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Chern-Simons number diffusion and hard thermal loops on the lattice
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We develop a discrete lattice implementation of the hard thermal loop effective action by the method of
added auxiliary fields. We use the resulting model to measure the sphalergiopategical susceptibilityof
Yang-Mills theory at weak coupling. Our results give parametric behavior in accord with the arguments of
Arnold, Son, and Yaffe, and are in quantitative agreement with the results of Moore, Hu, died. Mu

PACS numbes): 11.10.Wx, 11.15.Ha, 12.60.Jv, 98.80.Cq

I. INTRODUCTION where () means an expectation value with respect to the
equilibrium thermal density matrix. Hereis Minkowski
Baryon number is not a conserved quantity in the standartime. This quantity isnot simply related to the Euclidean
model. Rather, because of the anomaly, its violation is retopological susceptibilityf7], and we do not possess either
lated to the electromagnetic field strength of the weak2sU perturbative tools or Euclidean tools to carry out its calcula-

group[1] tion.
It has been argued by Grigoriev and Rubak8Ythat the
2 2 value of the susceptibility’ in the quantum theory will be
aMJ‘B‘=NGg—zeMWﬁTrF””F“3=NGQ—2E?B?, the_ same as its value in classical Yang-Mills _field theory.
2w ™ This would open a new avenue for measurlhgsince clas-

(1.)  sical Yang-Mills theory can be put on the lattif®]. There
has been some progress on measulingn the lattice{ 10—
whereNg=3 is the number of generatioﬁgn vacuum the 13]; in particular two different methods have been developed
efficiency of baryon number violation through this mecha-for dealing with the right hand side of E¢L.2) in a topo-
nism is totally negligiblg1], but at a sufficiently high tem- logical way which eliminates lattice artifacts in its measure-
perature this is no longer trJ&,3]. This can have very in- ment[14,15.
teresting cosmological significance, since it complicates At the same time our qualitative understanding of Grig-
grand unified theoryGUT) baryogenesis mechanisms and oriev and Rubakov’s claim has improved. A complication
opens the possibility of baryogenesis from electroweak physwith their proposal is thai3+1)-dimensional classical Yang-
ics alone. This motivates a careful investigation of baryonMills theory contains ultraviole(UV) divergences, which
number violation in the standard model at high temperatureg3odeker, McLerran, and Smilga have argued may be impor-
The baryon number violation rate relevant in cosmologi-tant in settingl’ [16]. Subsequently, Arnold, Son, and Yaffe
cal settings can be related by a fluctuation dissipation relahave demonstrated that a particular class of diagrams, the
tion [4—6] to the “Minkowski topological susceptibility” of  hard thermal loopgHTL'’s), are essential to establishidg
the electroweak theory, also called the “sphaleron rate:” [17]. The amplitude of the HTL's in the classical theory is
linearly divergent, and therefore linearly cutoff dependent. In
B o 2 the full quantum theory the HTL's are finite, with almost all
= | 43 2 apa bpb of the contribution arising from excitations with momentum
r f d xfxdt( swz) ([EFBOGDIIEB(0.01), k=1T; such highk excitations are not properly described by
(1.2 the classical theory. Arnold, Son, and Yaffe argue that be-
cause of the HTL's, the effective infraredR) theory
“feels” the “cutoff” which quantum mechanics provides

*Email address: bodeker@nbi.dk for the classical theory, and that the valuelbfscales in-
TEmail address: guymoore@hep.physics.mcgill.ca versely with the cutoff momentum scale. As a result, rather
*Email address: kari@nordita.dk than the naive dimensional estimate Iof «*T#, the para-

There is also a contribution from the hypercharge fields, but itmetric behavior of” should bel’~ a°T#; and in particulal’
will not be relevant here because the topological structure of thdsS inversely proportional to the strength of the HTL'’s, which
Abelian vacuum does not permit a permanent baryon numbeiS conveniently parametrized by the Debye mass squared
change. m3. On the lattice this means th&t should depend on the
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lattice spacinga asI"xag?Ta*T*, a behavior which has re- final results forl" are consistent with those of Moore, Hu,
cently been verified numerically18]. Arnold, Son, and and Muler [24], and for the physical value ah3 in the
Yaffe’s argument has been carefully re-analyzed bgdd@r, minimal standard modelm3=(11/6)g°T? and a=1/30,
who has shown that there is an additional, logarithmic dethey give approximately’ = (25.4+ 2.0)a>T4.

pendence on the Debye mass, and that, permitting an expan-
sion in log(1g)>1, the leading behavior is actuallly

~ alog(1/g) T [19].

If we take the limit log(1¢)> 1, Bodeker presents an ef- In this section we discuss the origin of the hard thermal
fective theory for evaluating the coefficient of the loops in terms of kinetic theory, and we present a local
a®log(1/g) T* law [19]. The effective theory is UV saf20]  theory in which extra degrees of freedom generate the hard
and the coefficient can be found accurately by lattice meanthermal loops. Nothing in this section is original; rather it is
[21]. However, in practice the expansion in log(l*1  a review of Blaizot and lancu’s and of Nair's wofR5—-28.
turns out to be very poorly behaved. To get a reasonablye include it for completeness and because our numerical
accurate value faF' at the physical value for the electroweak implementation of classical Yang-Mills theory with hard
coupling, @=1/30, it is necessary to treat the dynamics ofthermal loops will be built directly from it.
the classical field theory with a full inclusion of the HTL ~ Two controlled approximations make the dynamics of IR
effects. This is challenging, because the HTL effective actiorfields in the electroweak theory tractable numerically, and
is nonlocal[22]. However, it is possible to rewrite the HTL both arise because the theory is weakly coupled. First, the IR
action in terms of a local theory with added degrees of freedegrees of freedom can to a good approximation be treated
dom, as we will discuss below. Thus, it could be possible taas classicalfields. Using this fact to perform calculations of
determinel’ by measuring the topological susceptibility of nonperturbative IR correlators was first proposed by Grig-
lattice regulated, classical Yang-Mills theory, supplementedriev and Rubakoy8], and the accuracy of the approxima-
by added degrees of freedom which correctly generate thton has been addressed 6,29,3Q. The conclusion of30]
hard thermal loop effects. Doing so would both test Arnold,is that the classical approximation is an excellent approxima-
Son, and Yaffe’s claim, and determine the numerical coeffition in the infrared, but UV divergences in the classical
cient of thea®T* law, and therefore tell us how efficiently theory are potentially dangerous and must be handled care-
baryon number is violated at high temperatures. fully.

One way of realizing this goal was presented 28] and The solution to this problem is to regulate the classical
implemented and used to measilivén [24]. The purpose of theory in some way, which for the moment we will not
this paper is to present an alternative and in some respecgpecify, and then to treat the UV degrees of freedom sepa-
more efficient implementation of classical Yang-Mills theory rately by perturbation theory. Here the other controlled ap-
plus hard thermal loops, and to use it to check the results gproximation enters; the UV degrees of freedom are described
[24]. Our approach is based on a way of writing the hardby linearized kinetic theory, up to corrections subleading in
thermal loops in terms of auxiliary fields which was first g.
proposed in25]. Using this formulation to incorporate the  Since the equilibrium distribution of UV mode¥y(k), is
HTL action on the lattice has been advocated byd&aer, color neutral, it does not directly enter in the field equations
McLerran, and Smilg&16]. This paper represents a concreteof the classical IR fields. Rather, it is necessary to expand the
numerical realization of that idea. UV mode distribution functiorfone particle density matrjx

In Sec. Il we review the local formulation of classical up to first order in fluctuations from equilibrium,

Yang-Mills field theory supplemented by the HTL action due

to Blaizot and lancu and due to Nair. Their theory contains ~ N(X,k)=Ng(K) 4+ 6Ngjngie{ X,K) + SNag (X, K) + - - -

an infinite set of fields, so in Sec. Il we perform a transfor- (2.1
mation and a truncation to make the number of fields in the

model finite, without losing spherical symmetry. The result-Fields in a representation higher than fundamental lead, in
ing theory does not quite give the correct HTL equations ofaddition to the singlet and adjoint representation terms we
motion; we study the difference, and how it vanishes in thehave written, to higher representation departures from equi-
limit as the truncation leaves in more and more fields, in Sedlibrium; but neither these, nor the singlet deviation from
IV. Then we discretize space and time in Sec. V, and revievequilibrium 6Ngjnge, directly interact with the IR classical
how to measurd” topologically in Sec. VI. We study the fields, and at the linearized level they can be dropped; only
numerical behavior of" as a function of the strength of the Ny and dN,q; will be relevant. Note also thad should have
HTL’s and the truncation point in Sec. VII. a spin index, and if there are scalar or fermionic degrees of

Our conclusions are in Sec. VIII, but we summarize themfreedom then it also has a species index. At leading order,
here. The HTL effective theory shows a dependence on theorresponding to the HTL approximation, the contribution
strength of HTL’s which is consistent with Arnold, Son, and from each spin and species are of the same form except in
Yaffe's arguments, and grossly inconsistent with HTL inde-the statistics folNg, so we will not write them in what fol-
pendence. The dependence on the truncation point is surpriws.
ingly weak, so only a few new fields need to be added to At leading order in the coupling the IR classical fields
approximate the correct HTL behavior. Thus, our algorithmevolve under the Yang-Mills field equations with a source
proves quite an efficient way of incorporating HTL's. Our arising from the UV modef25],

II. HARD THERMAL LOOPS IN THE CONTINUUM
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(DVFVM)a:ji, (2.2 whered(), means thav is integrated over the unit sphere
with its natural measure. HerBE, is the square of the Debye
d3k mass. These equations can be viewed as generalized
ji(x)zngAJ —avﬂﬁNa(x,k), 2.3 Hamilton-Jacobi equations arising from the conserved
™ energy

with v#=(1yv), v=Kk/|Kk| the (ultrarelativistio 3-velocity of
the particles(note thatv* is not a Lorentz covariant quan-
tity), andC,= 2 for SU(2) gauge theory. We have only writ- 1 40
ten the contribution of gauge excitations here, there are ad- 2 Via a
ditional terms of the s?ameg form for scalars and fermions +§mDJ A1 WHOCVWIW) |, 28
where appropriate. The distribution function evolves via a o ) )
convective covariant derivative equation which reflects thednd rather nontrivial Lie-Poisson brack¢®8]. Here (), is
ultrarelativistic propagation of the UV degrees of freedom.the integration measure for integratingover the sphere.
The interactions betweedN, and the IR classical field ~ When there are more than one speci$,represents the
strength is subdominant because the coupling is weak; hovieviation from equilibrium felt by each, andj is a sum of
ever, the electric field polarizes the equilibrium distribution, & contribution from each species of charge carrier,
providing a source term fofN,. The equation for the evo-

1 1
H= J d3x<ZFﬁ-Fﬁ+§Fgngl

- - N N N N
lution of SN2, at leading order irg, is m = g2T? 3t §+1_;) 29
doN? dNg ) ,
T=(v#fo)abc‘)‘Nb(x,k)JrgvMFSM(x)m=O. with Ng the number of fundamental representation, complex

scalars and\; the number of fundamental representation,
chiral fermions. In the S(2) weak sector of the minimal

Note that this equation is not Lorentz covariant; it involvesSt"J‘rml"J‘rOI2 n;odel_,N_zZ, Ns=1, and N¢=12, so mzl?
only the electric field, not the magnetic field. The reason is— (11/6)g°T*. This is also a lower bound for all extensions
that the equilibrium distributiol, has a rest frame. A mag- ©°f the standard model. _ _ _
netic field in that frame changes trajectories of individual _ ©ur approach will be to find a discrete implementation of
particles, but it does not disturb tieotationally symmetrig ~ E£9S-(2:3), (2.6), and (2.7), and to study their evolution to
equilibrium distribution, whereas an electric field polarizesd€términe the diffusion constant for Chern-Simons number.
the plasma.

One approach to making a numerical model for the IR lll. EXPANSION IN SPHERICAL HARMONICS
classical fields plus UV modes is to simulate the distribution Unfortunately, the representation of the hard thermal

function N with a large number of charged particle degrees1Oops in terms oM2(x,v) does not provide a set of equa-

of freedpm. In the limit that the number of particles is Iargetions which are easy to implement numerically. The problem
and their charges are small, one recovers the above equ@’thatwa(x,v) is a function not only of space-time, but also

tlonst. Jh'?zf] tne approa.c”h dprtl)posted dm]thatT]d g"?‘:'.et; over the sphere. Even if we discretize space onto a latfice,
mented inj24]. Here we will deal instead wi € QISIOU- o) “jives” on a sphere at each lattice point, so it still takes

“0.“ fgpcnons. This complementary approach can.test th%n infinite amount of information to specifl completely. It
reliability of the results 0of24] and may also prove simpler is necessary to defind over the sphere in some way requir-

and more efficient. This is particularly true because Eqsingl only a finite number of degrees of freedom. Since we

. . o
(2.3 and (2.4) .carryAe?dra redyndant mformanorziN 'S want to recover spherical symmetry on scales long compared
actually a function ok times a fixed function ofk|, namely (o our lattice spacing, we should choose to do so in a spheri-

(2.9

(26,27 cally symmetric way. Our choice is to expawdin spherical
harmonics,
N
5Na(x,k):—gmwa(x,v), (2.5 o
WA= 2 20 Wi () Yim(V), (3.

wherev=k takes on values over the unit sphere. In terms of
W, the convective evolution of the departure from equilib-where Wjj,,(x) is a function over space-time only. Because
rium is WA(x,v) is real valued, th&Vf,, satisfy the relations

(v, D#)2OWP(x,v) = V~F3 (%), (2.6) W= (—1)™W* (3.2

and the current felt by the IR classical fields is

40 2Throughout this paper Roman direction indices run over the 3
P v a spatial directions with positive metric, while Greek direction indi-
X)=mg | ——V, WX,Vv), 2. R o
J“( ) Df Qg H (xv) @7 ces run over all 4 spacetime indices with signatute—{——).
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so only the real part 0#V,q, and the real and imaginary parts these degrees of freedom are describing extremely subtle,
of W,,, for m>0, should be viewed as independent variableshigh tensor fluctuations in the distribution of moving
Here we use the Condon-Shortley phase convention and notcharges. It is reasonable to think that smearing the angular

malize Y|, so that resolution of the distribution of charges by truncating the
series ofY,, at some finitd ,,,, Will not significantly change
* _ the physics. In particular, fdr,,,=1 it will not change the

f A YimYirme = 0117 Om,me 33 way the charge current interacts with the Yang-Mills fields,

, ) . o but only the way the charges propagate; and for sufficiently
Inserting the expansiof8.1) into Eq. (2.6), multiplying by |5rge | we expect the effect of angular smearing to be

im» and integrating over angles, gives the equation of moynimportant. Therefore, to render the set of fields finite, we

tion for Wi, , truncate the series of/2,, at some finitd .. The evolution
IWE equation foer‘m is still Eq. (3:4), but with all Wla,m, with
T —Cimi'm i(Di)abwlb,m,Jr S VmER, (3.4 ">l fixed to zero. Equivalently, we could set all

Cim,i'm,i With eitherl>1,, orl">1 5, to zero. The number

. . . . . 2
wherev,,; is the vectowv expressed in spherical components;mc independent adjoirtVir, matrices Is (m.ax+1) :
As long asCy,, ;i satisfies the relation

(3.9

Vmi:f dQVYIm(V)Vi (35) Clm,l’m’,izcr'm’,lm,i
andC,, - ; is an integral over 3 spherical harmonics: and the terms involviny,; are either both present or both
absenithey are absent If,,,,=0), then the Hamiltonian, Eq.
(3.9), and the phase space measure are conserved by the
evolution equations. Hence it makes sense to speak of equal
and unequal time, equilibrium thermal correlation functions.
We give explicit expressions fory,; and Cim /i in Ap- When |, is finite we are no longer considering a theory

Clm,l’m’,i:f dQ Y (VY e (V). (3.6

pendix A. which is strictly equivalent to classical Yang-Mills field
Furthermore, in terms of the spherical components theheory with added hard thermal loops, but the behavior
current is should approach the correct behavior in the lifit,— =
) 5 and we can consider taking this limit numerically.
[FERLIVRVY: S LRV (3.7
g mm 20 g ' IV. PROPAGATOR AND THERMODYNAMICS

AT FINITE |y

and the conserved energy density is ) o )
Before moving on to the numerical implementation of the

1 1 m% effective theory described in the last section in discrete
H=J dSX(E(E?EiaJr BIBY)+5 4 > WA 2. space, we should pause to see how well or how badly the
m 3.9 theory with finite | 5, cutoff reproduces the hard thermal
' loops. To do so we first look at whether it reproduces them
As written, Eqs(3.4), (3.7), and(3.8) are equivalent to Egs. correctly at the thermodynamic level; it does so perfectly for
(2.6), (2.7), and(2.8). They still contain an infinite number all Ina=0. Then we examine the propagator of the theory,
of degrees of freedom. However, they are in a form moreavhich will only be reproduced properly in thgz— e limit.
amenable to a spherically symmetric truncation.
The meaning oin%Wa(x,v) is that it represents the net A. Thermodynamics

charge of all excitations moving in thedirection at point. As discussed at the end of the last section, the theory with
What we have done is to transform to angular moments

. A : an | . cutoff possesses well defined thermodynamics de-
m3W2,(x) is the total charge of all excitations at sike i Honi ich i i i i
DYook R : scribed by a Hamiltonian which is quadratic and diagonal in
mpWig(x) is roughly the net charge moving in thez di-  the w,’s. The only complication is that the phase space is
rection minus charge moving in the-z direction, and ¢gnstrained due to Gauss’ law:

m3W2, with =2 represent higher tensor moments in the

distribution of excitations. For instance, a positirgWs, m3
means, roughly, that there are more charges of typ®v- (D‘E)a:\/:WSm 4.9
X ' 4

ing either up or down the axis than in thex,y plane. Note
a a o H
thgt iny_WOo and W3, interact W|th_the IR fields, z_and only  ond the partition function reads
Tm IS directly sourced by those fields. All the higher mo-

ments are important only in propagating the charge distribu-
tion through the convective derivative term in Eg.4). Z:f DA DE; DW,,8((D - E)®— m3 W3,/ Va)
The model still contains a countably infinite number of
degrees of freedom, nameWyf,, 1=1,2,3 ... . Most of Xexp —H/T), (4.2
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1 mZD the 3-direction. The Fourier transformed equations of motion
H [ x| BiBr+ErER 2 S [Wh, 2. are
4.3 m?2
w?A,—K2A,= ?lem : 4.7

Every W), exceptWy, is Gaussian and they can all be inte-
grated out immediately. It is also convenient to introduce a

Lagrange multiplier for Gauss’ law, OWim=KCym 17 my Wi mr = @61 1Am, (4.9

where we have defined\,-.,=47/6(*A;+iA,) and

Am=o=V4m/3A;. TheA.  are the transverse components of
A 4 2ua the gauge field and,,—, is longitudinal.

Zf DAGexpiAZ[(D-E)2—m3Wg/ V4w ]/ T}. Since Cim,/m' s 0mm’» f. EQ. (A4), the equations of

motion do not mix differenm sectors(this is the advantage

8((D-E)2—m3Way/ 4)

(4.4 of choosing k|es). We also note thatw, ,  and
Doing so make€ and Wy, Gaussian as well, and they can Wi__ -1, do not evolve at all. In general, the components
now be integrated out, yielding with m# =1 do not couple to the transverse gauge fields.
We will not be concerned here with the propagator in the
, longitudinal sector, or with any sector which does not couple
Z:f DA DAgexp(—H'/T), (4.5 to any gauge fields, so the only “interesting” modes are

those withm=*=1. It should be noted that this decoupling
1 occursonly in the Abelian theory (It also allows a more
H' = EJ d3x[B2B2+ (D;iAg)2(DiAg) 2+ m3A3AZ], efficient representation for hard thermal loops than the one
4.6 we use here, sd81].)

In the following we choosen=1, which is the sector
where the wave function term fdk, arises from integrating Which couples to the transverse gauge fields. The matrix
out theE field and the Debye mass squared term arises fronti- = Ci1)71,31S @ symmetric and traceless matrix of siZe,
integrating outWo,. with non-zero(positive) elements only ifl’=1+1. (Note

The sole thermodynamic consequence of Wdields is  that, becausem|<I, | is restricted here to the intervalsl
the introduction of a Debye mass, and its magnitude is giver=!max. hence the dimensionality & .) As a result, in the
exactly by the coefficient in the/ field equations of motion. ~€igenvalue problem
This corresponds exactly with what the complete hard ther-
mal loop thermodynamic contribution should be. Further-
more, the Debye mass is introduced even lfgg,=0, the
absolute minimum value. We do not recommend usipg

Cx*=\%%", 4.9

the eigenvalues\“ are real and non-degenerate, and they

- . : . come in positive and negative pairsiifis an eigenvalue, so
=0, however, because in this case #efields have no is —\. If 1,ax IS 0dd, the matrix has one zero eigenvalue,

dynamics and everyVg, is a conserved quantity. Therefore, i eryise the eigenvalues are non-zero. The eigenvegtors
the system is not ergodic _and a Ha_mlltonlan trajectory willj .o real and orthogonal, and we will normalize them to be
not densely sample the microcanonical ensemble. Howevegihonormal.

to the best of our knowledge the only conserved quantities Writing the matrixC,, in terms of the eigenvectors and
(besides the Gauss constrajnis the non-Abelian theory eigenvalues

with |,,,,=1 are energy and momentuhand we expect er- ’
godicity in this case. The conclusion is that the technique
reproduces the thermodynamics of the full HTL theory ex- Cir=20 XM\X, (4.10
actly, for alll ,,=1. “

we can solve folw,; in Eq. (4.8):
B. Propagator

Now we turn to the study of the propagator in thg, Wi = aap 41
cutoff theory. We work only to linear order, or equivalently, 1 ; PR AR (.17
we will study the propagator only in the Abelian theory. In
this case we can study otkemode in isolation. Inserting this in Eq(4.7), we obtain the inverse transverse

Since the spherical harmonic expansion does not breagropagator
rotational invariancgeven when we restrick<l ), it is

sufficient to study the propagation of modes for whicis in )

(x1? (412

mZD I max
At =—w?+ K2+ — >
3 &1 w_kne

30n a discrete lattice the total momentum is not conserved, due to Let us now compare the propagatdr12 to the theory
the Umklapp effect. without the | cutoff. Remember that in this case the propa-
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Poles ofpropagator L =10

HILA" k=04m, [, =10 1.0
1.0 T T

J

08 t
FIG. 1. Left The inverse propagator Eq.

(4.12 with | ,,,= 10, plotted against»/mp with

& fixed k=0.4mp. Right: The positive frequency

: poles of the propagator &t,,,= 10. In these fig-
ures, one can clearly see the development of the

00 f4------

inverse propagator

05 cut in the interval- k< w<k, and the two plas-
02 1 mon poles aiw?~m3/3+ 6k%/5.
08 -04 00 04 0.8 0‘00,

wimy, k/mD

gator has aut in the interval—k=w=<k [32], and, in the m2 m2

limit w<k<mp, it describesoverdampedbehavior with —(xM)2+ 2

damping coefficient—*~k3/m3. Thus, the damping rate is 3 3

~g*T whenk~g?T, which is the relevant momentum scale

for non-perturbative physics. What this means is that there is a linear combinatiobf
What does the propagator look like at different values ofand A fields, namely W;;=Wyx(®, A=(m3/3k?)Wy{,

I mas? If I mas=0, the gauge fields are decoupled from We Which is strictly static. Thus, part of the “power” in tha

fields, except through Gauss’ ldwee Eqs(2.3) and (3.7)]; fields is lost to the dynamics of the system. There are also

transverse physics is the same as in the absence divthe propagating modes, both at the plasmon frequency and for

fields. Atl =1 the “matrix” C,,=0 is a scalar, and the @<K. Forly,=3, the poles are at

2 4.1
2 o k)\a(xl) (4.19

propaga;nor describes a massive vector partiAIlé.lz —w? )
+k?+m3/3. mp 6 8
The first interesting case is,..= 2. The propagator is still “’2:? + §k2+ O(kY, w2:£k2+ O(k.
easy to solve analytically, arfdising Eq.(A4)] the inverse (4.17
propagator becomes
We can identify the same plasmon pole as With =2, Eq.
. m3 2 (4.19, but the other pole behaves ks|~k instead of|w|
—0 kTt o ———— (413 ~K2 For relevant values df the poles of thé,,,=2 propa-

3 2
w? K25 gator are at much smalléw| than forl .= 3.

) o This pattern is seen to be true also for larggr,. While
The propagator has two zeros given B =k/5, and 4 o have heen unable to find a general analytic expression for
poles at the poles of the propagator, it is easy enough to solve the
5 o eigenvalue probleni4.9) and find the poles of the propaga-
2_3k2 N mp o \/ 6k? mD) 4k* tors numerically. In Fig. 1 we show the inverse propagator
Y75 6 2
In the limit k?<m3 the poles are

5 5 T 3/ 5 (414 and the location of the poles whép,= 10. In general, we
can state the following about the poles of the propagator:
(i) Forlhaeven, there ark,,, poles and ., zeros of the
propagator in the interval-k<w<k. For odd values of
4 I max» the number of poles and zeros lig,,— 1. In either
4+ 0(k9). case, a$.— >, the poles and zeroes merge into a cut in the
5 % propagator.
(4.15 (i) There is a pair of plasmon poles altzmeD/3
+(6/5)k?+ O(k*/m3).
The first 2 poles correspond to the plasmon, and give it the (jii) Whenl ,,, is even anck<mp /I 2y the lowest pair
right dispersion relation up to corrections of ordé‘v’mD of poles behaves as
The second 2 poles are ai~g>®T for k~g?T and mp

2
m 6
2__D  Z2 4 2_
w 3-|-5k-|-O(k), w

~gT. Thus, instead of the correct overdamped behavior, the K2

I max= 2 propagatof4.13 describe®scillatorybehavior with o~ T, (4.18
w~g°T. At first sight, this may look like a fatal flaw in the mom

[-mode cutoff method. However, as we will argue below, in

practice this is not a serious drawback. whereas the other poles in the regijesj <k depend linearly

For odd values of,,,, the matrixC,;» has one eigenvalue onk. Forl . 0dd, all of the poles in this region are linear.
equal to zero. As with .= 1, the self-energy contribution As we makel,,, larger, the power lost to the static mode
to Eq. (4.12 has a constant “mass term,” becomes smaller roughly &8,
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Kmy =04 3
' Wpoid K) <— . (4.22
150.0 - — no /—cutoff | 7TMpH
oL, =4
\ Al =10
. 01, =50 Numerically, this corresponds to
s 1000 - 1 dd
= |&ven0.62am3/k?>— 0.8, 1999>1.86m3/k>—1.1,
< (4.22
Q
mSQ
500 | / X 1 with good accuracy. Strikingly, one has to use 3 times larger
/ values forl ;. in the odd sector than in the even one. This is
' , due to the lack of thev~k? pole in the odd sector, as em-
”b%@% phasized above. While for modest values ofT/mp
0.0 4L ‘ . ‘ =0.3...0.5, Ih)a=6 or 4 should be sufficient, for very
040 020 0.00 0.20 0.40 weak coupling or largeny the required ,,cvalue becomes
wjm, impractical for numerical work, since the numerical effort

will rise as ( maxt 1)2.

FIG. 2. The spectral density/ » at k=0.4mp for propagators Naturally, one has to remember that E4.22) is based on

without thel cutoff and with various values df,,.. The spectral d h . t that the | t itive f
density for finitel ,,,4 is a sum of formX ,C,é(w—w,). The plot an ad hoc requiremen at the lowest positive irequency

symbols are plotted at coordinatds, ,2C, /(@ 1— o, 1)1, pple shoulq bg within the peak of the. spectral depsity, and
which makes it possible to compare the differegs, values. different criteria would lead to very different requirements
) but the overall pattern in Eq4.22 should remaih What
p

' alue of I, one really needs in non-Abelian simulations
The absence of cuts means that the gauge field propagrgnay differ from Eq.(4.22 by a large factor: indeed, the

tion is non-dissipative. We should expect this behavior in the umerical results for non-Abelian theory in Sec. VIl seem to
Abelian theory because the equations are linear. However i y ’

L imply that Eq.(4.22 is overly strict.
need not concern us, because at ldigg the behavior dif- ) o .
fers from thel .= limit only over very long time scales, We also note that the poles of thMg field coincide with

! o . the A field poles, so we have gotten them for free. For odd
and the nonlinearities in the non-Abelian case should be; . i
Imax. there is one pole not accounted for yet: the mode cor-

come important on shorter time scaled jf, is sufficiently responding to theC,. zero eigenvalue, which does not

Iarglj_eh.e spectral power density propagate at all. Ngturally, the spectral power of the
propagator is very different from th& propagator.
) So, what do these results tell us about the sphaleron rate
p(w,k) w=(2lw)lmA(o+iek) (419 in the non-Abelian theory? We conclude the following:

(A) Whenl .« is odd, a component of the gauge field is
for fixed k=0.4mp is plotted in Fig. 2, both for the full static and not fluctuating, and therefore does not contribute
propagator without thé cutoff and for severaleven values to real time processes. Since the static component is largest
of I max- IN the finitel . case the spectral density gets con-in the infrared, we expect this to reduterelative to large
tributions only from the poles of the propagatdr12): I max limit. This behavior is worse for small,,, and should

go away at largé .« as the static component contains less
and less of the total gauge field amplitude.

o (0,K)lw=> — —Wﬁ(w— wpoid K)) (B) In the even ., Sector, the location and density of the
e poles @ poles is relevant for the corredampingin hot plasma: the
XRESAImaX(wpole(k)ak)- (4.20 larger | ax iS, the more the poles are able to reproduce the

concentration of spectral power at small and so the stron-
ger the damping and the smaller the sphaleron rate. Thus,
The spectral power is strongly concentrated around0  whenl,,,, increases, the sphaleron rate should approach the
with a peak width&u%4k3/(wm2D). The spectral power of physical one from above. The approach should be much
the | ,,ax Propagator closely follows thk, .= curve; how- faster than in the odé,,., sector, see Eq4.22.
ever, in order to have enough power in the central peak re- This behavior is indeed close to what we observe in Sec.
gion, | .. should be large enough so that there are poles welII.
within the bulk of the peak, which is the relevant region for  Obviously, the results in this section imply that for fixed
the propagator to describe the correct damping. I max ONecannothave the correct leading ordén g) behav-

We can use this property to derive an approximate “rule-ior of the gauge field propagator in the strict smgllimit.
of-thumb,” which tells how largéd ., should be for a given We expect this to be true also for the non-Abelian gauge
value ofk (which, for the relevant physics, should be set topropagator, and hence for the sphaleron rate. Nevertheless,
g%T): we simply require that ., is large enough so that for realistic values ofy andmp we expect a modest,,y to
lowest positive frequency pole satisfies be sufficient.
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V. LATTICE EQUATIONS OF MOTION Let us now consider the lattice gauge field equations of

In this section we discuss the discretization of the con—mOtlon both in continuous and discrete time. Tieentinu-

tinuum equations of motion Eq&2.3), (3.4) and(3.7). Natu- fhuesg:;nciriefri'g%t'g of the link matrixJ is given in terms of
rally, not all of the properties of the continuum evolution can
be satisfied on a discrete lattice, but the update rule of the .
lattice system should satisfy at least the following criteria: AU D =B (xHU;i (), 5.4
(i) Gauge invariance, lattice translational and rotationaLI.he “
symmetry andC, P, andT symmetries are preserved,
(ii) Gauss’ law is identically satisfied,
(iii) The total energy is conserved.

Naturally, we also require that the small lattice spacing
and smooth field limit gives the correct continuum behavior.
The discretization of the system is very similar to the pure 1
Yang-Mills theory, developed by Kogut and Sussk|i33]. HEA(X,t)=—iTr

The lattice is a 3-dimensional torus of sizé=N3a®, with 2
lattice spacinga. As is customary in real-time simulations, ab: b .

we useA,=0 gaugé and discretize the gauge fields in terms + P (x+i,1)]. (5.9
of spatial parallel transporterd;(x)=expigaA)eSU(2),
and electric field€;(x) which belong to the Lie algebra of
SU(2). U;(x) andE;(x) live on the links connecting points

andx+i (here we use the shorthame-i for x+ae). The S =U (00U (x+ ) UT(x+). 5.6
W,,, fields are located on lattice sites. Thus, for each lattice R :

site the total number of field variables is 3 @JmatriceS  The summation indekin Eq. (5.9 goes over both positive

2 . . .
and 3+ (Imaxt 1)° adjoint matrices. _ _ _and negative directions; a negative value means that the link
On the lattice we want to use dimensionless field vari-g taversed in the opposite direction as in E&.6):

ables. We absorb the lattice spacing and lattice fields as U -(x):U-T(x—j)
follows: - J '

gauge force” term in the evolution equation of the
electric field is fixed by the magnetic Hamiltoni@b.2), by
varying Eq.(5.2) with respect toA; . When we add the cur-
rent term due to thew,, fields, we obtain the evolution
equation fork; :

1 .
+§[J| (X,t)

ay. t
7 ul(x,t)%i sh(x,t)

Here S; is the gauge link “staple” which connects the
pointsx andx+i around the plaquette:

The current terms in Eq.(5.5 are given by j?
=(mpa)?/(4m)viW5,, . SinceE;(x) is located between the
pointsx andx+i, the currentj;(x) is averaged between the

For compactness, we also use dimensionless lattice Coomﬁ_eglnnmg and the end of the link. The currenkati has to

nates,x,—x.a, x; integer, reintroducing when necessary. e para!lel transported to poirt and we use the shorthand
We shall consider the evolution of the lattice fields both in€XPT€SSIoN

continuous and discrete time. In discrete time, one update
step consists of evolving the fields from timeo t+ 6,
where §;<<1 in order to keep the evolution stable and inte-
gration errors small.

gaA—A, ga’E—E, gaW—W. (5.2

PROO(x+i,1) =[Ui(x,HO(x+i, U (D] (5.7

for the adjoint field parallel transport from poimt+i to

poinf x.
) In discrete time, the adjoint fiel&; transports the link
A. Gauge field update matrix U;(t) to U;(t+48,). In order to keep the evolution
We shall use the standard single plaquette definition fosymmetric in time, it is natural to placg; in the half-
the magnetic field strength: timestep value+ 3 8. Integrating Eq.(5.4), we obtain the
discrete time evolution equation faf; :
1 1 1
ff dSXZFﬁFﬁ_’ﬂLE 1- ETF Ugl. (5.2 1
- Ui(x,t+ 5t)=exp[i|5i x,t+§5t)5t Ui(xt). (5.9

HereU is the ordered product of the link variables around
a plaquette,

5E,(x) appears on the left in Eq5.4) because we choose to
recordE;(x) so that it transforms under gauge fields as an adjoint
object at the basepoint rather than the endpoint+i of the link

At the tree |eYE|ﬁL:4/(92T§)- However, this receives ra- fom x to x+i. Alternately we could work in terms oF;(x)
diative corrections; these will be discussed below. =UJ(X)E;(x)U;(x), in which case the expression would involve

Ui (0 =Ui(x)U;(x+)U(x+HUf(x). (5.9

UE rather tharE U; similar changes would appear in other expres-
sions involvingE. There is no physical difference between the two
“We emphasize that this choice is just a convenient way to fix thehoices. _
gauge ambiguity in the field update laws, and that any alternative °If we worked in terms ofE, the other current would require
choice would give the same value for gauge invariant correlators.parallel transportation to the end point of the link.
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Alternatively, one can think of exji;&) as being the time- 1 _
like plaquette in thet(i) plane, which updates as shown HWim(X, D) == 5 Cim 1 m il AWy (XF1,)
because we have chosépy=0 gauge.(In another gauge

there would be an extrd, dependent term in th& field i 1

update, and in the updates of thandW fields as well; it is P iWiry (X=1,014 5 8 Vil Ei(x,1)

the convenience of leaving these out which encourages the

choice of temporal gauge. +P_Ei(x—i,t)]. (5.12

The discrete time electric field update can be obtained o o )
now from Eq.(5.5) by substituting The electric field contribution is symmetrized from each of
the links which connect to point
1 1 1 As was done with the spatial derivative, we substitute the
(9tEf‘(x,t)—>—[Eia x,t+—5t)—Eia(x,t— 5t” time derivative oW with a symmetric finite difference

S 2 2 [W(t+8)—W(t—8,)1/(28,), and the value oV at timet

9 4 o, will depend on values at timgsandt— &;. Explicitly,

_ _ _ _ the update rule becomes a “leapfrog”
The lhs of Eq.(5.5 remains as is even at discrete time. As

formulated, the discrete time update st€p$) and(5.9) are Wim(X,t+ 8) =W (X,t— 6y) + 6:{28) 1VmiEave;
symmetric under time reversal and they give an algorithm ,
accurate to orde®(6?). = Cim,1rm iLPWy g (X+1,0)

As mentioned above, the relati(m=4/(nga) receives —P_ Wy (X—i,0)1}. (5.13
corrections because UV modes behave differently on the lat-
tice than in the continuum. This has been calculated in ApHereE,,. is the average electric field influencing the propa-

pendix B of[24] (see alsd34]), with the result gation of W, from t— &, to t+ §;. Since this is over two
time steps, there are 4 timelike “plaquettes” to each direc-
N L 4+2m2Da2+ miat) &mpa) tion i:
ﬁL_gzaT 3 67 |3 3 18 | 4x 1 1 1
Eavej(xvt):Z{El(th_Eét +P_iEi(X_i,t_§5t>
1 mia?\3(mpa) 51
3 18 ) 4w (5.10 1 1
+E; X,t+§5t +P_iE; X_I,t+§5t .

Here £=0.15289 . .., andX(mpa) and £(mpa) are inte- (5.14)

gral functions:

Note that, due to Eq5.9), the parallel transpor®P_;E;(x,t
= d3k 1 +34,) can be made witty matrices either at timeor time
2(m)= J t+ &, with the same result. In practice, one doesHhérans-

B 3 (2 27 )
m(2m)” k*+m port once for each time step, and stores the result for the next

time step.
= d3k 1 To summarize, the discrete time update step(+ &;)
f(m):f PSR I (6.1)  goes as follows:
—m(2m)* (k*+m*) (1) start withU(t), E(t—6/2), W(t) andW(t—8,),

(2) evaluateE(t+ 6,/2) with Egs.(5.9) and(5.5),
where k?=3,4 sirfk/2. To 5% accuracy, this can be ex-  (3) calculateW(t+ &) with Eq. (5.13 [and forgetW(t
pressed ag, =4/(g°aT)+0.61 for values ofmpa used in  — &) andE(t— 6,/2)], and finally
this work. However, we shall use the full expression in our (4) calculateU(t+ &;) with Eq. (5.8).
analysis. In the sequel we will writg, for the variable ap- A generic feature of a first order differential operator on a
pearing in Eq(5.10, and writeg for 4/g%aT. discrete lattice is the decoupling of “odd” and “even” co-
Further subtleties related to this thermodynamic correcordinate sectorsW,n,(x,t+ ;) depends only onw,, at
tion arise when we conveft to continuum limits; we will ~ points k,t— &) and x=i,d;); in particular it doesot de-
address this in Appendix C. pend onW,,,(X,t), which is its immediate predecessor. More
precisely, if we label the coordinates with an integer valued
parity labelp=3%;x;+1t/6;, the W,,, fields at odd and even
values ofp do not interact, except through their coupling to
The W,,, equation of motion E¢(3.4) has only first order the gauge fields. This causespecies doubling problenn
derivatives in time and space. In order to preserve the exaenalogy to the one familiar from lattice QCRhe Dirac
P and T symmetries on the lattice, the first order derivative equation is of first ordgr The properties of the doublers in a
terms should be replaced symmetricfinite differences. linearized theory are discussed in detail in Appendix B.
Thus, the continuous time lattice equation of motion\igp, There are 15 extra low-energy doubler modes, living
is around the corners of the 4-momentum space hyperkube

B. W,,, update and doublers
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—(0,m/a), w=(0,7/(5,a)), with at least one ok;,« non- C. Gauss’ constraint

zero. The continuous time equation of motion (5.12) has The Gauss’ law is given by the 0-component of the equa-
only 7 spatial doublers; the rest are introduced by the tim&ions of motion(2.3):

discretization(and can be avoided, see Sec. Y Blowever,

in contrast to lattice QCD, in our case the doublers are be- 0o Mp

nign: first, they couple only very weakly to the gauge fields, DiF' "=]"= \/EWOO' (5.17
decoupling completely at the corners of the Brillouin zone

(see Appendix B Second, they couple only to gauge fields On the discrete spatial lattice and discrete time, care has to

at very high wave numberk~1/a and/_or frequencieso be taken to make the appropriate symmetrizations to the
Nl/(.a5t)' Thus, t_he doublers do not |anL_1ence at aI_I thefields Fio=E; and W appearing in Eq(5.17). SinceE; is
physically interesting smak and » gauge field dynamics, * ji;ing on half time step time valuest £ 5,, we symmetrize

and their effect on modes close to the lattice cutoff remain§NOO from timest andt+ & :

small.
Because the time step is smadl, 1), the timelike dou- 1 1
bler modesw~ 7r/ad; are especially weakly coupled to low- E Ei| x,t+ §5t) —P_iEj| x—i,t+ 55‘”
frequency modes. Indeed, in simulations we uggd 0.05 !
and observed no appreciable energy transfer between the (mpa)? 1
timelike doublers and low-frequency modes. However, since ———— = [Woo(X,t) + Wpg(X,t+ ;) ]=0.
the timelike doublers are low-energy excitationsVéffields Vam 2
which are not present in continuous time, they can cause (5.19

problems in thermalization of the system and, as it turns out,

in counting the active degrees of freedom. This will be dis- This condition(or rather, the constancy of the violation of

cussed below in Sec. V F. this condition is satisfied exactly by the evolution equations
Before leaving the update we should comment on energy5.8), (5.9) and(5.13. To see this consider the change of Eq.

conservation. In continuous time, we can write down the(5.18 under one time step. It gets contributions from each

lattice version of the Hamiltonia(B.8): dE/dt and fromdWy,/dt. [There are no contributions from
the time derivativedU/dt of the U appearing in the parallel

1 1 ) transporterP_; becausedU/dt commutes withE and can-

H(UZBL%: 1-5TrUp® |+ 3 ; B0 cels between the) andU T in Eq. (5.7).] In the absence oV
' fields, the time derivative of Ed5.18) is zero, as shown by

(mpa)? Ambjérn and Krasnitz10]. The addition ofW fields adds

8 XE,m |Wim(X,0)[. (5.19 new terms to thé&V,, field andE field updates. First there is
a contribution toE;(x) andP_;E;(x—i) from W (x). Ac-
This Hamiltonian is exactly conserved by the equations of0rding to Eq.(5.5 these are equal; buki(x) and P
motion (5.4), (5.5 and (5.12. However, in discrete time —IEi(x—i) appearin Eq(5.18 with opposite sign, so there
there is no equivalent conserved expression. A good approxi$ N@ contribution here. There is also no contribution to
mation to the energy can be obtained by symmetrizing th&Woo(x)/dt due toW,,(x). Second\W,,, at each neighbor-

contribution of the electric fields in E¢5.15 with respectto  INg Site contributes both tdE/dt on the link between the
t: neighboring site ana, and todWy,/dt, through Eqs(5.9)

and(5.13 respectively; but the two contributions to the time
1 derivative of Eq. (5.18 cancel, becauseCop i i=Vmi-
X, t+ > S 2. Hence the update preserves Gauss’ law if it is satisfied by the
(5.16 initial conditions. Enforcement of Gauss’ law is therefore a
' problem for the thermalization algorithm, not the evolution.

5 +E?

1
Eiz(x,t)—>[Ei2(x,t— =5

The energy obtained this way fluctuates with an amplitude o

« 82, but the mean value is stable. The conservation of mean D. A way to eliminate temporal doublers

energy is guaranteed by the time reversal symmetry of the There is an alternative way to write the update rules
discrete time equations of motion: if, at some point in thewhich eliminates all the high frequency doubler modes,
evolution of the fields, we invert the sign & (E——E)  which we now discuss. First, note that the reason there are
and conjugate and reverse sign for the hard particle chargeublers is that the update as specified in the previous sub-
[Wim— — W, =—(—1)'W,,], the system will exactly re- sections requires and maintains twice as much information
trace its evolution backwards. If the energy had a tendency tabout theW fields as is necessary. As discussed in the sum-
increase, inverting the time would cause it to decrease. Sinamary at the end of Sec. V B, the update needs the value of
the configurations{,E,W) and U,—E,—W*) are just as W, at two time slices. However, only and not its time
likely to appear in a thermal distribution, the system cannoterivative appear in the Hamiltonian, so a complete specifi-
exhibit any systematic tendency for the average energy teoation of the fields should only requii,,, to be specified
change. The stability of the system is a necessary propertynce at each site. The excess information describes the state
for long Hamiltonian evolutions. of the doublers. Eliminating the doublers will require elimi-
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nating half of this information. This is possible since, as 1

noted earlier, the update rule faf does not mix thw fields Ha=BL2 [1— Z1rUn()

on odd and even sublattices. Therefore, it is possible to de- -

fine W only at every other spacetime point; we can define it (mpa)?

only at the even sites, that is, points for whiph=[t/5; —AS(X)]2+T > (A3(x))2. (5.22

+2,X;] is even. Equatioit5.14) remains unchanged, but Eq. X

(5.9 has the modification The gradient term for thé\, field is the simplest lattice

[J-ia(X,tHPiabj F(x+i,t)] implementation of the pontinuunDQAO)Z, _and sz appears

as theA, mass term without any corrections, just as in the
continuum case. The form of the partition function above is

1
+5 2 [PiAY(x+i)

Jrxn), t/5t+§i: Xi even, equivalent to the path integral of the full quantum theory in
the high-temperature dimensional reduction approximation
- on the latticg/ 35,36 This guarantees that this theory repro-
PaP(x+i,1), t/8,+ >, x; odd; duces the(equal tim¢ thermodynamics of the Yang-Mills
' fields.

This property can be used to fix the bare lattice value of
(5.19  the mass ternmp. In general, classical field theories suffer
from UV divergences; however, when we consider the static
thermodynamics of the theory in E¢5.22, only a finite
that is, we use whicheveris defined. Similarly, in Gauss’ number of UV divergent diagrams appears. These diver-

law, Eg. (5.18 involves eitherWyo(x,t) or Wpo(X,t+43;),  gences can be absorbed in counterterms, and in particular for
whichever is defined. The time derivative of the Gauss conthe theory in Eq(5.22, we have[35]

straint remains conserved, for the same reasons as before.

Updating the fields in this way removes 8 of the 15 dou- 5 ) 39°T
blers and cuts the number of computations, and hence the Mp bare™Mp pnys~————»  2=3.1754 ... (5.23
CPU time, almost in half. It may slightly increase time step
errors because of the even-odd alternation of the current iflerem?, phys iS fixed according to the actual particle content
the E field update rule; but this can be compensated for byf the theory, see Ed2.9).
reducingé,, which is not problematic because of the reduc-
tion in the number of computations per time step. We have
compared the update with and without this modification and

find that the results for physical measurables agree within 1he real time simulation has to be started from a configu-
statistical errors. ration which has been chosen from a thermal distribution so

that the the Gauss’ constraint is satisfied. As emphasized
above, to start the update we need the fieltld), E(t
E. Lattice thermodynamics —d2), W(t) andW(t—6).
We will use the same general philosophy aglihil. Some
of the degrees of freedom, namdly andW,,,,, are Gauss-
ian, while others, namely;, are not. We can draw the
&aussian fields from the thermal ensemble and then use the
evolution equations to “mix” this thermalization with those
degrees of freedom which are not Gaussian. The thermaliza-
tion proceeds by evolving the Hamiltonian equations of mo-
tion of the system, but periodically “refreshing” the Gauss-
ian degrees of freedom, that is, discarding the values of

F. Thermalization

In continuous time the equations of motigd.4), (5.5),
and(5.12 describe a Hamiltonian evolution which conserves
energy and phase space volume. We can study the therm
dynamics of the system by using the Hamiltoni@&al5 to
write down the canonical partition function

-

I] dui(xdE(x)

Gaussian degrees of freedom and drawing them from the
x| IT dWim(x) [TT 8(G(x))e H'T, (5.20  thermal ensemble.
x,Im x At first sight, this plan appears to be complicated due to

the Gauss’ constraint. In the case without iNefields this
) . ) ) problem was solved ifl11], by first drawingE from the
whereG(x) is Gauss’ law, Eq(5.18 (in continuous timg  Gaussian distribution ignoring the constraint and then pro-
Introducing a Lagrange multiplier field, in exact analogy jecting to the constraint surface. It is trivial to extend that
with what we did in continuous space in Sec. IV A, we cantechnique to the current situation. However it is actually pos-
integrate out thé& andW fields to obtain the lattice partition gjple to do something even easier. Only the compokiépt
function of W, enters the Gauss’ constraint. Thus, according to Eq.
(5.15, we can set the highdm components freely to the
correct thermal distribution, that is, draw each Wf},,, |
e Ha, (5.21) =1, from a Gaussian distribution of width8/(mpa)?.
The thermalization then proceeds as follows:

z=f []X'[I dU;(x)

1;[ dAg(X)
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(1) SetU(x,t)=1, E(x,t) =Wqy(x,t)=0. since in one timestep botk and Wy, interact with|=0
(2) ChooseW;, (x,t), =1, from the Gaussian distribu- modes.
tion of width \87/(mpa)2. In our production runs we used the methdl. We also

(3) Evolve the equations of motion for a short period, made test runs with the doubler modes fully exited. This is
transferring energy fromw,,, to the other fields, while pre- Simple to accomplish: proceed as in itertis—(4) above,
serving Gauss' law. rqndom|2|ng onlyw, (1), 1=2, and perform the evollutlon

(4) Repeat from(2) until the fields are thermalized. with the leapfrog updat¢s.13. Since there are now twice as

However, in discrete time we do not have an exact Hamil- 12y activeWn, mode;, the W'dt.h of the Gaussian distribu-
tonian, and there is an inherent ambiguich,z‘it2 in the defini- tion has to be multiplied by2, in order for theU andE

) . . . . ) fiel h h I fore. A i
tion of energy. It is not immediately evident how the fields lelds to have the same total energy as before. As mentioned

should be thermalized. At a more practical level, the randomgbove’ in the gauge field observables the doublers have no

R . . observable effect.
ization of W'm as abpve is complicated by the fact that we Let us note that a Langevin-type thermalization, as used
needW,,, fields at timest and t— §; to start the leapfrog

update. This is closely associated with the timelike doublerIn [37] for pure Yang-Mills theory, would be straightforward

, ; ) o implement by coupling the noise W, fields. Indeed,
o_f tthﬂeIds. However, as was discussed in Sec. V B, theCoupling the noise only to the highelsmodes might be of
timelike doublers couple extremely weakly to the low-

4 ; interest even during a simulation, since this could mimic the
frequency mode sector, and there is practically no energ

4ffect of the highet modes.
transfer between the two sectors. This was also seen in simu- 9

lations: the energy contained in the doubler modes remained V1. MEASURING THE CHERN-SIMONS NUMBER
at the level where it was set by the initial thermalization ' DIFFUSIOl:l
during the whole trajectoryMoreover, the gauge fields care

only about the low frequency modesee Appendix B The baryon number violation rate is related to the diffu-

Thus, in principle, we are at liberty to do whatever we sjon of the Chern-Simons number, defined as the charge as-
choose about the timelike doubler modes; we can either thegociated with the right-hand side of the anomaly equation

malize them or try not to excite them in thermalization. The(1.1);

gauge fields will not see the difference — however, in the

former caseW fields will contain roughly twice as much

energy as in the latter. Note also that the whole problem g2 1

would go away if we used the update discussed in Sec. V D. Nes= Zf dSXEijk< FiAR— §fabcA?Af’Aﬁ
In all of our “production” runs we chose not to excite the 32m

timelike doubler modes. This makes the lattice modes re-

semble as closely as possible the continuous time fields.

Note that the Hamiltonia5.15 counts the degrees of free-

dom and energy equipartition correctly only if there are no

timelike doublers, and th@(ﬁf) ambiguity in energy is

valid only in this casdin the presence of doublers, the am- 75(SU(2))=Z the Chern-Simons numbétcs is a topologi-

biguity is of order 100% : : S
The thermalization without the doublers can be accom-Cal index for vacuum configurations: we can perform any

. : : gauge transformation to a trivial configuratiéi=0 without
lished using the stepd)—(4) as above, but replacing the . : . oo
2tep(2) for egxample E(y)orge)of the following tw% met?]ods: any cost in energy, and the resulting configuration is as good

. . : a vacuum configuration as the initial onéggis equal to the
(@) SetWin(t) to GaL_JSS|an random v_arlable_s in st winding number of this gauge transformation. Since it is now
above, and perform thérst update step in3) using a for-

ward asvmmetric time difference for thelsa modes: that is integer valued, it classifies the vacuum configurations into
. Y I . o . ' disconnected classes, which cannot be continuously gauge
instead of approximating the time derivative wifW(t

- 8)—W(i—8)1/(25) in Eq. (5.13, we use[W(i+25,) transformed to each other. Thus, a vacuum-to-vacuum pro-

A .. cess which increaselg smoothly by one unit must go
.W(t)]lét' Th'TQ' IS a ”atF"a' way to.start a I(_aapfrog, anq It through a non-vacuum excited state, the sphaleron. Due to
gives a smooth interpolation for the fields. This method give

She axial coupling to fermionic current, this process lifts one
slightly incorrect mean energy, but the error0$5t2). ping ' p

B . left-handed solution of the Dirac operator from negative to
(b) SetWip(x,t= &) =Wim(x,t), wherel =2, to Gaussian  qsitive energy, and pushes one right handed state from posi-
random variables in stef?). Now also the first step can be e to negative energy. Since the @V sector of the stan-

performed with the leapfrog. This method excites the douyarq model is a chiral theory which does not couple to the

bIeri more, but the amplitude of their excitation is only yight handed fermions, this process will create one fermion
O(4;)- Note that now only models=2 can be randomized, for each fermionic generationNg).
At high temperatures the Chern-Simons number diffuses
readily, and integer values are not particularly preferred. In
"More precisely, the energy transfer remains negligible for timeany given volume the Chern-Simons number performs a ran-
step 8,=0.05 used in the simulations. Using a dangerously largedom walk in time, and the diffusion constarit, can be
time step of ordes,~0.2—0.3, energy transfer becomes significant. measured from

_ = | 43,10
No d3xJ9. (6.1)

Since SW2) has a non-trivial third homotopy group
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_ 2 Hamiltonian time
= lim lim <(NCS(t) NCS(O)) > (6 2) configurations generated by the Hamiltonian trajectory
Vit ' ' ¢ 00000000000 0000000000
Vo e 2 | : ' | : |
5 rcooling !
Here the angle bracke{s refer to an average over the ther- £ A A A cooled t,;,iectory iB :
mal ensemble. The change in the Chern-Simons number carf =~ =9 —>
be evaluated from integrate Ncs along cooled trajectory
2 integrate Ncs
g t from cooled trajectory
Neg(t) —Neg(to)=— | dt' | d**E'B]. (6.3 to vacuum
87 Jtg
In principle, this measurement is readily convertible to lattice v Y,
. . . . 1
language: lattice versions of the fielHsandB feature promi- . —

= vacuum configurations -

nently in the equations of motiof5.4),(5.5. However, this
“naive” definition of Ncs on the lattice, often used in the  FIG. 3. How theNcs evolution is measuredafter [15]). Top
early work on Chern-Simons number diffusion in lattice horizontal line shows the configuratiotsolid circle generated by
SU(2) gauge theory9-12], suffers from spurious noise and the lattice equations of motion. Every few time steps, the configu-
diffusion which obscures the physichll-s diffusion. More-  rations are cooled a fixed cooling length, giving a parallel cooled
over, due to its UV nature, the amplitude of the noise di-trajectory(open circles Now the fields are smooth enough so that
verges as H in fixed physical volume, which is disastrous in E-B can be reliably integrated, givingNcg(t) along the cooled
the continuum limit. The reason for this noise is well under-trajectory. In longer intervals, theécs measurement is “grounded”
stood: the integral over lattice- B on the right-hand side of Py cooling all the way to a vacuum configuration. dNcs along
Eq. (6.3 does not form a total time derivative, and hence itPaths likeV,—A—B—V, is always close to an integer, we know
depends on the path along which one connects the initial an_t@at the integration errors are small. The residual d_ewatlon from an
final configurations in Eq(6.3). In other words, it does not 'nNteger value is subtracted frodNcs(A— B), cancelling the accu-
give us a topological measurement. mulation of errors.

In general, topology of lattice fields is ambiguous, since
the variables are always continuously connected to trivia

ones. However, at fine enough lattice spacifejsl easy to : > ; .

achieve in our simulationsalmost every one of the ftopolog_mal content as the original conﬂ_guratlon. After cool-

plaquettes is very close to unity in a thermal ensemble; Iarg’ang the |ntggra[6.3) can be perfor.med with small errors. _The
%‘;cumulatlon of residual errors is prevented by periodically

Foolingto the configuration: the resulting configurations are
very smooth on lattice scales, but they still have the same

plaquette values are exponentially suppressed. Perturbative i Il th " b tion: K that
this means that the gauge fields are small, and for this subst PO ![ng all the Wa¥ oa Va‘%ﬁm Ec_)ntlgura |0n(.j we r(ljow_ a
of lattice fields topology can be unambiguously defif@gl. ne trué vacuum-to-vacuumiNcs=Integer, and any devia-
Physically, this means that the spatial size of the topolog lon 1S Que to accumulateq |n_tegrat|on error, which can thus
changing configurations, sphalerons, is large in lattice unit Fieg gahbrated away. This is schematically described in

This will be true because the energy of sphaleron-like con- . . , .
figurations increases linearly with inverse size. The Boltz- TZe gool_lngl patrll IS deflneKd by tge grkgdcljent flow of the
mann suppression factor for smélttice scalg sphalerons standard single plaquette Kogut-Sussiind gauge action,

is enormous and they, in practice, never appear in simulad!Ven n Eq.($.2): The e"°'.““°”f?"°“,9,1 this path IS param-
tions. The interplay between entropy and the Boltzmann fac(—amz'eo'2 by fictitious cooling “time” 7, dimensionally
tor sets the dominant sphaleron size to-bg?T. For topol-  (1€ngth*. The cooling equation of motion is noj3]

ogy to be unambiguously defined, our lattice spacing must be

a
considerably smaller than this. ‘9Ui(x):igaﬁu_(x)
Two successful methods for measuring topology in the ar ar !
current “real time” context have been recently developed. 1
The first method uses an auxiliary ‘fslave field” to track the —ig®=Tr i(ran(x); S.*j(X) Ui(x). (6.4)
winding number of the gaugel4]. It is a development of a 2 [iT#i

method originally proposed by Wdi89], which is based on
counting the winding numbers of singularities in the Cou-Here the stapl&is defined as in Eq5.5). On the lattice the
lomb gauge. In this work we use the second method, “cali-equation above is evolved in discrete and we use here
brated cooling.” This method is based on the coolingoptimized step lengths by alternatingr/a®?=5/48 and
method by Ambjon and Krasnit413], and fully developed 10/48. Too large a time step causes the UV modes to become
by Moore in[15]. The rest of this section will summarize unstable.
this method. The evolution of Eq(6.4) all the way to a vacuum con-
The calibrated cooling method relies directly on the factfiguration is a computationally demanding task, and it can
that the sphalerons are large and extend over several latti@asily dominate the CPU time. The integration can be dra-
units. Thus, we can get rid of most of the ultraviolet noise inmatically accelerated bplocking the lattice: after a bit of
the thermal configuration by applying a small amount ofcooling the fields are very smooth at the lattice scale, and
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essentially no information is lost if we reduce the number of TABLE I. How the sphaleron rat€ depends omy.
lattice points in each direction by a factor of 2. The blocked : —
U matrices are formed from the product of the matrices orRun parameters I max Time/a L'/(a”T")
the two links between the blocked points. Since the lattice =8.7, VIai= 28 0 8000 1.4915)
spacinga is now increased by a factor of 2, computational "5 > 42
. L. mp=1.594°=8.20y"T 1 20000 0.060670)

cost in cooling is reduced by a factor-2-a factor of 4 com- > 20000 0.5334)
ing from the increase in thér step. In our calculations we 3 30000 0'34 3
block the configuration twice in the course of cooling to 4 ) : 2622)
vacuum. For detailed information about this method we refer 0000 0.52(22)
to [15). 5 20000 0.4480)

In all of our simulations we cooled a configuration from 6 30000 0.53€7)
the Hamiltonian trajectory at intervatit=0.5a (once in 10 10 20000 0.5184)
tlmg steps with §,=0.05) . We coolgd to d_epthr BL=12.7,V/a3=32 2 37500 0.24@3)
=a“45/48 for the _cooled tra]ectqrgsee Fig. 3 using un- 2 _ 1 9gp2=20.79°T2 4 37500 0.19618)
blocked configurationséNg was integrated along this tra- 6 45000 0.1918)
. . . 2 . . .
jectory using improvedd(a“) accurate definitions foE- B
[11]. The cooling to vacuum was performed with an interval 8, =12.7, V/a®=32 2 37500 0.83686)
6t=12.5. Our parameter choices were overly conservativem?=0.29A%=4.843"T? 4 37500 0.68%0)

the vacuum-to-vacuum integration error was typically of or-
der 0.02—-0.04. Thus, it is possible to use much more aggres-
sive optimization than we use here without losing the topoHereZ;é is a radiative correction of form+O(a), see Eq.
logical nature of this measureme(see Ref[18]). (C14). We use the improved relation E5.10) to relate the
lattice spacinga to the physical scalg®T. There are addi-
tional radiative corrections associated with renormalization
VII. SIMULATIONS AND RESULTS of the lattice time scale, which we discuss in Appendix C. In
order to avoid the uncertainties associated with the UV coun-
terterm, we use mostly fairly large physical valueswgf so
Shat the UV term remains subdominant. The results are actu-
ally quite robust against variations in the numerical coeffi-
cient 0.68, even with the smallest; we use.

I max dependencdn order to study how the sphaleron rate
depends on the value &f,,, we performed a series of runs
with 24° lattices using fixed3, =8.7 and m3=1.5/R2
_=7.994T2, and varied o, from 0 to 10, as shown in Table I.
The results are also shown in Fig. 4. WHep, is even, the

Our aim here is to answer the following questions:

(1) what is the dependence of the Chern-Simons numb
diffusion ratel” on the finitel ., cutoff, and is there at,,
which is “large enough” for practical purposes or is an
I max— extrapolation necessary?

(2) is T, in physical units, independent of the lattice spac-
ing?

(3) how doed™ depend on the physical quantity, /g>T?

Let us first discuss the relation between the physical De
bye masanp and the bare mass parametega on the lat-
tice. As explained in Sec. V E, the bare mass receives renor-

malization counterterms and diverges in the UV limit as. 1/ m, =82¢'T B =87 V=24
However, according to the scaling arguments of Arnold, Son ' ‘ ‘ ‘ '

and Yaffe[17], the sphaleron rate should not actually depend

on the Debye mass, which characterizes static screening 15 ¢ % ;;max zzzn )

properties of the hot plasma, but on the damping rate of the
transverse gauge field propagation. As explained in Sec. IV,

this is related to the Debye mass in the continuum. However,

due to the lattice dispersion relation, the hard gauge field 1.0
modes do not propagate at the speed of light, and their effect
on the damping is reduced. Averaging over all of the direc-
tions of the lattice momenta, Arnold0] has calculated that
the effect of the hard gauge field modes on the lattice is a
factor of (0.68-0.2) times smaller than the continuum rela- 05 F """ - &9

T/o'Th

tion between the damping coefficient amﬁ, would imply. — =
The error quoted is systematic, and it takes into account the
rotational non-invariance of the lattice propagators. Thus, we
shall use the following relation between the bare lattige Lo ‘ . ‘
and the continuum one: 0.0 0 2 4 6 3 10
lmax
S9°T - -
-1.2 2 FIG. 4. The dependence &f on I, on a lattice of size
Z4n 8 = B,y 0,68 y e P max %
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TABLE Il. The Chern-Simons diffusion ratE and the parameter of the Arnold-Son-Yaffe scaling law
«', Eq.(7.5). If the results at different values bf,,, are statistically compatible, we have taken an average
over them, as indicated.

BL I max \% (mpa)? m3/g*T? Time/a I/aT? K'

8.0 4 248 0.375 2.63 10000 1.231) 40.53.6)
8.7 4 24 0.766 4.68 37500 0.8083) 47.51.9
8.7 2,4,6,10 2% 1.59 8.20 90000 0.5265) 54.21.6)
8.7 4 24 351 16.4 25000 0.2308) 47.53.7)
12.7 4 33 0.291 4.84 37500 0.6831) 46.91.9
12.7 6 33 0.707 8.74 20000 0.4149) 45.85.2)
12.7 4,6 33 1.97 20.7 82500 0.1993 51.713.5

results are remarkably stable: indeed, the data frgge=2  to the data, with the result;=4.5+0.2, c,=—3.2+1.1,
to 10 are mutually compatible within the statistical errors.with x?=12 for 5 degrees of freedom. Within our statistical

However, for odd . the rate remains substantially smaller, errors, we did not observe any systematic lattice spacing de-
approaching the even sector value from below whgg, pendence, and we use the results obtained with all the lattices

increases. in Table Il in the fit. If we include the known logarithmic
The special casé, =0 has a rate which is-3 times  contribution[21],

larger than thd,,,=2,4, ... rate. This is actually close to

the rate measured from standard(8Juyauge theory without g*T? m2D

any W fields at the same8, [18]; there the rate was 1.68 Ijog=(0.425+0.027 = log = T4, (7.3

+.03. D

This behavior is qualitatively in accord with the theoreti-
cal analysis in the Abelian theory in Sec. IV. The ddg, we can perform a one-parameter fit
sector gives a substantially reduced rate because much of the

infrared power is in non-propagating modes, and is therefore r 9412 m%
not available to participate in Chern-Simons number diffu- 22— 5 0425log —— | +d (7.9
sion. However, for the eveh,,, sector we do not see the a"T mp 9T

gradual decrease in the rate as predicted by the analysis in

Sec. IV, the rate just snaps to the correct level immediatelwith d=3.09+0.08, with x2=15 for 6 degrees of freedom.
when the damping is turned on by going frdm,=0 to  The logarithmic contribution actually makes the fit a bit
Imax=2. According to the requirement for minimuin,.,  worse; however, a subleading te@{g*T%/m3) would not
given in Egq. (4.22, we should uselmasz.GZ*nf)/g“T2 change it, since its coefficient would be compatible with
—0.8=7 (for evenl 5. The naive limits given in Eq4.22

are obviously too strict for the non-Abelian theory. Chern—Simons diffusion
At larger m3/g*T? the difference betweeh,,=2 and 1.50 * * *
higher values should be more visible. Indeed, in simulations AB,=8
at m3/g*T?=20.1, using na=2, 4 and 6, we do observe a B, =87
significant decrease in the ratelag, increases from 2 to 4; B, =127
this is shown in Table |. Here we use a smaller lattice spac- 1.00
ing, B.=12.7, and correspondingly larger volume in lattice
units. In this case the requirégl,,, according to Eq(4.22), b
would be ~12. We also see an effect in the rate at B
m3/g*T?=4.75, B, =12.7, using ma=2 and 4. =
Physical sphaleron rateThe results for the sphaleron rate 0.50 ]
are shown in Table II, and plotted in Figs. 5 and 6. The “old
argument” [3,4], based on dimensional analysis, says that
the rate should scale d5= ka*T# with « a constant. This
behavior is clearly excluded, as already seen[24,1§.
Rather, the rate falls linearly ig*T?/m3, confirming the 000 0 0.10 020 0.30 0.40
ASY scaling picture. Indeed, we can make a fit of form (ng/mD)2
r g*T? g*T? 2 FIG. 5. The Chern-Simons number diffusion réteén physical
= Ci— 5 TG 5 (7.2 units. Dashed line: fit to linear second order term, Eq7.2);
a™T Mp Mp continuous line: fit to lineart a log term, Eq(7.4).
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Chern—Simons diffusion very different mechanisms in theories with or without addi-
‘ ‘ tional hard thermal loop degrees of freedom.

As can be seen from thg? values reported above, the
quality of the fits shown in Figs. 5 and 6 is poor. This is
primarily due to the “pull” of the 8, =8.7, m3=8.29T?
point, which has very small statistical errors. Exclusion of
this point would make the fits acceptable; however, we do
not have any a priori reason for rejecting this point, so we
keep it in the analysis. We take the badness of the fits into
account by expanding the errors in the quantities reported
below by a factor\y?/v, where v is the number of the

AB,=38 degrees of freedom in the fit.
20 | 'ﬁz=8-7 | In the limit m3—oc the coefficient of the ASY scaling

mp, =127 ] !aw becomes’=55.9+3.5 using the polynom!al functipn
10 | © particles | in Eq. (7.2. However, more relevant for physical applica-

% no HTL d.o.f tions is the minimal standard modélSM) value atm3

| =(11/6)9°T? and «,=1/30. This corresponds to point
%.00 O.iO ‘ 0-'20 0.‘30 ' 0.;10 ‘ O.I50 (9%T/mp)?=0.23 in Fig. 6, and thus there is no need to
(' Tim,)’ extrapolate im3 .

Finally, as discussed in the beginning of this section, the

FIG. 6. The Chern-Simons number diffusion rateexpressed Numerical coefficient 0.68 in Eq(7.1) has an estimated
as«'=(I'/a®T*)(m3/(g?T?)). Dashed line: fit to linear- second (quite conservativesystematic error bar=0.2. This error
order term, Eq(7.2); continuous line: fit to linea a log term, Eq.  has little effect orx’ if we extrapolate tan3— -, but at the
(7.4). For comparison, we include the results obtained with thephysical MSM value it actually gives the leading contribu-
“particles” method[24] and also without any hard thermal loop tion to the total error. When we take this into account, we
degrees of freedorfiL8]. These points are not included in the fits. obtain the physical value

zero. The errors quoted above are purely statistical; we shall k' (MSM) =46.6+ 2.5+ 3gysts (7.6)
discuss systematic errors below.

The rate becomes approximately constant, and the diffemnd the MSM Chern-Simons diffusion constant becomes
ence between the two fits becomes more visible, if we plotwith combined statistical and systematic erjors
the rate in terms of the coefficient of the ASY scaling law

', defined through I'=25.4+2.0a°T*. (7.7
g2T? This value is in perfect agreement with the results obtained
I'=k'=——a°T" (7.5  both with the particle hard thermal loop degrees of freedom
mp [24] and with the classical Yang-Mills theofyL8].

] ] o It is actually likely that the systematic error of the coeffi-
The values of<’ are given in Table Il and shown in Fig. 6. cijent (0.68-0.2) in Eq.(7.1) is overestimated: the mutual
We also include here the data calculated by Moore, Hu an@onsistency of the results obtained with and without the extra
Moore and Rummukainen using only 8) gauge fields the central value.

without any additional hard thermal loop degrees of freedom
[18]. In the latter case the damping arises solely through the
UV gauge field modes on the lattice, alm@ can be obtained
from Eq.(7.1) by settingszy jai= 0. Classical Yang-Mills theory plus hard thermal loops is the
The consistency of the results obtained with differentlR effective theory for the S(2) sector of the standard
methods in Fig. 6 is remarkable. This gives strong credibilitymodel above the electroweak phase transition, and it should
to the view that the damping of the sphaleron rate seen in thee used to determine the “sphaleron raté; which sets the
simulations is really caused by physical hard thermal loopgefficiency of baryon number violation.
effects. Perhaps surprisingly, the pure Yang-Mills results are  We have developed a numerical implementation of the
perfectly in line(within the statistical errojswith the results  method of auxiliary fields, originally developed by Blaizot
obtained with the hard thermal loop effective theories, everand lancu and by Naii25-2§. The auxiliary fields are ex-
though in the former case the spectrum of the hard modes jganded in spherical harmonics and the series is truncated at a
strongly distorted by the lattice dispersion relatip#0].  finite | ., then the theory is put on a lattice. The resulting
Also, the consistent decrease of with increasing numerical model is an efficient and systematically improv-
(9%T/mp)? in Fig. 6 strongly suggests that this subleadingable representation of the desired effective theory.
effect is not due to lattice effects, since the damping is due to Within errors we observe no lattice spacing dependence,

VIIl. CONCLUSIONS
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and the convergence to the larbg, limit is surprisingly — are conveniently expressed in terms of the spherical compo-
rapid. This means that the lattice numerical model is botHents
accurate and efficient. Using it, we verify the Arnold-Son-

Yaffe scaling behavior foF [17], T'=«'(g?T?/m3) a°T. If c 1 ct  sc-
we use the standard model valuesnat=(11/6)g°T? and Im,1"m’, 17 \/‘( imtrm ™ Cim,7m)
a,,=1/30, the rate is
_ 514 — 64 [ _
['=(25.4+2.0)a5T*=(1.05+0.08 X 10T, (8.1) (it + Cimrm)-

Clm,l’m’,2_ \/—

The final result is in good agreement with the results previ-
ously obtained by Moore, Hu, and Mer [24]. It is also in  Finally, we can write
agreement with the results obtained in pure lattice Yang-
Mills theory[18] using the matching technique developed byC|m v =AM S 1 6m 1 — AN =M) Sy 1) -1
Arnold [40] to relatel” in pure classical lattice Yang-Mills
theory to its value in the quantum theory. Crmtrm =AU, =M 8 11 i1 —AUM) 84 1) S 1

The problem of determining the sphaleron rate in Yang- (A4)
Mills theory is settled, at least at the 20% level.

Cimrm 3= B(I" vm,)él—l,l’ém,m’ +B(l vm)5|+1,l’5m,m’ )
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Copenhagen, Denmark. APPENDIX B: LINEARIZED LATTICE PROPAGATOR

In this appendix we shall study the properties of the lin-
earized gauge field propagator with hard thermal loops on
the lattice, as was done in Sec. IV in continuum. As empha-

In this appendix we give explicit expressions for the co-sized in Sec. V, the second-order “leapfrog” update g,
efficientsCyp ;/msi» EQ. (3.6), andv,,;, Eq. (3.5. We use decouples the even and odd parity sites from each other.
the conventional normalization for the spherical harmonicHere parity p=2;x;+t/8;. This decoupling creates extra
functions: low-energy polesdoublers in the gauge field propagator.

Here we show that these doublers are not relevant for the

APPENDIX A: SPHERICAL COEFFICIENTS
Vi AND Cjp i i

. gauge field dynamics.
f dQyYinYim =061, Omm - (A1) Following Sec. IV we linearize Eqgs(5.8), (5.9 and
(5.13, and study on&k mode in isolation. In general, this
The coefficientss,,; can be given simply as need not be parallel to any of the major lattice axes. In Sec.

V the spherical harmonics were written in “lattice basis”

coordinates, that is, th&,, components were mapped to
Vmi= f dQ, Yim(V)V; lattice coordinate axis directions in the customary way. Natu-

rally, there is no fundamental reasdonly great conve-
A AT nience to do this, and here we choose to parametrize the
=V 594 mat m-1)+i\ 50 Admit dm-1)  spherical functions as in Sec. IV, so thig, * x5 direction”
is parallel tok. Then the transverse fields should oscillate
|4 only along the plane defined byi= =1 components.

+ ?5i 30m,0 (A2) Let us make a Fourier transformation of the lattice equa-

tions of motion; after some work we obtain the equations

The matrix elements )

~ ~ mg
0?An—K?Ap=——=D Wi (B1)
Com i 1= fdQY (VV,Y} e (V) V3
R . .1
:% Vi | dQ Y)Y 1V Y (V) (A3) wWIm_kiniCIm,I’m’,SWI’m':w5I,1ﬁDmMAM- (B2
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FIG. 7. Left the positive frequency poles of
the lattice gauge propagator within the Brillouin
zone, as functions df, for mp=0.5/a. For each
of the continuum poles near origin there are dou-
bler poles at the corners of the Brillouin zone.
The thick line is the plasmon, and the dashed
lines are the timelike doublers. For clarity, this
figure is plotted with unrealistically largeS;
=0.75.Right: The spectral poweresidug of the
poles whens;=0.1. The lines are as in the left
panel. None of the doublers carry a significant

04 0.6
kalw

Heren=k/k, and the lattice momentum functions are

~k_2_kia ~ 2 wda
i—gSIﬂ7, a)—%SInT,
-1 - .
kizasmkia, w= ﬁsmw&ta, (B3)

and the matrixXD,,,y , m=0,=1, is defined as

3 -
Ymi= "\ ERij(n)ij-

(B4)

kia
Dmm’(k):Ei ')’micoslz_')’:q/iv

Rjj is a rotation matrix which rotates parallel to the lattice
X3 axis, andv,; is defined in Eq(A2). The matrixy can be

08 10 fraction of the gauge field propagation.

In Fig. 7 we also show the spectral power

plw,K)=ImA(w+iegk) (B7)

of the poleqresidue of the propagatorAt momenta close to
the lattice cutoffr/a almost all of the power is carried by
the plasmon pole, which does not have doublers. Thus, at
high momenta the gauge field essentially decouples f/ém
fields, except for a mass term which equaig/+\/3 for k
along a lattice axidbut not everywhere, it is zero atk
=(ar,m,)]. This also occurs in the continuum. The poles
other than plasmon are significant only around the physical
k,w~0 corner. Interestingly, even here the plasmon has a
power which is a factor of-5 larger than the other poles.
However, it is these poles which are significant for the non-
perturbative small-frequency physics.

understood as a transformation between the lattice coordi- On€ might worry about the smai-temporal doublers,

nates and then-based spherical coordinates. Hegéy
=yy'=1. The cosfa/2) factor in D,y arises from the
spatial symmetrization in Eq$5.9) and(5.13, and without
this we would haved = 1. Also, due to the timelike symme-

trization  instead of w appears on the right-hand side
(RHY of Eq. (B2).

Due to the matrixD,,,y the equations of motion do not
diagonalize to independemh components, as in the con-
tinuum. However, ik is parallel to any of the lattice axes we
have

(B5)

ka
Dpmw= 5m’mr( 5|m\,1+ 5m’OCOS?) .

In this caseD=1 for transverse modes. Now we can solve
for the transverse gauge field in Eq81), (B2) as in Sec.

which correspond to modes which flip sign at each consecu-
tive timestep: after all, these can have arbitrarily long spatial

wavelength. These are shown in Fig. 7 with dashed lines.
However, it turns out that these poles have even much less
power than the spatial doublers. Thus, the existence of the
temporal poles should not affect the gauge field behavior at
all. Indeed, even in non-Abelian theory simulations, where

the fields are fully interacting, we saw no significant energy

transfer between the temporal pole sector and the “normal”

small frequency sector.

The propagator becomes much more complicated to study
when we do not require thdt is along any of the lattice
axes. However, the pole structure of the propagator is quali-
tatively similar to any direction, and it will pick the full
complement of poles at each corner of the Brillouin zone.

In order to make the left panel of Fig. 7 readable, it is
plotted usings,=0.75. This brings the frequency spread of

IV, and we obtain the lattice version of the inverse propagane poles to the same order of magnitude than the separation

tor in Eq.(4.12:

2 Imax -

~ ~ w
SR 2> "2, B6
3 ;1 w_k)\a(gl) (B6)

The pole structure of the propagator is not immediately evi-
dent from Eq.(B6). Nevertheless, the propagator has new

doubler poles for each physical low energy~0k~0)

between the temporal doublers and the other poles. For a
more realistic 5;=<0.1 the poles would lie almost along
wad;/7=0,1 lines.

APPENDIX C: O(a) MATCHING FOR T

In this appendix we comput®(a) radiative corrections
which arise in the infrared dynamics of the lattice theory due

pole, as shown in Fig. 7. These are located in the corners @b the compact nature of the gauge action and the manner in

the momentum squarestkasr, Oswda<m.

which the original equations were discretized. The goal is to

056003-18



CHERN-SIMONS NUMBER DIFFUSION AND HARD . .. PHYSICAL REVIEW 1 056003

find what modifications must be made Foandm3 (where W  E’ W E w’ E
herem? is really being used to represent the magnitude of ® ® ) o )
the da?nping ra);e forggauge field IOmodes withs k~gng, E’ needs neighbor W’s W needs neighbor E's
which determines the relevant dynamids,40; when we
write m3 we mean the value which gives the same damping
rate using the continuum relation betwemé and the damp- W E’ W E’ W
ing rate. ° ° °
b
1. Corrections tot and m3 W’’ needs neighbor W’s

T(.) begin, we discuss the relatlo_n betwe_en the lattice and FIG. 8. Neighbor averaging involved in the update€afue to
continuum values fok, D, F;; [meaning the first term on the
. S 12 . . W andW due toE.
right hand side in Eq(5.5)], and timet. Where possible we
will suppress spatial and group indices, in particular we refer
to D;F;; asDF. We will write E_ etc. for the lattice fields

J
scaled to continuum units directly using E§.1), but always

To compute the radiative corrections in tiééfield con-
tribution to the gauge field damping rate we need to consider
: - : : _ the equations of motion of the full system. If there were only
usinga as given in £q(5.10. The scaling between the con infrared fields, then the first errors from our discretization

tinuum A field and the lattice one, defined a8 (sampling neighbors to determine a derivative,. ) would
— aTay i ; )
exp(gaAT), is gauge dependent, and we will always useenter atO(a?), while here we will only be interested B(a)

Lhoethcg:g&'jluanr:dnoonrrzilgear;{:;g' ATQ[E;lﬁatlgLrJ)I/aﬁggviTyere re“eseffects. Nevertheless, because of the different behavior of

Define the following renormalization constants: v mo.des on th.e Iattllce tha_n in the continuum, thrge new
corrections arise: one in thiefield source in th&V equation
Z,=B/B.=1-0.618, (cy  of motion, Eq.(5.12; one in theW field source in the Yang-
Mills-Maxwell-Ampere equation, E(5.5); and one in th&V

N/1l S & field convective covariant derivative in Ed5.12. The
Ze=|1+ E 3 EJFGE”:PF'?’M/B’ (C2  former two occur because, whereas in the continuum these
equations relate fields at the same pdsae Eqs(3.4) and
N S (3.7], on the lattice they involve averages over nearby
Zy=1— — —=1-0.2527p, (C3)  points, see Fig. 8. The latter correction occurs because the
2B Am derivative term necessarily involves the gauge field connec-

tion. In each case the gauge field connection enters, and the

where Z, is computed in[34] and presented above in EQ. jnieraction receives tadpole contributions which are absent in
(5.10, Zg is first computed in the appendix (1] [where it {he continuum. As a result, the effective IR equations of

B 2 .
has the unfortunate notation of ¢icorr)’], andZy is new 0 qrion appear aéin a simplified notation, dropping all sub-
this paper and discussed more in the next subsection. scripts including ,m indices and all Clebsch-Gordan coeffi-

To begin observe that, just from its appearance in thecients, which are the same as in the text of the paper
Hamiltonian next toB, , we have

2\ _ 2 _ 7112 dE
(ED)=Z4(EG)=E =24 Ec. (Cq FLL:_DFL_m%MWL' (C8)
Also, from [21] Appendix A, we have
dAc 1/2 1/251/2 1127 -1/ M:K E, — kav-DW (C9
d_tl_:ZE EL=ZgZy Ec=t =Zg “Zy 1. (CH dt, 2Bl K3 cWiL,
We apply this correction when we extract the continuum Kiko=Zyw, Ks=Z2. (C10

value ofI" from data which appear as a time serie$,in so
I' quoted in this paper is always scaled Wy. the con- , _ ) _
tinuum volume and time. Next, to find the renormalization ofHere mg is the latticemy parameter converted to physical

DF, we can use pure gauge theory relations units by scaling with factors od. We derive the size of the
correctionsk; , 3 in the next subsection.
dE dE Re-arranging Eq(C9) to
——L—_DF, and —<=-DFg, (CH) ging Eq(C9
dt, dtc
to find that Kglaw.Dc W= k3 k,E, , (C11)
L
DF =2¢?z,DF¢, (C7)
formally inverting it, and substituting the solution f@v into
which we will need below. Eq. (C8), gives
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dE, -1

__ )
at, DF_—mg

-1
KiKpykg EL.

(C12

. d
K3 1d—tL+V‘DC

It has been argued iM1,42 that in the overdamped case it
is permissible to drop both thdE/dt term and the time

derivative appearing in the inverse operator. Technically do-

ing so commits an error of ordéd(g*T%/m3). Note how-

ever that errors of precisely this size already arise from sub-
leading corrections to the hard classical lattice mode

contribution in Eq.(7.1). Therefore, in Fig. 6 there is an

unknown systematic error in the slope of the fit line, which
we will not be able to eliminate. However, we can still ask to

make allO(a) corrections which would affect the intercept.

PHYSICAL REVIEW D61 056003
and on expandindand writing (1/4YW(x+ia)-+2W(x)
+W(x—ia)) asW] eventually gives

PEOWP(x+ia)+2WA(x) + P2EWP(x—ia)

4

a
W SRWP(AS(X) - AF(X~ 8))faneT®

g2a2 ) ) .
+ TW""(Ai (X)AJ(X)+AP(x—ia)Af(x

—ia))[T¢,[ T3, TP]]+O(ad). (C16)

In momentum space the first term here is

To do so we are permitted to drop the time derivatives men— £2°%(ga?/4) f[,T;W°(I —k)AS(—1). It cannot lead to a con-

tioned above, giving

dAc

M3(Zy'Ze Zq v+ Del i

=DF., (C13

which gives us th&(a) renormalization appropriate for the

W field Debye mass term, namely, the value to use as the

strength of the gauge field damping term is

(C19

—1n2 __5-15-125-1/2..2
ZmDmD:ZW ZE Zg mD .

2. Evaluating «; 5 3

We see from Fig. 8 that the produet«, arises from the
difference between W3(x) and (1/4) P2"WP(x+ia)
+2W3(x) + P2WP(x—ia)]. We compute this difference
for a very slowly varyingW field in Coulomb gauge(In this
gauge the effects of thd, field on the dynamics do not
differ between the lattice and continuum, $&é].)

The parallel transporP2*WP(x+ia) is

TS(U (X)W, U] (x))°

g2a2

2

1+igaT?A%(x)— TATPAZ(X)AP(X)

+ oo | TOWEX (same, i< —i), (C15

tribution proportional toW(k) because(f3*W?3(k)WP(l
—k)A°(—1))=0. Therefore the first term does not rescale
the interaction, so it does not contribute #9«,. However,
the last term does lead to renormalizationV#¥T?, of mag-
nitude

2aT (d3ak) 1
fadbfbdeTeg4J (ak

(2m)® a%k?

~k2
( 1— ~k_$) cog(aky/2),
(C17)

wherek=(2/a)sin(@ak/2) and the integral runs over the Bril-
lioun zone,ak; e[ —,7]. Using identities from[34], the
value of the integral is (1/2)/(4m). Therefore the final
rescaling we find is

N 3
Kle:ZW_l_EE. (C18)
The calculation ofk proceeds similarly. Here we need to
compute] P2PWP(x+ia) — P2BWP(x—ia)]/2. The linear in
A term now contain®\;(x) + A;(x—ia), and just gives thé&
field part of the continuunD?®"= §2°9, — gf,,A°. The qua-
dratic in A terms perform the renormalization éf and give
exactly twice the corresponding contribution 4q«,, be-
cause in that case only half of the expression arose #"dm
fields which are parallel transported. Hence we firgl
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