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Deconfinement in SU„2… Yang-Mills theory as a center vortex percolation transition

M. Engelhardt, K. Langfeld, H. Reinhardt, and O. Tennert
Institut für Theoretische Physik, Universita¨t Tübingen, D–72076 Tu¨bingen, Germany

~Received 29 September 1999; published 8 February 2000!

By fixing lattice Yang-Mills configurations to the maximal center gauge and subsequently applying the
technique of center projection, one can identify center vortices in these configurations. Recently, center vor-
tices have been shown to determine the string tension between static quarks at finite temperatures~center
dominance!; also, they correctly reproduce the deconfining transition to a phase with vanishing string tension.
After verifying center dominance also for the so-called spatial string tension, the present analysis focuses on
the global topology of vortex networks. General arguments are given supporting the notion that the deconfine-
ment transition in the center vortex picture takes the guise of a percolation transition. This transition is detected
in Monte Carlo experiments by concentrating on various slices through the closed vortex surfaces; these slices,
representing loops in lattice universes reduced by one dimension, clearly exhibit the expected transition from
a percolating to a non-percolating, deconfined, phase. The latter phase contains a large proportion of vortex
loops winding around the lattice in the Euclidean time direction. At the same time, an intuitive picture
clarifying the persistence of the spatial string tension in the deconfined phase emerges.

PACS number~s!: 11.15.Ha, 12.38.Aw
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I. INTRODUCTION

The description of hadronic matter in terms of confin
quark and gluon constituents carrying a color quantum nu
ber has opened the prospect of a new, deconfined, pha
matter in which colored excitations can propagate over
tances much larger than typical hadronic sizes. In the fra
work of pure Yang-Mills theory, the transition to this ne
phase is thought to occur as a function of temperature. W
compelling evidence for the deconfining phase transition
been collected in lattice Monte Carlo simulations@1,2#, it is
necessary to concomitantly develop an intuitive picture
the deconfinement phenomenon in order to be able to t
scenarios as complex as heavy ion collisions; such collis
experiments, planned at the BNL Relativistic Heavy Ion C
lider ~RHIC! and CERN Large Hadron Collider~LHC!, are
hoped to produce lumps of deconfined matter in the n
future.

The question of the deconfinement transition cannot
separated from an underlying picture of the confinem
mechanism itself. Conversely, any purported mechanism
confinement should also be able to incorporate deconfi
ment. The present paper concentrates on the center vo
picture of confinement in the case of SU~2! color. This
mechanism, initially proposed in@3–5#, generates an are
law for the Wilson loop by invoking the presence of vortic
in typical configurations entering the Yang-Mills function
integral. These vortices are closed two-dimensional surfa
in four-dimensional space-time or, equivalently, closed lin
in the three dimensions making up, e.g., a time slice. T
carry flux such that they contribute a factor corresponding
a nontrivial center element of the gauge group to any Wils
loop whenever they pierce its minimal area; in the case
SU~2! color to be treated below, that is a factor of21. If the
vortices are distributed in space-time sufficiently random
then samples of the Wilson loop of value11 ~originating
from loop areas pierced an even number of times by vortic!
will strongly cancel against samples of the Wilson loop
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value21 ~originating from loop areas pierced an odd num
ber of times by vortices!, generating an area law falloff. Th
simplest @SU~2!# model visualization which demonstrate
this is the following: Consider a universe of volumeL4, and
a two-dimensional slice through it of areaL2, containing a
Wilson loop spanning an areaA. Generical vortices will
pierce the slice at points; assumeN of these points to be
randomly distributed on the slice. Then the probability
finding n such points inside the Wilson loop area is binomi

PN~n!5S N
n D S A

L2D nS 12
A

L2D N2n

, ~1!

and the expectation value of the Wilson loop becomes

^W&5 (
n50

N

~21!nPN~n!5 S 12
2rA
N D N

——→
N→`

e22rA ~2!

where the planar density of the intersection pointsr5N/L2

is kept constant asN→`. One thus obtains an area law wit
string tensionk52r. In a more realistic calculation, on
would e.g. take into account interactions between the vo
ces@6#; the proportionality constantk/r turns out to be close
to 1.4 in zero temperature lattice measurements@7,8# ~a sur-
vey of existing data follows further below!.

The emphasis of the present work, however, lies not
the relatively short-range properties of the vortices such
their thickness, but on their long-range topology. This
where the argument presented above has more serious s
comings. For one, it suggests that the expectation value
Wilson loop might depend on the area with which o
chooses to span the loop. However, as a result of the clo
nature of the vortices, the choice of area is in fact immater
as it should be. In a more precise, area-independent, ma
of speaking than adopted above, the value a Wilson lo
takes in a given vortex configuration should be derived fr
the linking numbers of the vortices with the loop. Now, th
©2000 The American Physical Society04-1
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above model visualization demonstrating an area law imp
itly makes a strong assumption about the long-range to
ogy of vortex configurations: For the intersection points
vortices with a given plane to be distributed sufficiently ra
domly on the plane to generate confinement, typical vorti
or vortex networks~note that vortices are not forbidden
self-intersect! must extend over the entire universe. Consid
the converse, namely that there is an upper bound to
space-time extension of single vortices or vortex networ
Then an intersection point of a vortex with a plane alwa
comes paired with another such point a finite distance aw
due to the closed character of the vortices. This pairing
particular would preclude an area law for the Wilson loop,
can be seen more clearly with the help of another sim
model.

Consider a universe as above, but with the additional
formation that intersection points of vortices with a tw
dimensional slice come in pairs at most a distanced apart.
Then the only pairs which can contribute a factor of21 to a
planar Wilson loop are ones whose midpoints lie in a strip
width d centered on the trajectory of the loop. Denote byp
the probability that a pair which satisfies this condition ac
ally does contribute a factor of21. This probability is an
appropriate average over the distances of the midpoint
the pairs from the Wilson loop, their angular orientations,
distribution of separations between the points making up
pairs, and the local geometry of the Wilson loop up to t
scaled. The probabilityp, however, does not depend on th
macroscopic extension of the Wilson loop. A pair which
placed at random on a slice of the universe of areaL2 has
probability p•A/L2 of contributing a factor of21 to a Wil-
son loop, whereA is the area of the strip of widthd centered
on the Wilson loop trajectory. To leading order,A5Pd,
where P is the perimeter of the Wilson loop; subleadin
corrections are induced by the local loop geometry. No
placingN pairs on a slice of the universe of areaL2 at ran-
dom, the probability thatn of them contribute a factor of
21 to the Wilson loop is

PNpair
~n!5S Npair

n D S pPd

L2 D nS 12
pPd

L2 D Npair2n

~3!

and, consequently, the expectation value of the Wilson l
for large universes is

^W&5 (
n50

Npair

~21!nPNpair
~n! ——→

Npair→`

e2rpPd ~4!

wherer52Npair /L
2 is the planar density of points. One thu

observes a perimeter law, negating confinement, if the sp
time extension of vortices or vortex networks is bound
They must thus extend over the entire universe, i.e. pe
late, in order to realize confinement.

Conversely, therefore, a possible mechanism driving
deconfinement transition in the vortex picture is that vortic
in a sense to be made more precise below, cease to b
arbitrary length, i.e. cease to percolate, in the deconfi
phase@8#. The main result of the present work is that this
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indeed the case, implying that the deconfinement transi
can be characterized as a vortex percolation transition.

Before entering into the details, it should be noted tha
description of the deconfinement transition in terms of p
colation phenomena has also been advocated in framew
based on Yang-Mills degrees of freedom other than vortic
For one, electric flux is expected to percolate in thedecon-
finedphase, while it does not percolate in the confined pha
Note that this is the reverse, or dual, of the magnetic vor
picture. General arguments related to electric flux perco
tion were recently advanced in@9#; also, specific electric flux
tube models support this picture@10#.

On the other hand, in the dual superconductor picture
confinement, it has been observed that the confined pha
characterized by the presence of a magnetic monopole
percolating throughout the~lattice! universe, whereas the
monopole configurations are considerably more fragmen
in the deconfined phase and cease to percolate@11#. To the
authors’ knowledge, however, this is mainly an empiric
observation and there is no clear physical argument conn
ing the deconfinement transition and monopole loop per
lation. Indeed, there has been speculation that the two p
nomena may be disconnected@11#. This should be contraste
with the vortex language, which, as discussed at len
above, has the advantage of providing a clear physical
ture motivating an interrelation between vortex percolat
and confinement.

II. TOOLS AND SURVEY OF EXISTING DATA

Before vortex clustering properties can be investigated
detail, some technical prerequisites have to be met; forem
one must have a manageable definition of vortices, i.e.
algorithm which allows one to localize and isolate them
Yang-Mills field configurations. After the initial proposal o
the center vortex confinement mechanism, a first hint of
existence of vortex configurations was provided by t
Copenhagen vacuum@12# based on the observation that
constant chromomagnetic field in Yang-Mills theory is u
stable with respect to the formation of flux tube domains
three-dimensional space. Later it was observed that the c
momagnetic flux associated with these domains indee
quantized according to the center of the gauge group@13#.
However, the theory of these flux tubes quickly became
technically involved to allow e.g. the study of global pro
erties of the flux tube networks, especially at finite tempe
tures. In parallel, efforts were undertaken to define and
late vortices on a space-time lattice. One definition, propo
by Mack and co-workers@14# and developed further by
Tomboulis @15#, introduces a distinction between thin an
thick vortices, only the latter remaining relevant in the co
tinuum limit. The defining property of these thick vortices
the nontrivial center element factor they contribute to a la
Wilson loop when they pierce its minimal area. This defin
tion has the advantage of being gauge invariant; on the o
hand, it does not allow one to easily localize vortices in t
sense of associating a space-time trajectory with them.

A different line of reasoning has only recently been d
veloped in a series of papers by Del Debbioet al. @7,16–18#.
4-2
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DECONFINEMENT IN SU~2! YANG-MILLS THEORY AS . . . PHYSICAL REVIEW D 61 054504
One chooses a gauge which as much as possible concen
the information contained in the field configurations on p
ticular collective degrees of freedom, in the present case
vortices. If this concentration of information is success
~more about this question further below!, one obtains a good
approximation of the dynamics by neglecting the resid
deviations away from the chosen collective degrees of fr
dom, i.e. by projecting onto them. This type of approach w
pioneered by ’t Hooft, who introduced the class of Abeli
gauges and the subsequent Abelian projection in orde
study Abelian monopole degrees of freedom@19#. In com-
plete analogy, one can introduce maximal center gau
@7,16–18#, in which one uses the gauge freedom to cho
link variables on a space-time lattice as close as possib
center elements of the gauge group. Subsequently, one
perform center projection, i.e. replace the gauge-fixed l
variables with the center elements nearest to them on
group.

Given such a lattice of center elements, i.e. in the cas
SU~2! color, a lattice with links taking the values61, center
vortices are defined as follows: Consider all plaquettes in
lattice. If the links bordering the plaquette multiply to21,
then a vortex pierces that plaquette. These are precisely
vortices needed for the center vortex mechanism of confi
ment. To see this, one merely needs to apply Stokes’ th
rem: Consider a Wilson loopW, made up of linksl 561,
and an areaA it circumscribes, made up of plaquettesp5
61 ~the value of a plaquette is given by the product of t
bordering links!. Then

W5 )
l PW

l 5 )
pPA

p ~5!

~the same letter was used here to denote both space
objects and the associated group elements!. In other words,
the Wilson loop receives a factor of21 from every vortex
piercing the area. Furthermore, the product of all plaque
making up a three-dimensional elementary cube in the lat
is 1, since this product contains every link making up t
cube twice. This fact, which in physical terms is a manife
tation of the Bianchi identity, implies that every such cu
has an even number of vortices piercing its surfaces; co
quently, any projection of the lattice down to three dime
sions contains only closed vortex lines. Since any
through a two-dimensional vortex surface in four dimensio
is thus a closed line, the original surface is also closed. N
that if one defines the dual lattice as a lattice with the sa
spacinga as the original one, shifted with respect to the lat
by the vector (a/2,a/2,a/2,a/2), then vortices are made up o
plaquettes on the dual lattice.

In the work presented here, the specific maximal cen
gauge called ‘‘direct maximal center gauge’’~see e.g.@7#!
was used. This gauge is reached by maximizing the quan

(
l

utr Ul u2, ~6!

where l labels all the linksUl on the lattice. Center projec
tion then means replacing
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Ul→sgn tr Ul . ~7!

In practice, the question of whether the gauge fixing a
projection procedure indeed successfully concentrates
relevant physical information on the collective degrees
freedom being projected on is difficult to settlea priori; most
often, this is testeda posterioriby empirical means. Succes
furthermore depends on the specific physics, i.e. the obs
able, under consideration. One carries out two Monte Ca
experiments, using the full Yang-Mills action as a weight
both cases, and samples the observable in question, su
e.g. the Wilson loop, using either the full lattice configur
tions or the center projected ones. If the results agree,
refers to this state of affairs as ‘‘center dominance’’ for th
particular observable. Center dominance for the Wilson lo
is interpreted as evidence that the center gauge concent
the physical information relevant for confinement on the v
tex degrees of freedom, and that consequently center pro
tion, i.e. projection onto the associated vortex configurati
constitutes a good approximation. Center dominance
been verified for the long-range part of the static quark
tential at zero temperature@see@16–18# for the SU~2! theory
and @7# for the SU~3! theory#.

This recent verification of center dominance has spar
renewed interest in the vortex picture of confinement. In
tablishing the relevance of vortex degrees of freedom
confinement, it provides the necessary basis for any fur
investigation of vortex properties. An observation analogo
to center dominance has been made in the framework of
gauge-invariant vortex definition advanced by Tombou
@20#. There, one samples both the quantitiesW and sgn(W),
W denoting the Wilson loop; sgn(W) is interpreted as con
taining only the center vortex contributions toW, whereas all
other fluctuations of the gauge fields are neglected. One fi
that the expectation value of sgn(W) alone already provides
the full string tension; i.e., one finds a gauge-invariant ty
of center dominance@see@20# for the SU~2! theory and@21#
for the SU~3! theory#. Subsequently, it has been noted th
this type of center dominance without gauge fixing can
fact be understood in quite simple terms@22#, and that fur-
thermore the density of center vortices arising on cen
projected lattices without gauge fixing does not exhibit t
renormalization group scaling corresponding to a fin
physical density@23#.

In parallel, other vortex properties were investigate
There is evidence in the SU~2! theory that the vortices de
fined by center gauging and center projection indeed loca
thick vortices as defined by their center element contri
tions to linked Wilson loops@17,18#. In both the gauge-fixed
and unfixed frameworks, the absence of vortices was sh
to imply the absence of confinement@17,18,24#. In zero tem-
perature lattice calculations using the maximal center gau
the planar density of intersection points of vortices with
given surface was shown to be a renormalization group
variant, physical quantity in the SU~2! theory; cf.@25# ~note
erratum in@8#! and also@7#. This planar density equals ap
proximately 3.6/fm2 if one fixes the scale by positing a strin
tension of (440 MeV)2. Also the radial distribution function
of these intersection points on a plane is renormalizat
4-3
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ENGELHARDT, LANGFELD, REINHARDT, AND TENNERT PHYSICAL REVIEW D61 054504
group invariant@6#. Furthermore, if one takes into accou
the thickness of center vortices, they are able to accoun
the ‘‘Casimir scaling’’ behavior of higher representatio
Wilson loops, a feature which hitherto was considered
compatible with the vortex confinement mechanism@26,27#.
Also, the monopoles generated by the maximal Abel
gauge have been found to lie on the center vortices ident
in a subsequent~indirect! maximal center gauge, formin
monopole-antimonopole chains@18#. Recently, a modified
SU(2) lattice ensemble was investigated in which all cen
vortices had been removed, with the result that chiral sy
metry is restored and all configurations turn out to belong
the topologically trivial sector@28#.

The purpose of the present analysis is to confront
center vortex picture of confinement with the finite tempe
ture transition to a deconfined phase observed in Yang-M
lattice experiments. Some previous work on vortex prop
ties at finite temperatures has already been carried out,
eralizing the zero-temperature results surveyed above.
one, the authors reported some preliminary work in@8#.
There, center dominance for the string tension between s
quarks was verified at finite temperatures, and the transi
to the deconfined phase with a vanishing string tension
served at the correct temperature in the center-proje
theory. A depletion in the density of vortex intersectio
points with a plane extending in the~Euclidean! time and
one space direction occurs as one crosses into the decon
phase. The vortices are to a certain extent polarized in
time direction. However, the polarization is not complete;
area spanned by a Polyakov loop correlator is still pierced
a finite density of vortices. Thus, more detailed correlatio
between these vortex intersection points must induce the
confinement transition; this led the authors to first conject
in @8# that the deconfinement transition in the center vor
picture may be connected to global properties of vortex n
works such as their connectivity.

Very recently, a related investigation into the global t
pology of the two-dimensional vortex surfaces in four spa
time dimensions was reported in@29#, including the case of
finite temperatures. This investigation focused on proper
such as orientability and genus of the surfaces, in particu
changes in these characteristics as one crosses into th
confined phase. In the present work, the global propertie
vortex surfaces are considered from a slightly different v
tage point, namely specifically with a view to testing t
heuristic arguments given in the Introduction, connect
confinement with percolation properties. For this purpose
will be necessary to consider in more detail different slices
vortex surfaces; details follow below.

III. SPATIAL STRING TENSION

Before doing so, a certain gap in the existing literature
center vortices at finite temperatures should be addresse
already mentioned above, the basis for the center vortex
ture of confinement is the empirical observation ofcenter
dominancefor the Wilson loop. Without first establishin
center dominance for an observable under investigatio
more detailed discussion of the manner in which vortex
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namics influences the observable runs the risk of be
largely academic. Center dominance for the fini
temperature long-range heavy quark potential, via the co
sponding Polyakov loop correlator, was verified in@8#, as
mentioned above; however, in what follows, also the beh
ior of the so-called spatial string tension, extracted fro
large spatial Wilson loops, will be under scrutiny. To provi
the necessary basis for this, center dominance for large
tial Wilson loops should first be checked. For this purpo
the authors have carried out lattice measurements of sp
Creutz ratios, using center-projected configurations to ev
ate the Wilson loops, for three temperatures.

Before presenting the results, a comment on the phys
scales is in order. Throughout this paper, the ze
temperature string tension is taken to bek5(440 MeV)2,
the lattice spacinga(b) at inverse couplingb52.3 is deter-
mined by ka250.12, and one-loop scaling is used for th
b-dependence ofa. The deconfinement temperature is ide
tified asTC5300 MeV; cf. @8#. It should be noted that thes
scales are fraught with considerable uncertainty, of the or
of 10%, due to finite size effects. This was discussed in m
detail in @8#.

The values obtained for the center-projected spa
Creutz ratios are summarized in Fig. 1, where they are c
pared with the high-precision data for the full spatial stri
tension of Baliet al. @30#. Since the temperatures used he

FIG. 1. Center-projected spatial Creutz ratios in units of
zero-temperature string tension,k(T50)a2; l 3 l Creutz ratios are
displayed atr 5Al ( l 21)a(b) on the horizontal axis. Measure
ments were taken on a 1233Nt lattice. Shown are the temperature
T51.1TC ~open symbols; triangles pointing left correspond tob
52.32, Nt54, whereas triangles pointing right correspond tob
52.4, Nt55), T51.4TC ~solid symbols; diamonds correspond
b52.4, Nt54, whereas circles correspond tob52.3, Nt53), and
T51.7TC ~crosses correspond tob52.48, Nt54, whereas3 ’s
correspond tob52.37, Nt53). For comparison, the spatial strin
tension extracted from full Wilson loops, as interpolated from d
reported by Baliet al. @30#, is displayed: The triangle pointing
downwards corresponds toT51.4TC , whereas the triangle pointing
upwards corresponds toT51.7TC . The full spatial string tension a
T51.1TC is virtually indistinguishable from the zero-temperatu
value.
4-4
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DECONFINEMENT IN SU~2! YANG-MILLS THEORY AS . . . PHYSICAL REVIEW D 61 054504
and in @30# do not coincide, an interpolation of the da
points given in@30# had to be carried out to arrive at th
values depicted in Fig. 1.

Measurements were taken on a 1233Nt lattice, and for
each temperature, two values of the inverse couplingb were
used. Note that there are two potential sources of sca
violations in Fig. 1. On the one hand, center projection m
destroy the renormalization group scaling of the spa
string tension known to occur when using the full config
rations@30#. This type of scaling violation would be a con
sequence, and thus a genuine indicator, of vortex physics
the other hand, the manner in which the data is presente
Fig. 1 also engenders additional scaling violations to the
tent to which Creutz ratios, which represent difference q
tients with incrementa(b), still deviate from the derivatives
they converge to asa→0. The authors have elected to acce
this slight disadvantage, since the presentation of the da
Fig. 1 is on the other hand well adapted to aid in the disc
sion below. Now, comparing the data obtained for differe
b at one temperature in Fig. 1, scaling violations are e
dently not significant as compared with the error ba
Namely, values of Creutz ratios for two different choices
b are well described by a universal curve, better in fact th
the error bars would lead one to expect. However, in view
the size of the error bars, which is due to the moderate
tistics available to the authors, the data do not give v
stringent evidence of correct renormalization group scali
they are perhaps best described as being compatible
such scaling.

Furthermore, the data seem to point towards a cer
change in the dynamics generating the spatial string ten
as the temperature is raised to values significantly above
deconfinement transition. At the temperature identified aT
51.1TC , the Creutz ratios are practically constant as a fu
tion of the Wilson loop size. This behavior of cente
projected Wilson loops has been reported before in ze
temperature studies@17# and has been dubbed ‘‘precociou
scaling.’’ Center projection truncates the short-range C
lomb behavior of full Wilson loops and one can read off t
asymptotic string tension already from 232 Creutz ratios.

By contrast, this behavior does not seem quite as p
nounced at temperatures significantly above the decon
ment transition. Creutz ratios rise as a function of loop si
it should however be mentioned that this rise is much wea
than the usual Coulomb falloff one obtains when using
full Yang-Mills configurations to evaluate the Creutz ratio
As a result of this variation with loop size, the asympto
value of the full spatial string tension extracted from the d
in @30# is, in the case ofT51.4TC , only reached by the
Creutz ratio corresponding to the largest Wilson loops inv
tigated; at T51.7TC , the asymptotic value is not quit
reached even by the ratios derived from the most exten
loops sampled, although it is within the error bars. While
error bars afflicting the Creutz ratios extracted from larg
loops are sizable, the rise as a function of loop size d
seem to be significant, especially as compared to the pr
cious scaling displayed atT51.1TC . Also the difference be-
tween the values taken atT51.4TC and T51.7TC is com-
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From the data depicted in Fig. 1, and in view of the abo
discussion, the authors estimate that, in the most unfavor
case admitted by the error bars, still 80% of the spatial str
tension is furnished by center vortices in the temperat
range above the deconfinement transition considered h
Thus, center vortices dominate the physics of the spa
string tension even in this temperature region.

IV. VORTEX PERCOLATION

A. Clustering of vortices

As already mentioned above, there exists even in the
confined phase a substantial density of vortex intersec
points on the area spanned by two Polyakov loops@8#. Thus,
deconfinement must be due more specifically to a correla
between these intersection points, such that the distribu
of points ceases to be sufficiently random to generate an
law. As motivated in the Introduction, a correlation cond
cive to deconfinement would occur if vortices only forme
clusters smaller than some maximal size, i.e. if they cea
to percolate. This would make the points appear in pa
separated by less than the aforementioned maximal s
leading to a perimeter law for the Polyakov loop correlat
In order to test whether this type of mechanism is at work
connection with the Yang-Mills deconfinement transition,
is necessary to measure the extension of vortex clusters

Vortices constitute closed two-dimensional surfaces
four space-time dimensions or, equivalently, on
dimensional loops if one projects down to three dimensio
by taking a fixed time slice or a fixed space slice of t
~lattice! universe. Note that the term space slice here
meant to denote the three-dimensional space-time one
tains by holding just one of the three space coordinates fix
Which particular coordinate is fixed is immaterial in view
spatial rotational invariance. In the following, specifically th
extension of vortex line clusters in either time or space sli
will be investigated. In this way, the relevant information
exhibited more clearly than by considering the full tw
dimensional vortex surfaces in four-dimensional space-tim

Given a center-projected lattice configuration, the cor
sponding vortices can be constructed on the dual lattice
the fashion already indicated in the Introduction. As a de
nite example, consider a fixed time slice. Then the vorti
are described by lines made up of links on the dual latti
Consider in particular a plaquette on the original lattice,
ing e.g. in thez5z0 plane and extending fromx0 to x01a
and fromy0 to y01a, wherea denotes the lattice spacing
By definition, if the links making up this plaquette multipl
to the center element21, then a vortex pierces tha
plaquette. This means that a certain link on the dual lattic
part of a vortex, namely, the link connecting the dual latt
points (x01a/2,y01a/2,z02a/2) and (x01a/2,y01a/2,z0
1a/2).

Having constructed the vortex configuration on the d
lattice, one can proceed to define the vortex clusters. O
begins by scanning the dual lattice for a link which is part
a vortex. Starting from that link, one tests which adjace
4-5
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links, i.e. links which share a dual lattice site with the fir
link, are also part of the vortex. This is repeated with all n
members of the cluster until all links making up the clus
are found. In this way, it is possible to separate the differ
vortex clusters.

B. Extension of vortex clusters

Given the vortex clusters, their extensions can be m
sured. Consider all pairs of links on a cluster and evalu
the space-time distance between each pair. The max
such distance defines the extension of that cluster. In F
2–5, histograms are displayed in which, for every cluster,
total number of links making up that cluster was added to
bin corresponding to the extension of the cluster.

The histograms were finally normalized such that the
tegral of the distributions gives unity. Constructed in th

FIG. 2. Vortex material distributions in space slices of 13

3Nt lattice universes obtained as described in the text. Left:3

38 lattice atb52.4, which is identified withT50.7TC . Right:
12337 lattice atb52.4, which is identified withT50.8TC . The
bins represent the percentage of vortex material organized into
ters of the corresponding extension. Extension is measured on
horizontal axis in units of the maximal extension possible on
space slice of the given lattice, namelyA2(12/2)21(Nt/2)2 lattice
spacings.

FIG. 3. Vortex material distributions as in Fig. 2, at differe
temperatures. Left: 12336 lattice at b52.4, which is identified
with T50.9TC . Right: 12335 lattice atb52.4, which is identified
with T51.1TC .
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way, the histograms give a very transparent characteriza
of typical vortex configurations. The content of each bin re
resents the percentage of the total vortex length in the c
figurations, i.e. the available vortex material, which is org
nized into clusters of the corresponding extensio
Accordingly, these distributions will be referred to asvortex
material distributions in the following. In a percolating
phase, the vortex material distribution is peaked at the larg
extension possible on the lattice universe under consi
ation. Note that, due to the periodic boundary conditio
this maximal extension e.g. on aNs3Ns3Nt space slice
of the four-dimensional space-time lattice
A(Ns/2)21(Ns/2)21(Nt/2)2 lattice spacings. In a non
percolating phase, the vortex material distribution is pea

s-
he
a

FIG. 4. Vortex material distributions as in Fig. 2, at differe
temperatures. Left: 12334 lattice at b52.4, which is identified
with T51.4TC . Right: 12333 lattice atb52.4, which is identified
with T51.85TC .

FIG. 5. Vortex material distributions analogous to Fig. 2, b
taken from time slices of the 1233Nt lattice universe, again a
inverse couplingb52.4. Bins corresponding to three different tem
peratures are shown simultaneously at each cluster exten
namely, the caseNt53, which is identified withT51.85TC , the
caseNt55, which is identified withT51.1TC , and the caseNt

57, which is identified withT50.8TC .
4-6



rs
f

ra
th
c
a

tu

ho
tu
io

all

o

u
e

he
ra
al
en

di

om
e

ne
u
in
se

ro
a

tio
co
u-
tu
is

n
t

t t
te
o
nc
o

n
u

sio
itio
te
e

r of
lie

co-
sid-
of a

s
il-
ate
der-

in

at
ur-

and

ola-
It
o-

ime
ture
ne
fined
ing
airs
r the
e
n-
ts

ed
n-
ich
on-

l
te-
us

ins
the
ns

-
ig.

ps

he
ibit
, as

the
ase

ng
on-
ote
ion
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at a finite extension independent of the size of the unive
Figures 2–4 pertain to space slices. Analogous results
time slices are summarized in Fig. 5.

In space slices of the lattice universe, one observes a t
sition from a percolating to a non-percolating phase at
Yang-Mills deconfinement temperature. Namely, in spa
slices, the vortex material distribution is strongly peaked
the maximal possible extension as long as the tempera
remains belowTC ; when the temperature rises aboveTC ,
however, the distribution becomes concentrated at s
lengths. The behavior near the deconfinement tempera
TC displayed in Figs. 2–4 deserves more detailed discuss
While the contents of the bin of maximal extension f
sharply betweenT50.8TC and T51.1TC , a residual one-
quarter of vortex material remains concentrated in loops
maximal extension at the temperature identified asT
51.1TC . This is too large a proportion to let pass by witho
further consideration. The authors have repeated the m
surement atT51.1TC on a larger, 16333 lattice, and did not
find a depletion of the bin of maximal extension. On t
other hand, one should be aware that there is a conside
uncertainty, of the order of 10%, in the overall physical sc
in these lattice experiments, affecting in particular the id
tification of the deconfinement temperatureTC itself. These
uncertainties were already mentioned in Sec. III and are
cussed in detail in@8#. At the present level of accuracy,T
51.1TC cannot be considered significantly separated fr
TC ; the authors cannot state with confidence that the m
surement formally identified with a temperatureT51.1TC
must unambiguously be associated with the deconfi
phase. Note that also in standard string tension meas
ments via the Polyakov loop correlator, one does not atta
sharper signal of the deconfinement transition if one u
comparable lattices and statistics. Indeed, in@8#, the authors
still extracted a string tension of about 10% of the ze
temperature value at the temperature formally identified
T51.1TC .

In balance, the authors would argue that the percola
transition in space slices does occur together with the de
fining transition, both in view of the strong heuristic arg
ments connecting the two phenomena in the vortex pic
and in view of the sharp change in the vortex material d
tributions betweenT50.8TC andT51.1TC . The latter sharp
change suggests that the vortex material distributions ca
practice be used as an alternative order parameter for
deconfinement transition. When the vortices rearrange a
transition temperature to form a non-percolating phase, in
section points of vortices with planes containing Polyak
loop correlators occur in pairs less than a maximal dista
apart. This leads to a perimeter law for the Polyakov lo
correlator, implying deconfinement.

Consider now by contrast the vortex material distributio
obtained in time slices. According to Fig. 5, these distrib
tions are strongly peaked at the maximal possible exten
at all temperatures, even above the deconfinement trans
Thus, vortex line clusters in time slices always percola
there is no marked change in their properties as the temp
ture crossesTC .
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Note that this entails no consequences for the behavio
the Polyakov loop correlator, since Polyakov loops do not
within time slices. However, the persistence of vortex per
lation into the deconfined phase when time slices are con
ered represents one way of understanding the persistence
spatial string tension aboveTC . Given percolation, it seem
plausible that intersection points of vortices with spatial W
son loops continue to occur sufficiently randomly to gener
an area law. There is another, complementary, way of un
standing the spatial string tension which will be discussed
detail in the concluding section.

Note furthermore that Figs. 2–5 taken together imply th
the vortices, regarded as two-dimensional surfaces in fo
dimensional space-time, percolate in both the confined
the deconfined phases; this was also observed in@29#. Only
by considering a space slice does one filter out the perc
tion transition in the topology of the vortex configurations.
should be emphasized that the percolation of the tw
dimensional vortex surfaces in four-dimensional space-t
in the deconfined phase does not negate the heuristic pic
of deconfinement put forward above. Given that vortex li
clusters in space slices cease to percolate in the decon
phase, intersection points of vortices with planes extend
in one space and the time direction necessarily come in p
less than a maximal distance apart, regardless of whethe
different vortex line clusters do ultimately connect if on
follows their world sheets into the additional spatial dime
sion. It is this pair correlation of the intersection poin
which induces the deconfinement transition.

C. Winding vortices in the deconfined phase

In order to gain a more detailed picture of the deconfin
regime, it is useful to carry out the following analysis. Co
sider again a space slice of the lattice universe, in wh
vortex line clusters are short in the deconfined regime. C
sider in particular lattices of time extensionNta with odd
Nt , wherea is the lattice spacing; in the following numerica
experiment,Nt53. On such a lattice, measure vortex ma
rial distributions akin to the ones described in the previo
section, with one slight modification; namely, define the b
of the histograms not by cluster extension, but simply by
number of dual lattice links contained in the clusters. It tur
out that, in the deconfined phase, specifically atT
51.85TC , roughly 55% of the vortex material is concen
trated in clusters made up of an odd number of links; cf. F
6. On a lattice withNt53, these are necessarily vortex loo
which wind around the lattice in~Euclidean! time direction
by virtue of the periodic boundary conditions, where t
loops containing an odd number of links larger than 3 exh
residual transverse fluctuations in the spatial directions
also visualized in Fig. 7 further below.

One thus obtains a quite specific characterization of
short vortices appearing in the deconfined regime. This ph
can evidently be visualized largely in terms of short windi
vortex loops with residual transverse fluctuations if one c
siders a space slice of the lattice universe; cf. Fig. 7. N
that this picture also explains the partial vortex polarizat
observed in density measurements@8#.
4-7
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V. DISCUSSION AND OUTLOOK

On the basis of the measurements shown in the prece
sections, a detailed description of the confined and dec
fined phases of Yang-Mills theory in terms of center vortic
emerges. The typical vortex configurations present in the
phases are visualized in Fig. 7. This picture allows an in
tive understanding of the phenomenon of confinement
well as the characteristics of the transition to the deconfi
phase. In the confined phase, vortex line clusters in sp
slices of the lattice universe percolate. This allows inters
tion points of vortices with planes containing Polyakov lo
correlators to occur sufficiently randomly to generate an a
law. By contrast, in the deconfined phase, typical vortex c
figurations in space slices of the lattice universe are cha
terized by short vortex loops, to a large part winding in t
~Euclidean! time direction. This causes intersection points
vortices with planes containing Polyakov loop correlators
occur in pairs less than a maximal distance apart, leadin
a perimeter law. Simple analytical model arguments clar
ing the emergence of this qualitative difference were p
sented in the Introduction. The deconfinement phase tra
tion in the vortex picture can thus be understood as
transition from a percolating to a non-percolating phase.

It should be emphasized that the percolation propertie
vortices focused on in the present work are more stringe
related to confinement than the polarization properties
ported in@8#. There isa priori no direct logical connection
between the observed partial vortex polarization by itself a
deconfinement. On the one hand, even in presence of a
nificant polarization, confinement would persist as long
the vortex loops retain an arbitrarily large length, namely

FIG. 6. Vortex material distributions in space slices of the latt
universe as a function of total vortex line length contained in
clusters. On theNt53 lattice used, clusters with a length of an od
number of lattice spacings necessarily wind around the lattice in
Euclidean time direction. The inverse coupling in this measurem
was again set to the valueb52.4, implying that this measuremen
is associated with a temperature ofT51.85TC . There is a residual
but insignificant, proportion of vortex clusters containing more th
20 dual lattice links not displayed in the plot.
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winding sufficiently often around the~Euclidean! time direc-
tion before closing. On the other hand, even in an ensem
with no polarization, deconfinement will occur if the vortice
are organized into many small isolated clusters. Thus, vo
polarization should be viewed more as an accompanying
fect than the direct cause of deconfinement. Of course
correlation between the absence of percolation in space s
of the lattice universe and vortex polarization is not surpr
ing. If fluctuations of vortex loops in the space directions a
curtailed, e.g. due to a phase containing many short vort
winding in the time direction becoming favored~more about
this below!, then clearly the connectivity of vortex clusters
the space direction is reduced and they may cease to pe
late. In this sense, polarization indirectly can facilitate d
confinement. However, the percolation concept is rela
much more directly and with much less ambiguity to t
question of confinement. Ultimately, this is a consequence
a point already made in the Introduction in connection w
the heuristic models discussed there. Since the Wilson l
should be independent of the choice of area which one m
regard it to span, it is conceptually sounder not to consi
densities occurring on such areas, but the global topolog
the vortices such as their linking number with the Wils
loop. The likelihood of a particular linking number occurrin
is strongly influenced by the connectivity of the vortex ne
works. Correspondingly, there is a clear signal of the ph
transition in the vortex material distributions displayed
Figs. 2–4; these quantities can be used as alternative o
parameters for the transition. By contrast, the vortex de
ties seem to behave smoothly across the deconfinem
phase transition@8#.

Turning to the spatial string tension, there are tw
complementary ways to qualitatively account for its pers
tence in the deconfined phase of Yang-Mills theory. One w
already mentioned in Sec. IV B. If one considers a time sl
of the lattice universe, the associated vortex line configu

FIG. 7. Visualization of typical vortex configurations determi
ing the long-range physics of the confined and deconfined phas
Yang-Mills theory. Note that this is not a depiction of particul
configurations found in lattice experiments; rather, it is the autho
interpretation of the measurements shown in Figs. 2–6 in term
typical configurations dominating the Yang-Mills functional int
gral in the confined and deconfined phases. Shown are space
of the lattice universe obtained by holding thez-coordinate fixed.
Slicing the two-dimensional vortex surfaces present in four spa
time dimensions yields one-dimensional loop configurations suc
depicted.
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DECONFINEMENT IN SU~2! YANG-MILLS THEORY AS . . . PHYSICAL REVIEW D 61 054504
tions display no marked change of their clustering proper
across the deconfinement transition. Even in the deconfi
phase, vortex loops in time slices percolate. In view of this
seems plausible that intersection points of vortices with s
tial Wilson loops continue to occur sufficiently randomly
generate an area law. It should be noted, however, that
percolation is qualitatively different from the one observ
in the confined phase in that it only occurs in the three sp
dimensions, whereas the configurations are relatively wea
varying in the Euclidean time direction. In other words,
the deconfined phase, one finds a dimensionally reduced
colation phenomenon only visible either in the full fo
space-time dimensions or in time slices thereof.

On the other hand, if one considers a space slice of
lattice universe, the deconfined phase is characterized
large part by short vortex loops winding in the time dire
tion; cf. Fig. 7. However, in this topological setup, such sh
vortices can pierce the area spanned by a large spatial W
loop an odd number of times, even far from its perimet
This should be contrasted with the picture one obtains for
Polyakov loop correlator. There, shortness of vortices
plies that their intersection points with the plane contain
the Polyakov loop correlator occur in pairs less than a ma
mal distance apart. This leads to a perimeter law behavio
the Polyakov loop correlator, i.e. deconfinement. For spa
Wilson loops, this mechanism is inoperative due to the d
ferent topological setting. On the contrary, in view of Fig.
if one assumes the locations of the various winding vorti
to be uncorrelated, one obtains precisely the heuristic mo
of the Introduction, in which vortex intersection points a
distributed at random on the plane containing the spatial W
son loop, leading to an area law. Finite length vortex loo
thus do not contradict the existence of aspatial string ten-
sion.

Of course, there is no reason to expect the locations of
winding vortices to be completely uncorrelated in the hig
temperature Yang-Mills ensemble. In fact, comparing
values for the spatial string tensionks from @30# and the
relevant densityrs of vortex intersection points on plane
extending in two spatial directions@8#, the ratio ks /rs
reaches valuesks /rs'3 at T'2TC . This should be con-
trasted with the valuek52r obtained in the model of ran
dom intersection points discussed in the Introduction. If o
further takes into account that a sizable part ofrs is still
furnished by non-winding vortex loops~cf. Fig. 6!, then one
should actually use the densityrs8,rs corresponding to
winding vortices only in the above consideration. This yie
an even larger ratioks /rs8 . Therefore, the winding vortice
in the deconfined phase seem to be subject to sizable c
lations.

Both of the above complementary mechanisms genera
the spatial string tension in the deconfined phase are qua
tively distinct from the mechanism of confinement belo
TC . In the space-slice picture, this is obvious; a new clas
configurations, namely short vortex loops winding in the E
clidean time direction, induces the spatial string tensi
However, as already indicated further above, also in
time-slice picture, the observed percolation is qualitativ
different from the one in the confined phase in that it
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dimensionally reduced. This qualitatively different origin
the spatial string tension may provide a natural explana
for the novel behavior detected in Sec. III for spatial Creu
ratios at temperatures well inside the deconfined regi
namely, their rise as a function of the size of the Wils
loops from which they are extracted~as opposed to the pre
cocious scaling observed at lower temperatures!. However,
the detailed connection between the abovementioned m
fied dynamics in the deconfined phase and the signal see
the measurements of spatial Creutz ratios remains uncle

While the relevant characteristics of the vortex configu
tions in the different regimes were described in detail in t
work, the present understanding of the underlying dynam
in the vortex picture is still tenuous. There are, howev
indications that the deconfining percolation transition can
understood in terms of simple entropy considerations.
creasing the temperature implies shortening the~Euclidean!
time direction of the~lattice! universe. This means that th
number of possible percolating vortex configurations d
creases simply due to the reduction in space-time volum1

At the same time as the number of possible percolating v
tex clusters is reduced, the number of available short vo
configurations is enhanced by the emergence of a new c
of short vortices at finite temperature, namely the vortic
winding in the time direction. In view of this, it seems pla
sible that a transition to a non-percolating phase is facilita
as the temperature is raised.

There are two pieces of evidence supporting this expla
tion, one of which was already given above. Namely, t
deconfined phase indeed contains a large proportion of s
winding vortices; cf. Fig. 6. More than half of the vorte
material is transferred to the newly available class of sh
winding vortices in the deconfined phase. The second p
of evidence is related to the behavior of stiff random surfa
in four space-time dimensions; some of the authors plan
report on their Monte Carlo investigation of these objects
an upcoming publication@31#. The model assumes that th
vortices are random surfaces associated with a certain ac
cost per unit area and a penalty for curvature of the vor
surface. By construction, evaluating the partition function
this model simply corresponds to counting the available v
tex configurations under certain constraints imposed by
action; namely, the action cost per surface area effectiv
imposes a certain mean density of vortices, while the cur
ture penalty imposes an ultraviolet cutoff on the fluctuatio
of the vortex surfaces. Beyond this, no further dynami

1For example, a vortex surface extending into two space dir
tions has a greatly reduced freedom of transverse fluctuation
the time direction. Note that if one thinks of such a fluctuatin
fuzzy thin vortex surface in terms of a thick envelope, this amou
to stating that the thick vortex extending into two space directio
simply does not fit into the space-time manifold anymore. To
certain extent, the difference between these two~thin and thick
vortex! pictures is semantic. To state that a thick vortex does no
into the space-time manifold perpendicular to the time direct
amounts to nothing but the statement that the number of poss
configurations of this type has been reduced~to zero measure!.
4-9
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information enters. It turns out that already this simple mo
generates a percolation phase transition analogous to the
observed here for the center vortices of Yang-Mills theo
This suggests that the deconfining percolation transition
center-projected Yang-Mills theory can be understood
similarly simple terms, without any need for detailed a
sumptions about the form of the full center vortex effecti
action.
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