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Effective functional form of Regge trajectories

M. M. Brisudová,* L. Burakovsky,† and T. Goldman‡
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We present theoretical arguments and strong phenomenological evidence that hadronic Regge trajectories
are essentially nonlinear and can be well approximated, for phenomenological purposes, by a specific square-
root form.

PACS number~s!: 12.40.Nn, 12.39.Ki, 12.40.Yx
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I. INTRODUCTION

It is well known that the hadrons composed of light@n
[(u,d),s# quarks populate approximately linear Regge t
jectories; i.e., the orbital momentuml of the state is propor-
tional to its mass:l 5a8M2( l )1a(0), where the slopea8
depends weakly on the flavor content of the states lying
the corresponding trajectory. Therefore, knowledge of Re
slopes and intercepts is very useful for spectral purpo
Since knowledge of Regge trajectories in the scattering
gion (t,0) is also useful for many nonspectral purpos
e.g., in the recombination and fragmentation models, Re
trajectories become a valuable description of hadron dyn
ics, perhaps generally more important than the mass of
particular state.

In the Veneziano model for scattering amplitudes@1#
there are infinitely many excitations populating linear Reg
trajectories. The same picture of linear trajectories ari
from a linear confining potential@2# and the string model o
hadrons@3#.

However, the realistic Regge trajectories extracted fr
data arenonlinear.Indeed, the straight line which crosses t
r andr3 squared masses corresponds to an interceptar(0)
50.48, whereas the physical intercept is located at 0.55
discussed below. The nucleon Regge trajectory, as extra
from thep1p backward scattering data, is@4#

aN~ t !520.410.9t1 1
2 0.25t2, ~1!

and contains positive curvature. Recent UA8 analysis of
inclusive differential cross sections for the single-diffracti
reactions pp̄→pX, pp̄→Xp̄ at As5630 GeV reveals a
similar curvature of the Pomeron trajectory@5#:

aP~ t !51.1010.25t1 1
2 ~0.1660.02!t2. ~2!

An essentially nonlineara2 trajectory was extracted in Re
@6# for the processp2p→hn.

In addition to being disfavored by these experiments,
ear trajectories also lead to problems in theory. Linear tra
tories violate the Cerulus-Martin fixed angle scatteri
bound@7#. ~The so-called ‘‘square-root’’ trajectory, used e
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tensively in this paper for spectroscopic purposes, satur
this bound@8#.! Further, they violate the Froissart bound,
the following sense: The consequences of the strong du
between the saturation of theS-matrix by ~i! narrow reso-
nances@9# and ~ii ! Regge asymptotic behavior@10# in the
S-matrix formulation of statistical mechanics by Dashen, M
and Bernstein@11# were studied in@12#. There it was shown
that in order that the total cross section satisfy the Frois
bound @13#, s tot(s)<A ln2s, A5const, the density of reso
nances in the elastic amplitude should decrease with ene
typically as;1/E @12#. @A decreasing density of resonanc
is a typical feature of dual amplitudes with Mandelstam a
lyticity ~DAMA ! @14#.# A linear trajectory violates the re
quirement of a decreasing density of resonances~for a linear
trajectory, the density of resonances grows as;E3 @15#!,
and therefore, violates the Froissart bound in this framewo

Linear trajectories arose in the context of the string mo
of hadrons. Modern approaches to string field theory may
able to resolve such inconsistency problems with unita
@16#. It might be conjectured, therefore, that their hadron
trajectories are not linear, either. Unfortunately, at pres
there is still a large gap between fundamental string theo
and hadron phenomenology. However, we wish to emp
size that we do not invoke fundamental string field theory
our arguments below. We refer to a classical string theory
a convenient mathematical tool for the representation
physical string-like objects, such as flux tubes, with the h
ristic inclusion of color-screening effects.

The idea of nonlinear Regge trajectories is not new. In
late 1960s, by introducing Regge cuts through the eiko
method, a number of authors have shown that the effec
trajectory for large momentum transfer (2t) goes likeA2t
@17#. Subsequent comprehensive analysis by Vasavada, c
bining both Regge poles and cuts, arrived at the effec
square-root trajectory in the entire complex angul
momentum plane@18#. The a(t);A2t trajectory was also
found by Gribov et al. @19# in a Pomeron-Reggeon fiel
theory. Other nonlinear forms have been also studied in
literature.

Once the nonlinearity of Regge trajectories is an est
lished fact, the determination of its actual form becomes
important issue. The main prupose of this paper is to arg
from both theory and phenomenology, that hadronic Re
trajectories are nonlinear and terminate. We start in Sec
with a model study of a heavy quark-antiquark system in
potential fitted to the results of an unquenched lattice Q
@20#, and show that its~parent! Regge trajectory is equally
©2000 The American Physical Society13-1
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well fitted by both limiting cases of nonlinear forms allowe
by dual amplitudes with Mandelstam analyticity~DAMA !
@21#. ~Thus, one can argue that all these nonlinear for
would fit the trajectory as well. The two limiting cases a
the so-called ‘‘square-root’’ trajectory and the ‘‘logarith
mic’’ trajectory.! To gain some understanding of this pec
liar observation, we turn to an analytic model which allow
us to recover an underlying potential from a known Reg
trajectory. It is a model of a classical massless string wit
variable tension~Sec. III!. Such a string might be a represe
tation of a color-screened flux tube.~We show that this
model is a relativistic generalization of a nonrelativistic r
with arbitrary potential, in the same sense as the us
Nambu-Goto string model is a generalization of a nonre
tivistic linear potential model.! We present the two potential
corresponding to the square-root and logarithmic trajector
respectively, and compare them with the unquenched la
QCD potential@22# used in the heavy quark model. The tw
models~Sec. II vs Sec. III! are very different, but since th
nonlinearity of Regge trajectories arises due to the flux t
breaking@20#, one can expect the samequalitativebehavior
in both heavy and light quark systems.

Sections II and III show that even though the two extre
nonlinear forms can both fit the bound states spectra, on
them, the square-root form, goes beyond the position of
few lowest lying poles. This is why we choose the squa
root form to fit and predict real-world spectra in Sec. IV.
should be noted that any nonlinear form bracketed by
square-root and logarithmic ones can be expected to
comparably good results for the lowest lying states, an
true test would be higher excited states~likely not yet ob-
served!.

With a few additional assumptions that are commented
as they are introduced, we obtain an excellent agreem
with data. This means that the Regge trajectories are ind
nonlinear, and well approximated by the square-root fo
We summarize and comment on some of the results at
end of Sec. IV. The last section contains our overall su
mary and conclusions.

II. HEAVY QUARKONIA MODEL

In a previous paper@20# we considered a Hamiltonia
model for heavy quarks which attempted to include the eff
of light pair creation, or, in other words, the breaking of t
flux tube stretched between the two heavy sources that in
tably occurs when the distance between the sources is s
ciently large. We have shown that consequently, Regge
jectories for the heavy quarkonia become nonlinear and t
real parts terminate. In this paper we use the model to g
insight about the specifics of the~nonlinear! form of had-
ronic Regge trajectories.

A meson consisting of two heavy quarks is well describ
in leading order by a nonrelativistic, spin-independe
Hamiltonian, viz.

H52
1

2m
“

21V~r !, ~3!
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wherem5M /2 is the reduced mass, withM55.2 GeV, and
V(r ) denotes a potential. We useM55.2 GeV, and a poten
tial fit to results of unquenched lattice QCD calculation f
infinitely heavy sources. We have argued that our simple
body calculation produces results qualitatively similar
coupled channel method, because it dynamically takes
account coupling to open channels, and that the two
proaches can be expected to differ significantly only fo
few states near the threshold@20#.

The screened static potential fitted to results of lattice c
culations is@22#

V~r !5S 2
a

r
1sr D 12e2mr

mr
, ~4!

where m215(0.960.2) fm5(4.5661.01) GeV21, As
5400 MeV anda50.2160.01. We obtain bottomonium
like spectra by diagonalizing the Hamiltonian~3! with the
potential ~4!. The number of bound states in the model
finite, and it decreases with increased screeningm. The num-
ber of bound states is the largest for the parent trajectory,
decreases by one unit for each consecutive daughter. Ano
important feature of the Regge trajectories in this mode
that they acquire curvature due to screening of the lin
potential. Since we are interested in how the screening
fects the form of the Regge trajectories~which would be
linear in the absence of screening!, for maximum reliability
of the numerical fits it is useful to consider the case o
Regge trajectory with the largest number of bound sta
Therefore, in what follows we concentrate on the parent
jectory for m2150.9 fm50.18 GeV21. The same conclu-
sions as those presented below hold for allm in the range
indicated by the fit to the lattice data@22#.

A meson trajectorya j ī (t), can be parametrized on th
whole physical sheet in the following form:

a j ī ~ t !5a j ī ~0!1g@Tj ī
n

2~Tj ī 2t !n#, 0<n<
1

2
. ~5!

~up to a power of logarithm!, assuming thata j ī (t) is an
analytic function having a physical cut fromt0 to `, it is
polynomially bounded on the whole physical sheet, and th
exists a finite limit of the trajectory phase asutu→` @23#.
Here1 g is the universal slope which nonlinear trajectori
must have in asymptopia@24#,

a~ t !;2g~2t !n, utu→`;

both g and the exponentn are flavor independent.a j ī (0)
<1, in accord with the Froissart bound. Note that forutu
!T, Eq. ~5! reduces to the~quasi!linear form

a j ī ~ t !5a j ī ~0!1ngTj ī
n21

t5a j ī ~0!1a j ī
8 ~0!t. ~6!

1Note that the choice of the signs in Eq.~5! is fixed by the re-
quirements thata(t) must be real ast→2`, and have positive
slope in the small-t region.
3-2
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EFFECTIVE FUNCTIONAL FORM OF REGGE TRAJECTORIES PHYSICAL REVIEW D61 054013
The subscriptsi , j indicate which of the parameters depe
on the quark content of the meson. In this section we d
the subscripts, since our model is applied here to
bottomonium-like system only.

We consider the value ofn restricted to lie between 0 an
1/2 ~ @25#, for details see Appendix A!. n50 should be un-
derstood as a limitn→0, gn fixed. In this limit, the differ-
ence of fractional powers reduces to a logarithm, viz.,

a~ t !5a~0!2~gn!logS 12
t

TD , gn5const. ~7!

Unlike a trajectory withnÞ0, the real part of the ‘‘logarith-
mic’’ trajectory does not freeze-out whent reachesT. The
real part continues to grow, the only change fort.T is that
the trajectory acquires a constant imaginary part.

The upper bound onn gives the so-called ‘‘square-root’
trajectory, viz.

a~ t !5a~0!1g@AT2AT2t#. ~8!

When t reachesT, the real part of the ‘‘square-root’’ trajec
tory stops growing, and there are no states with a hig
angular momentum thanl max5@a(T)#. The parameter T is
therefore the trajectory termination point.

Figure 1~a! shows the parent Regge trajectory for o
model together with our best fit of the ‘‘square-root’’ form

aA ~0!5221.1267.74,

gA 52.6860.97 @GeV21#,

TA 5127.6661.98 @GeV2#

x255.8631022. ~9!

Our best fit of the logarithmic form

a log~0!5210.8967.59,

~gn! log55.063.92,

Tlog 5130.7465.39 @GeV2#

x251.4531022 ~10!

is shown in Fig. 1~b!. In both cases, the large errors on t
extracted parameters reflect the fact that there are only 8
points for the trajectory.

The two fits are indistinguishable in the region of the
In our case, since weknow that in our model there is only a
finite number of bound states, the square-root form~which
terminates in general, and in our fit its termination point
near the termination of our bound-state data! is favored over
the logarithmic form~which does not terminate!. However,
in practice, when one has no means to recognize whethe
set of data is a part of a finite or an infinite ensemble, i
impossible to distinguish between the two forms based
fits to the bound state data.

In view of this, we extend our considerations on how
numerically determine the form of a Regge trajectory fro
05401
p
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.
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data. There is more information about Regge trajecto
than just the masses of the bound states. Total cross sec
can be related to the value of the relevant Regge trajector
the origin ~i.e., the intercept of the trajectory!. In the region
of negativet, the value ofa(t) can be determined from th
relevant differential cross sections. If there are reliable d
at large2 negativet in addition to bound states, it might b
possible to obtain a more stringent constraint on the form
trajectory by fitting both sets of data simulataneously, p
viding the form is universally valid for allt.

III. ANALYTIC MODEL

Our model calculation for heavy quarks revealed that
Regge trajectory formed by the bound states is certainly n
linear but can be equally well fitted by a square-root form
a logarithmic form.

In this section we try to shed some light on this obser
tion using analytic model for a massless string with varia

2Unfortunately, according to our numerical simulations, data
larger negativet values, and with greater measurement precisi
are both needed.

FIG. 1. The parent trajectory for the bottomonium in our mod
compared to„a… our best fit of the ‘‘square-root’’ form, and„b… our
best fit of the ‘‘logarithmic’’ form. The solid vertical line corre
sponds to the threshold of the quenched lattice potential, i.e., (M
1s/m)2; the solid horizontal line shows the maximuml for the
data set.
3-3
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M. M. BRISUDOVÁ, L. BURAKOVSKY, AND T. GOLDMAN PHYSICAL REVIEW D 61 054013
tension. The ends of the string can be massive. The mod
intended to mimic a flux tube stretched between two qua
and the varrying tension is to reflect possible dynamical
fects such as weekening of the flux tube due to pair creat

The particular merit of the model for our purposes is th
given the form of a Regge trajectory, we are able to reco
the form of underlying potential, in many cases in analy
form. We will show in this model why the two forms o
Regge trajectories~i.e. square-root and logarithmic! are both
likely to well approximate the Regge trajectory formed
the bound states of the unquenched lattice QCD potential~4!.

This section is organized as follows: first we review t
standard relativistic Nambu-Goto string with massive en
and show that in the nonrelativistic limit this model simp
corresponds to a rigid rod with a linear potential genera
between its massive ends. After introducing the generali
string model, we show that it corresponds in the nonrela
istic limit to a rigid rod with arbitrary potential. Details fo
the dynamics of the generalized string with massive en
such as derivation of expressions for its energy and orb
angular momentum, can be found in the Appendix B. T
key part of this section is devoted to the generalized str
with massless ends. Within this framework we find potenti
that lead to square-root and logarithmic trajectories, resp
tively. Since the dynamics of mesons~such as the termina
tion of Regge trajectories! is dominated by the behavior o
the flux tube, we claim that what we learn from the stri
with massless ends is qualitatively relevant to the case
massive quarks as well.

A. The Nambu-Goto string and the generalized string

The action of the standard relativistic Nambu-Goto str
with massive ends in the parametrizationt5t5x0 is written
as (s is the string tension! @3#

S52sE
t1

t2
dtE

0

p

dsAx82~12 ẋ2!1~ ẋx8!2

2 (
i 51,2

miE
t1

t2
dtA12 ẋi

2, ~11!

x[x5x~ t,s!, xi[x~ t,si !, i 51,2, s150, s25p,

where from now on the dot and the prime stand for the
rivative with respect tot ands, respectively, unless otherwis
specified.

To illuminate the physical meaning of this model, let
consider for the moment its nonrelativistic limit. In the no
relativistic limit, uẋ(t,s)u!1, uẋi u!1, and the action reduce
to @3#

S52sE
t1

t2
dtE

0

p

dsAx822 (
i 51,2

miE
t1

t2
dt1 (

i 51,2

mi

2 E
t1

t2
dtẋi

2 .

~12!

Integration overs gives the length of the string~under the
assumption that there are no singularities on the string!. The
variation of the first term in the nonrelativistic action, E
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~11!, with respect to the string coordinates leads to the
quirement on the string to have the form of a linear r
connecting the massive ends. The effective action that le
to the equations of motion of the massive ends is therefo

Se f f5E
t1

t2
dtS 2sux1~ t !2x2~ t !u1 (

i 51,2

miẋi
2

2 D . ~13!

Hence, in the nonrelativistic limit, the string generates a l
ear potential between its massive ends:V(ux12x2u)5sux1
2x2u.

Here we generalize the standard string formulation
scribed above to the case of an arbitrary potential betw
the string~strictly as an effective and convenient mathema
cal representation of a flux tube! massive ends. Such gene
alization is done by the modification of the standard, co
stant, string tension into an effective string tension which i
function of uxu, as follows:

Sgen52E
t1

t2
dtE

0

p

dss~ uxu!Ax82~12 ẋ2!1~ ẋx8!2

2 (
i 51,2

miE
t1

t2
dtA12 ẋi

2. ~14!

The action is similar to that of the standard Nambu-Go
string. In the nonrelativistic limit, however, in place of E
~13! one will now obtain

Sgen,e f f5E
t1

t2
dtS 2E

0

p

dss~ uxu!Ax821 (
i 51,2

miẋi
2

2 D
5E

t1

t2
dtS 2V~ ux12x2u!1 (

i 51,2

miẋi
2

2 D . ~15!

In contrast to the previous case of the standard string,
seen in the above relations that now

s~ uxu!5
dV~ uxu!

duxu
, ~16!

i.e., the effective string tension is the derivative of a poten
with respect to the distance. Obviously, in the case of a lin
potential, the effective string tension reduces to the stand
~constant! one.

Similarly to the standard case of a constant string tens
which represents the relativization inthe manner of Poinc´
of the nonrelativistic two-body problem with linear potenti
@26#, the generalized string can be considered as the rela
ization of a nonrelativistic two-body problem with an arb
trary potential. Details of the dynamics of the generaliz
string model are given in Appendix B.

B. Generalized massless string

Since we are interested in dynamical issues related to
properties of the flux tube, without a loss of generality it
sufficient for us to consider the case of a generalized st
with massless ends. This case is obviously more tracta
3-4
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EFFECTIVE FUNCTIONAL FORM OF REGGE TRAJECTORIES PHYSICAL REVIEW D61 054013
than the case with arbitrary massess, and nevertheless e
its the same qualitative features.

The energy and orbital momentum of the generaliz
massless string,m15m250, is given by

E52E
0

R drs~r!

A12v2r2
, J52E

0

Rdrs~r!vr2

A12v2r2
, ~17!

whereR51/v is half of the string length for a givenv. The
condition vR51 follows from, e.g., Eqs.~B14! with mi
→0.

By eliminating v from Eqs. ~17! one can obtainJ as a
function of E2, the Regge trajectory. It will be shown els
where@27# that it is possible to uniquely recover the pote
tial @V(r );*drs(r)# from the known analytic form of
Regge trajectory, for both massless and massive genera
strings ~as representations of flux tubes stretched betw
both massless and massive quarks, respectively!, and the
techniques of the corresponding inverse problem will be p
sented in detail. In this way, we have recovered the po
tials that correspond to both the square-root and logarith
Regge trajectories. For our present purposes, here we pr
only the final results.

1. Square-root trajectory

The potential@s,m5const, V(r)→s/2m as r→`, and
henceE→s/m]

V~r!5
s

pm
arctan~pmr!, ~18!

for which

s~r!5
dV~r!

dr
5

s

11~pmr!2
, ~19!

leads, via Eq.~17!, to

E5
ps

Av21p2m2
, J5

s

pm2 S 12
v

Av21p2m2D .

~20!

Eliminating v from the above relations gives

J5
1

pm
„s/m2A~s/m!22E2

…, ~21!

i.e., the square-root Regge trajectory. ForE!s/m, it re-
duces to an~approximate! linear trajectory,J.E2/(2ps).

2. Logarithmic trajectory

The potential

V~r!5
s

2pm S 2 arctan~2pmr!2
log@11~2pmr!2#

2pmr D ,

~22!

for which
05401
ib-
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s~r!5s
log@11~2pmr!2#

~2pmr!2
, ~23!

leads to

E5
s

2pm2
~Av214p2m22v!,

J5
s

2pm2
log

v1Av214p2m2

2v
, ~24!

from which eliminatingv @viz., v5p(s22m2E2)/(sE)]
gives

J52
s

2pm2
logS 12

E2

~s/m!2D , ~25!

i.e., the logarithmic Regge trajectory. ForE!s/m, it again
reduces to an~approximate! linear form,J.E2/(2ps).

Figure 2 shows both potentials together with the confin
part of the screened lattice QCD potential that we used in
heavy quark model in the previous section. All potentials
normalized to the same asymptotic value. The vertical lin
show the region of the distancer which is relevant for the
bound states.

All three potentials are very close in the region of bou
state physics. Therefore, one can conclude that they wo
lead to similar Regge trajectories as far as the bound st
not close to the trajectory thresholds are concerned. O
could further speculate that since the lattice potential
steeper than the square-root potential~which in turn, is
steeper than the logarithmic potential! in asymptotia, it is
reasonable to expect that the bound states of the lattice
tential terminate at a lowerl than the square-root trajectory
and that the square-root trajectory approximates the lat
potential trajectory better for states near the trajectory thre
old than the logarithmic trajectory.~Recall that the real par
of the logarithmic trajectory does not terminate.!

FIG. 2. Potentials which in our analytical model lead to log
rithmic and square-root Regge trajectories, respectively, comp
to the unquenched lattice QCD potential used in our hea
quarkonia calculation.
3-5
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M. M. BRISUDOVÁ, L. BURAKOVSKY, AND T. GOLDMAN PHYSICAL REVIEW D 61 054013
Combining the conclusions of the analytic model for t
generalized string with those of the heavy quark model of
previous section, we conclude that even though both non
ear forms considered may appear to be a good approxima
to QCD, the square-root form is likely to be more realist
Therefore, we use the square-root form for phenomenol
cal purposes.

IV. TRAJECTORY PARAMETERS AND SPECTROSCOPY

In this section we determine, assuming that Regge tra
tories are of the form~8!, trajectories thresholds and inte
cepts using various experimental information. Typically,
use masses of a few known lowest lying states, and in
case of ther trajectory we also use the value of the interce
~which is known and well-established! found from exchange
processes. The value ofg ~the universal asymptotic slope! is
fit to ther trajectory, and then taken as universal for all oth
trajectories.

Whenever possible, we try to use as inputs states tha
believed to be pure quark-antiquark states with definite
vors. For example, we do not use the masses of the obse
f, f or h(h8) states to find the parameters ofss̄ trajectory
because the physical states are mixtures ofss̄ with the light
quark-antiquark components.

In some cases, e.g. for tensor mesons and axial-ve
mesons, there are not enough data to determine the pa
eters. We are forced to make aditional assumptions. In
ticular, we assume that the thresholds of parity partner
jectories coincide. We comment further on this assumpt
where it is introduced in Sec. IV B. Here we wish to menti
that our additional assumptions are justifieda posteriori by
our excellent results.

The approach has more predictive power than one wo
naively expect. This is because the parameters for diffe
flavors are related by

~i! additivity of intercepts,

a i ī ~0!1a j j̄ ~0!52a j ī ~0!, ~26!

wherei , j ( ī , j̄ ) refer to the quark~antiquark! flavor,3 and
~ii ! additivity of inverse slopes near the origin,

1

a i ī
8

1
1

a j j̄
8

5
2

a j ī
8

, ~27!

which is favored over another constraint suggested in
literature, factorization of slopes,a i ī

8 a j j̄
8 5(a j ī

8 )2, by the
heavy quark limit@28#. These two additivity requirement
are independent of which specific form is assumed for
trajectories.

Once the parameters of the square-root trajectories
known, the first obvious application is meson spectrosco
We calculate masses of a few excited states lying on eac

3This additivity is a firmly established theoretical constraint
Regge trajectories~for an extensive list of references see@28#!.
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the trajectories under consideration, and compare with
perimental data from Ref.@29#. Where there are no dat
available, our results are predictions.

We start with vector meson trajectories, and then cons
tensor meson, pseudoscalar meson, and finally, axial-ve
meson trajectories. The section concludes with a brief d
cussion of the results.

A. Vector mesons

We start with ther trajectory. The intercept of this tra
jectory is well established. From the behavior of the diffe
ential cross section of the processp2p→p0n the intercept
ar(0) has been extracted to be 0.58@30#, 0.5660.01 @31#,
0.5660.02@32#, 0.53@33#. Extensive analysis of this proces
by Höhler et al. @34# leads toar(0)50.55 @35#. From the
difference of the total cross sections ofp1p andp2p scat-
tering ar(0) has been inferred to be 0.5760.01 @36#, 0.55
60.03 @37#. Bouquet finds from the dual topological unita
rization @38# 0.51<ar(0)<0.54. All of the above values ar
consistent with

ar~0!50.55, ~28!

in agreement with the value of ther trajectory intercept ex-
tracted by Donnachie and Landshoff from the analysis ofpp

andp̄p scattering data in a simple pole exchange model@39#.
We therefore take the value of the intercept, Eq.~28! as one
of the constraints on the form of ther trajectory. Two more
constraints that are needed are provided by the mass and
of r and r3, i.e., ~i! ar(M r

2)51, ~ii ! ar(M r3

2 )53, where

M r5769.060.9 MeV andM r3
51688.862.1 MeV @29#.

Inserting these values into the functional form~8!, we
extract the parameter values

g53.6560.05 GeV21, ATr52.4660.03 GeV.
~29!

It is interesting to note that the values of parameters we
based on spectroscopy and the known intercept are in ex
lent agreement with

g53.7260.30 GeV21, ATr52.5060.10 GeV,
~30!

extracted in Ref.@40# for a similar form of ther trajectory
from the analysis ofpN charge-exchange scattering data4

Earlier analysis of Ref.@41# found ATr52.460.4 GeV.
The parameters of theK* trajectory are obtained by usin

aK* (MK*
2 )51 with MK* 05896.160.3 MeV and

aK* (MK
3*

2
)53 with MK

3*
05177667 MeV @29#, and taking

the value ofg found fromr spectra as a universal slope
asymptopia. This yields

4The r trajectory adopted in@40# contains an additional term
20.14A4Mp

2 2t, to take into account nonzero resonance widt
which reduces the planar interceptar(0) down to 0.51.
3-6
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TABLE I. Parameters of the vector meson trajectories of the form~8!. The intercept of ther trajectory
was taken as an input.

r K* f

a(0) 0.55 0.41460.006 0.2760.01
AT, GeV 2.4660.03 2.5860.03 2.7060.07

D* Ds* J/c
a(0) 21.0260.05 21.1660.05 22.6060.10
AT, GeV 3.9160.02 4.0360.04 5.3660.05

B* Bs* Bc* Y

a(0) 27.1360.17 27.2760.17 28.7060.18 214.8160.35
AT, GeV 7.4860.02 7.6060.04 8.9360.03 12.5060.02
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ATK* 52.5860.03 GeV.

aK* ~0!50.41460.006. ~31!

The value of the intercept is in an excellent agreement w
the results of the analysis of hypercharge exchange proce
p1p→K1S1 andK2p→p2S1 @42#.

Taking the parameters of ther and K* trajectories as
known, those for thef trajectory may be obtained from th
requirements of additivity of inverse slopes and intercep
Eqs.~26!,~27!:

af~0!50.2560.02,

ATf52.5960.11 GeV. ~32!

Similarly, one can obtain the parameters of trajectories
the states containingc- andb-quarks, using the value of th
universal slopeg found fromr-trajectory and masses of th
corresponding states. In particular, we use masses ofD* ,
J/c, B* and Y as inputs. The remaining trajectories a
determined from the requirements of additivity of inver
slopes and of additivity of intercepts, Eqs.~26!, ~27!. The
parameters of these vector meson trajectories are sum
rized in Table I.

Using the parameters shown in Table I, we calcul
masses of the spin-1, spin-3 and spin-5 states lying on th
05401
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trajectories. Our results are compared with data from@29# in
Table II. In this, and subsequent Tables IV, VI, VIII, th
values used as input for our analysis are shown in boldfa
The masses of the states for which there are no data avai
should be considered as our predictions.

B. Tensor meson trajectories

Tensor meson trajectories are parity partners of the ve
meson trajectories. In a nonrelativistic theory, tensor me
trajectories are degenerate with vector meson trajectorie
a field theory, both acquire different corrections to the int
cept, but they can still be expected nearly degenerate in
bound state region. From the form of the trajectory, Eq.~8!,
and since the intercept is in practice much smaller than
other terms in Eq.~8!, it is clear that trajectories can b
near-degenerate in the bound-state region even if their in
cepts differ by a large percentage, but not if their thresho
are very different. For this reason, and to reduce the num
of free parameters, weassumethat the thresholds of tenso
meson trajectories are the same as the thresholds of the
tor meson ones.

Our assumption is supported by analysis of the proces
p1p→K1S1 andK2p→p2S1 @42#. Most of the analyzed
experiments show the same slope at the origin forK* and
K2* trajectories. In our formalism, this translates to equ
thresholds.
meson
TABLE II. Comparison of the masses of the spin-1, spin-3 and spin-5 states given by ten vector
trajectories of the form~8! with data. All masses are in MeV.

J51 J53 J55
This work Ref.@29# This work Ref.@29# This work Ref.@29#

ar(t) 769.060.9 769.060.9 1688.862.1 1688.862.1 2124619
aK* (t) 896.160.3 896.160.3 177667 177667 2215621
af(t) 1015617 1019.4 1863631 185467 2305642
aD* (t) 2006.760.5 2006.760.5 2721623 3191622
aD

s*
(t) 2102629 2106.662.162.7 2808628 3279630

aJ/c(t) 3096.9 3096.9 3753641 4240639
aB* (t) 5324.961.8 5324.961.8 5814651 6217646
aB

s*
(t) 5411658 5416.363.3 5901653 6306649

aB
c*
(t) 6356680 6853672 7276665

aY(t) 9460.460.2 9460.460.2 9906691 10304684
3-7
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To further test this assumption, we first fit the threshold
the K2* trajectory which is the only one with more than on
state.~A recent measurement of thea4 mass@43,44# is four
standard deviations below the previous value@29#, see dis-
cussion in the text below.! The parameters of theK2* trajec-
tory are fixed by usingg determined forr trajectory,
aK

2*
(MK

2*
2

)52 with MK
2*

051432.461.0 MeV and

aK
2*
(MK

4*
2

)52 with MK
4*

05204569 MeV @29#. The calcu-

lation yields

ATK
2*
52.6460.03 GeV. ~33!

The value of theK2* trajectory threshold is consistent wit
that of theK* trajectory given in Table I, supporting ou
assumption. Moreover, it is in excellent agreement with
values for the slope shown in Ref.@42#.

We therefore conclude that our assumption that
thresholds of the parity partners are the same is plaus
Under this simplifying assumption only one state on ea
trajectory is needed to completely fix the parameters.
choose to fita2 , K2* , xc2 and xb2 trajectories using the
masses of the corresponding lowest lying state. The rem
ing trajectories are determined using the addititivity requi
ments. Parameters found in this way are presented in T
III.

As before, we use the knowledge of Regge trajectories
spectroscopy purposes. Our results are compared with
from @29# in Table IV. The masses of the states for whi

TABLE III. Parameters of tensor meson trajectories of the fo
~8!.

a2 K2* f 28

a(0) 0.6060.03 0.4260.03 0.2260.07
D2* Ds2* xc2(1P)

a(0) 21.1660.05 21.3560.05 22.9360.09
B2* Bs2* Bc2* xb2(1P)

a(0) 27.6260.13 27.8160.13 29.3960.14 215.8560.26
05401
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there are no data available should again be considered
predictions.

Note that all the masses agree very well for the availa
data, except forMa4

. With respect to this, we wish to men
tion that recent analyses by the VES Collaboration of
reactions p2Be→p12p22p0Be @43# and p2Be
→p12p22Be @44# reveal the mass of thea4 resonance as
seen in thea4→vr and a4→ f 2p decays, respectively
194468650 MeV @43# and 1950620 MeV @44#. Our value
in Table IV is in excellent agreement with these latest m
surements.

According to our fitted square-root form for thea2 trajec-
tory, the last state below threshold isJ58. This conclusion
is very sensitive to the functional form assumed, even tho
the threshold value itself is not~see Sec. II!. Generally, as the
mass approaches the threshold, we expect to find larger
crepancies between the observed states and prediction
any specific form of trajectory, Eq.~5!. Nonetheless, the dis
crepancy for the next-to-last,J56 state appears to be les
than 10%. Note also that ourK4* prediction appears to be
below the data, consistent witha4 and a6 deviations, sug-
gesting a possible systematic effect. This raises the poss
ity that the growth of the square-root form of trajectory ne
the termination point is too rapid and that the true trajector
are somewhat flatter in this region. Thus, it is possible t
the J56 state is actually the last state on these trajector
This point of view is further supported by the large width
thea6, as would be expected for a state near the termina
point. Hence we also expect theK6* to be similarly broad.

C. Pseudoscalar meson trajectories

Here we calculate the parameters of the pseudoscalar
son trajectories. We start with the pion trajectory and fix
intercept and threshold by using the masses of the two low
lying states,Mp05135 MeV andMp2

5167768 MeV @29#,

in relationsap(Mp
2 )50, a_p(Mp2

2 )52, and g from Eq.

~29!.
Similarly, the intercept and the threshold of th

K-trajectory are determined using the massses ofK andK2.
meson
TABLE IV. Comparison of the masses of the spin-2, spin-4 and spin-6 states given by ten tensor
trajectories of the form~8! with data. All masses are in MeV. See the text regarding thea4 anda6 masses.

J52 J54 J56
This work Ref.@29# This work Ref.@29# This work Ref.@29#

aa2
(t) 1318.160.6 1318.160.6 1927618 2020616 2256621 24506130

aK
2*
(t) 1432.461.3 1432.461.3 2026620 204569 2357624

a f
28
(t) 1544637 152565 2124640 2457648

aD
2*
(t) 2454623 2458.962.0 3010622 3390621

aD
s2*

(t) 2560627 2573.561.7 3109629 3489631
axc2(1P)(t) 3556.260.1 3556.260.1 4092639 4498638
aB

2*
(t) 5698645 5698612 6122642 6472639

aB
s2*

(t) 5797647 6220645 6570643
aB

c2*
(t) 6780652 7213650 7582649

axb2(1P)(t) 9913.260.6 9913.260.6 10310672 10665668
3-8
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TABLE V. Parameters of the pseudoscalar meson trajectories of the form~8!. ~The parameters for theK

trajectory were found using the mass ofK2 from @29#. If we instead use a mass of the correspondingpure ns̄
state as found in Ref.@46#, i.e., MK2

51762618 GeV, the parameters change slightly: the interce
20.15360.003, and the threshold 2.9360.07 GeV.!

p K hs

a(0) 20.011860.0001 20.15160.001 20.29160.003
AT, GeV 2.8260.05 2.9660.05 3.1060.11

D Ds hc

a(0) 21.6110560.00005 21.75160.001 23.210360.0001
AT, GeV 4.1660.03 4.2960.06 5.4960.02

B Bs Bc hc

a(0) 27.4160.17 27.5460.17 9.0060.17 214.8060.34
AT, GeV 7.8960.16 8.0160.16 9.2460.12 12.9860.24
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The parameters of charmed mesons trajectories are fo
using the masses ofD and hc , utilizing the additivity re-
quirements, Eqs.~26!,~27!, and the parameters of the ligh
mesons (p-trajectory! found above.

If one tries to procceed similarly in the case of meso
containing theb quark, and use the only two experimenta
known masses as inputs~the mass ofB andBs) in conjunc-
tion with the parameters ofp- and K-trajectory, the error
estimates on the extracted values exceed two hundred
cent. The results turn out to be highly unstable with resp
to the threshold of thep-trajectory. This is a peculiar conse
quence of the pion intercept being close to zero, andJ50 of
the lowest lying state.

Conversely, this observation allows us to convert
problem into an additional self-consistency check. We
theb-quark meson spectra to extract information about thp
trajectory. To do that, an additional input is needed. We
the mass ofhb given in Ref.@45#, and fit the value of the
pion threshold in addition to the parameters ofb-containing
mesons. Recall that the light meson parameters affect
05401
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heavy quark parameters only through the additivity requ
ments. Since the additivity requirements are well establish
such a self-consistency check is quite nontrivial.

The parameters of the pseudoscalar trajectories that
obtain are shown in Table V. The parameters of t
p-trajectory given in the table come from fitting the pio
spectra. From the bottom spectra we obtain the follow
value of the pion threshold:

ATp52.7960.40 GeV. ~34!

Note the agreement with the value given in Table V.
Our results for pseudoscalar spectroscopy are comp

with data from@29# in Table VI. The masses of the states f
which there are no data available should once again be
sidered our predictions.

D. Axial-vector meson trajectories

Finally, we calculate the parameters of the axial-vec
trajectories. These have the same parity and spin as the p
partners of the pseudoscalar trajectories—the pseudove
oscalar
TABLE VI. Comparison of the masses of the spin-0, spin-2 and spin-4 states given by ten pseud
meson trajectories of the form~8! with data. ~We take the error estimate on thehb mass as 10% of the
calculated splitting, in agreement with Fig. 2 of the second paper of Ref.@45#.! All masses are in MeV.

J50 J52 J54
This work Ref.@29# This work Ref.@29# This work Ref.@29#

ap(t) 135 135 167768 167768 2237626
aK(t) 493.7 493.7 177368 177368 2333627
ahs

698614 1869638 1854620 2429654
aD(t) 1864.161.0 1864.161.0 2692619 3228622
aDs

(t) 1971619 1969.061.4 2786626 3323632
ahc

(t) 2979.862.1 2979.862.1 3692623 4217625
aB(t) 5279.861.6 5279.861.6 5830689 6286693
aBs

(t) 5369.662.4 5369.662.4 5920689 6376693
aBc

(t) 6283679 6826679 7287680
ahb

(t) 942463.6 99146148 103536150
3-9
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trajectories.5 The available data are insufficient to fix bo
thresholds and intercepts of axial-vector trajectories. We
sume, therefore, in analogy with the tensor vs vector me
trajectories, that the thresholds of the parity partners co
cide, and further, that the thresholds do not depend on ch
conjugation in accordance with theC-invariance of QCD.
Under this assumption, we use the calculated threshold
pseudoscalar trajectories and fit only the intercepts of
axial-vector trajectories using the masses of a few low
lying states and/or the additivity requirements, E
~26!,~27!.

In particular, we use masses ofa1 , Ds1 , xc1(1P) and
xb1(1P). Note, that to find the parameters of trajectories
mesons containing strangeness, we use in the absence o
for K1 the mass ofDs rather thanf 18 . This is because thef 18

is not a puress̄ state, and therefore the value of the interce
extracted from the physical state could deviate significan
from the value corresponding to a puress̄ trajectory. ~An
additional complication arises, in principle, for axial meso
since the physicalqq̄8 states are mixtures of axial-vector an
pseudovector components, because charge conjugation i
well-defined for other thanqq̄ states. Note that for all state
other than axial-vector mesons, the corresponding state
oppositeC is exotic, so that the problem is avoided. Of t
inputs we use, this is relevant only toDs1. We assume tha
the masses ofDs1A and Ds1B are close, because the hea

TABLE VII. Parameters of axial-vector meson trajectories
the form ~8!.

a1 K1 f 18

a(0) 20.0360.07 20.2260.08 20.4260.15
D1 Ds1 xc1(1P)

a(0) 21.8360.05 22.0360.06 23.6360.07
B1* Bs1 Bc1 xb1(1P)

a(0) 27.8760.27 28.0660.28 29.6760.27 215.7060.54
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quark content implies that the hyperfine mass splitting
small.!

As before,g is taken as universal, and the value fou
from the r trajectory is used. The parameters we obtain
this way are in Table VII.

Our results for masses of the states lying on the resul
trajectories are compared with data from@29# in Table VIII.
The masses of the states for which there are no data avai
should, as before, be considered as our predictions.

E. Discussion of the results

Here we comment on the results presented in this sect

1. Intercepts

Light-quark (nn̄) trajectories:
~i! The intercept of the linear trajectory that passes througr
andr3 , a(t)50.4810.88t, should be reduced for thea2 if
thea2 were on a parallel linear trajectory: 0.4710.88t. Even
lower value for the intercept~and a different value of the
slope!, 0.3010.98t, is needed ifa2 and a4 masses were to
lie on the same linear trajectory~the latter being 1.944 MeV,
in accord with VES’s recent measurements@43#!. ~Note the
discrepancy between the two sets of thea2 trajectory param-
eters.! In our case, due to nonlinearity the intercept increa
to 0.55 forr and 0.6060.03 fora2. The data onpp, p̄p @47#
undoubtedly show that the tensor intercept is larger than
vector one~although the numerical errors of these data p
vent us from using them as input!. Therefore, data disfavor a
linear trajectory.

~ii ! The valueaa2
(0)50.6060.03 that we obtain here is in

agreement with the recent reanalysis by Cudell, Kang
Kim @47# of thepp andp̄p scattering data in the simple pol
exchange model@39# ar(0)50.5060.07, aa2

(0)50.66

60.08. In this analysis the pairs of trajectories,r andv, and
a2 and f 2, are taken to be degenerate. However, sin
M (v).M (r) and M ( f 2).M (a2), the intercepts of these
sates.
TABLE VIII. Comparison of the masses of the spin-1, spin-3 and spin-5 states given by ten axial-vector
meson trajectories of the form~8! with data. All masses are in MeV.

J51 J53 J55
This work Ref.@29# This work Ref.@29# This work Ref.@29#

aa1
(t) 1230640 1230640 2000631 2427632

aK1A
(t) 1368646 2109633 2535633

a f 1
(t) 1501678 151865 2218662 2643667

aD1
(t) 2418626 2422.261.8 3042625 3473624

aDs1
(t) 2535.460.3 2535.460.3 3150634 3580637

axc1(1P)(t) 3510.560.1 3510.560.1 4080630 4513628
aB1

(t) 56926104 61716102 65706104
aBs1

(t) 57966105 62736104 66716105
aBc1

(t) 6740695 7215692 7620690
axb1(1P)(t) 9891.960.7 9891.960.7 103336173 107276172

5We use the usual Regge terminology for parity partners, which is not the same as normally used in lattice QCD/chiral conden
3-10
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EFFECTIVE FUNCTIONAL FORM OF REGGE TRAJECTORIES PHYSICAL REVIEW D61 054013
trajectories should actually satisfyav(0),ar(0) and
aa2

(0),a f 2
(0). Hence, the value ofar(0) should be larger

than the average ofar(0) andav(0), i.e., 0.50. Similarly,
the value ofaa2

(0) should be less than 0.66.
Our values for the intercepts agree well with their valu

within the errors, moreover, they satisfy the above descri
inequalities.
~iii ! Our value aa1

(0)520.0360.07 is consistent with

aa1
(0)520.160.2 found in the analysis of the reactio

p2p→p2p1n @48#.
Trajectories containing strangeness:

The values ofK* andK2* intercepts are in excellent agre
ment with the analysis of hypercharge exchange proce
p1p→K1S1 andK2p→p2S1 @42#.

Trajectories containing a heavy quark:
~i! The calculated intercepts of the heavy quark trajecto
are negative, and the absolute value of an intercept incre
with the increasing mass of the heavy quark. This featur
confirmed by means of the operator expansion of QCD
dispersion relations for heavy quark four-current correlat
functions by Oganesyan and Khodzhamiryan@49#. They also
find the estimatesaJ/c(0);2(223), aY(0),210. Our
corresponding results,aJ/c(0)522.6060.1 and aY(0)5
214.8160.35, agree very well with these estimates p
vided by QCD.
~ii ! Our predictions for the intercepts of the charmed me
trajectories may be confronted with the existing data. For
reaction

p2A→D~D* !X

the differential cross section, as given in the triple-Reg
limit @50#, is

d2s

dxFdp'
2

5A~12uxFu!ne2bp'
2
, A,b5const,

wherexF andp' are the Feynman-x and transverse momen
tum variables, respectively, andn5122a(0), with a(0)
being the intercept of the trajectory exchanged in
t-channel of the reaction. TheD meson production proceed
via the exchange of bothD* andD2* trajectories. Hence, on
the basis of our results for the corresponding intercepts,
may expectn.3.260.2 for theD-production. Inp2H inter-
actions at 360 GeV the NA27 experiment by the LEBC-EH
Collaboration@51# finds n53.8060.63. For 350 GeVp2

beam on emulsion the WA75 Collaboration@52# finds n
53.560.5. Inp2Cu interactions at 230 GeV the ACCMO
Collaboration @53# finds n53.2360.29 for leading charm
production~andn54.3460.35 for nonleading, andn53.74
60.23 for the combined data!. For 340 GeVp2 beam on Si,
Cu and W targets the WA82 Collaboration@54# finds n
52.960.3. Finally, for 250 GeVp2 beam on Be, Al, Cu
and W targets the E769 Collaboration@55# finds n53.2
60.5 on Al target, andn53.760.4 for leadingD production
on all targets~and n54.060.4 for nonleading, andn53.9
60.3 for the combined data!.
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Since theD* meson production can proceed via the e
changes of all four,D* , D2* , D andD1, trajectories calcu-
lated here, definite predictions forn are more complicated
than in the previous case. Of course, quantitativelyn should
be larger in this case, because the intercepts ofD and D1

trajectories are larger in magnitude than those ofD* andD2*
trajectories. In fact, in the experiment mentioned above
E769 collaboration@56# finds n53.560.3. Earlier measure
ments in the NA27 experiment@51# producedn54.321.5

11.8.
The valueaD* (0)521.0260.05'21 obtained in our

analysis also supports the use of the (12uxFu)3 production
model which was claimed to describe the available data
sonably well@57#.

2. Spectroscopy

~i! Masses of ss¯states.Our predictions for the masses o

puress̄ states cannot be directly compared to the values
physical states quoted by@29#, because the physical state
emerge upon mixing with the nonstrange isoscalar state
the corresponding meson multiplets. Comparison should

therefore made with the puress̄ states calculated from bot

the established physicalnn̄ andss̄states. Puress̄states were
calculated in@58# with the help of Schwinger’s quartic mas
formula, for both linear and quadratic masses, in essen
agreement in both cases and consistent with the quark m
motivated linear mass relationM (nn̄)1M (ss̄)52M (sn̄).
Here we quote the masses of the puress̄ states found in@58#
~specifically, from Schwinger’s formula for quadrat
masses! for vector J51,3, tensorJ52 and pseudoscalarJ
52 trajectory multiplets, and calculate the puress̄ mass for
the axial-vectorJ51 multiplet as well~all masses are given
in MeV!. We find that these values and the correspond
values in Tables II,IV,VI,VIII are in essential agreement:

Vector: J51 M (ss̄)51014.560.4, J53 M (ss̄)
51862.369.0

Tensor:J52 M (ss̄)51539.465.5
Pseudoscalar:J52 M (ss̄)51869.1625.3
Axial-vector: J51 M (ss̄)51487.9630.0.
Interestingly enough, if one applies the quark model m

tivated relation mentioned above to calculate the mass of
axial-vectorsn̄ state using the predicted puress̄ mass~this
work! and the physicala1 ~as purenn̄) mass~Ref. @29#! as
inputs, one obtainsM (sn̄)51359625 MeV, in good agree-
ment with the corresponding value in Table IV.

~ii ! A new cūmeson, D(2637), with mass 26376266
MeV, was recently reported by the DELPHI Collaboratio
@59#. Page@60# has demonstrated from heavy quark symm
try that the width ofD(2637) claimed by DELPHI is incon-
sistent with any bound state with one charm quark predic
in the D(2637) mass region, except possiblyD3* , D2 or
2S D, among the threeD2 being the best candidate. Inte
estingly enough, the mass ofD2 predicted in Table VI,
2692619 MeV, is consistent with the value of theD(2637)
mass measured by DELPHI.
3-11
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~iii ! Our predictions for the mass of the Bc , Bc* statesare
in a good agreement with the predictions of different mod
compiled by Kiselevet al. @61# which all, including their
own prediction, lie in the ranges 6281638 and 6343
626 MeV, respectively.

The Bc mass that we obtained, 6283679 MeV, is also
consistent with the value 6.4060.3960.13 reported by the
CDF Collaboration@62#.

~iv! The value of the B1 meson massthat we obtained,
56926104 MeV, is in good agreement with that recen
reported from experiment@63#: 567561264 MeV.

~v! States near the trajectory termination point. As we
argued in Secs. II and III, any nonlinear trajectory of t
form ~5!, including the square root, can be expected to
well the lowest lying states, and discrepancies are likely
arise only for a few states near the trajectory threshold. Th
are not enough data to confirm or deny this statement, w
the possible exception of thea2 trajectory. Our prediction for
the mass ofa6, which may be the last state on the truea2
trajectory, and is certainly next-to-last on our correspond
square-root trajectory~see discusion in Sec. IV B!, is 10%
lower than the observed value. This is in contrast to thea4
mass which is lower only by about 1%. The same is true
theK4* mass.~Both a4 andK4 lie about 550 MeV below the
corresponding thresholds, whereas the observed mass o
a6 is right at our threshold, in contrast to the calculated va
which is ;200 MeV below threshold.!

Even though the agreement within the errors is acce
able, in our opinion, this raises the possibility that near
termination point, the true hadron trajectory grows slow
than the square-root trajectory. If this possibility is realize
theK6* is likely to lie about 10% above the value we predi
and it can be expected to be broad, similar to the obser
a6.

It should be mentioned that there are other trajectories
which the second state on the trajectory is known, e.g. so
of the vector or pseudoscalar trajectories. There are two
tors which prevent observing the possible general tende
of the square-root form to overshoot the true trajectory. Fi
these states are further away from the threshold than th
discussed above, in particular, they are about 770 MeV
low threshold for the vector trajectories, and about 12
MeV for the pseudoscalars. This means that the effect ca
expected to be even less than 1%. Second, in both of t
cases, we used some of the second states on the trajec
as inputs, thus achieving better agreement with more of
higher mass states on a trajectory.

~vi! Additivity constraints and mass relations. Our results
for masses are in excellent agreement with available d
This is not suprising, however, because the additivity c
straints ~26! and ~27! are known to lead to high-accurac
higher-power mass relations@64#. Therefore, the numerica
spectroscopy results reported here should be viewed sole
a confirmation that the particular square-root form of traj
tory does not introduce any systematic biases.

3. A consequence of trajectory thresholds

If the hadronic Regge trajectories indeed terminate inl, an
intriguing possibility that might simplify identification o
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states arises. Even though the maximuml is very sensitive to
the specifics of the potential~in particular, its long distance
behavior! and cannot be determined at all by fitting th
bound states, the thresholds turn out to be insensitive to
the potential approaches its asymptotic value and very w
determined by the bound state spectra. Recall our nume
simulation of the model in Sec. II: The bound state spec
were well approximated by both extreme cases, the squ
root and the logarithmic trajectory. These two forms diff
drastically in the maximuml ~finite vs infinite!, nevertheless,
they both predictT within a few percent of the model’s tru
value. We therefore conjecture that one can predict ‘‘sp
troscopy windows,’’ i.e. ranges of masses for each particu
flavor. Even though we cannot obtain stringent error e
mates on these predictions, it is conceivable that the de
tions from the true values are small.

The most intriguing consequence of this conjecture is
our opinion, the following: According to our calculation
there are no light quarkonia states beyond about 3.2 G
~The highest threshold for light quarkonia isAThs

53.10

60.11 GeV.! Even though the charmed states start aroun
GeV, their mixing with glueballs is small. Therefore, if ou
analysis is right, any state above 3 GeV~to, say, 5 GeV! that
does not fit into the charmed spectra can be expected t
predominantly a glueball or an exotic.

V. SUMMARY AND CONCLUSIONS

Previously@20# we argued that in QCD, the real part o
hadronic Regge trajectories should acquire curvature and
minate as a consequence of the flux tube breaking due to
creation. In this paper, we addressed the issue of what is
specific form of the trajectories. We started with the simp
potential model of two heavy quarks in a potential which
screened at large distances, and we have shown that the
ent trajectory formed by the bound states of the system
be equally well approximated by the square root and
logarthmic forms. This is not suprising, once the comparis
between the potentials which lead to these trajectories,
spectively, and the screened potential of the heavy qu
model is made. Nevertheless, even though the first two
indistinguishable, the square-root form is closer to the r
trajectory because its real part terminates~as does the rea
part of the heavy quark model!, while the logarithmic trajec-
tory grows without bound. This growth is specific to th
logarithmic form; any other trajectory of our nonlinear for
~5! with nÞ0 has a termination point. This means that a
nÞ0 would approximate the true trajectory both quanti
tively and qualitatively. Different forms can be expected
lead to subtle differences for higher excited states, part
larly for those near the threshold. Until a distinction can
made, we choose the square-root trajectory to study real
ronic spectra. A nice feature of this trajectory is that t
additivity of inverse slopes reduces to a simple express
which has natural units of mass, and that the parameterg is
given simply in units of inverse mass. It is possible that a
of these forms, including the square root, grow faster n
the threshold than the true trajectory. It is also plausib
although not conclusive, that an indication of this tenden
3-12
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has been seen in thea2 trajectory. This is also supported b
the rate of growth of the lattice potential as compared to
potential which leads to the square-root trajectory, althou
the lattice potential should not be taken too seriously at la
distances.

With the form of trajectory chosen, the parameters nee
be fitted. We have typically used masses of few lowest ly
states, and/or the intercepts if known and reliable, such as
intercept of ther trajectory. We also utilized the additivity
requirements. Our calculation is in an excellent agreem
with various data, both spectroscopic and scattering, and
self-consistent~see the discusion of pseudoscalarb-mesons!.

We conclude that we have provided both strong pheno
enological arguments and theoretical considerations wh
indicate that the hadronic Regge trajectories are essent
nonlinear, and that they can be well approximated by
square-root form~at least for the lowest lying states!. This
observation has a profound effect on our theoretical und
standing of hadronic spectra, namely, it implies that lin
confinement is not the single most important factor in de
mining the position of poles, not even for states as low as
second or third on a trajectory. Perhaps an even more
nificant consequence of the nonlinearity of trajectories, a
in particular, the existence of the trajectory thresholds, is
it may simplify identification of states in experiments. F
example, once the existence of thresholds is establishe
would be easier to identify exotic states as those that do
fit in the heavy-quarkonia spectra.

Note added in proof.After this paper was sumbitted fo
publication, we became aware of new measurements of
B1 meson mass:~5710620! MeV by the CDF Collaboration
@66#, and~5670610613! MeV by the L3 Collaboration@67#.
These new values, together with the value that we refer t
the paper,~567261264! MeV, are consistent with 5690
MeV for the mass of theB1 meson, which is the centra
value of our prediction in Table VIII.
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APPENDIX A: THE ALLOWED VALUES OF n

It can be shown that forn,n,n11 @for integer n,
a(t)5Rea(t)], the trajectory of the form~5! satisfies the
following dispersion relation withn11 subtractions:

a~ t !5a~0!1a8~0!t1•••1
a (n)~0!tn

n!

1
tn11

p E
T

`

dt8
Ima~ t8!

t8n11~ t82t !
. ~A1!
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Since for the trajectory~5! Im a(t)5sin(pn)(t2T)n, the re-
quirement of the positivity of the trajectory imaginary pa
~this requirement follows from unitarity@25#! leads to 2k
,n,2k11, wherek is integer.

For the trajectory parametrization

a~ t !52g~2t !n@ log~2t !#b ~A2!

@which is thet@T limit of Eq. ~5!, up to a power of loga-
rithm# it was shown in@23# that 0<n<1 and 0,b<2.

The range ofn can be further restricted. The class of du
models called dual amplitudes with Mandelstahm analyc
~DAMA ! @21# leaves open a corridor for possible asympto
behavior ofa(t), bounded from above byAutu and from
below by log(utu) @25#. @DAMA has the Veneziano limit
a(t);t, but the transition to this limit occurs discontinu
ously @25#.# Thus, in DAMA the range ofn is squeezed
down to 0<n<1/2.

Hence we consider the value ofn restricted to lie between
0 and 1/2@25#.

APPENDIX B: THE DYNAMICS OF THE GENERALIZED
STRING MODEL

By varying the action of the generalized string with ma
sive ends~here the dot stands for the derivative with resp
to t, Lorentz invariant evolution parameter for the string!,

Sgen5E E dtdsL~x,ẋ,x8!1 (
i 51,2

L (m)~ ẋi !, ~B1!

one obtains the equations of motion of the generalized str

d

dt

]L

] ẋ
1

d

ds

]L

]x8
5

]L

]x
, ~B2!

and the boundary conditions which represent the equat
of motion of the massive ends:

d

dt

]L (m)

] ẋi

5
]L

]x8
, x5xi . ~B3!

In the gauget5t discussed above, the equations of m
tion of the generalized string reduce to

d

dt

]L

] ẋ
1

d

ds

]L

]x8
5

]L

]x
, x[x, ~B4!

and the boundary conditions are

m1

d

dt

ẋ1

A12 ẋ1
2
5

]L

]x8
, s50,

m2

d

dt

ẋ2

A12 ẋ2
2
5

]L

]x8
, s5p. ~B5!
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Let us show that, similarly to the standard case of
string with constant tension, there are solutions to the eq
tions of motion of the generalized string@with the Lagrang-
ian given in Eq.~14!# in the form of a rigid rod connecting
the massive ends and rotating with frequencyv about its
center of mass:

x~ t,s!5r~s!„cos~vt !,sin~vt !,0…. ~B6!

Indeed, s5s(uxu)5s(r), since x25r2; thereforedr/dx
5x/r5„cos(vt),sin(vt),0…, and ds/dx5ds/dr dr/dx
5ds/dr „cos(vt),sin(vt),0…. Hence

]L

]x
5

]L

]s

ds

dx
52

ds

dr
r8A12v2r2

„cos~vt !,sin~vt !,0….

~B7!

Since also

d

dt

]L

] ẋ
52

sv2rr8

A12v2r2
„cos~vt !,sin~vt !,0…, ~B8!

d

ds

]L

]x8
5S 2

ds

dr
r8A12v2r21

sv2rr8

A12v2r2D
3„cos~vt !,sin~vt !,0…, ~B9!

~the last relation is obtained viads/ds5ds/dr r8), it fol-
lows that the equations of motion~B4! are satisfied.

One can show that for the rotation~B6!, the energy of the
generalized string is given by

H5E dsAp21s2x825E ds
sr8

A12v2r2
5E drs~r!

A12v2r2
.

~B10!

Similarly, the orbital momentum of the generalized string
at
l.

05401
e
a- J5Jz5E ds~xpy2ypx!

5E ds
svr2r8

A12v2r2
5E drs~r!vr2

A12v2r2
. ~B11!

Interestingly enough, in his book@65# Perkins also present
the above relations for the energy and orbital momentum
the generalized string. He does not however derive th
relations from the first principles Lagrangian, as in Eq.~14!.

By adding the contribution of the massive ends, one
nally has the expressions for the total energy and orb
momentum of the generalized string with massive ends:

E5E
0

r 1 drs~r!

A12v2r2
1E

0

r 2 drs~r!

A12v2r2
1

m1

A12v2r 1
2

1
m2

A12v2r 2
2

, ~B12!

J5E
0

r 1drs~r!vr2

A12v2r2
1E

0

r 2drs~r!vr2

A12v2r2

1
m1vr 1

2

A12v2r 1
2

1
m2vr 2

2

A12v2r 2
2

. ~B13!

Note that the boundary conditions~B5! define the separa
tions of the massive ends from the center of mass through
following nonlinear equations:

miv
2r i

A12v2r i
2

5s~r i !A12v2r i
2, i 51,2. ~B14!
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