GF)
x

dA0~x!Ge2HA, ~5.21!
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F12
1

2
Tr Uh~ t !G1

1

2 (
x,i

@P iA0
a~x1 i !

2A0
a~x!#21

~mDa!2

2 (
x

„A0
a~x!…2. ~5.22!

The gradient term for theA0 field is the simplest lattice
implementation of the continuum (DiA0)2, andmD

2 appears
as theA0 mass term without any corrections, just as in t
continuum case. The form of the partition function above
equivalent to the path integral of the full quantum theory
the high-temperature dimensional reduction approximat
on the lattice@35,36#. This guarantees that this theory repr
duces the~equal time! thermodynamics of the Yang-Mills
fields.

This property can be used to fix the bare lattice value
the mass termmD . In general, classical field theories suff
from UV divergences; however, when we consider the sta
thermodynamics of the theory in Eq.~5.22!, only a finite
number of UV divergent diagrams appears. These div
gences can be absorbed in counterterms, and in particula
the theory in Eq.~5.22!, we have@35#

mD,bare
2 5mD,phys

2 2
Sg2T

pa
, S53.17591 . . . . ~5.23!

HeremD, phys
2 is fixed according to the actual particle conte

of the theory, see Eq.~2.9!.

F. Thermalization

The real time simulation has to be started from a confi
ration which has been chosen from a thermal distribution
that the the Gauss’ constraint is satisfied. As emphas
above, to start the update we need the fieldsU(t), E(t
2d t/2), W(t) andW(t2d t).

We will use the same general philosophy as in@11#. Some
of the degrees of freedom, namelyEi andWlm , are Gauss-
ian, while others, namelyUi , are not. We can draw the
Gaussian fields from the thermal ensemble and then use
evolution equations to ‘‘mix’’ this thermalization with thos
degrees of freedom which are not Gaussian. The therma
tion proceeds by evolving the Hamiltonian equations of m
tion of the system, but periodically ‘‘refreshing’’ the Gaus
ian degrees of freedom, that is, discarding the values
Gaussian degrees of freedom and drawing them from
thermal ensemble.

At first sight, this plan appears to be complicated due
the Gauss’ constraint. In the case without theW fields this
problem was solved in@11#, by first drawingE from the
Gaussian distribution ignoring the constraint and then p
jecting to the constraint surface. It is trivial to extend th
technique to the current situation. However it is actually p
sible to do something even easier. Only the componentW00
of Wlm enters the Gauss’ constraint. Thus, according to
~5.15!, we can set the higherlm components freely to the
correct thermal distribution, that is, draw each ofWlm

a , l
>1, from a Gaussian distribution of widthA8p/(mDa)2.
The thermalization then proceeds as follows:
3-11
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~1! SetU(x,t)51, E(x,t)5W00(x,t)50.
~2! ChooseWlm

a (x,t), l>1, from the Gaussian distribu
tion of width A8p/(mDa)2.

~3! Evolve the equations of motion for a short perio
transferring energy fromWlm to the other fields, while pre
serving Gauss’ law.

~4! Repeat from~2! until the fields are thermalized.
However, in discrete time we do not have an exact Ham

tonian, and there is an inherent ambiguity}d t
2 in the defini-

tion of energy. It is not immediately evident how the fiel
should be thermalized. At a more practical level, the rando
ization of Wlm as above is complicated by the fact that w
needWlm fields at timest and t2d t to start the leapfrog
update. This is closely associated with the timelike doub
of the W fields. However, as was discussed in Sec. V B,
timelike doublers couple extremely weakly to the low
frequency mode sector, and there is practically no ene
transfer between the two sectors. This was also seen in s
lations: the energy contained in the doubler modes rema
at the level where it was set by the initial thermalizati
during the whole trajectory.7 Moreover, the gauge fields car
only about the low frequency modes~see Appendix B!.
Thus, in principle, we are at liberty to do whatever w
choose about the timelike doubler modes; we can either t
malize them or try not to excite them in thermalization. T
gauge fields will not see the difference — however, in t
former caseW fields will contain roughly twice as much
energy as in the latter. Note also that the whole probl
would go away if we used the update discussed in Sec. V

In all of our ‘‘production’’ runs we chose not to excite th
timelike doubler modes. This makes the lattice modes
semble as closely as possible the continuous time fie
Note that the Hamiltonian~5.15! counts the degrees of free
dom and energy equipartition correctly only if there are
timelike doublers, and theO(d t

2) ambiguity in energy is
valid only in this case~in the presence of doublers, the am
biguity is of order 100%!.

The thermalization without the doublers can be acco
plished using the steps~1!–~4! as above, but replacing th
step~2!, for example, by one of the following two method

~a! Set Wlm(t) to Gaussian random variables in step~2!
above, and perform thefirst update step in~3! using a for-
ward asymmetric time difference for theselm modes: that is,
instead of approximating the time derivative with@W(t
1d t)2W(t2d t)#/(2d t) in Eq. ~5.13!, we use@W(t1d t)
2W(t)#/d t . This is a natural way to start a leapfrog, and
gives a smooth interpolation for the fields. This method giv
slightly incorrect mean energy, but the error isO(d t

2).
~b! SetWlm(x,t2d t)5Wlm(x,t), wherel>2, to Gaussian

random variables in step~2!. Now also the first step can b
performed with the leapfrog. This method excites the d
blers more, but the amplitude of their excitation is on
O(d t

2). Note that now only modesl>2 can be randomized

7More precisely, the energy transfer remains negligible for ti
step d t50.05 used in the simulations. Using a dangerously la
time step of orderd t;0.2–0.3, energy transfer becomes significa
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since in one timestep bothE and W00 interact with l 50
modes.

In our production runs we used the method~b!. We also
made test runs with the doubler modes fully exited. This
simple to accomplish: proceed as in items~1!–~4! above,
randomizing onlyWlm(t), l>2, and perform the evolution
with the leapfrog update~5.13!. Since there are now twice a
many activeWlm modes, the width of the Gaussian distrib
tion has to be multiplied byA2, in order for theU and E
fields to have the same total energy as before. As mentio
above, in the gauge field observables the doublers have
observable effect.

Let us note that a Langevin-type thermalization, as u
in @37# for pure Yang-Mills theory, would be straightforwar
to implement by coupling the noise toWlm fields. Indeed,
coupling the noise only to the highestl modes might be of
interest even during a simulation, since this could mimic
effect of the higherl modes.

VI. MEASURING THE CHERN-SIMONS NUMBER
DIFFUSION

The baryon number violation rate is related to the diff
sion of the Chern-Simons number, defined as the charge
sociated with the right-hand side of the anomaly equat
~1.1!:

NCS5
g2

32p2E d3xe i jk S Fi j
a Ak

a2
1

3
f abcAi

aAj
bAk

cD
5

1

NG
E d3xJB

0 . ~6.1!

Since SU~2! has a non-trivial third homotopy grou
p3„SU~2!…5Z the Chern-Simons numberNCS is a topologi-
cal index for vacuum configurations: we can perform a
gauge transformation to a trivial configurationA50 without
any cost in energy, and the resulting configuration is as g
a vacuum configuration as the initial one.NCS is equal to the
winding number of this gauge transformation. Since it is n
integer valued, it classifies the vacuum configurations i
disconnected classes, which cannot be continuously ga
transformed to each other. Thus, a vacuum-to-vacuum
cess which increasesNCS smoothly by one unit must go
through a non-vacuum excited state, the sphaleron. Du
the axial coupling to fermionic current, this process lifts o
left-handed solution of the Dirac operator from negative
positive energy, and pushes one right handed state from p
tive to negative energy. Since the SU~2! sector of the stan-
dard model is a chiral theory which does not couple to
right-handed fermions, this process will create one ferm
for each fermionic generation (NG).

At high temperatures the Chern-Simons number diffu
readily, and integer values are not particularly preferred.
any given volume the Chern-Simons number performs a r
dom walk in time, and the diffusion constant,G, can be
measured from

e
e
.

3-12
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G5 lim
V→`

lim
t→`

^„NCS~ t !2NCS~0!…2&
Vt

. ~6.2!

Here the angle brackets^ & refer to an average over the the
mal ensemble. The change in the Chern-Simons number
be evaluated from

NCS~ t !2NCS~ t0!5
g2

8p2Et0

t

dt8E d3xEi
aBi

a . ~6.3!

In principle, this measurement is readily convertible to latt
language: lattice versions of the fieldsE andB feature promi-
nently in the equations of motion~5.4!,~5.5!. However, this
‘‘naive’’ definition of NCS on the lattice, often used in th
early work on Chern-Simons number diffusion in latti
SU~2! gauge theory@9–12#, suffers from spurious noise an
diffusion which obscures the physicalNCS diffusion. More-
over, due to its UV nature, the amplitude of the noise
verges as 1/a in fixed physical volume, which is disastrous
the continuum limit. The reason for this noise is well und
stood: the integral over latticeE•B on the right-hand side o
Eq. ~6.3! does not form a total time derivative, and hence
depends on the path along which one connects the initial
final configurations in Eq.~6.3!. In other words, it does no
give us a topological measurement.

In general, topology of lattice fields is ambiguous, sin
the variables are always continuously connected to tri
ones. However, at fine enough lattice spacings~still easy to
achieve in our simulations! almost every one of the
plaquettes is very close to unity in a thermal ensemble; la
plaquette values are exponentially suppressed. Perturbat
this means that the gauge fields are small, and for this su
of lattice fields topology can be unambiguously defined@38#.
Physically, this means that the spatial size of the topolo
changing configurations, sphalerons, is large in lattice un
This will be true because the energy of sphaleron-like c
figurations increases linearly with inverse size. The Bo
mann suppression factor for small~lattice scale! sphalerons
is enormous and they, in practice, never appear in sim
tions. The interplay between entropy and the Boltzmann f
tor sets the dominant sphaleron size to be;g2T. For topol-
ogy to be unambiguously defined, our lattice spacing mus
considerably smaller than this.

Two successful methods for measuring topology in
current ‘‘real time’’ context have been recently develope
The first method uses an auxiliary ‘‘slave field’’ to track th
winding number of the gauge@14#. It is a development of a
method originally proposed by Woit@39#, which is based on
counting the winding numbers of singularities in the Co
lomb gauge. In this work we use the second method, ‘‘c
brated cooling.’’ This method is based on the cooli
method by Ambjo”rn and Krasnitz@13#, and fully developed
by Moore in @15#. The rest of this section will summariz
this method.

The calibrated cooling method relies directly on the fa
that the sphalerons are large and extend over several la
units. Thus, we can get rid of most of the ultraviolet noise
the thermal configuration by applying a small amount
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cooling to the configuration: the resulting configurations a
very smooth on lattice scales, but they still have the sa
topological content as the original configuration. After coo
ing the integral~6.3! can be performed with small errors. Th
accumulation of residual errors is prevented by periodica
cooling all the way to a vacuum configuration: we know th
the true vacuum-to-vacuumdNCS5 integer, and any devia
tion is due to accumulated integration error, which can th
be ‘‘calibrated’’ away. This is schematically described
Fig. 3.

The cooling path is defined by the gradient flow of t
standard single plaquette Kogut-Susskind gauge act
given in Eq.~5.2!. The evolution along this path is param
etrized by fictitious cooling ‘‘time’’ t, dimensionally
~length!2. The cooling equation of motion is now@13#

]Ui~x!

]t
5 isa

]Ai
a

]t
Ui~x!

5 isa
1

2
Tr F isaUi~x! (

u j uÞ i
Si j

† ~x!GUi~x!. ~6.4!

Here the stapleS is defined as in Eq.~5.5!. On the lattice the
equation above is evolved in discretet, and we use here
optimized step lengths by alternatingdt/a255/48 and
10/48. Too large a time step causes the UV modes to bec
unstable.

The evolution of Eq.~6.4! all the way to a vacuum con
figuration is a computationally demanding task, and it c
easily dominate the CPU time. The integration can be d
matically accelerated byblocking the lattice: after a bit of
cooling the fields are very smooth at the lattice scale, a

FIG. 3. How theNCS evolution is measured~after @15#!. Top
horizontal line shows the configurations~solid circles! generated by
the lattice equations of motion. Every few time steps, the confi
rations are cooled a fixed cooling length, giving a parallel coo
trajectory~open circles!. Now the fields are smooth enough so th
E•B can be reliably integrated, givingdNCS(t) along the cooled
trajectory. In longer intervals, theNCS measurement is ‘‘grounded’
by cooling all the way to a vacuum configuration. IfdNCS along
paths likeV1→A→B→V2 is always close to an integer, we kno
that the integration errors are small. The residual deviation from
integer value is subtracted fromdNCS(A→B), cancelling the accu-
mulation of errors.
3-13
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essentially no information is lost if we reduce the number
lattice points in each direction by a factor of 2. The block
U matrices are formed from the product of the matrices
the two links between the blocked points. Since the latt
spacinga is now increased by a factor of 2, computation
cost in cooling is reduced by a factor 25—a factor of 4 com-
ing from the increase in thedt step. In our calculations we
block the configuration twice in the course of cooling
vacuum. For detailed information about this method we re
to @15#.

In all of our simulations we cooled a configuration fro
the Hamiltonian trajectory at intervalsdt50.5a ~once in 10
time steps with d t50.05a). We cooled to deptht
5a245/48 for the cooled trajectory~see Fig. 3!, using un-
blocked configurations.dNCS was integrated along this tra
jectory using improvedO(a2) accurate definitions forE•B
@11#. The cooling to vacuum was performed with an interv
dt512.5. Our parameter choices were overly conservat
the vacuum-to-vacuum integration error was typically of
der 0.02–0.04. Thus, it is possible to use much more agg
sive optimization than we use here without losing the to
logical nature of this measurement~see Ref.@18#!.

VII. SIMULATIONS AND RESULTS

Our aim here is to answer the following questions:
~1! what is the dependence of the Chern-Simons num

diffusion rateG on the finitel max cutoff, and is there anl max
which is ‘‘large enough’’ for practical purposes or is a
l max→` extrapolation necessary?

~2! is G, in physical units, independent of the lattice spa
ing?

~3! how doesG depend on the physical quantitymD /g2T?
Let us first discuss the relation between the physical

bye massmD and the bare mass parametermDa on the lat-
tice. As explained in Sec. V E, the bare mass receives re
malization counterterms and diverges in the UV limit as 1a.
However, according to the scaling arguments of Arnold, S
and Yaffe@17#, the sphaleron rate should not actually depe
on the Debye mass, which characterizes static scree
properties of the hot plasma, but on the damping rate of
transverse gauge field propagation. As explained in Sec.
this is related to the Debye mass in the continuum. Howe
due to the lattice dispersion relation, the hard gauge fi
modes do not propagate at the speed of light, and their e
on the damping is reduced. Averaging over all of the dir
tions of the lattice momenta, Arnold@40# has calculated tha
the effect of the hard gauge field modes on the lattice
factor of (0.6860.2) times smaller than the continuum rel
tion between the damping coefficient andmD

2 would imply.
The error quoted is systematic, and it takes into account
rotational non-invariance of the lattice propagators. Thus,
shall use the following relation between the bare latticemD
and the continuum one:

ZmD

21mD, latt
2 5mD,phys

2 20.68
Sg2T

pa
. ~7.1!
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HereZmD

21 is a radiative correction of form 11O(a), see Eq.

~C14!. We use the improved relation Eq.~5.10! to relate the
lattice spacinga to the physical scaleg2T. There are addi-
tional radiative corrections associated with renormalizat
of the lattice time scale, which we discuss in Appendix C.
order to avoid the uncertainties associated with the UV co
terterm, we use mostly fairly large physical values ofmD so
that the UV term remains subdominant. The results are a
ally quite robust against variations in the numerical coe
cient 0.68, even with the smallestmD we use.

l max dependence. In order to study how the sphaleron ra
depends on the value ofl max, we performed a series of run
with 243 lattices using fixedbL58.7 and mD

2 51.5/a2

57.9g4T2, and variedl max from 0 to 10, as shown in Table I
The results are also shown in Fig. 4. Whenl max is even, the

TABLE I. How the sphaleron rateG depends onl max.

Run parameters l max Time/a G/(a4T4)

bL58.7, V/a35243 0 8000 1.49~15!

mD
2 51.59/a258.20g4T2 1 20000 0.0606~70!

2 20000 0.531~34!

3 30000 0.345~23!

4 20000 0.520~22!

5 20000 0.445~30!

6 30000 0.534~27!

10 20000 0.518~34!

bL512.7, V/a35323 2 37500 0.249~23!

mD
2 51.98/a2520.7g4T2 4 37500 0.198~18!

6 45000 0.199~18!

bL512.7, V/a35323 2 37500 0.839~36!

mD
2 50.29/a254.84g4T2 4 37500 0.687~50!

FIG. 4. The dependence ofG on l max on a lattice of size 243,
bL58.7.
3-14
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TABLE II. The Chern-Simons diffusion rateG and the parameter of the Arnold-Son-Yaffe scaling la
k8, Eq. ~7.5!. If the results at different values ofl max are statistically compatible, we have taken an aver
over them, as indicated.

bL l max V (mDa)2 mD
2 /g4T2 Time/a G/a4T4 k8

8.0 4 243 0.375 2.63 10000 1.23~11! 40.5~3.6!

8.7 4 243 0.766 4.68 37500 0.808~33! 47.5~1.9!
8.7 2,4,6,10 243 1.59 8.20 90000 0.526~15! 54.2~1.6!
8.7 4 243 3.51 16.4 25000 0.230~18! 47.5~3.7!

12.7 4 323 0.291 4.84 37500 0.687~31! 46.8~1.9!
12.7 6 323 0.707 8.74 20000 0.417~48! 45.8~5.2!
12.7 4,6 323 1.97 20.7 82500 0.199~13! 51.7~3.5!
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results are remarkably stable: indeed, the data froml max52
to 10 are mutually compatible within the statistical erro
However, for oddl max the rate remains substantially smalle
approaching the even sector value from below whenl max
increases.

The special casel max50 has a rate which is;3 times
larger than thel max52,4, . . . rate. This is actually close to
the rate measured from standard SU~2! gauge theory without
any W fields at the samebL @18#; there the rate was 1.6
6.03.

This behavior is qualitatively in accord with the theore
cal analysis in the Abelian theory in Sec. IV. The oddl max
sector gives a substantially reduced rate because much o
infrared power is in non-propagating modes, and is there
not available to participate in Chern-Simons number dif
sion. However, for the evenl max sector we do not see th
gradual decrease in the rate as predicted by the analys
Sec. IV, the rate just snaps to the correct level immedia
when the damping is turned on by going froml max50 to
l max52. According to the requirement for minimuml max

given in Eq. ~4.22!, we should usel max*0.62mD
2 /g4T2

20.8'7 ~for evenl max). The naive limits given in Eq.~4.22!
are obviously too strict for the non-Abelian theory.

At larger mD
2 /g4T2 the difference betweenl max52 and

higher values should be more visible. Indeed, in simulati
at mD

2 /g4T2520.1, usingl max52, 4 and 6, we do observe
significant decrease in the rate asl max increases from 2 to 4
this is shown in Table I. Here we use a smaller lattice sp
ing, bL512.7, and correspondingly larger volume in latti
units. In this case the requiredl max, according to Eq.~4.22!,
would be ;12. We also see an effect in the rate
mD

2 /g4T254.75, bL512.7, usingl max52 and 4.
Physical sphaleron rate. The results for the sphaleron ra

are shown in Table II, and plotted in Figs. 5 and 6. The ‘‘o
argument’’ @3,4#, based on dimensional analysis, says t
the rate should scale asG5ka4T4 with k a constant. This
behavior is clearly excluded, as already seen in@24,18#.
Rather, the rate falls linearly ing4T2/mD

2 , confirming the
ASY scaling picture. Indeed, we can make a fit of form

G

a4T4
5c1

g4T2

mD
2

1c2S g4T2

mD
2 D 2

~7.2!
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to the data, with the resultc154.560.2, c2523.261.1,
with x2512 for 5 degrees of freedom. Within our statistic
errors, we did not observe any systematic lattice spacing
pendence, and we use the results obtained with all the latt
in Table II in the fit. If we include the known logarithmic
contribution@21#,

G log5~0.42560.027!
g4T2

mD
2

logS mD
2

g4T2D a4T4, ~7.3!

we can perform a one-parameter fit

G

a4T4
5

g4T2

mD
2 F0.425 logS mD

2

g4T2D 1dG ~7.4!

with d53.0960.08, withx2515 for 6 degrees of freedom
The logarithmic contribution actually makes the fit a b
worse; however, a subleading termO(g4T2/mD

2) would not
change it, since its coefficient would be compatible w

FIG. 5. The Chern-Simons number diffusion rateG in physical
units. Dashed line: fit to linear1 second order term, Eq.~7.2!;
continuous line: fit to linear1 a log term, Eq.~7.4!.
3-15
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D. BÖDEKER, GUY D. MOORE, AND K. RUMMUKAINEN PHYSICAL REVIEW D61 056003
zero. The errors quoted above are purely statistical; we s
discuss systematic errors below.

The rate becomes approximately constant, and the dif
ence between the two fits becomes more visible, if we p
the rate in terms of the coefficient of the ASY scaling la
k8, defined through

G5k8
g2T2

mD
2

a5T4. ~7.5!

The values ofk8 are given in Table II and shown in Fig. 6
We also include here the data calculated by Moore, Hu
Müller with the particle degrees of freedom inducing t
hard thermal loop effects@24#, and the results obtained b
Moore and Rummukainen using only SU~2! gauge fields
without any additional hard thermal loop degrees of freed
@18#. In the latter case the damping arises solely through
UV gauge field modes on the lattice, andmD

2 can be obtained
from Eq. ~7.1! by settingmD, latt

2 50.
The consistency of the results obtained with differe

methods in Fig. 6 is remarkable. This gives strong credibi
to the view that the damping of the sphaleron rate seen in
simulations is really caused by physical hard thermal lo
effects. Perhaps surprisingly, the pure Yang-Mills results
perfectly in line~within the statistical errors! with the results
obtained with the hard thermal loop effective theories, ev
though in the former case the spectrum of the hard mode
strongly distorted by the lattice dispersion relation@40#.
Also, the consistent decrease ofk8 with increasing
(g2T/mD)2 in Fig. 6 strongly suggests that this subleadi
effect is not due to lattice effects, since the damping is du

FIG. 6. The Chern-Simons number diffusion rateG, expressed
ask85(G/a5T4)„mD

2 /(g2T2)…. Dashed line: fit to linear1 second
order term, Eq.~7.2!; continuous line: fit to linear1 a log term, Eq.
~7.4!. For comparison, we include the results obtained with
‘‘particles’’ method @24# and also without any hard thermal loo
degrees of freedom@18#. These points are not included in the fits
05600
all
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very different mechanisms in theories with or without ad
tional hard thermal loop degrees of freedom.

As can be seen from thex2 values reported above, th
quality of the fits shown in Figs. 5 and 6 is poor. This
primarily due to the ‘‘pull’’ of the bL58.7, mD

2 58.2g4T2

point, which has very small statistical errors. Exclusion
this point would make the fits acceptable; however, we
not have any a priori reason for rejecting this point, so
keep it in the analysis. We take the badness of the fits
account by expanding the errors in the quantities repo
below by a factorAx2/n, where n is the number of the
degrees of freedom in the fit.

In the limit mD
2 →` the coefficient of the ASY scaling

law becomesk8555.963.5 using the polynomial function
in Eq. ~7.2!. However, more relevant for physical applic
tions is the minimal standard model~MSM! value at mD

2

5(11/6)g2T2 and aw51/30. This corresponds to poin
(g2T/mD)250.23 in Fig. 6, and thus there is no need
extrapolate inmD

2 .
Finally, as discussed in the beginning of this section,

numerical coefficient 0.68 in Eq.~7.1! has an estimated
~quite conservative! systematic error bar60.2. This error
has little effect onk8 if we extrapolate tomD

2 →`, but at the
physical MSM value it actually gives the leading contrib
tion to the total error. When we take this into account,
obtain the physical value

k8~MSM!546.662.0stat63syst, ~7.6!

and the MSM Chern-Simons diffusion constant becom
~with combined statistical and systematic errors!

G525.462.0a5T4. ~7.7!

This value is in perfect agreement with the results obtain
both with the particle hard thermal loop degrees of freed
@24# and with the classical Yang-Mills theory@18#.

It is actually likely that the systematic error of the coef
cient (0.6860.2) in Eq. ~7.1! is overestimated: the mutua
consistency of the results obtained with and without the ex
hard thermal loop degrees of freedom becomes notice
worse when this coefficient is more than;60.1 away from
the central value.

VIII. CONCLUSIONS

Classical Yang-Mills theory plus hard thermal loops is t
IR effective theory for the SU~2! sector of the standard
model above the electroweak phase transition, and it sho
be used to determine the ‘‘sphaleron rate’’G, which sets the
efficiency of baryon number violation.

We have developed a numerical implementation of
method of auxiliary fields, originally developed by Blaizo
and Iancu and by Nair@25–28#. The auxiliary fields are ex-
panded in spherical harmonics and the series is truncated
finite l max; then the theory is put on a lattice. The resultin
numerical model is an efficient and systematically impro
able representation of the desired effective theory.

Within errors we observe no lattice spacing dependen

e

3-16
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and the convergence to the largel max limit is surprisingly
rapid. This means that the lattice numerical model is b
accurate and efficient. Using it, we verify the Arnold-So
Yaffe scaling behavior forG @17#, G5k8(g2T2/mD

2)a5T4. If
we use the standard model values ofmD

2 5(11/6)g2T2 and
aw51/30, the rate is

G5~25.462.0!a5T4.~1.0560.08!31026T4. ~8.1!

The final result is in good agreement with the results pre
ously obtained by Moore, Hu, and Mu¨ller @24#. It is also in
agreement with the results obtained in pure lattice Ya
Mills theory @18# using the matching technique developed
Arnold @40# to relateG in pure classical lattice Yang-Mills
theory to its value in the quantum theory.

The problem of determining the sphaleron rate in Yan
Mills theory is settled, at least at the 20% level.
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APPENDIX A: SPHERICAL COEFFICIENTS
vmi AND Clm,l 8m8,i

In this appendix we give explicit expressions for the c
efficientsClm,l 8m8,i , Eq. ~3.6!, and vmi , Eq. ~3.5!. We use
the conventional normalization for the spherical harmo
functions:

E dVvYlm* Yl 8m85d l ,l 8dm,m8 . ~A1!

The coefficientsvmi can be given simply as

vmi[E dVvY1m* ~v!v i

5A4p

6
d i ,1~2dm,11dm,21!1 iA4p

6
d i ,2~dm,11dm,21!

1A4p

3
d i ,3dm,0 . ~A2!

The matrix elements

Clm,l 8m8,i[E dVvYlm* ~v!v iYl 8m8~v!

5(
M

vMiE dVvYlm* ~v!Y1M~v!Yl 8m8~v! ~A3!
05600
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are conveniently expressed in terms of the spherical com
nents

Clm,l 8m8,15
1

A2
~2Clm,l 8m8

1
1Clm,l 8m8

2
!

Clm,l 8m8,25
i

A2
~Clm,l 8m8

1
1Clm,l 8m8

2
!.

Finally, we can write

Clm,l 8m8
1

5A~ l 8,m8!d l 21,l 8dm21,m82A~ l ,2m!d l 11,l 8dm21,m8

Clm,l 8m8
2

5A~ l 8,2m8!d l 21,l 8dm11,m82A~ l ,m!d l 11,l 8dm11,m8
~A4!

lm,l 8m8,35B~ l 8,m8!d l 21,l 8dm,m81B~ l ,m!d l 11,l 8dm,m8 ,

where the coefficients are

A~ l ,m!5F ~ l 1m11!~ l 1m12!

2~2l 11!~2l 13! G1/2

, ~A5!

B~ l ,m!5F ~ l 2m11!~ l 1m11!

~2l 11!~2l 13! G1/2

. ~A6!

APPENDIX B: LINEARIZED LATTICE PROPAGATOR

In this appendix we shall study the properties of the l
earized gauge field propagator with hard thermal loops
the lattice, as was done in Sec. IV in continuum. As emp
sized in Sec. V, the second-order ‘‘leapfrog’’ update forWlm

a

decouples the even and odd parity sites from each ot
Here parity p5( ixi1t/d t . This decoupling creates extr
low-energy poles,doublers, in the gauge field propagato
Here we show that these doublers are not relevant for
gauge field dynamics.

Following Sec. IV we linearize Eqs.~5.8!, ~5.9! and
~5.13!, and study onek mode in isolation. In general, thi
need not be parallel to any of the major lattice axes. In S
V the spherical harmonics were written in ‘‘lattice basis
coordinates, that is, theYlm components were mapped t
lattice coordinate axis directions in the customary way. Na
rally, there is no fundamental reason~only great conve-
nience! to do this, and here we choose to parametrize
spherical functions as in Sec. IV, so theYlm ‘‘ x3 direction’’
is parallel tok. Then the transverse fields should oscilla
only along the plane defined bym561 components.

Let us make a Fourier transformation of the lattice eq
tions of motion; after some work we obtain the equations

ṽ2Am2 k̃2Am5
mD

2

A3
Dmm8W1m8 ~B1!

v̂Wlm2 k̂i n̂iClm,l 8m8,3Wl 8m85v̂d l ,1

1

A3
DmMAM . ~B2!
3-17
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FIG. 7. Left: the positive frequency poles o
the lattice gauge propagator within the Brilloui
zone, as functions ofk, for mD50.5/a. For each
of the continuum poles near origin there are do
bler poles at the corners of the Brillouin zon
The thick line is the plasmon, and the dash
lines are the timelike doublers. For clarity, th
figure is plotted with unrealistically larged t

50.75.Right: The spectral power~residue! of the
poles whend t50.1. The lines are as in the lef
panel. None of the doublers carry a significa
fraction of the gauge field propagation.
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Here n̂5k/k, and the lattice momentum functions are

k̃i5
2

a
sin

kia

2
, ṽ5

2

d ta
sin

vd ta

2
,

k̂i5
1

a
sinkia, v̂5

1

d ta
sinvd ta, ~B3!

and the matrixDmm8 , m50,61, is defined as

Dmm8~k!5(
i

gmicos
kia

2
gm8 i

* , gmi5A 3

4p
Ri j ~ n̂!vm j .

~B4!

Ri j is a rotation matrix which rotatesn̂ parallel to the lattice
x3 axis, andvmi is defined in Eq.~A2!. The matrixg can be
understood as a transformation between the lattice coo
nates and then̂-based spherical coordinates. Hereg†g
5gg†51. The cos(kia/2) factor in Dmm8 arises from the
spatial symmetrization in Eqs.~5.9! and ~5.13!, and without
this we would haveD51. Also, due to the timelike symme
trization v̂ instead of ṽ appears on the right-hand sid
~RHS! of Eq. ~B2!.

Due to the matrixDmm8 the equations of motion do no
diagonalize to independentm components, as in the con
tinuum. However, ifk is parallel to any of the lattice axes w
have

Dmm85dm,m8S d umu,11dm,0cos
ka

2 D . ~B5!

In this caseD51 for transverse modes. Now we can sol
for the transverse gauge field in Eqs.~B1!, ~B2! as in Sec.
IV, and we obtain the lattice version of the inverse propa
tor in Eq. ~4.12!:

2ṽ21 k̃21
mD

2

3 (
a51

l max v̂

v̂2 k̂la
~j1

a!2. ~B6!

The pole structure of the propagator is not immediately e
dent from Eq.~B6!. Nevertheless, the propagator has n
doubler poles for each physical low energy (v;0,k;0)
pole, as shown in Fig. 7. These are located in the corner
the momentum square 0<ka<p, 0<vd ta<p.
05600
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In Fig. 7 we also show the spectral power

r~v,k!5Im D~v1 i e,k! ~B7!

of the poles~residue of the propagator!. At momenta close to
the lattice cutoffp/a almost all of the power is carried b
the plasmon pole, which does not have doublers. Thus
high momenta the gauge field essentially decouples fromW
fields, except for a mass term which equalsmD /A3 for k
along a lattice axis@but not everywhere, it is zero atak
5(p,p,p)]. This also occurs in the continuum. The pol
other than plasmon are significant only around the phys
k,v;0 corner. Interestingly, even here the plasmon ha
power which is a factor of;5 larger than the other poles
However, it is these poles which are significant for the no
perturbative small-frequency physics.

One might worry about the small-k temporal doublers,
which correspond to modes which flip sign at each conse
tive timestep: after all, these can have arbitrarily long spa
wavelength. These are shown in Fig. 7 with dashed lin
However, it turns out that these poles have even much
power than the spatial doublers. Thus, the existence of
temporal poles should not affect the gauge field behavio
all. Indeed, even in non-Abelian theory simulations, whe
the fields are fully interacting, we saw no significant ener
transfer between the temporal pole sector and the ‘‘norm
small frequency sector.

The propagator becomes much more complicated to st
when we do not require thatk is along any of the lattice
axes. However, the pole structure of the propagator is qu
tatively similar to any direction, and it will pick the ful
complement of poles at each corner of the Brillouin zone

In order to make the left panel of Fig. 7 readable, it
plotted usingd t50.75. This brings the frequency spread
the poles to the same order of magnitude than the separa
between the temporal doublers and the other poles. F
more realisticd t&0.1 the poles would lie almost alon
vad t /p50,1 lines.

APPENDIX C: O„a… MATCHING FOR G

In this appendix we computeO(a) radiative corrections
which arise in the infrared dynamics of the lattice theory d
to the compact nature of the gauge action and the manne
which the original equations were discretized. The goal is
3-18
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find what modifications must be made toG andmD
2 ~where

heremD
2 is really being used to represent the magnitude

the damping rate for gauge field modes withv!k;g2T,
which determines the relevant dynamics@17,40#; when we
write mD

2 we mean the value which gives the same damp
rate using the continuum relation betweenmD

2 and the damp-
ing rate!.

1. Corrections to t and mD
2

To begin, we discuss the relation between the lattice
continuum values forE, D jF ji @meaning the first term on th
right hand side in Eq.~5.5!#, and timet. Where possible we
will suppress spatial and group indices, in particular we re
to D jF ji as DF. We will write EL etc. for the lattice fields
scaled to continuum units directly using Eq.~5.1!, but always
usinga as given in Eq.~5.10!. The scaling between the con
tinuum A field and the lattice one, defined asU
5exp(igaAaTa), is gauge dependent, and we will always u
the continuum normalization. The calculation here rel
both on@34# and on Appendix A of@21# very heavily.

Define the following renormalization constants:

Zg5b/bL.120.61/b, ~C1!

ZE5F11
N

b S 1

3

S

4p
16

j

4p D G.11.314/b, ~C2!

ZW512
N

2b

S

4p
.120.2527/b, ~C3!

where Zg is computed in@34# and presented above in Eq
~5.10!, ZE is first computed in the appendix of@21# @where it
has the unfortunate notation of (11corr)2], andZW is new to
this paper and discussed more in the next subsection.

To begin observe that, just from its appearance in
Hamiltonian next tobL , we have

^EL
2&5Zg^EC

2 &⇒EL5Zg
1/2EC . ~C4!

Also, from @21# Appendix A, we have

dAC

dtL
5ZE

1/2EL5ZE
1/2Zg

1/2EC⇒tL5ZE
21/2Zg

21/2tC . ~C5!

We apply this correction when we extract the continuu
value ofG from data which appear as a time series intL , so
G quoted in this paper is always scaled byVtC the con-
tinuum volume and time. Next, to find the renormalization
DF, we can use pure gauge theory relations

dEL

dtL
52DFL and

dEC

dtC
52DFC , ~C6!

to find that

DFL5ZE
1/2ZgDFC , ~C7!

which we will need below.
05600
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To compute the radiative corrections in theW field con-
tribution to the gauge field damping rate we need to cons
the equations of motion of the full system. If there were on
infrared fields, then the first errors from our discretizati
~sampling neighbors to determine a derivative,. . . ) would
enter atO(a2), while here we will only be interested inO(a)
effects. Nevertheless, because of the different behavio
UV modes on the lattice than in the continuum, three n
corrections arise: one in theE field source in theW equation
of motion, Eq.~5.12!; one in theW field source in the Yang-
Mills-Maxwell-Ampere equation, Eq.~5.5!; and one in theW
field convective covariant derivative in Eq.~5.12!. The
former two occur because, whereas in the continuum th
equations relate fields at the same point@see Eqs.~3.4! and
~3.7!#, on the lattice they involve averages over near
points, see Fig. 8. The latter correction occurs because
derivative term necessarily involves the gauge field conn
tion. In each case the gauge field connection enters, and
interaction receives tadpole contributions which are absen
the continuum. As a result, the effective IR equations
motion appear as~in a simplified notation, dropping all sub
scripts includingl ,m indices and all Clebsch-Gordan coeffi
cients, which are the same as in the text of the paper!

dEL

dtL
52DFL2mD

2k1WL , ~C8!

dWL

dtL
5k2EL2k3v•DCWL , ~C9!

k1k25ZW , k35ZW
2 . ~C10!

Here mD
2 is the latticemD

2 parameter converted to physic
units by scaling with factors ofa. We derive the size of the
correctionsk1,2,3 in the next subsection.

Re-arranging Eq.~C9! to

Fk3
21 d

dtL
1v•DCGW5k3

21k2EL , ~C11!

formally inverting it, and substituting the solution forW into
Eq. ~C8!, gives

FIG. 8. Neighbor averaging involved in the updates ofE due to
W andW due toE.
3-19
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dEL

dtL
52DFL2mD

2 Fk3
21 d

dtL
1v•DCG21

k1k2k3
21EL .

~C12!

It has been argued in@41,42# that in the overdamped case
is permissible to drop both thedE/dt term and the time
derivative appearing in the inverse operator. Technically d
ing so commits an error of orderO(g4T2/mD

2). Note how-
ever that errors of precisely this size already arise from s
leading corrections to the hard classical lattice mo
contribution in Eq.~7.1!. Therefore, in Fig. 6 there is an
unknown systematic error in the slope of the fit line, whic
we will not be able to eliminate. However, we can still ask
make allO(a) corrections which would affect the intercep
To do so we are permitted to drop the time derivatives me
tioned above, giving

mD
2 ~ZW

21ZE
21/2Zg

21/2!@v•DC#21
dAC

dtC
5DFC , ~C13!

which gives us theO(a) renormalization appropriate for the
W field Debye mass term, namely, the value to use as
strength of the gauge field damping term is

ZmD

21mD
2[ZW

21ZE
21/2Zg

21/2mD
2 . ~C14!

2. Evaluating k1,2,3

We see from Fig. 8 that the productk1k2 arises from the
difference between Wa(x) and (1/4)@P i

abWb(x1 ia)
12Wa(x)1P 2 i

abWb(x2 ia)#. We compute this difference
for a very slowly varyingW field in Coulomb gauge.~In this
gauge the effects of theA0 field on the dynamics do not
differ between the lattice and continuum, see@21#.!

The parallel transportP i
abWb(x1 ia) is

Tc
„Ui~x!W1Ui

†~x!…c

5S 11 igaTaAi
a~x!2

g2a2

2
TaTbAi

a~x!Ai
b~x!

1••• DTcWc3~same, i↔2 i !, ~C15!
s.

v,

05600
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and on expanding@and writing (1/4)„W(x1 ia)12W(x)
1W(x2 ia)… asW] eventually gives

P i
abWb~x1 ia !12Wa~x!1P 2 i

abWb~x2 ia !

4

5WaTa1
ga

4
Wb

„Ai
c~x!2Ai

c~x2 ia !…f abcT
a

1
g2a2

8
Wa

„Ai
b~x!Ai

c~x!1Ai
b~x2 ia !Ai

c~x

2 ia !…†Tc,@Ta,Tb#‡1O~a3!. ~C16!

In momentum space the first term here
2 f abc(ga2/4)* l l̃ iW

b( l 2k)Ai
c(2 l ). It cannot lead to a con-

tribution proportional toW(k) because^ f abcWa(k)Wb( l
2k)Ac(2 l )&50. Therefore the first term does not resca
the interaction, so it does not contribute tok1k2. However,
the last term does lead to renormalization ofWaTa, of mag-
nitude

f adbf bdeT
e
g2aT

4 E d3~ak!

~2p!3

1

a2k̃2 S 12
k̃1

2

k̃2D cos2~ak1/2!,

~C17!

wherek̃[(2/a)sin(ak/2) and the integral runs over the Bri
lioun zone,akiP@2p,p#. Using identities from@34#, the
value of the integral is (1/2)S/(4p). Therefore the final
rescaling we find is

k1k2[ZW512
N

2b

S

4p
. ~C18!

The calculation ofk3 proceeds similarly. Here we need t
compute@P i

abWb(x1 ia)2P 2 i
abWb(x2 ia)#/2. The linear in

A term now containsAi(x)1Ai(x2 ia), and just gives theA
field part of the continuumDi

ab5dab] i2g fabcAi
c . The qua-

dratic in A terms perform the renormalization of] i and give
exactly twice the corresponding contribution tok1k2, be-
cause in that case only half of the expression arose fromW
fields which are parallel transported. Hence we findk3

5ZW
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@16# D. Bödeker, L. McLerran, and A. Smilga, Phys. Rev. D52,

4675 ~1995!.
@17# P. Arnold, D. Son, and L.G. Yaffe, Phys. Rev. D55, 6264

~1997!.
@18# G.D. Moore and K. Rummukainen, MCGILL-99/21

NORDITA-99/33HE~hep-ph/9906259!.
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