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We formally derive the chiral Lagrangian for low lying pseudoscalar mesons from the first principles of
QCD considering the contributions from the normal part of the theory without taking an approximation. The
derivation is based on the standard generating functional of QCD in the path integral formalism. The gluon-
field integration is formally carried out by expressing the result in terms of the physical Green’s functions of
the gluon. To integrate over the quark field, we introduce a bilocal auxiliary fiElxl,y) representing the
mesons. We then develop a consistent way of extracting the local pseudoscalar degree of BWérpam
d(x,y) and integrating out the rest degrees of freedom such that the complete pseudoscalar degree of freedom
resides inUJ(x). With certain techniques, we work out the explidi{x) dependence of the effective action up
to the p* terms in the momentum expansion, which leads to the desired chiral Lagrangian in which all the
coefficients contributed from the normal part of the theory are expressed in terms of certain quark Green’s
functions in QCD. Together with the exsisting QCD formulas for the anomaly contributions, the present results
lead to the complete effective chiral Lagrangian for pseudoscalar mesons. The final result can be regarded as
the fundamental QCD definition of the coefficients in the chiral Lagrangian. The relation between the present
QCD definition of thep®-order coefficientFS and the well-known appoximate result given by Pagels and
Stokar is discussed.

PACS numbes): 12.39.Fe, 11.30.Rd, 12.38.Aw, 12.38.Lg

[. INTRODUCTION breaking mechanism is yet not known except for some very
simple modelg5].

The study of low energy hadron physics in QCD is a Further study on understanding the relation between the
longstanding difficult problem due to its nonperturbative na-chiral Lagrangian coefficients and the underlying dynamical
ture. For low lying pseudoscalar mesons, a widely used aptheory will be very helpful both in QCD and in the elec-
proach is the theory of chiral Lagrangian based on the motroweak theory for reducing the number of independent un-
mentum expansion and the consideration of the globaknown parameters which makes the theory more predictable.
symmetry of the system without dealing with the nonpertur-There are papers studying approximate formulas for the chi-
bative dynamics of QCI)1,2]. In the chiral Lagrangian ap- ra| Lagrangian coefficients based on certain dynamical an-
proach, the cogfficients in the Lagrangian are aI_I unknowns gtz [7], but the approach is not completely from the first
phenomenological parameters which are determined by €xsinciples of the underlying theory. Attempts to build closer
perimental inputs. The number of the unknown parametergg|ations between the chiral Lagrangian and the long distance
increases rapidly W_lth the increase of the precision in t_hegiece of the underlying theory of QCD by considering the
momentum expansion. For. example, the chiral Lagrangia nomaly contributions with certain approximation also exist
for pseudoscaler mesons with three flavors up tgpthterms [8,9]. However, several aspects of it imply that such a kind

given by Gasser and Leutwylé®] contains 14 unknown .

. 6 . of approach needs improvement, e(g),the theory does not
coefficients. When the® terms are taken into account, there . : : .
are 143 additional unknown coefficierf@] include spontaneous chiral symmetry breaking, and the chi-

This kind of approach has also been applied to the elecr—aI symmetry breaking scale is put in by harli) without

troweak theonyf4] for studying the probe of the electroweak PUtting in the chiral symmetry breaking scale, the obtained
symmetry breaking mechanisfs,6]. Since parity andCP pion decay constarf . is proportional to an imposed very
are not conserved in the electroweak theory, there are evdAW (~320 MeV) momentum cutoff on the underlying
more unknown coefficients in the electroweak chiral La-theory of QCD;(c) the positivity of 2 depends on a careful
grangian than in the case of QQB]. So far, this kind of choice of the regularization scheme. The approach in Ref.
study is at the point of finding out suitable processes at futur€10] does not contain the above problems. But in R&€],
high energy colliders to determine the unknown coefficientdhe approximation of largé, limit is taken from the begin-
in the electroweak chiral Lagrangian and investigating toning and the approximation of picking up only the local sca-
what precision the determination can be made. The relatiotar and pseudoscalar pieces of the color-singlet quark-
between the coefficients in the electroweak chiral Lagrangiaantiquark bilocal operator arising from integrating the gluon-
and the underlying model of the electroweak symmetnyfield is taken in the derivation. With the latter approximation,
the formula for thep?-order coefficientF3 in Ref. [10] is
expressed in terms of an imposed ultraviolet cutoff, and can
*Mailing address. hardly be related to the well-known Pagels-Stokar formula
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for F3 [11]. Therefore, further improvement of studying the flavor indices. The external sourdean be decomposed into
effective chiral Lagrangian from the fundamental principlesscalar, pseudoscalar, vector, and axial-vector parts

of QCD is necessary. Actually, the study can be divided into ,

two steps. The first step is to formally derive the effective J(X)==s(X) +ip(X) ys+ ¢ (X) +&X) ys, 1
chiral Lagrangian from the fundamental principles of QCD

and express the coefficients in terms of certain dynamic : . .
o ; ; . nd the light quark masses have been absorbed into the defi-
quantities in QCD, which gives the QCD meanings of thenition of s(x). The vector and axial-vector sourc#&x) and

coefﬁments. Th_e sc_—:'cond step is tq calculate the related dyé(x) are taken to be traceless.
namical quantities in QCD to obtain the values of the coef- Since the contributions from the anomaly term to the ef-

f|C||enn'E[i.isTh: Fe):?p\(/avrelsdg\]/aellgly gg:’tgtiﬁdtégng S;Sst \?\;fr? 'Whichfective chiral Lagrangian has already been studied in Refs.
paper, op chnig . 19,101, our aim in this paper is to study the complete normal
we are able to formally derive the effective chiral Lagrangian art contributions. So, in this paper, we simply ignore the

fo.r pseudogcalar Moesons from the first pnnmpl_e; of QCDgtandarcC P-violating term related to the anomaly by taking
without taking approximation, and all the coefficients are

expressed in terms of certain Green’s functions in QCD.the f-vacuum parametes=0.
. Following Gasser and Leutwyl¢®], we start from con-
Such expressions can be regarded as the fundamental QC . X . X i
i - . Structing the following generating functional:
definitions of the coefficients. As a simple example, we show
that, under certain approximations, qof-order coefficient _ _
F3 reduces to the well-known approximate formula given by Z[J]ZI DyDyDYDVY DA,

Pagels and Stokdi1]. A systematic numerical calculation

heres(x), p(x), v,(x), anda,(x) are Hermitian matrices,

of the coefficients by solving the related QCD Green'’s func- . 4 - = —
tions in certain approximatiotthe second stepwill be pre- xexpi | d{L(¢, ¢,V W,A,) + i}
sented in a separate papée].

This paper is organized as follows. Section Il is on the :j i p[f Suih+
fundamental generating functional in QCD. We start from it DyDyexp i | dxi(io+3)y

and formally integrate out the heavy-quark and gluon fields
to obtain a formal generating functional for the light quark X f DYDY DA Ap(A )exp( if d?x
fields. In Sec. Ill, we introduce a bilocal auxiliary field re- ® ’

flecting the light meson degrees of freedom with which we

Locp(A)

can integrate out the light quark fields. Then we develop a — i[Fi(AM)]Z_inMAi +q_;(i,9_ M _gA)\pH,
technique for extracting the degree of freedom of the desired 2§ .
local fieldU(x) for the pseudoscalar mesons from the bilocal 2)

auxiliary field, and formally integrate out the the remaining o
degrees of freedom of the bilocal auxiliary field to obtain awhere Locp(A) = —%A'M,,A"“’ is the gluon Enetic energy

generating functional for the local field(x). In Sec. IV, we  term,M is the heavy quark mass matrikt= y\;/2y* ¢ are
develop certain techniques to work out the complé{&)  colored currents composed of light quark fields,
dependence of the effective Lagrangian in the sense of mo- 1/2§[|:i(A#)]2 is the gauge-fixing term anti(A ) is the
mentum expansion, and obtain the effective chiral Lagraniafadeev-Popov determinant.

which is of the form given by Gasser and Leutwy|&t. In . : . . —

this process we obtain the QCD expressions for all the coef- -6t Us first consider the integration OV@WD\PY?AM for
ficients in the effective chiral Lagrangian. A discussion on@ given configuration ofy and ¢, i.e., the currenf * serves

the relation between the present QCD definition of@{®”)  as an external source in the integration ofeF DV DA, .
coefficientsF3 and the well-known Pagels-Stokar formula The result of such an integration can be formally written as
(an approximate resulf11] will be given in Sec. V. Section

VI contains concluding remarks.
g Loco(A)

f DWDEDA#AF(A#)exp[i f d*x
Il. THE GENERATING FUNCTIONAL

1 =
Consider a QCD-type gauge theory with $UJ local - E[FI(AM)]Z_inﬂALJF\P(“g_M_gA)q’”
gauge symmetry. LeA,(i=1,2,... Ni—1) be the gauge ; _
field, 45”7 and¥2” be , respectively, light and heavy fermion —expi > | d%,- - -d* (—)"g"
fields with color indexa(a=1,2,... N.), Lorentz spinor n=2 ! " n!
index », Iigﬂt_ﬂavor indexa(a=1,2,...N¢), and heavy i o i
flavor indexa(a=1,2, ... N¢). For convenience, we simply XG5 O )T (%) - - TG (Xn),

call 37 the “light quark field,” W37 the “heavy quark 3)
field,” and A'M the “gluon-field.” Let us introduce local ex- o . _ )
ternal sourcesl,,, for the composite light quark operators whereG 7, is the fulln-point Green’s function of tha,

Y7 y”, whereo andp are short notations for the spinor and field containing internal heavy quark lines and with given
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sourcesZ . For simplicity, the gluon field integration in this

paper is limited to the topologically trivial sector. Inclusion

PHYSICAL REVIEW D 61 054011

(D" (Ng®)" 1,

of topologically nontrivial sectors only changes the interme-

diate results but not the final res#5).

By Fierz reordering, we can further diagonalize the color

indices of the light-quark operators, and get

o _ A
G'ﬂll”fzn(xl,~ : 'aXn){ lﬂii(xl)(?l) 7“1¢211(X1) e
@161
! )\In a
X ¢an(xn) 5 Y (Xn)
n 2 Bn
nBn
= f d*q- - d'g" 3G, T (Xe X X Xp)
XYWL X) = 7 X YR (%), @)
whereggll_'_"';’”(xl,xi,~ -+, Xn,Xp) is a generalized Green'’s

function containing B space-time points. Then E@) can
be written as

Z[J]zf D¢DEexpi[fd4x$(i¢9+J)¢

. (=)"(g""?
+> f d*Xy- - - d¥%,d¥x) - - - A
n=2 n!
XGIE (XX X Xp)

XJZi(Xl) Y (xp)- 'EZ:(Xn)(//ZE(X;;)J . (5)

Ill. THE AUXILIARY FIELDS
A. The bilocal auxiliary field

For integrating out the light quark fieldg andZ, we
introduce a bilocal auxiliary field>@?®9(x x') by insert-
ing the following constant into Eq5):

f DD S(N D@D (x,x") = y27(x) yPE(x")).  (6)

We see from Eq.(6) that the bilocal auxiliary field

®d@NGI(x x') embodies the bilocal composite operator
Ja(X) z,bff(x’) which reflects the meson fields. Inserting Eq.

(6) into Eq. (5) we get

Z[J]=f DyDyDD S(N D EN OO (x x")
—Ei”(x)z//ﬁ?(x'))expiUd4x$[m+J]1,//

+ Ncnz,z f d*xq- - - d¥%ad%] - - - d¥x])

[ R ! !
X Gpln_pn(xl,xl, oo XnXp)
XDTIPL(xy X]) - - DIPN(Xe X | Y

The & function in Eq.(7) can be further expressed in the
Fourier representation

SN (X,X") = (X) h(X"))

Nf DHeifd4xd4x’H(x,x’)[NC(D(x,x’)—Z(x):,b(x’)]‘
With this we can integrate out thg andZﬁelds and get
Z[J]zf DO DII expi{ —iNcTrin[id+JI—11]
+f d*xd*x N D7(x,x" ) IT7P(x,x")

+ N°n§=:2 f d*xy - - - d¥xad*xg - - - d¥x])

(—=D"(Neg?)" ™,

oy oy , ,
X—n! Gpl._.pn(xl,xl, cee X Xp)
XCI)‘TlPl(X]_,X:’L) e (I)o'npn(xn 1Xr"|)} ’ (8)

where Tr is the functional trace with respect to the space-
time, spinor and flavor indices.
Let us define the classical field,

JDH Ie'S
CE—"
le‘[e‘S

where S is the argument on the exponential in E§). Let
I'o[J,D,11.] be the effective action fokl . with givenJ and
®. T, satisfied

I )

T3] _

0
AlIZP(x,x") 10

ThenT o[ J,®,I1.] is explicitly

1In the conventional approach, one usually introduces an external
source.7 coupling to the fieldlI. With this, the right-hand-side of
Eq. (10) equals— 7 [13]. Equation(10) corresponds to taking’
=0. Similarly, when taking7=0, the effective actioth',[ J,D,I1]
equals the generating function&ly[J,®,.7]| ;- for the connected
Green’s fuctions. This leads to the left-hand side of &d).
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QiTol3.0.11]
EJ DI1 expiNC‘ —iTrin[id+JI—1I]
+J d*xd*x’ ®P(x,x")I17P(x,x")

+ J d*xy - - d*%,d*x] - - - d¥x),
n=2

(—)"(Neg)" ., ,
X G, (XuXq,

o o XnaXp)

X DTPY(Xy,Xq) - - - DIPn(xp, .Xrﬁ)]- 11
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U(x)=02(x), (15)

which is the conventional decomposition in the literature.
This U(x), as the desired representation of Sl

X SU(Ns) ., will be the nonlinear realization of the peudos-
calar meson fields in the chiral Lagrangian. Note that the
way of introducing thaJ(x) field is not unique but is up to
a chiral rotation which does not affect the final effective
chiral Lagrangian since the chiral Lagrangian is chirally in-
variant. The fieldgr and{ are intermediate fields which will
not appear in the final effective chiral Lagrangian. It is
straightforward to subtract from the two equations in Eq.
(13) and using Eq(14) to get

e IPINAOT(x)tn [ Pr® T(x,x)1QT(x)

=e [POIMNAQ x)tn[PLPT(x,x)]Q(x), (16)

With these symbols, we can formally carry out the integra-wherePg andP_ are, resprectively, the projection operators

tion over thell field in Eqg.(8), and express the result by
Z[J]= f DO explil'g[J,®,11.]}, (12

B. Localization

onto the right-handed and left-handed states, the superscript
T stands for the functional transpositi¢nansposition of all
indices including the space-time coordinajeend we have
expressed the result in terms Qf Equation(16) builds up

the relation betweer(x,x) and U(x) [or Q(x)]. Taking

the determinant of Eq16) we can expres#(x) in terms of
®T(x,x) as

Since we are aiming at deriving the low energy effective

chiral Lagrangian in which the light mesons are approxi-

mately described by local fields, we needctisistentlyex-

tract the local field degree of freedom from the bilocal aux-

liary field ®@72®d(x x’). The extraction should be

consistentn the sense that the complete degree of freedom
of the mesons resides in the local fields without leaving any,

in the coefficients in the chiral Lagrangian. Otherwise, it will
affect the validity of the momentum expansif®]. In this
paper, we propose the following way of extraction, and w
shall see in Sec. IV that it is reallyonsistent

The auxiliary field® introduced in Eq.(6) has such a
property which allows us to define the fieldsand Q' re-
lated to the scalar and pseudoscalar sectokb afs

(Q'cQ'+0' 50T 30(x)= (1), dPIED(x,x)

Q0 = Q' 5O (%)= (ys5) ,@PIEN(x x).
(13

Here theo field repesented by a Hermitian matrix describes

the modular degree of freedom, and é field represented

by an unitary matrix describes the phase degree of freedom

ie.,

o) =0(x), Q00 (x)=1. (14)
As usual, we can definU’(x)EQ'z(x) which contains a
U(1) factor such that det’ (x)=e'?™, where the determi-
nant is for the flavor matrix. The unitarity property df (x)
implies thatd(x) is a real field. We can further extract out
the U(1) factor and define a fieldU(x) as U’(x)
=el/NDIY(x). Itis easy to see that défx)=1. Then we
can define a new fiel and decompos¥ into

deftr[ Pr® T(x,x)]]

2900 — ,
deftr [P .®T(x,x)]]

17

where tij is the trace with respect to the spinor index.
Equations(13)—(16) describe our idea of localization. To
alize this idea in the functional integration formalism, we
need a technique timtegrate inthis information to the gen-
erating functional(12). For this purpose, we start from the

efollowing functional identity for an operato®© satisfying

detO=det®" (see the Appendix for the proof

f DUSUTU—1)8(detU —1)

X F[016Q0T0-0'00T) =const, (18)

in which fDUS(UTU—1)8(detU — 1) is an effective invari-
ant integration measure and the functiBpO] is defined as

s toy_ ot
FIO] de@f Dod(O'O-c'o)d(oc—a'). (19
With the special choice of

O(x)=e PNt [PLdT(x,x)], (20)

which satisfies dét=det® ', Eq. (18) serves as the func-
tional expression reflecting the relatidh6). Inserting Eq.

(18) and (20) into the functional12) and taking the Fourier
representation of thé function

s(00Ta—atoah~ f DEe—iNCfde(QOTQ—QTOQT)
(21
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we get

Z[J]zf DOPDUDE S(UTU-1)8(detU —1)
Xexp[iFO[J,¢,HC]+iF,[<D]+iNCJ d*x
xtr[E(x) (e '1POMNIQT(x)tr [ PrdT(x,X) ]

X Q1(x) - ePCMNIQ )t PLCDT(X,X)]Q(X))]] ,
(22

with

. 1
e =11 2007

=11 ({de[tnPR(DT(X,X)]de(tr,PLde(x,x)]}l’z
X f DO'é[(tnPRCDT)(tnPLCDT) - O'T(T]

X&(a—a')|. (23

In EqQ. (22), the information about the relatidii6) has been

integrated in

Next, we deal with the functional integration over the
d-field. For this purpose, we define an effective action

I[Q,J,E,0.,I1] as

INTORE=R N

=fpcb exp{iro[J,qn,nc]+ir|[q>]+ich d*x
X tr[E(x) (e TPOMNIQ T (x)tr,
X[Pr®T(x,x)]QT(x)
—ei[ﬁ(x)’N”Q(X)tn[PLCI)T(X.X)]Q(X))]], (24

in which the classical fieldb.(x,x") is defined as

fpopq)e~S
b=, (25

f D e~S

where'S stands for the argument in the exponential in Eq.

(24). d . satisfies

aT[Q,,E,®,11] L
aPIP(x,x")

(26)
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With these symbols, we can formally carry out ti@®d
integration in Eq{22) and obtain

Z[J]= f DUDES(UTU—-1)8(detU—1)

Xexplil[Q,d,E,®,,I1.]}. (27)

Here we have formally integrated out all the degrees of free-
dom in®(x,x’) in addition to the extracted local degree of
freedomU(x). This localization is different from those in
the literaturg/ 14].

Similar to the above procedures, we can formally inte-
grate out theZ-field by introducing an effective action
Sl U,J, 2., P, I1.] as follows:

eiseﬁ[U,J,Ec,%,Hc]:f DE expif‘[Q,J,E,q)C,HC],
(28)
where the classical fiel&. is defined as
IDEE expil[Q,J,E,®,,I1,]

= ~ (29
fDE expil'TQ,J,2,®.,I1]

and satisfies

ﬂSeff[Ui‘]aEc ,(Dc rHc] _

(30)
I(E)?(x)

Then theE-integration in Eq.(27) can be formally carried
out, and we obtain

Z[J]= f DUSUTU—1)8(detU —1)
XexpliSer U, J, B¢, P, I1.]}. (31

We see from Eq(31) that Se{U,J,E ., P, I1] is just the
action forU with a givenJ.?

Using Egs.(11), (24), (30), (26), (25), and(10), one can
further show the following important relation

dSH{U,J,E., P, I1]
dJ??(x)

Ufix

| PEOFOeiTI0,9,2 0 11

=N, —
JDE expil'[Q,J,5,®,I1]

=NDI"(X,X). (32)

Note that= ., @, andIl, are all functionals ofJ and J through
Egs.(29), (25), and(9).
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In Eq. (32), the symbokb,, denotes the functional average of Ser U, J,Ec, e Ilc]=Serd 10, Ec, Pac o]

®. over the field E weighted by the action

- +anomaly terms. (37)
rQ,J,2,o.,11.]. Equation(32) is crucial in the derivation
of the effective chiral Lagrangian.
From Eq.(24) we see that
IV. THE EFFECTIVE LAGRANGIAN

To derive the effective chiral Lagrangian, we need to ob- el 110 5. @oc o
tain the U(x) and J dependence o8, U,J,E.,P.,I1.].
Note thatS.4 U,J,Z.,P.,I1.] depends otJ and J not only _f . .
explicitly in Eq. (28) but also implicitly viaZ,®. andIl, = | PPaexp iTolJo P, Macl +iTi[Pa]
through Eqs(29), (25), and(9). The remaining task of the 90%)
derivation of the effective chiral Lagrangian is to work out N J' 4 = o UIX
explicitty the complete U and J dependence of INe | dXtrig Z(x)| —'si N¢
SeU,J,E, P, I1.]. The procedure is described as what 5
follows. + yc0m <I>5<x,x>] ] , (39)

First we consider a chiral rotation N

Jo(¥)=[QX)Pr+ QT (X)PI[I(X) +id]

+ where ti; denotes the trace with respect to the spinor and
X[Q(X)Pr+ Q1 (X)PL], flavor indices. The anomaly terms in Eq&4), (36), and
(37) are all the same arising from the non-invariance of

T _rot
Do (x,y)=[QT(X)Pr+Q(X)PIPT(x,y) Trin[ié+J—II] under the chiral rotation. Note that the func-

X[QT(y)Pr+Q(Y)P,] tional integration measure does not change under the chiral
R - rotation, i.e.D® DIl =Dd DI, since the Jaccobians from
o (x,y)=[Q(X)Pr+ QT (x)P_IIL(x,y) d—-P, and II—-1II, cancel each other. We see that the
U(x) dependence is simplified after the chiral rotation.
X[Q(y)Pr+QT(y)P]. (33 The second approach is the use of E&Bp). As we have

) , , . _mentioned in Sec. Il that we ignore the irrelevant anomaly
The present_theqry- is symmet.nc under this transformationya - ms in this study. Then after the chiral rotation, E8Q)
Since theE -field is introduced in Eq(21) and the operator becomes

Q0TQ-0'00 T is invariant under the chiral rotation, there
is no need to introduc&,. Furthermore, since det=1,

we can easily see from Ed17) that do(x)=3(x). The dSi 130, Ec, Poc o]
explicit dependence @ U,J,E.,D.,II.] onU(X) comes -
from the explicit Q(X)[Q'(x)] dependence of dJg"(x) Ufix, anomaly ignored
T[Q,3,®..11.] in Eq. (24) [see Eqs(24) and (28)]. After e
the chiral rotation, this term becomes = Ne®gle(X,x). (39
+ich d*x tr(E (x){e” TN [ Prd g (x,x)] We see from Eq(39) that once thel,, dependence ab . is
' explicitly known, one can integrate E(B9) overJ, and get
— [P rp ] (x,x)1}), the U(x) dependence 081, ,Ec,Pqc.I1oc] Up to an

irrelevant integration constant independent W{x) and
which no longer depends di(x) explicitly. Therefore, after  j(x). From that we can derive the effective chiral Lagrang-
the chiral rotation, there is no explidid(x) dependence of jan and the expressions for its coefficients. There can be two
Sel U, B¢, @, I1c], ie., the completd)(x) dependence \yays of figuring out thel, dependence ob .. One is to
resides implicitly in the rotated variables with the subscript,yrite down the dynamical equations for the intermediate
€. For instance, the effective actiohg[ J,®¢,IIc], I'[®],  fields E,, ®q., andll, and solve thenfusually this can
I'[Q,3,E,®.,11.], and S U,J,E, P, ,II.] can be writ- be done only under certain approximatipre get theJ,
ten as dependence of these intermediate fields. The other one is to
track back to the original QCD expression for the chirally
Fo[J,@,1Tc]=To[Ja, P, I1oc]+anomaly terms, rotated generating function®?) through (32) and (25) by
(34 reverting the procedures in Secs. Il and I, which can lead to
. the fundamental QCD definitions of the chiral Lagrangian
NI@]=T[®q], (35 coefficients without taking approximation. We take ?he Igtter
approach in this paper. Because of th& function
S(NDCPCI(x,x") — y27(x) ¢ (x)) in Eq. (7), we
+anomaly terms, (36)  can expres® 2P(x y) as

F[QlJygl(I)c yHc]zr[leQ iga(I)QC IHQC]
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NDENOD(x,y) =
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f DYDYDY DW DA, DE g27(x) 2 (y) &Sl ¥ ¥ AZ]

f DyYDYDY D‘I—’DAMDE ol SLv ¥, W A E]

where

+J d4x{ L(p VWA

+E{‘é&)+é—9')’5_sﬂ+ipn?’5

J

In Eq. (40) and all later equations in this paper, the symiol

e
+E

(41)

) ] 19_/ + 'l‘},
| SII'IN—f ‘}/SCOSN—f

is used as a short notation for the chirally rotated quark fiel

g .2 In Eq. (42), T\ [(1/Ny) ] and 9’ are the quantities

defined in Egs(23) and (17) expressed in terms of quark

fields, i.e.,

e INI(LN vy

"

1 _
de( N—trlc[wR(X)z//L(X)]>

1/2

1 _
Xde<N_Ctrlc[¢L(X)¢R(X)])
xfpms () — o'

Ng Ic R¥YL/YIc LYR
(42)

X 5(0'—0'T)] ,

(2000 def trie[ 200 ¢.(x)]]
deftre[ ¢ () ¥r(x)]]’

(43

, (40)

With Egs.(40)—(43), one can integrate E¢39) over the
rotated souces and obtain

eiSEff[l’J“ Ee Pac Mad |anomaly ignored

= f DYDY DY DY DA, DE eXp(ir,[iW}

N¢
+if d*x

+ipaystE

L( lﬂ,%‘I’,E,AM)+E{¢sz+asn’5_sn

)

(44)

] ) 19,/ + ,'9_/
i smN—f yscowf

(J:or realistic QCD N¢=3), cos('/N;) does not vanish. We

can then shift the integration variableE—Z
—ipg/cos@’'/N) to cancel thegp-dependence in the pseu-
doscalar part of Eq(44). After carrying out the integration
over =, we obtain

eiseﬁ[lijﬂ lEr:!(DQc'HQc” )
anomaly ignored

= f DyDYDVYDVDA,

V' 9’

X —isin—+
1) S N, 75C0Wf

s wb)

+ij d4x[c(¢,$,\p,@AM)

dli

In Eq. (45), there is nop, dependence in the pseudoscalar
channel, and th@,, dependence appears in the scalar chan-
nel as the combinatiosy + pgtan(d’/Ny).

Equation(45) shows thaB.{ 1.J0 ,,.E¢,Pac, o] is the
QCD generating functional for the rotated sources

11—
xexr{ﬁl[N—cwlp

(45

ﬁ/
+E{ botdgys—So— pntan,\Tf

where ti, is the trace with respect to the spinor and color T Patand’/Ny, v{; , andag, with a special parity odd degree

indices. Equation(43) implies that the range o®'(x) is
[0,7).

Note that instantons contribute to both EG&2) and (43)
[15]. The U,(1) violating field-configurations only cause

nonvanishingd’ but do not contribute t& [ (1/N.) ¢].

3As an integration variable, whether or not there is a subs€Yipt

of freedoms —iy2yPsinIN; + y2ysyPcosy' IN; frozen.
After making a furthetd ,(1) rotation of theys and ¢ fields,

the angled’'/N; can be rotated away and the frozen degree
of freedom becomes just the pesudoscalar degree of freedom
JPysy® as it should be since this degree of freedom is al-
ready included in the integrating in of théfield. The auto-
matic occurance of this frozen degree of freedom in the
present approach implies that our way of extracting the

makes no difference. Once the classical equation of motion is conJ-field degree of freedom is realyonsistenti.e., nothing of

cerned, distinguishing the rotated, from the unrotateds will be
necessary.

the pseudoscalar degree of freedom is left outsidé\fter
the U,(1) rotation,I'; and the Jacobian due to the rotation
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will give rise to an extra factor in the integrand, which is the
compensation factor for the extraction of tbefield degree

of freedom. From the point of view of the auxiliary fie{gl,

PHYSICAL REVIEW D 61 054011

For F2°(x), translational invariance and flavor conserva-
tion [16] leads to the conclusion that it is simply a space-time
independent constant proportional 8°. So that it can be

this corresponds to the contributions from integrating out thewritten as

degrees of freedom other th&h say theo and " mesons.
Now we are ready to explicitly work out the effective
chiral Lagrangian to the? andp* order. As is pointed out in

Ref. [2], the vector and axial-vector sources should be rewhere
garded asO(p) and the scalar and pseudoscalar sources

should be regarded a3(p?) in the momentum expansion.

A. The p? terms

We first consider thep?-order terms. To this order, the

anomaly can be safely ignored. Expanding &) up to the
order ofp?, we obtain

Seil 1.Jq vEc ' Pac aHQc:”pz order
f d*xtry[ F220x)sg°(x) + F %) p’(x)]
+f d*xd*zG2% (%, 2)afy * () ag Y (2),
(46)

where

Feb(0 =~ ([T 1P,

’ — ﬁ’
Fab(x)=— [wa(X)wb(X)]tanNLfX)>,

G22x,2)= 5 [<[wa<x> Y, vs° (0 [ ¥5(2) y,v54%4(2)])

—([A(X) Y, ys¥°(X)])

X([4%(2) v, vs9% (D )], (47)

and the symbo{O) for an operato© appeared in Eq47) is
defined as

(48)

where

Du=DyDyDY DY DA,

X 8| ¢ —i sinN—f+ ¥5CO5-

d

@i T[N gyl +i f AXL( VW A)

Fa8(x) = F§Bo &%, (49
2 1 —
FoBo=— N—fW!ﬂ)- (50)
For F'@b(x), parity conservatiofi17] leads to
F'ab(x)=0. (51)

For G2°°Yx,2), translational invariance leads to the conclu-
sion that it can only depend on-z. We can further expand
this dependence in terms é{x—z) and its derivatives. To

p? order, the derivative terms do not contribute, and the only
term left is 8(x—2)fd*2G}2°Yx,2). The coefficient
Jd*2G%(x,2) is again mdependent of the space-time co-
ordlnates due to translational invariance. Then Lorentz and
flavor symmetries imply thafd“xGade is proportional to
gﬁyﬁadébc There cannot be terms of the structuseP 5°d
since this term is to be multiplied k2" af;°, andaQ is

traceless. Therefore the only relevant par(‘fjﬁ (x,2) is

G22°4x,2) = 8(x—2)g,,,0*6°°F§ +irrelevant terms,
(52)

where

1 ,
— N_fGZ:r ,aabb(oix)

1
ST S
4(Nf—1)

i
=———| d*
8(Nf—1)j

_ 1 _
X[YP(X) Y, vsA(X)]) — N—f<[¢a<0>yw5¢a<0)]

F2 G;jﬁ’abba(o,x)

([42(0) y*y54°(0)]

X[YP(X) ¥, Ys P (¥) 1) = ([¥(0) y* y5°(0) 1)

) a 1 Ta a
X(LPP(X) v, v (X)) + N—f<[¢ (0)y*ys*(0)1)

X(LPP(X) , vs9°(X) 1) | (53

Note that there is no term similar tof[tr;f)] in EqQ. (46).
The reason is that there exists a hidden symmeigy
—h'sgh, pa—h'pgh, ak—htakh, and vo—h'véh
+h'ig*h in which the vector source transforms inhomoge-
neously. So that the vector source can only appear together
with the derivativei 9* to form a covariant derivative, and a
hidden symmetry covariant quadratic form of the covariant
derivative can only be an antisymmetric tengsee Eq(56)]
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which does not contribute when multiplied by a symmetricS {13, ,2.,® . lHQc]|p4 order. normal
coefficient of the type of Eq52). '

the\:1v'th Egs.(50), (51), and(52) the effective actior{46) is _ j dxtr [ — /Cl[dﬂaﬁ]z— K,(d#al,— d¥at)
Seff[li‘JQ 1EC 1CI)Q.C 1HQC] | p2 order X (dﬂaﬂ,v_ dan,p,) + K3[a(21]2+ ]C4a6a;2aﬂ,p,aﬂ,v
_ ng déxtr (a2 + Bosq] +KCsabtr[ad ]+ Kealhaptrag ,ao 1+ K755
L L +KgSatri So ]+ Kopf + KioPatr pal+ Ki1Snad,
= FSJ d*xtry Z[V”UT][V,LU] +5BolU(s—ip) +KySotr{ad]—KiaV4"™Vq ., TiK1uVE aq a0,
+K1spad*ag, ], (59
+UT(s+ip)]|, (54)

whereV , is the covariant derivative related to the externalWhere the covariant derivativ, and the antisymmetric ten-
sources defined in Ref2]. The integrand is just the? order ~ sorVg" are defined as
chiral Lagrangian given by Gasser and Leutwyler in R2¥.
Now the coefficient$3 andB, are defined in Eqg53) and
(50) and are expressed in terms of certain Green’s functions dhag=d*ag—ivhagtiagvf,
of the quark fields. These can be regarded as the fundamental
QCD definitions ofF3 and B,
Vi =dtv—d'vh—ivpuativgulh, (56)
B. The p* terms
The p*-order terms can be worked out along the same
line. The relevant terms for the normal part contributionsand the fifteen coefficients; . .. K5 are determined by the
(ignoring anomaly contributionsare following integrations of the Green’s functions:

i_ 4y, i’ v ra ) b c v d
3| 400 X PO v s O 75000 e

2

1 I ’ ! ! ror .
—ICl—ICZ)(g’“‘ g’ +ghr gvr ) + 2K ,gH g Y | 8295+ irrelevant terms,

- 53 f d'xdy d'Z{[#*1(0) Y5y 0) ILY™2(0) v 2753200 JLH™(y) v*oysy (V) IL*4(2) Y4 y5* (D))

1 b b b b 1 b b b
= E 581P2| 53203 53304 §34D1 E(gﬂluzgﬂ3#4+ graraghais) Ko 4 gHiksgrakaiC, + 53204 53403 53301

% ( gﬂ1ﬂ29ﬂ3ﬂ4

+ gﬂlﬂsgﬂzlm) ]C3_|_ glL1M4gM2M3]C4)

+ 531133{ 533b25azb4534b1< %(gﬂlﬂsgﬂzﬂzl-}- griraghars) g+ gﬂlﬂng3M4]C4)

+ 523ba 534b2 52201 %(gﬂl#sgﬂzﬂﬂ.-{- graragrara) [+ griragharsiC, | |4 5214 574P2 59203 53301

% (gM1M4gM2,U«3

+ gHikagrra) g+ g#lﬂzgﬂsM]CA) + 5a4b3533b2532b1< %(g#1#49M2M3+ ghikteghala) Kyt ngMagMzM}CA)

+ 5%1P2 572P1 53304 534b3[ griragataD O + (gHLMIgHRIA 4 gRIFAGHRIS) K+ $7103 533D §32D4 §34D2[ gr1kag Rk O,
+ (gHaraghsta grikaghais) [Co T+ 531b4534b1532b3533b2[g#l#Ag/’-zMsZ}Cs_g_ (gHikagHtatat glirsgrara) KG]]
+irrelevant terms,
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'5 f d*([ A0 PO ILY () Y(x)])c = K 76267+ K g5°05%,

5 f d“x<[Eﬁ(owb(ontan'%m[%(x) wd(x>]tan¥> = KCg02I0P0H+ 01000 8%,
f f/lc

1

5 f d*xd*y([$22(0) Y O)JWP2(x) Y ys () ILUP3(Y) ¥, vs¥™(Y) D

1 b b b b b b b b b H
= §’C11( 581P2 59203 523014 §31P3 53302 52201) 4 |C 1, 52171 582P3 §%3P2 + jrrelavent terms,

(59/“/9#/”/ - ngM/gyy’)XM,XV’

i
K =—f d*x
Y 576NZ-1)

_ _ 1 _
X | ($2(0) y*¢P(0) P (X) ¥ (X))o — N—f<¢a(0)ywa<0)wb<x)y”«//b<x>>c

H1M2M3HA

[
=— H1K2K3K4 K1M2M3M4 __
K= 36[29M1ﬂ4gM2M3TA +20,1, 903, T A 91159 g T A

_ HIMQMML MM M3 4 MM M3 4
2gM1M4gM2M3TB Zgﬂlﬂng3M4TB + gM1M39M2M4TB ]’

Ta b 19’(0) b a 1 A a 19'(0) ) b
PA0) (O tan——¢ (X) v, ¥s¥*(X) | — $2(0) g(0)tan——4°(X) v, ¥s¥°(X)
Nf C Nf Nf C
(57)

i
K :—f d*xxt
ANz 1)

with T5, Tg defined as and the following identities:

1
_ %f d4xd4yX”4(Ea1(0) —y#ll/lbl(o) d”a}’)—d”anz E[QTF/RWQ—QF’LWQT],

X YP2(X) Y2 ys P2 X) 23 y) Y3 Y5y (Y) ) agzizQT[VMU]QT(X),

- 5alb25a2b3533b1TZ1M2M3#4
1
SQZE[Q(S—ip)Q+Q*(s+ip)QT],
+ §%1P3 53302 51 TL1K2K3M4 1 jrrelevant terms.
i : :
59 po=5[0(s-ip)2—-01(s+ip)0T],
In Egs.(57) and(58), {- - - )¢ denotes the connected part of
(---), and the irrelavent terms are those leading tpatf, ] 1
or tri[vfy] after multiplied by the corresponding sources. VA =—[QTFL"Q+ QF#' Q1]
To further evaluate the rotated source parts in §), 2

we make use of the?-order equation of motion i
+ ZQT[—(V“U)UT(VVU)

1
pg_N_ftrf(pQ)} (59 +(V'U)U'(veu)JQt, (60)

) —
d,ag=-Bo

054011-10



DERIVATION OF THE EFFECTIVE CHIRA. . .. PHYSICAL REVIEW D 61 054011

whereF&” andF{” are, respectively, the field-strength tensors of the right-handed and left-handed souces definel®in Ref.
With Egs.(59) and(60) and takingN;=3, Eq.(55) becomes

—Serf 1.d0 . Ec . Pac . Hacllpt order, normal
=f d*X[ L™ tr(VAUTY ,U) 124+ L™ [V U TV, UTtr [ VAU TV U T+ L™ [((VAUTV ,U)?]
+ L™ [VAUTY Ut xTU+ x U+ L™ [VAUTY U TU+UT) 1+ LT ™t (x U+ xUT) ]2
+ L™ tr (x U = xUT) 124 LE™hr [ x TUxTU + xUT YU T =L §o ™ [FR VAUV UT+FL VAU Ty U]
+ L™t [UTFER URS# ]+ HO ™ [FR FRev 4+ FL RRar ] O™ Ty 1], (61)

wherex=2B,(s+ip).* The integrand in Eq(61) is just the (norm) 1
normal part contributions to thg*-order terms in the chiral HI™= =7 (Kot Kag),
Lagrangian in Ref[2], and the coefficients are now defined
by
1 1 1 1
H(Znorm):_ _IC1+ _’C7+ _ICQ_ _IC15 .
L{morm= i2K4+ i6K5+ i6/C13_ izfcm ’ B X > (62)
3 1 1 3 '
The  twelve  standard coefficients  L{"™™),
|_(2norm)=i(;C44r Ke) + 1K13—£6/C14 Lirorm L L{germ) o) - o™ are expressed in terms
16 8 1 '

of twelve independenp®-order coefficientsiC,, Ks,=K,
—2K4, K4s=K4+2Ks, Kse=Ks+Ke, K7, Kg, K1915
=K1~ (1/B§) Ko+ (1/Bo)K1s, Ki1016= K1+ (Ni/BY)K1o
+(1/Bo) K15, K11, K12, K13, andyy.

The total coefficients are then

1
L:(gnorm):l_ﬁ(lcg_ 2K4—6K13+3K14),

Lgnorm):%, Li:Li(norm)+ Li(anom)’ i=1,...,10,
0
i Hj — HJ(norm)+ HJ(anom)’ J =1,2, (63)
norm 1
LS ):TQBO’ whereL "™ and H{&"°™ are the anomaly contributions to
the coefficients given in Ref$9,10].
K So we have formally derived thp*-order terms of the
L((snorm):_s, chiral Lagrangian from the fundamental principles of QCD
16B(2) without taking approximations and have expressed all the
coefficients in terms of the integrations of certain Green’s
Ky Kio Kis functions in QCD. Equation$57), (58), and (62) give the
L{norm— — - , fundamental QCD definitions of the the twelve coefficients
16Nr 1685 16BoNs L{norm). .. {rorm) - py(norm) - and ™ - The procedure can
be carried on order by order in the momentum expansion.
(norm)_ 1 1 1 1 T.he expres;ionQSO), (593, (57), (58), and _(62) are conve-
Lg ~16 Ky+ B_§K7_ B_§,C9+ B—OIC15 ) nient for lattice QCD calculations of the fifteen coefficients.

V. ON THE COEFFICIENTS F3 AND B,

1
Lgnorm)zg("'lcls_ K14, So far, we have given the formal QCD definitions of the

fourteen coefficients of the chiral Lagrangian upptborder.

1 To get the values of the coefficients, we need to solve the

L{omM= = (K, — K1a), relevant Green'’s functions which is a hard task, and we shall
2 present the calculations in a separate pap2}. To have an

idea of how our present formulas are related to other known
approximate results, we take th&-order coefficient§ S and

4In Ref.[2], x is defined asy=2B(s+ip)el’®?. In this paper By [Egs.(50) and(53)] as examples and make the following
we have takerg=0. simple discussion.
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As we have mentioned in Sec. 1V, there can be two ways

of figuring out the explicitl, dependence ob (. for evalu-
ating Sgi; from Eq. (39). One of them is to solve the dynami-
cal equations for the intermediate field,. , I1., and=.,

and the other is to track back to the original QCD generating
functional without the intermediate fields. For convenience,
we took the latter way in the above derivation of the chiral
Lagrangian. To compare our results with the known approxi-
mate results, we are going to take certain approximations,
say the largeN. limit, with which the calculation of the

PHYSICAL REVIEW D 61 054011

[10+iDG: "+ do+agys—Sa+ipaystE]7P(XY)
+ > fd4x1-~~d4xnd4x1--~d4x,’]
=1

()" NG, , ,
XTCGPP; : 'Pnn(x’y’xl’xl v Xn s Xn)

XD Y(xq,X1) - - - BIN(X %) =0. (66)

intermediate fields becomes even more convenient. Thus we

take the former way in the following discussion. In order to compare our results with the usual dynamical

First we take the largél; limit. It can be easily checked equations in the ladder approximation, we further take the
that, in this limit, the functional integrations in Eq€ll),  |adder approximation which, in the present case, corresponds
(24), and(28) can be simply carried out by the saddle pointto ignoring all then>1 terms in Eq(66) and with
approximation(taking the classical orbit in the semiclassical

approximation. The saddle point equationi40), (26), and
(30) are just the dynamical equations determining E"l"Z(xlyxi,xz,xé)
M., Pq.,=. as functions ofl, , which are Fir2
== EG/LJ_/LZ(X]_ 1X2)(‘y#1) (rlpz( yﬂz)azpl
PENCI(x,y)= —i[(i4+Ig—TTgc) 1PNy x),

2
— |term,

X 8(X1—X2) 8(Xy3—X1) +0O
N¢

Sop — ap

E7PO0S(x=y) +g6y) where G,,,(x,y) is the gluon propagator without internal

light-quark lines. Then, in the ladder approximation, E&§)

o becomes

— )" LIN.gH"

+ > fd4x1~~-d4xnd4x1~~-d4xr’1—( ) nl( o)
n=1 .

_ [i6+i®f; +dg+agys—So+iPays

xGZlemp:”(x,y,xl,xi, e X X)) P (X X)) - - -

=~ 1
= A2 T v_
X B I0Pn(x X)) =0, HEIXY)+ 59°NGL(XY) ¥ Pad(xy) y"=0.

(67)
tn[( —j Sinﬁ_XJr yscos@ ®].(x,X)|=0, (64) Qn 'ghe other hand,'in the largé; limit, d . is justq).ﬂC
N N¢ which is the full physical propagator of the quark with the

rotated sources. When the sources are turnedhgff, can be
expressed in terms of the quark self-ene¥gy- p?) and the

whereE is a short notation for the following quantity: wave function renormalizatiod(— p?) by the standard ex-

pression
~ J D, T(an)(b?)
2= —— [ diytny| Zy)| i sin"2 2 BoTHXY)
4 N
aPZP(X,Xx) f T @non
=[Pg]7 éV(Xay)|sQ=pQ:vf‘2:aﬁ:O
Fe(y)
+ 75COSC—} ®L,C(y,y>] (65 4 B n
Ny E fixed _5abf P -ty ! }
= — —" e ,
(2m)* Z(-p?)p—32(—p?)

In Egs.(64) and(65), J.(x) depends omb(x,x) through Eq.
(17). Note that the effective actiod’|[®] belongs to
O(1/Ng), so that it does not contribute in the present ap-in which translational invariance and the flavor and parity
proximation. In(64), the fieldII. can be easily eliminated conservations have been considered. Plugging(&®).into
and the resulting equation is Eq. (67) we have

(68)
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1
—1]p+3(—p?)+ 5iN

1
Z(-99)4-3%(—g?)

XG,(p—q)v* y'=0, (69

where G,,(p) is the gluon propagator in the momentum

representation, and the faz;:t|source§0=0 is taken into ac-

count. Equation(69) is just the usual Schwinger-Dyson

equation in the ladder approximation.

With the solution of the Schwinger-Dyson equation, the

formula (50) for FSBO can be expressed as

d*p S(—p?)
2m)* Z2(—p?)p?—32(—p?)’

F2By=4iN J( (70)

By definition [see Eqgs(46) and (52)], F3 is related to the

coefficient of the term linear i, in the expansion o . .
We denote

aab,u.(z)

fd“ztlJT“( y—zx y

= [(DSTIC] (an)(bg)(xry) | linear in ag

4
:f 4t de_q ~ipl(cty)2-2) - ia(x-y)
(2m)®

X ®17(p,a)ay(2). (71)

ThenF3 is determined by

N d*q

Fo=—2"(y* %J ®1e(0 72
o=g (779 2m) (0.0). (72)

To this order, we still have::||mearma5=0, and Eq.(67)
reduces to

-1 -1

p
+ YuY5

—i{(bg a+ 5

P
@I,M(p,q>[<b$(q— >

1, [ d% o y
+59°N f(z Cu (ka7 LK)y =0

(73

PHYSICAL REVIEW D 61 054011

term can be reasonably ignort2].) Moreover, to leading
order in dynamical perturbation or in the Landau gauge
(—p?=1. ThenF3 becomes

iN d“q
2

2__
0~

Y vs

1 1 1
4—s(—) " y-s(—)

_ J dq |1 4 ( q” )
= —4iN, S D
(2m)*[ 8 ag# | g?—223(—q?)

1
3(—g?)+ quE’(—qz)}E(—qz)
n . (74)
[q*—22(—g?)]?

The anomaly contribution tﬁé calculated in Ref[10] is of
the same form as the first term in E§4) but with an op-
osite sign, so that it just cancel the first term in E@4).
Then Eq.(74) is just the well-known Pagels-Stokar formula
for F3 [11]. Thus the Pagels-Stokar formula is an approxi-
mate result of our formula by taking the approximations of
the largeN. limit, the ladder approximation and dropping the
last term in Eq.(73) (or to leading order in dynamical per-
turbation.

VI. CONCLUSIONS

In this paper, we have derived the normal part contribu-
tions to the chiral Lagrangian for pseudoscalar mesons up to
the p* terms from the fundamental principles of QCD with-
out taking approximations. Together with the anomaly part
contributions given in Refd9,10], it leads to the complete
QCD theory of the chiral Lagrangian.

We started, in Sec. I, from the fundamental generating
functional (2) in QCD, and formally expressed the integra-
tion over the gluon-field in terms of physical gluon Green’s
functions. Then we integrated out the quark fields by intro-
ducing a bilocal auxiliary field®(x,y) [see Eq.(6)]. To
extract the degree of freedom of the local pseudoscalar-
meson fieldJ (x), we developed, in Sec. Ill, a technique for
extractingit from the bilocal auxiliary fieldb(x,y) [see Egs.
(13) and (15)], andintegrating inthe extraction constraint
into the generating functionféee Eqs(18), (20), and(22)].

This procedure ionsistentin the sense that the complete
pseudoscalar meson degree of freedom is converted into the
U(x) field such that the pseudoscalar degree of freedom in
the quark sector is automatically frozen in the path-integral
formulation of the effective actioBy.

We then developed two techniques for working out the

In the literature, a further approximation of dropping the explicit U(x) dependence o, in Sec. IV. The first one is

last term in Eq.73) is usually taker{18] (It can be shown
that to leading order in dynamical perturbatiphl], this

SThis is an alternative expression f6¢ equivalent to Eq(53).

to introduce a chiral rotatiof83) which simplifies thelJ (x)
dependence in such a way that tiéx) dependence resides
only implicitly in the rotated sources and some rotated inter-
mediate fields, and the second one is to implement(&9).

to obtainS,; from the averaged fieIGTQC. To avoid dealing
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with the intermediate fields, we tracked back to the original S(deU—1)s(UTU-1)
QCD generating functional with which the implidit(x) de-
pendence only resides in the rotated sources. With all these,
we expanded. in power series of the rotated sources and
explicitly derived thep? terms andp* terms of the chiral
Lagrangian for pseudoscalar mes$2¥ In this formulation,
all the fifteen coefficients in the chiral Lagrangian are ex-
pressed in terms of certain Green’s functions in Q[3Be
Egs. (50), (53), (62), and(57)]. These formulas can be re- =
garded as the fundamental QCD definitions of the fifteen
coefficients in the chiral Lagrangian. These expressions are
convenient for lattice QCD calculation of the fifteen coeffi-
cients.

To see the relation between our QCD definition and the
well-known approximate results in the literature, we took the
p2-order coefficientst:(z) andB, as examples in Sec. V. With 1 + +
the approximations of larghl; limit, ladder approximation, I= Ef DUSU'U—1)5(deU—deU’)
and dropping the momentum-integration term in the approxi-
mate Bethe-Salpeter equati@n3), our formula reduces to f(del)
the well-known Pagels-Stokar formula for the pion decay X
constantF . [11]. The complete calculation of the fifteen deU
coefficients will be presented in a separate pdd@t. The
derivation of the effective chiral Lagrangian further includ- . - . - .
ing the ' meson or they meson, and the application of the Next, we introduce two auxiliary fields and2, and writel
present approach to the electroweak chiral Lagrangian are &
in preparation.

s([detU]>—1)6(detU)s(UTU—-1)

S(detU[detU —deU™]) o(detU)s(UTU—1)

0(del))
detU

Nl NP NP

S(detU —deU™) S(UTu-1),

so that

F[O]8(Q0TQ-0T00").

1 ~
| = Ef DUDI D3 S(UTU—1)8(detU —detU ™)
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APPENDIX
Here we give the proof of Eq$18) and (19) in the text. 3 ;, 0(del)
Consider a matrix operataP satisfying dep=det® ', we X 5(det) —del)) deU 0]

calculate the following functional integration:
xs(QS-310)8Q'30-UT0)

IEJDU&(UTU—l)é(deU—l) x8QSa-0t).

X F[0]18(Q0Ta-0Toa'), -
We then change the integration variab®sand2 into

whereDU §(UTU — 1) 8(detU — 1) serves as the invariant in-
tegration measure at the present case. The two delta- -~ ~
functionsS(UTU—1), 8(detU — 1) constrain the integration 353 =0"T305-3'=030 (A1)
to the subspace with unitary and unity determinant oflthe
field.

We can rewrites(detU —1)8(UTU—1) as and get
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1 <) it . 0(del)) - R
:Ef DUDI' DX’ §(UTU—-1)d(del —del ") — = 8(3' —3") FL0]8(2' ~UT0)8(3' - O'U)
fpupz D' 8(UTU—1)8(deU — delUT)[( 1;3 83 -3 A0V ~0)8(3 -3')
fDUDE D3 'de(3 %) 8(3/[UTU-1]3") 8(defS'U]—defS'U T])ﬂ 833"

[de(Ux")]?

X FO18(US —0) 83 —3'T)

=3f p[uz']Dz'pifdetz"‘)a(z’TuTuz'—z’fz')x5(de(u2']—de(2’TuT])M
2 [de(UY")]?
X 83 —3 ) F 018U -0)8(3 -3 '),
We further change the integration variablgsnto
U—-Uu'=Us’, (A2)

and get

dets'4)6(detU’/det’)
[de(U’)]?

1 ~ , , ,
=§f DU'DS'DS'S(U TU =3T3 s(detlU’ —detU 1)

X 83 =3O8 —0) 63 —3'T).

TheU’ and3’ integrations can be carried out and we obtain

1 detO
| = S(det0— deoT)fDE S(0T0-3'T3" ) de(s 4)0( FLO18(3 -3
2[det0]? dets’
: ( dew” 35(0T0-3"T3)[de(x T3] ( 4e0 ) (0183 -3'T)
= Sl 1— D3 5(0TO0— [ det NP0 ——— | F[O]8(3 —
3 detO /
2 det] Vdefs'ts']
! 5( dewT)fDE s(0T0-3"T3")[det0T0)]? 40 FLO]8(z'-3'T)
— _ ! _ ! e 9 - 1
2[det0]? det© Vdef O O]
1 deO’ , ,
= —det0s| 1— f[@]fpz’a(co*(o—z TsheE -3
2 detO
l ’ !
=§det95(0)f[0]f Dy s(0T0-3 T8z -3, (A3)
|
In the last step, we have used the propertytetiei)". :
Taking F[ O] to be J DUSU'U—1)5(detU—1)
1 . . . XF[O0]16(00TQ-QT00T)=const, (A5)
FIo] del@f D3 5(0TO-3""3")8(%" =3,
(A4) which is of the form of Eq(18) in the text.
Next we look at the meaning of the variakie in Eq.
Eqg. (A3) becomes (A4). The constraints oz’ in Eq. (A4) are

054011-15



WANG, KUANG, WANG, AND XIAO PHYSICAL REVIEW D 61 054011

st=3r 2=, (A6)  hidden symmetry transformatiom—h'oh. Therefores’

can be regarded as an equivalent definitioroofand thus
On the other hand, Eq¢l3), (14), and(20) in the text show  Eq. (A4) can be written as

that theo field is constrained as

o'=0, (Q'cQ)?=0"0. (A7) =de(9f Das(OTO-ata)s(a—a), (A8)

1
Fl10O]
Comparing Eq.(A6) with Eq. (A7), we find3'~QT¢0Q.

We know that the definition ofr is not unique. It is up to a which is just Eq.(19) in the text.
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