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Deconfinement in SWY2) Yang-Mills theory as a center vortex percolation transition

M. Engelhardt, K. Langfeld, H. Reinhardt, and O. Tennert
Institut fir Theoretische Physik, Universttaubingen, B-72076 Tibingen, Germany
(Received 29 September 1999; published 8 February)2000

By fixing lattice Yang-Mills configurations to the maximal center gauge and subsequently applying the
technique of center projection, one can identify center vortices in these configurations. Recently, center vor-
tices have been shown to determine the string tension between static quarks at finite temp@=itees
dominancg also, they correctly reproduce the deconfining transition to a phase with vanishing string tension.
After verifying center dominance also for the so-called spatial string tension, the present analysis focuses on
the global topology of vortex networks. General arguments are given supporting the notion that the deconfine-
ment transition in the center vortex picture takes the guise of a percolation transition. This transition is detected
in Monte Carlo experiments by concentrating on various slices through the closed vortex surfaces; these slices,
representing loops in lattice universes reduced by one dimension, clearly exhibit the expected transition from
a percolating to a non-percolating, deconfined, phase. The latter phase contains a large proportion of vortex
loops winding around the lattice in the Euclidean time direction. At the same time, an intuitive picture
clarifying the persistence of the spatial string tension in the deconfined phase emerges.

PACS numbd(s): 11.15.Ha, 12.38.Aw

[. INTRODUCTION value — 1 (originating from loop areas pierced an odd num-
ber of times by vortices generating an area law falloff. The
The description of hadronic matter in terms of confinedsimplest[SU(2)] model visualization which demonstrates
quark and gluon constituents carrying a color quantum numthis is the following: Consider a universe of volurhé, and
ber has opened the prospect of a new, deconfined, phase aftwo-dimensional slice through it of aré&, containing a
matter in which colored excitations can propagate over disWilson loop spanning an areA. Generical vortices will
tances much larger than typical hadronic sizes. In the framepierce the slice at points; assumeof these points to be
work of pure Yang-Mills theory, the transition to this new randomly distributed on the slice. Then the probability of
phase is thought to occur as a function of temperature. Whil@nding n such points inside the Wilson loop area is binomial,
compelling evidence for the deconfining phase transition has
been collected in lattice Monte Carlo simulatidis?2], it is
necessary to concomitantly develop an intuitive picture for PN(”):( n)
the deconfinement phenomenon in order to be able to treat
scenarios as complex as heavy ion collisions; such collisio
experiments, planned at the BNL Relativistic Heavy lon Col-
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lider (RHIC) and CERN Large Hadron CollidéLHC), are N DOAIN  Noo
hoped to produce lumps of deconfined matter in the near ) = 2 (_1)nPN(n):(1_ P ) _ e 2A  (2)
future. n=0 N

The question of the deconfinement transition cannot be
separated from an underlying picture of the confinemenwhere the planar density of the intersection pojmtsN/L?
mechanism itself. Conversely, any purported mechanism af kept constant al— <. One thus obtains an area law with
confinement should also be able to incorporate deconfinestring tensionk=2p. In a more realistic calculation, one
ment. The present paper concentrates on the center vorteyould e.g. take into account interactions between the vorti-
picture of confinement in the case of @)Y color. This ces[6]; the proportionality constant/p turns out to be close
mechanism, initially proposed if8—5], generates an area to 1.4 in zero temperature lattice measuremén8] (a sur-
law for the Wilson loop by invoking the presence of vorticesvey of existing data follows further belgw
in typical configurations entering the Yang-Mills functional =~ The emphasis of the present work, however, lies not on
integral. These vortices are closed two-dimensional surfacebe relatively short-range properties of the vortices such as
in four-dimensional space-time or, equivalently, closed linegheir thickness, but on their long-range topology. This is
in the three dimensions making up, e.g., a time slice. Thewhere the argument presented above has more serious short-
carry flux such that they contribute a factor corresponding tawomings. For one, it suggests that the expectation value of a
a nontrivial center element of the gauge group to any WilsoWilson loop might depend on the area with which one
loop whenever they pierce its minimal area; in the case othooses to span the loop. However, as a result of the closed
SU(2) color to be treated below, that is a factor-efl. If the  nature of the vortices, the choice of area is in fact immaterial,
vortices are distributed in space-time sufficiently randomly,as it should be. In a more precise, area-independent, manner
then samples of the Wilson loop of valuel (originating  of speaking than adopted above, the value a Wilson loop
from loop areas pierced an even number of times by voiticesakes in a given vortex configuration should be derived from
will strongly cancel against samples of the Wilson loop ofthe linking numbers of the vortices with the loop. Now, the
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above model visualization demonstrating an area law implicindeed the case, implying that the deconfinement transition
itly makes a strong assumption about the long-range topolean be characterized as a vortex percolation transition.
ogy of vortex configurations: For the intersection points of Before entering into the details, it should be noted that a
vortices with a given plane to be distributed sufficiently ran-description of the deconfinement transition in terms of per-
domly on the plane to generate confinement, typical vorticesolation phenomena has also been advocated in frameworks
or vortex networks(note that vortices are not forbidden to based on Yang-Mills degrees of freedom other than vortices.
self-intersegtmust extend over the entire universe. Consideror one, electric flux is expected to percolate in tlezon-
the converse, namely that there is an upper bound to thEnedphase, while it does not percolate in the confined phase.
space-time extension of single vortices or vortex networksNote that this is the reverse, or dual, of the magnetic vortex
Then an intersection point of a vortex with a plane alwayspicture. General arguments related to electric flux percola-
comes paired with another such point a finite distance awayjon were recently advanced jif]; also, specific electric flux
due to the closed character of the vortices. This pairing irtube models support this pictuf&0].
particular would preclude an area law for the Wilson loop, as On the other hand, in the dual superconductor picture of
can be seen more clearly with the help of another simpleonfinement, it has been observed that the confined phase is
model. characterized by the presence of a magnetic monopole loop
Consider a universe as above, but with the additional inpercolating throughout thélattice) universe, whereas the
formation that intersection points of vortices with a two- monopole configurations are considerably more fragmented
dimensional slice come in pairs at most a distadagpart.  in the deconfined phase and cease to percéldte To the
Then the only pairs which can contribute a factor-of toa  authors’ knowledge, however, this is mainly an empirical
planar Wilson loop are ones whose midpoints lie in a strip ofobservation and there is no clear physical argument connect-
width d centered on the trajectory of the loop. Denotepby ing the deconfinement transition and monopole loop perco-
the probability that a pair which satisfies this condition actu-lation. Indeed, there has been speculation that the two phe-
ally does contribute a factor of 1. This probability is an nomena may be disconnected]. This should be contrasted
appropriate average over the distances of the midpoints ofith the vortex language, which, as discussed at length
the pairs from the Wilson loop, their angular orientations, theabove, has the advantage of providing a clear physical pic-
distribution of separations between the points making up théure motivating an interrelation between vortex percolation
pairs, and the local geometry of the Wilson loop up to theand confinement.
scaled. The probabilityp, however, does not depend on the
macroscopic extension of the Wilson loop. A pair which is
placed at random on a slice of the universe of dr@aas Il. TOOLS AND SURVEY OF EXISTING DATA

probablhtyp-A/Lz_ of contributing a factor of-1 to a Wil- Before vortex clustering properties can be investigated in
son loop, wherd\ is the area of the strip of widtd centered  jetail, some technical prerequisites have to be met; foremost,
on the Wilson loop trajectory. To leading ordék=Pd,  one must have a manageable definition of vortices, i.e. an
where P is the perimeter of the Wilson loop; subleading 5igorithm which allows one to localize and isolate them in
corrections are induced by the local loop geometry. Nowiyang-Mills field configurations. After the initial proposal of
placingN pairs on a slice of the universe of aredatran-  the center vortex confinement mechanism, a first hint of the
dom, the probability than of them contribute a factor of  existence of vortex configurations was provided by the
—1 to the Wilson loop is Copenhagen vacuurfil2] based on the observation that a
. N constant chromomagnetic field in Yang-Mills theory is un-
Npair| [ PPd pPd| " stable with respect to the formation of flux tube domains in
PNpair(n) | n L2 R 3 three-dimensional space. Later it was observed that the chro-
momagnetic flux associated with these domains indeed is
and, consequently, the expectation value of the Wilson looflu@ntized according to the center of the gauge giidia).
for large universes is Howeyer, the theory of these flux tubes quickly became too
technically involved to allow e.g. the study of global prop-

Npair Npair— erties of the flux tube networks, especially at finite tempera-
(W)= > (—=1)"Py_ (n) —— e #PPd (4) tures.In parallel, efforts were undertaken to dgfine and iso-
n=0 pair late vortices on a space-time lattice. One definition, proposed

by Mack and co-workerg14] and developed further by

Wherep:2Npair/L2 is the planar density of points. One thus Tomboulis[15], introduces a distinction between thin and
observes a perimeter law, negating confinement, if the spacéhick vortices, only the latter remaining relevant in the con-
time extension of vortices or vortex networks is boundedtinuum limit. The defining property of these thick vortices is
They must thus extend over the entire universe, i.e. percathe nontrivial center element factor they contribute to a large
late, in order to realize confinement. Wilson loop when they pierce its minimal area. This defini-

Conversely, therefore, a possible mechanism driving theéion has the advantage of being gauge invariant; on the other
deconfinement transition in the vortex picture is that vorticeshand, it does not allow one to easily localize vortices in the
in a sense to be made more precise below, cease to be sfnse of associating a space-time trajectory with them.
arbitrary length, i.e. cease to percolate, in the deconfined A different line of reasoning has only recently been de-
phas€ 8]. The main result of the present work is that this isveloped in a series of papers by Del Debbtal.[7,16—-18.

054504-2



DECONFINEMENT IN SU2) YANG-MILLS THEORY AS... PHYSICAL REVIEW D 61 054504

One chooses a gauge which as much as possible concentrates U,—sgn tru,. (7)
the information contained in the field configurations on par-

ticular collective degrees of freedom, in the present case, thg, practice, the question of whether the gauge fixing and
vortices. If this concentration of information is successfulprojection procedure indeed successfully concentrates the
(more about this question further belpwne obtains a good  rglevant physical information on the collective degrees of
approximation of the dynamics by neglecting the residuaeedom being projected on is difficult to setleriori; most
deviations away from the chosen collective degrees of freepften, this is tested posterioriby empirical means. Success
dom, i.e. by projecting onto them. This type of approach wagyrthermore depends on the specific physics, i.e. the observ-
pioneered by 't Hooft, who introduced the class of Abelianpje, under consideration. One carries out two Monte Carlo
gauges and the subsequent Abelian projection in order tayperiments, using the full Yang-Mills action as a weight in
study Abelian monopole degrees of freedpb9]. In com-  poth cases, and samples the observable in question, such as
plete analogy, one can introduce maximal center gauges g the Wilson loop, using either the full lattice configura-
[7,16-18, in which one uses the gauge freedom to choosgjons or the center projected ones. If the results agree, one
link variables on a space-time lattice as close as possible fers to this state of affairs as “center dominance” for that
center elements of the gauge group. Subsequently, one C®Articular observable. Center dominance for the Wilson loop
perform center projection, i.e. replace the gauge-fixed links interpreted as evidence that the center gauge concentrates
variables with the center elements nearest to them on thge physical information relevant for confinement on the vor-
group. ) o tex degrees of freedom, and that consequently center projec-
Given such a lattice of center elements, i.e. in the case o, j.e. projection onto the associated vortex configuration,
SU(2) color, a lattice with links taking the values1, center  constitutes a good approximation. Center dominance has
vortices are defined as follows: Consider all plaquettes in th¢een verified for the long-range part of the static quark po-

lattice. If the links bordering the plaquette multiply t01,  tential at zero temperatufeee[16—18 for the SU2) theory
then a vortex pierces that plaquette. These are precisely thgq[7] for the SU3) theory.

vortices needed for the center vortex mechanism of confine- This recent verification of center dominance has sparked
ment. To see this, one merely needs to apply Stokes’ theGenewed interest in the vortex picture of confinement. In es-
rem: Consider a Wilson loopV, made up of linkd==1,  taplishing the relevance of vortex degrees of freedom for
and an ared it circumscribes, made up of plaqueties:  confinement, it provides the necessary basis for any further
+1 (the value of a plaquette is given by the product of thejnyestigation of vortex properties. An observation analogous

bordering linkg. Then to center dominance has been made in the framework of the
gauge-invariant vortex definition advanced by Tomboulis
w=[[ 1=11 p (5) [20]. There, one samples both the quantitiésand sgn{V),
leW  peA W denoting the Wilson loop; sgWY) is interpreted as con-

taining only the center vortex contributions\g whereas all
(the same letter was used here to denote both space-tinggher fluctuations of the gauge fields are neglected. One finds
objects and the associated group elemeritsother words,  that the expectation value of sghf§ alone already provides
the Wilson loop receives a factor ef 1 from every vortex the full string tension; i.e., one finds a gauge-invariant type
piercing the area. Furthermore, the product of all plaquettesf center dominancsee[20] for the SU2) theory and 21]
making up a three-dimensional elementary cube in the latticgor the SU3) theory]. Subsequently, it has been noted that
is 1, since this product contains every link making up thethis type of center dominance without gauge fixing can in
cube twice. This fact, which in physical terms is a manifes-fact be understood in quite simple terfi®2], and that fur-
tation of the Bianchi identity, implies that every such cubethermore the density of center vortices arising on center-
has an even number of vortices piercing its surfaces; consrojected lattices without gauge fixing does not exhibit the
quently, any projection of the lattice down to three dimen-renormalization group scaling corresponding to a finite
sions contains only closed vortex lines. Since any cuphysical density23].
through a two-dimensional vortex surface in four dimensions In parallel, other vortex properties were investigated.
is thus a closed line, the original surface is also closed. Not&here is evidence in the $P) theory that the vortices de-
that if one defines the dual lattice as a lattice with the saméined by center gauging and center projection indeed localize
spacinga as the original one, shifted with respect to the latterthick vortices as defined by their center element contribu-
by the vector &/2,a/2,a/2,a/2), then vortices are made up of tions to linked Wilson loop$17,18. In both the gauge-fixed
plaguettes on the dual lattice. and unfixed frameworks, the absence of vortices was shown
In the work presented here, the specific maximal centeto imply the absence of confinemdnf7,18,24. In zero tem-
gauge called “direct maximal center gaugéSee e.g[7])  perature lattice calculations using the maximal center gauge,
was used. This gauge is reached by maximizing the quantitshe planar density of intersection points of vortices with a
given surface was shown to be a renormalization group in-
D ItrU,|2 ©6) variant, physical quantity in th_e 3P) theory; gf.[25] (note
T ' erratum in[8]) and also[7]. This planar density equals ap-
proximately 3.6/fm if one fixes the scale by positing a string
wherel labels all the linksU, on the lattice. Center projec- tension of (440 MeV3. Also the radial distribution function
tion then means replacing of these intersection points on a plane is renormalization
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group invariant 6]. Furthermore, if one takes into account
the thickness of center vortices, they are able to account fo
the “Casimir scaling” behavior of higher representation
Wilson loops, a feature which hitherto was considered in- 15|
compatible with the vortex confinement mechanig8,27).
Also, the monopoles generated by the maximal Abeliang i
gauge have been found to lie on the center vortices identifie(S { I
in a subsequentindirec) maximal center gauge, forming {
monopole-antimonopole chairj48]. Recently, a modified ] TErg % :
SU(2) lattice ensemble was investigated in which all center c = % EE %
vortices had been removed, with the result that chiral sym-
metry is restored and all configurations turn out to belong to
the topologically trivial sectof28].
The purpose of the present analysis is to confront the
center vortex picture of confinement with the finite tempera- 05 7 02 oa 06 08
ture transition to a deconfined phase observed in Yang-Mills r [fm]
lattice experiments. Some previous work on vortex proper-
ties at finite temperatures has already been carried out, gen- FIG. 1. Center-projected spatial Creutz ratios in units of the
eralizing the zero-temperature results surveyed above. F@gro-temperature string tensios(T=0)a? |x| Creutz ratios are
one, the authors reported some preliminary work[&).  displayed atr=l(I—1)a(B) on the horizontal axis. Measure-
There, center dominance for the string tension between statf@ents were taken on a 12 N, lattice. Shown are the temperatures
quarks was verified at finite temperatures, and the transitioh=1-1Tc (open symbols; triangles pointing left correspondfo
to the deconfined phase with a vanishing string tension ob=2-32, Nt=4, whereas triangles pointing right correspond/o
served at the correct temperature in the center-projecteq -+ Ni=5), T=1.4Tc (solid symbols; diamonds correspond to
theory. A depletion in the density of vortex intersection 3:2'4’ Ni=4, whereas circles corr_espond/f@iz.s, Ni=3), af‘d
points with a plane extending in thé&uclidean time and T=1.7Tc (Crosies Corres_pond 16=2.48, N;=4, whereasx’s
X . . ._correspond tg3=2.37, N;=3). For comparison, the spatial string
one space direction occurs as one crosses into the deconfln{aecr{sion extracted from full Wilson loo )
. : . - ps, as interpolated from data
phase. The vortices are to a certain extent polarized in the, o 1y Baliet al. [30], is displayed: The triangle pointing
time direction. However, the polarization is not complete; any oo corresponds To= 1.4T, whereas the triangle pointing

arga_spanne_d by a Po!yakov loop correlator i_s still pierce_d b)llpwards corresponds T=1.7T. . The full spatial string tension at
a finite density of vortices. Thus, more detailed correlationsr— 1 171 s virtually indistinguishable from the zero-temperature

between these vortex intersection points must induce the dgz),e.
confinement transition; this led the authors to first conjecture
in [8] that the deconfinement transition in the center vorteXyamics influences the observable runs the risk of being
picture may be connected to global properties of vortex netfargely academic. Center dominance for the finite-
works such as their connectivity. temperature long-range heavy quark potential, via the corre-
Very recently, a related investigation into the global t0-sponding Polyakov loop correlator, was verified [Bl, as
pology of the two-dimensional vortex surfaces in four spacementioned above; however, in what follows, also the behav-
time dimensions was reported i29], including the case of jor of the so-called spatial string tension, extracted from
finite temperatures. This investigation focused on propertiefarge spatial Wilson loops, will be under scrutiny. To provide
such as orientability and genus of the surfaces, in particulathe necessary basis for this, center dominance for large spa-
changes in these characteristics as one crosses into the dgg wilson loops should first be checked. For this purpose,
confined phase. In the present work, the global properties ghe authors have carried out lattice measurements of spatial
vortex surfaces are considered from a slightly different vancreuytz ratios, using center-projected configurations to evalu-
tage point, namely specifically with a view to testing the ate the Wilson loops, for three temperatures.
heuristic arguments given in the Introduction, connecting Befgore presenting the results, a comment on the physical
confinement with percolation properties. For this purpose, ikcales is in order. Throughout this paper, the zero-
will be necessary to consider in more detail different slices Oftemperature string tension is taken to ke (440 MeV),
vortex surfaces; details follow below. the lattice spacing(3) at inverse couplingd=2.3 is deter-
mined by ka?=0.12, and one-loop scaling is used for the
B-dependence od. The deconfinement temperature is iden-
tified asT-=300 MeV; cf.[8]. It should be noted that these
Before doing so, a certain gap in the existing literature orscales are fraught with considerable uncertainty, of the order
center vortices at finite temperatures should be addressed. A$ 10%, due to finite size effects. This was discussed in more
already mentioned above, the basis for the center vortex pidetail in[8].
ture of confinement is the empirical observation cainter The values obtained for the center-projected spatial
dominancefor the Wilson loop. Without first establishing Creutz ratios are summarized in Fig. 1, where they are com-
center dominance for an observable under investigation, pared with the high-precision data for the full spatial string
more detailed discussion of the manner in which vortex dytension of Baliet al. [30]. Since the temperatures used here

Creutz

I1l. SPATIAL STRING TENSION
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and in [30] do not coincide, an interpolation of the data patible with the difference found for the full Wilson loops

points given in[30] had to be carried out to arrive at the [30].

values depicted in Fig. 1. From the data depicted in Fig. 1, and in view of the above
Measurements were taken on a®¥N, lattice, and for  discussion, the authors estimate that, in the most unfavorable

each temperature, two values of the inverse coupingere  case admitted by the error bars, still 80% of the spatial string

used. Note that there are two potential sources of scalinfgnsion is furnished by center vortices in the temperature

violations in Fig. 1. On the one hand, center projection mayange above the _deconfmement transmon_ considered hgre.

destroy the renormalization group scaling of the spatiall NUS: center vortices dominate the physics of the spatial

string tension known to occur when using the full configu-smng tension even in this temperature region.

rations[30]. This type of scaling violation would be a con-

sequence, and thus a genuine indicator, of vortex physics. On IV. VORTEX PERCOLATION

the other hand, the manner in which the data is presented in

Fig. 1 also engenders additional scaling violations to the ex-

tent to which Creutz ratios, which represent difference quo- AS already mentioned above, there exists even in the de-
tients with incremena( ), still deviate from the derivatives cNfined phase a substantial density of vortex intersection

they converge to as— 0. The authors have elected to acceptpOIntS on the area spanned by two Polyakov Id@sThus,

this slight disadvantage, since the presentation of the data g]econflnement must be due more specifically to a correlation

. ; - ) tween th intersection point h that the distribution
Fig. 1 is on the other hand well adapted to aid in the dISCUS-e e es€e INtersection points, suc at the distributio

ion bel N ing the data obtained for diff tof points ceases to be sufficiently random to generate an area
sion below. INow, comparing the data obtained for difterent,,, - Ag motivated in the Introduction, a correlation condu-

B at one temperature in Fig. 1, scaling violations are evijye to deconfinement would occur if vortices only formed
dently not significant as compared with the error barsysters smaller than some maximal size, i.e. if they ceased
Namely, values of Creutz ratios for two different choices ofyg percolate. This would make the points appear in pairs
B are well described by a universal curve, better in fact tha%eparated by less than the aforementioned maximal Size’
the error bars would lead one to expect. However, in view ofeading to a perimeter law for the Polyakov loop correlator.
the size of the error bars, which is due to the moderate stan order to test whether this type of mechanism is at work in
tistics available to the authors, the data do not give veryonnection with the Yang-Mills deconfinement transition, it
stringent evidence of correct renormalization group scalingis necessary to measure the extension of vortex clusters.
they are perhaps best described as being compatible with Vortices constitute closed two-dimensional surfaces in
such scaling. four space-time dimensions or, equivalently, one-
Furthermore, the data seem to point towards a certaidimensional loops if one projects down to three dimensions
change in the dynamics generating the spatial string tensioly taking a fixed time slice or a fixed space slice of the
as the temperature is raised to values significantly above th@attice) universe. Note that the term space slice here is
deconfinement transition. At the temperature identifiedas meant to denote the three-dimensional space-time one ob-
=1.1T., the Creutz ratios are practically constant as a funcains by holding just one of the three space coordinates fixed.
tion of the Wilson loop size. This behavior of center- Which particular coordinate is fixed is immaterial in view of
projected Wilson loops has been reported before in zerospatial rotational invariance. In the following, specifically the
temperature studiglsl7] and has been dubbed “precocious extension of vortex line clusters in either time or space slices
scaling.” Center projection truncates the short-range Couwill be investigated. In this way, the relevant information is
lomb behavior of full Wilson loops and one can read off theexhibited more clearly than by considering the full two-
asymptotic string tension already fromx2 Creutz ratios. dimensional vortex surfaces in four-dimensional space-time.
By contrast, this behavior does not seem quite as pro- Given a center-projected lattice configuration, the corre-
nounced at temperatures significantly above the deconfinesponding vortices can be constructed on the dual lattice in
ment transition. Creutz ratios rise as a function of loop sizethe fashion already indicated in the Introduction. As a defi-
it should however be mentioned that this rise is much weakenite example, consider a fixed time slice. Then the vortices
than the usual Coulomb falloff one obtains when using theare described by lines made up of links on the dual lattice.
full Yang-Mills configurations to evaluate the Creutz ratios. Consider in particular a plaquette on the original lattice, ly-
As a result of this variation with loop size, the asymptoticing e.g. in thez=z, plane and extending from, to xo+a
value of the full spatial string tension extracted from the dataand fromy, to y,+a, wherea denotes the lattice spacing.
in [30] is, in the case off=1.4T:, only reached by the By definition, if the links making up this plaguette multiply
Creutz ratio corresponding to the largest Wilson loops investo the center element-1, then a vortex pierces that
tigated; atT=1.7Tc, the asymptotic value is not quite plaquette. This means that a certain link on the dual lattice is
reached even by the ratios derived from the most extendeplart of a vortex, namely, the link connecting the dual lattice
loops sampled, although it is within the error bars. While thepoints (xo+a/2,y,+al2,zo—al2) and &o+a/2,y,+al2,z,
error bars afflicting the Creutz ratios extracted from larger+a/2).
loops are sizable, the rise as a function of loop size does Having constructed the vortex configuration on the dual
seem to be significant, especially as compared to the prectattice, one can proceed to define the vortex clusters. One
cious scaling displayed dt=1.1T. . Also the difference be- begins by scanning the dual lattice for a link which is part of
tween the values taken d@t=1.4T; and T=1.7T is com-  a vortex. Starting from that link, one tests which adjacent

A. Clustering of vortices
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FIG. 2. Vortex material distributions in space slices of 12 FIG. 4. Vortex material distributions as in Fig. 2, at different
X N, lattice universes obtained as described in the text. Left: 12 temperatures. Left: $X 4 lattice at3=2.4, which is identified
X8 lattice atB=2.4, which is identified withT=0.7T.. Right: with T=1.4T¢ . Right: 12X 3 lattice atB= 2.4, which is identified
122X 7 lattice atB=2.4, which is identified withT=0.8T. The  with T=1.85T.
bins represent the percentage of vortex material organized into clus-
ters of the corresponding extension. Extension is measured on the
horizontal axis in units of the maximal extension possible on

space slice of the given lattice, namaf2 (12/2F + (N,/2)? lattice
spacings.

4vay, the histograms give a very transparent characterization
of typical vortex configurations. The content of each bin rep-
resents the percentage of the total vortex length in the con-
figurations, i.e. the available vortex material, which is orga-
nized into clusters of the corresponding extension.
links, i.e. links which share a dual lattice site with the first Accordingly, these distributions will be referred toasrtex
link, are also part of the vortex. This is repeated with all newmaterial distributionsin the following. In a percolating
members of the cluster until all links making up the clusterphase, the vortex material distribution is peaked at the largest
are found. In this way, it is possible to separate the differenextension possible on the lattice universe under consider-

vortex clusters. ation. Note that, due to the periodic boundary conditions,
this maximal extension e.g. on ;X NgX N; space slice
B. Extension of vortex clusters of the four-dimensional space-time lattice s

Given the vortex clusters, their extensions can be meal/(Nslz)z_Jr(NS/2)2+(NI/2)2 lattice s_pacing_s. I_n a non-
sured. Consider all pairs of links on a cluster and evaluat@€rcolating phase, the vortex material distribution is peaked
the space-time distance between each pair. The maximal

such distance defines the extension of that cluster. In Figs. 0.8
2-5, histograms are displayed in which, for every cluster, the _
total number of links making up that cluster was added to the 18T |
bin corresponding to the extension of the cluster. 06 L__1T=08T, .
The histograms were finally normalized such that the in- '
tegral of the distributions gives unity. Constructed in this
F=y
0.8 0.8 % 0.4
O
o
Q
06 06
0.2
Z g
8 04 ] 04 1|_|
.g -5 I ]
S s o il
0 D o vt cees e TG
0.2 0.2 0 0.2 0.4 0.6 0.8 1
H H cluster extension
o |—||_||_||_|.—||_|ﬂ 0 Hﬂﬂl_“_ml_l FIG. 5. Vortex material distributions analogous to Fig. 2, but
0 02 04 06 0858 1 0 02 04 06 08 1 taken from time slices of the $X N, lattice universe, again at
cluster extension cluster extension

inverse coupling3=2.4. Bins corresponding to three different tem-
FIG. 3. Vortex material distributions as in Fig. 2, at different peratures are shown simultaneously at each cluster extension:
temperatures. Left: £X6 lattice at 3=2.4, which is identified namely, the cas&,=3, which is identified withT=1.85T, the
with T=0.9T . Right: 12X 5 lattice atB= 2.4, which is identified caseN,=5, which is identified withT=1.1T, and the casé\,
with T=1.1T. =7, which is identified withT=0.8T.
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at a finite extension independent of the size of the universe. Note that this entails no consequences for the behavior of
Figures 2—4 pertain to space slices. Analogous results fahe Polyakov loop correlator, since Polyakov loops do not lie
time slices are summarized in Fig. 5. within time slices. However, the persistence of vortex perco-
In space slices of the lattice universe, one observes a trahation into the deconfined phase when time slices are consid-
sition from a percolating to a non-percolating phase at thered represents one way of understanding the persistence of a
Yang-Mills deconfinement temperature. Namely, in spacespatial string tension abovE;. Given percolation, it seems
slices, the vortex material distribution is strongly peaked aplausible that intersection points of vortices with spatial Wil-
the maximal possible extension as long as the temperatuon loops continue to occur sufficiently randomly to generate
remains belowT; when the temperature rises abovg, an area law. There is another, complementary, way of under-
however, the distribution becomes concentrated at shodtanding the spatial string tension which will be discussed in
lengths. The behavior near the deconfinement temperatudetail in the concluding section.
Tc displayed in Figs. 2—4 deserves more detailed discussion. Note furthermore that Figs. 2—5 taken together imply that
While the contents of the bin of maximal extension fall the vortices, regarded as two-dimensional surfaces in four-
sharply betweel=0.8T: and T=1.1T, a residual one- dimensional space-time, percolate in both the confined and
quarter of vortex material remains concentrated in loops ofhe deconfined phases; this was also observg@3h Only
maximal extension at the temperature identified Bs by considering a space slice does one filter out the percola-
=1.1T.. This is too large a proportion to let pass by without tion transition in the topology of the vortex configurations. It
further consideration. The authors have repeated the meghould be emphasized that the percolation of the two-
surement aT = 1.1T on a larger, 18x 3 lattice, and did not ~dimensional vortex surfaces in four-dimensional space-time
find a depletion of the bin of maximal extension. On thein the deconfined phase does not negate the heuristic picture
other hand, one should be aware that there is a consideratfié deconfinement put forward above. Given that vortex line

uncertainty, of the order of 10%, in the overall physical scale‘lUSters in space slices cease to percolate in the deconfined
in these lattice experiments, affecting in particular the idenphase' intersection points of vortices with planes extending

tification of the deconfinement temperaturg itself. These in one space and the time direction necessarily come in pairs

uncertainties were already mentioned in Sec. Illl and are disl-ess than a maximal distance apart, regardless of whether the

cussed in detail if8]. At the present level of accurac different vortex line clusters do ultimately connect if one
’ P Y. follows their world sheets into the additional spatial dimen-

=1.1Tc cannot be considered ;lgn|f|c:a_ntly separated froméion. It is this pair correlation of the intersection points
Tc; the authors cannot state with confidence that the measich induces the deconfinement transition

surement formally identified with a temperatufe=1.1T¢
must unambiguously be associated with the deconfined
phase. Note that also in standard string tension measure-
ments via the Polyakov loop correlator, one does not attain a In order to gain a more detailed picture of the deconfined
sharper signal of the deconfinement transition if one usesegime, it is useful to carry out the following analysis. Con-
comparable lattices and statistics. Indeed,8h the authors sider again a space slice of the lattice universe, in which
still extracted a string tension of about 10% of the zero-vortex line clusters are short in the deconfined regime. Con-
temperature value at the temperature formally identified asider in particular lattices of time extensidha with odd
T=11T¢. N;, wherea is the lattice spacing; in the following numerical

In balance, the authors would argue that the percolatioexperimentN;=3. On such a lattice, measure vortex mate-
transition in space slices does occur together with the decomtial distributions akin to the ones described in the previous
fining transition, both in view of the strong heuristic argu- section, with one slight modification; namely, define the bins
ments connecting the two phenomena in the vortex picturef the histograms not by cluster extension, but simply by the
and in view of the sharp change in the vortex material dishumber of dual lattice links contained in the clusters. It turns
tributions betwee=0.8T: andT=1.1T.. The latter sharp out that, in the deconfined phase, specifically &t
change suggests that the vortex material distributions can ir 1.85T, roughly 55% of the vortex material is concen-
practice be used as an alternative order parameter for theated in clusters made up of an odd number of links; cf. Fig.
deconfinement transition. When the vortices rearrange at th& On a lattice withN,=3, these are necessarily vortex loops
transition temperature to form a non-percolating phase, interwhich wind around the lattice ifEuclidean time direction
section points of vortices with planes containing Polyakovby virtue of the periodic boundary conditions, where the
loop correlators occur in pairs less than a maximal distancéops containing an odd number of links larger than 3 exhibit
apart. This leads to a perimeter law for the Polyakov loopresidual transverse fluctuations in the spatial directions, as
correlator, implying deconfinement. also visualized in Fig. 7 further below.

Consider now by contrast the vortex material distributions One thus obtains a quite specific characterization of the
obtained in time slices. According to Fig. 5, these distribu-short vortices appearing in the deconfined regime. This phase
tions are strongly peaked at the maximal possible extensiocan evidently be visualized largely in terms of short winding
at all temperatures, even above the deconfinement transitionortex loops with residual transverse fluctuations if one con-
Thus, vortex line clusters in time slices always percolatesiders a space slice of the lattice universe; cf. Fig. 7. Note
there is no marked change in their properties as the temperéhat this picture also explains the partial vortex polarization
ture crossed . observed in density measuremef$

C. Winding vortices in the deconfined phase
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FIG. 7. Visualization of typical vortex configurations determin-
ing the long-range physics of the confined and deconfined phases of
Yang-Mills theory. Note that this is not a depiction of particular
H H configurations found in lattice experiments; rather, it is the authors’
[] I_Iﬂﬁl_l_ﬁr interpretation of the measurements shown in Figs. 2—6 in terms of
0 5 10 15 20 typical configurations dominating the Yang-Mills functional inte-
length [a] gral in the confined and deconfined phases. Shown are space slices
of the lattice universe obtained by holding theoordinate fixed.
FIG. 6. Vortex material distributions in space slices of the Iatticesncing the two-dimensional vortex surfaces present in four space-

universe as a function of total vortex line length contained in thetime dimensions yields one-dimensional loop configurations such as
clusters. On thé\,=3 lattice used, clusters with a length of an odd epicted.

number of lattice spacings necessarily wind around the lattice in the
Euclidean time direction. The inverse coupling in this measurement

was again set to the valygé= 2.4, implying that this measurement winding sufficiently often around th&uclidean time direc-
is associated with a temperatureTot 1.85T¢ . There is aresidual, tjon pefore closing. On the other hand, even in an ensemble
but |n5|gn|f|f:ant_, proportlo_n of vortgx clusters containing more than,, v no polarization, deconfinement will occur if the vortices
20 dual lattice links not displayed in the plot. are organized into many small isolated clusters. Thus, vortex
polarization should be viewed more as an accompanying ef-
fect than the direct cause of deconfinement. Of course, a
On the basis of the measurements shown in the precedimgprrelation between the absence of percolation in space slices
sections, a detailed description of the confined and decorof the lattice universe and vortex polarization is not surpris-
fined phases of Yang-Mills theory in terms of center vorticesing. If fluctuations of vortex loops in the space directions are
emerges. The typical vortex configurations present in the tweurtailed, e.g. due to a phase containing many short vortices
phases are visualized in Fig. 7. This picture allows an intuiwinding in the time direction becoming favoréchore about
tive understanding of the phenomenon of confinement athis below, then clearly the connectivity of vortex clusters in
well as the characteristics of the transition to the deconfinethe space direction is reduced and they may cease to perco-
phase. In the confined phase, vortex line clusters in spadate. In this sense, polarization indirectly can facilitate de-
slices of the lattice universe percolate. This allows interseceonfinement. However, the percolation concept is related
tion points of vortices with planes containing Polyakov loopmuch more directly and with much less ambiguity to the
correlators to occur sufficiently randomly to generate an areguestion of confinement. Ultimately, this is a consequence of
law. By contrast, in the deconfined phase, typical vortex cona point already made in the Introduction in connection with
figurations in space slices of the lattice universe are charadhe heuristic models discussed there. Since the Wilson loop
terized by short vortex loops, to a large part winding in theshould be independent of the choice of area which one may
(Euclidean time direction. This causes intersection points ofregard it to span, it is conceptually sounder not to consider
vortices with planes containing Polyakov loop correlators todensities occurring on such areas, but the global topology of
occur in pairs less than a maximal distance apart, leading tthe vortices such as their linking number with the Wilson
a perimeter law. Simple analytical model arguments clarify-loop. The likelihood of a particular linking number occurring
ing the emergence of this qualitative difference were preis strongly influenced by the connectivity of the vortex net-
sented in the Introduction. The deconfinement phase transworks. Correspondingly, there is a clear signal of the phase
tion in the vortex picture can thus be understood as dransition in the vortex material distributions displayed in
transition from a percolating to a non-percolating phase. Figs. 2—4; these quantities can be used as alternative order
It should be emphasized that the percolation properties gbarameters for the transition. By contrast, the vortex densi-
vortices focused on in the present work are more stringentlyies seem to behave smoothly across the deconfinement
related to confinement than the polarization properties rephase transitiofi8].
ported in[8]. There isa priori no direct logical connection Turning to the spatial string tension, there are two
between the observed partial vortex polarization by itself anacomplementary ways to qualitatively account for its persis-
deconfinement. On the one hand, even in presence of a sitence in the deconfined phase of Yang-Mills theory. One was
nificant polarization, confinement would persist as long asalready mentioned in Sec. IV B. If one considers a time slice
the vortex loops retain an arbitrarily large length, namely byof the lattice universe, the associated vortex line configura-

V. DISCUSSION AND OUTLOOK
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tions display no marked change of their clustering propertieslimensionally reduced. This qualitatively different origin of
across the deconfinement transition. Even in the deconfinetthe spatial string tension may provide a natural explanation
phase, vortex loops in time slices percolate. In view of this, itfor the novel behavior detected in Sec. Il for spatial Creutz
seems plausible that intersection points of vortices with sparatios at temperatures well inside the deconfined regime,
tial Wilson loops continue to occur sufficiently randomly to namely, their rise as a function of the size of the Wilson
generate an area law. It should be noted, however, that thigops from which they are extractéds opposed to the pre-
percolation is qualitatively different from the one observedcocious scaling observed at lower temperaturemwever,
in the confined phase in that it only occurs in the three spacge detailed connection between the abovementioned modi-
dimensions, whereas the configurations are relatively weaklyeq dynamics in the deconfined phase and the signal seen in
varying in the Euclidean time direction. In other words, in e measurements of spatial Creutz ratios remains unclear.
the deconfined phase, one finds a dimensionally reduced per- \ypjje the relevant characteristics of the vortex configura-
colation phenomenon only visible either in the full four ong in the different regimes were described in detail in this
space-time dimensions or in time slices thereof. work, the present understanding of the underlying dynamics
On the other hand, if one considers a space slice of thg, e vortex picture is still tenuous. There are, however,
lattice universe, the deconfined phase is characterized 10gqjcations that the deconfining percolation transition can be
large part by short vortex loops winding in the time direc-\nqerstood in terms of simple entropy considerations. In-
tion; cf. Fig. 7. However, in this topological setup, such Shortcreasing the temperature implies shortening (@eclidean
vortices can pierce the area spanned by a large spatial Wilsqi,e direction of the(lattice) universe. This means that the
loop an odd number of times, even far from its perimeter,,mner of possible percolating vortex configurations de-
This should be contrasted with the picture one obtains for theo55es simply due to the reduction in space-time vofime.
Polyakov loop correlator. There, shortness of vortices im-a: the same time as the number of possible percolating vor-
plies that their intersection points with the plane containingyey ¢|ysters is reduced, the number of available short vortex
the Polyakov loop correlator occur in pairs less than a maxisqntigurations is enhanced by the emergence of a new class
mal distance apart. This leads to a perimeter law behawor_oﬁgf short vortices at finite temperature, namely the vortices
the Polyakov loop correlator, i.e. deconfinement. For spatia)yinging in the time direction. In view of this, it seems plau-
Wilson loops, this mechanism is inoperative due to the difgjpjq that a transition to a non-percolating phase is facilitated
ferent topological setting. On the contrary, in view of Fig. 7, o< the temperature is raised.
if one assumes the locations of the various winding vortices Theare are two pieces of evidence supporting this explana-
to be uncorrelaped, one optains preci_sely the_heuris.tic modcﬁon, one of which was already given above. Namely, the
of the Introduction, in which vortex intersection points are yeconfined phase indeed contains a large proportion of short
distributed at random on the plane containing the spatial W'IWinding vortices; cf. Fig. 6. More than half of the vortex
son loop, leading to an area law. Finite length vortex 100p§yterial is transferred to the newly available class of short
thus do not contradict the existence obpatial string ten- \inging vortices in the deconfined phase. The second piece
sion. , ) of evidence is related to the behavior of stiff random surfaces
_Of course, there is no reason to expect the locations of th, ¢4, space-time dimensions; some of the authors plan to
winding vortices to be completely uncorrelated in the high-report on their Monte Carlo investigation of these objects in
temperature Yang-Mills ensemble. In fact, comparing the;n ncoming publicatiofi3l]. The model assumes that the
values for the spatial string tensioa, from [30] and the \pices are random surfaces associated with a certain action
relevant densityps of vortex intersection points on planes cost per unit area and a penalty for curvature of the vortex
extending in two spatial directionf8], the ratio xs/ps  gyrface. By construction, evaluating the partition function of
reaches valuegs/ps~3 at T~2Tc. This should be con-  this model simply corresponds to counting the available vor-
trasted with the value=2p obtained in the model of ran- ey configurations under certain constraints imposed by the
dom mtersecn_on points discussed in the Introduct_lon. _If ON&ction; namely, the action cost per surface area effectively
further takes into account that a sizable partpgfis still  jmposes a certain mean density of vortices, while the curva-
furnished by non-winding vortex loogsf. Fig. 6), then one  tyre penalty imposes an ultraviolet cutoff on the fluctuations

should actually use the density;<ps corresponding to of the vortex surfaces. Beyond this, no further dynamical
winding vortices only in the above consideration. This yields

an even larger ratias/p . Therefore, the winding vortices
in the deconfined phase seem to be subject to sizable correq N .
lations. _ For example, a vortex surface extending into two space dlr_ec-
. . tions has a greatly reduced freedom of transverse fluctuation into
Both .Of the_above c_om_plementary meChamsmS generatl_nﬁ;]e time direction. Note that if one thinks of such a fluctuating,
t_he Spapall string tension in the d_econflned p_hase are quallt{ﬁ]zzy thin vortex surface in terms of a thick envelope, this amounts
tively distinct from the mechanism of confinement below y; siating that the thick vortex extending into two space directions
Tc. Inthe space-slice picture, this is obvious; a new class ofjmply does not fit into the space-time manifold anymore. To a
configurations, namely short vortex loops winding in the Eu-certain extent, the difference between these fivon and thick
clidean time direction, induces the spatial string tensionyortex pictures is semantic. To state that a thick vortex does not fit
However, as already indicated further above, also in thento the space-time manifold perpendicular to the time direction
time-slice picture, the observed percolation is qualitativelyamounts to nothing but the statement that the number of possible
different from the one in the confined phase in that it isconfigurations of this type has been redu¢tdzero measuje
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information enters. It turns out that already this simple model ACKNOWLEDGMENTS

generates a percolation phase transition analogous to the one

observed here for the center vortices of Yang-Mills theory. Discussions with F. Karsch and H. Satz are gratefully
This suggests that the deconfining percolation transition oédcknowledged. K.L. also acknowledges the friendly hospital-
center-projected Yang-Mills theory can be understood irity of the members of the KIAS, Korea, where a part of the
similarly simple terms, without any need for detailed as-numerical computations was carried out. M.E. is supported
sumptions about the form of the full center vortex effectiveby Deutsche Forschungsgemeinschaft under DFG En 415/
action. 1-1.

[1] 1. Montvay and G. Muster, Quantum Fields on a Lattice [16] L. Del Debbio, M. Faber, J. Greensite, aﬁdejn'lk, Nucl.

(Cambridge University Press, Cambridge, England, 1994 Phys. B(Proc. Supp). 53, 141(1997). 5
[2] H. J. Rothe, Quantum Gauge Theories: An Introduction [17] L. Del Debbio, M. Faber, J. Greensite, and®ejrik, Phys.
(World Scientific, Singapore, 1997 Rev. D55, 2298(1997. 5
[3] G. 't Hooft, Nucl. PhysB138 1 (1978. [18] L. Del Debbio, M. Faber, J. Greensite, and Glejnk, talk
[4] Y. Aharonov, A. Casher, and S. Yankielowicz, Nucl. Phys. presented at the NATO Advanced Research Workshop on The-
B146, 256 (1978. oretical Physics: New Developments in Quantum Field
[5] J. M. Cornwall, Nucl. PhysB157, 392(1979. Theory, Zakopane, Poland, 1997, hep-lat/9708023.
[6] M. Engelhardt, K. Langfeld, H. Reinhardt, and O. Tennert,[19] G. 't Hooft, Nucl. Phys B190, 455 (1981).
Phys. Lett. B431, 141(1998. 5 [20] T. G. Kovacs and E. T. Tomboulis, Phys. Rev. &Y, 4054
[7] L. Del Debbio, M. Faber, J. Giedt, J. Greensite, an@®Rjnk, (1998.
Phys. Rev. D68, 094501(1998. [21] T. G. Kovass and E. T. Tomboulis, Phys. Lett. 843 239
[8] K. Langfeld, O. Tennert, M. Engelhardt, and H. Reinhardt, (1998.
Phys. Lett. B452 301 (1999. [22] J. Ambjtrn and J. Greensite, J. High Energy Ph@s, 004
[9] H. Satz, Nucl. PhysA642, 130(1998. (1998; M. C. Ogilvie, Phys. Rev. 9, 074505(1999.
[10] A. Patel, Nucl. PhysB243 411(1984; Phys. Lett.139B,394  [23] M. Faber, J. Greensite, and Slejnk, J. High Energy Phys.
(1984. 01, 008(1999.
[11] V. G. Bornyakov, V. K. Mitrjushkin, and M. Mller-Preussker, [24] T. G. Kovacs and E. T. Tomboulis, hep-lat/9806030.
Phys. Lett. B284, 99 (1992. [25] K. Langfeld, H. Reinhardt, and O. Tennert, Phys. Letd 1,
[12] H. B. Nielsen and P. Olesen, Nucl. Ph{l60, 380(1979; J. 317(1998. 5
Ambjsérn and P. Oleseribid. B170[FS1], 60 (1980; P. Ole-  [26] M. Faber, J. Greensite, and Slejnk, Phys. Rev. 067, 2603
sen,ibid. B200[FS4], 381 (1982. (1998. 3
[13] J. Ambjan and P. Olesen, Nucl. Phy8170 [FS1], 265 [27] M. Faber, J. Greensite, and Slejnk, Acta Phys. Slov49,
(1980. 177 (1999.
[14] G. Mack and V. B. Petkova, Ann. Phy$N.Y.) 123 442 [28] P. de Forcrand and M. D’Elia, Phys. Rev. Le&2, 4582
(1979; 125 117(1980; G. Mack, inRecent developments in (1999. .
gauge theorigsedited by G. 't Hooftet al. (Plenum, New [29] R. Bertle, M. Faber, J. Greensite, and®ejnik, J. High En-
York, 1980; G. Mack, Phys. Rev. Let#5, 1378(1980; G. ergy Phys03, 019(1999.
Mack and E. Pietarinen, Nucl. PhyB205[FS5], 141(1982. [30] G. S. Bali, J. Fingberg, U. M. Heller, F. Karsch, and K. Schill-
[15] E. T. Tomboulis, Phys. Rev. R3, 2371(1981); Phys. Lett. B ing, Phys. Rev. Lett71, 3059(1993.
303 103(1993. [31] M. Engelhardt and H. Reinhardt, hep-1at/9912003.

054504-10



