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Derivation of the effective chiral Lagrangian for pseudoscalar mesons from QCD
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We formally derive the chiral Lagrangian for low lying pseudoscalar mesons from the first principles of
QCD considering the contributions from the normal part of the theory without taking an approximation. The
derivation is based on the standard generating functional of QCD in the path integral formalism. The gluon-
field integration is formally carried out by expressing the result in terms of the physical Green’s functions of
the gluon. To integrate over the quark field, we introduce a bilocal auxiliary fieldF(x,y) representing the
mesons. We then develop a consistent way of extracting the local pseudoscalar degree of freedomU(x) in
F(x,y) and integrating out the rest degrees of freedom such that the complete pseudoscalar degree of freedom
resides inU(x). With certain techniques, we work out the explicitU(x) dependence of the effective action up
to the p4 terms in the momentum expansion, which leads to the desired chiral Lagrangian in which all the
coefficients contributed from the normal part of the theory are expressed in terms of certain quark Green’s
functions in QCD. Together with the exsisting QCD formulas for the anomaly contributions, the present results
lead to the complete effective chiral Lagrangian for pseudoscalar mesons. The final result can be regarded as
the fundamental QCD definition of the coefficients in the chiral Lagrangian. The relation between the present
QCD definition of thep2-order coefficientF0

2 and the well-known appoximate result given by Pagels and
Stokar is discussed.

PACS number~s!: 12.39.Fe, 11.30.Rd, 12.38.Aw, 12.38.Lg
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I. INTRODUCTION

The study of low energy hadron physics in QCD is
longstanding difficult problem due to its nonperturbative n
ture. For low lying pseudoscalar mesons, a widely used
proach is the theory of chiral Lagrangian based on the m
mentum expansion and the consideration of the glo
symmetry of the system without dealing with the nonpert
bative dynamics of QCD@1,2#. In the chiral Lagrangian ap
proach, the coefficients in the Lagrangian are all unkno
phenomenological parameters which are determined by
perimental inputs. The number of the unknown parame
increases rapidly with the increase of the precision in
momentum expansion. For example, the chiral Lagrang
for pseudoscaler mesons with three flavors up to thep4 terms
given by Gasser and Leutwyler@2# contains 14 unknown
coefficients. When thep6 terms are taken into account, the
are 143 additional unknown coefficients@3#.

This kind of approach has also been applied to the e
troweak theory@4# for studying the probe of the electrowea
symmetry breaking mechanism@5,6#. Since parity andCP
are not conserved in the electroweak theory, there are e
more unknown coefficients in the electroweak chiral L
grangian than in the case of QCD@4#. So far, this kind of
study is at the point of finding out suitable processes at fu
high energy colliders to determine the unknown coefficie
in the electroweak chiral Lagrangian and investigating
what precision the determination can be made. The rela
between the coefficients in the electroweak chiral Lagrang
and the underlying model of the electroweak symme
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breaking mechanism is yet not known except for some v
simple models@5#.

Further study on understanding the relation between
chiral Lagrangian coefficients and the underlying dynami
theory will be very helpful both in QCD and in the elec
troweak theory for reducing the number of independent
known parameters which makes the theory more predicta
There are papers studying approximate formulas for the
ral Lagrangian coefficients based on certain dynamical
satz @7#, but the approach is not completely from the fir
principles of the underlying theory. Attempts to build clos
relations between the chiral Lagrangian and the long dista
piece of the underlying theory of QCD by considering t
anomaly contributions with certain approximation also ex
@8,9#. However, several aspects of it imply that such a ki
of approach needs improvement, e.g.,~a! the theory does no
include spontaneous chiral symmetry breaking, and the
ral symmetry breaking scale is put in by hand;~b! without
putting in the chiral symmetry breaking scale, the obtain
pion decay constantFp is proportional to an imposed ver
low (;320 MeV! momentum cutoff on the underlying
theory of QCD;~c! the positivity ofFp

2 depends on a carefu
choice of the regularization scheme. The approach in R
@10# does not contain the above problems. But in Ref.@10#,
the approximation of large-Nc limit is taken from the begin-
ning and the approximation of picking up only the local sc
lar and pseudoscalar pieces of the color-singlet qua
antiquark bilocal operator arising from integrating the gluo
field is taken in the derivation. With the latter approximatio
the formula for thep2-order coefficientF0

2 in Ref. @10# is
expressed in terms of an imposed ultraviolet cutoff, and
hardly be related to the well-known Pagels-Stokar form
©2000 The American Physical Society11-1
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for F0
2 @11#. Therefore, further improvement of studying th

effective chiral Lagrangian from the fundamental princip
of QCD is necessary. Actually, the study can be divided i
two steps. The first step is to formally derive the effecti
chiral Lagrangian from the fundamental principles of QC
and express the coefficients in terms of certain dynam
quantities in QCD, which gives the QCD meanings of t
coefficients. The second step is to calculate the related
namical quantities in QCD to obtain the values of the co
ficients. This paper is mainly devoted to the first step.

In this paper, we develop certain techniques with wh
we are able to formally derive the effective chiral Lagrang
for pseudoscalar moesons from the first principles of Q
without taking approximation, and all the coefficients a
expressed in terms of certain Green’s functions in QC
Such expressions can be regarded as the fundamental
definitions of the coefficients. As a simple example, we sh
that, under certain approximations, ourp2-order coefficient
F0

2 reduces to the well-known approximate formula given
Pagels and Stokar@11#. A systematic numerical calculatio
of the coefficients by solving the related QCD Green’s fun
tions in certain approximation~the second step! will be pre-
sented in a separate paper@12#.

This paper is organized as follows. Section II is on t
fundamental generating functional in QCD. We start from
and formally integrate out the heavy-quark and gluon fie
to obtain a formal generating functional for the light qua
fields. In Sec. III, we introduce a bilocal auxiliary field re
flecting the light meson degrees of freedom with which
can integrate out the light quark fields. Then we develo
technique for extracting the degree of freedom of the des
local fieldU(x) for the pseudoscalar mesons from the bilo
auxiliary field, and formally integrate out the the remaini
degrees of freedom of the bilocal auxiliary field to obtain
generating functional for the local fieldU(x). In Sec. IV, we
develop certain techniques to work out the completeU(x)
dependence of the effective Lagrangian in the sense of
mentum expansion, and obtain the effective chiral Lagran
which is of the form given by Gasser and Leutwyler@2#. In
this process we obtain the QCD expressions for all the c
ficients in the effective chiral Lagrangian. A discussion
the relation between the present QCD definition of theO(p2)
coefficientsF0

2 and the well-known Pagels-Stokar formu
~an approximate result! @11# will be given in Sec. V. Section
VI contains concluding remarks.

II. THE GENERATING FUNCTIONAL

Consider a QCD-type gauge theory with SU(Nc) local
gauge symmetry. LetAm

i ( i 51,2, . . . ,Nc
221) be the gauge

field, ca
ah andCa

āh be , respectively, light and heavy fermio
fields with color indexa(a51,2, . . . ,Nc), Lorentz spinor
index h, light flavor index a(a51,2, . . . ,Nf), and heavy
flavor indexā(ā51,2, . . . ,Nf8). For convenience, we simpl

call ca
ah the ‘‘light quark field,’’ Ca

āh the ‘‘heavy quark
field,’’ and Am

i the ‘‘gluon-field.’’ Let us introduce local ex-
ternal sourcesJsr for the composite light quark operato
c̄scr, wheres andr are short notations for the spinor an
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flavor indices. The external sourceJ can be decomposed int
scalar, pseudoscalar, vector, and axial-vector parts

J~x!52s~x!1 ip~x!g51v” ~x!1a” ~x!g5 , ~1!

wheres(x), p(x), vm(x), andam(x) are Hermitian matrices
and the light quark masses have been absorbed into the
nition of s(x). The vector and axial-vector sourcesv” (x) and
a” (x) are taken to be traceless.

Since the contributions from the anomaly term to the
fective chiral Lagrangian has already been studied in R
@9,10#, our aim in this paper is to study the complete norm
part contributions. So, in this paper, we simply ignore t
standardCP-violating term related to the anomaly by takin
the u-vacuum parameteru50.

Following Gasser and Leutwyler@2#, we start from con-
structing the following generating functional:

Z@J#5E DcDc̄DCDC̄DAm

3expi E d4x$L~c,c̄,C,C̄,Am!1c̄Jc%

5E DcDc̄ expH i E d4xc̄~ i ]”1J!cJ
3E DCDC̄DAmDF~Am!expH i E d4xFLQCD~A!

2
1

2j
@Fi~Am!#22gI i

mAm
i 1C̄~ i ]”2M2gA” !CG J ,

~2!

where LQCD(A)52 1
4 Amn

i Aimn is the gluon kinetic energy

term,M is the heavy quark mass matrix,I i
m[c̄l i /2gmc are

colored currents composed of light quark field
21/2j@Fi(Am)#2 is the gauge-fixing term andDF(Am) is the
Fadeev-Popov determinant.

Let us first consider the integration overDCDC̄DAm for
a given configuration ofc andc̄, i.e., the currentI i

m serves

as an external source in the integration overDCDC̄DAm .
The result of such an integration can be formally written

E DCDC̄DAmDF~Am!expH i E d4xFLQCD~A!

2
1

2j
@Fi~Am!#22gI i

mAm
i 1C̄~ i ]”2M2gA” !CG J

5expi (
n52

` E d4x1•••d4xn

~2 i !ngn

n!

3Gm1•••mn

i 1••• i n ~x1 ,•••,xn!I i 1

m1~x1!•••I i n

mn~xn!,

~3!

whereGm1•••mn

i 1••• i n is the full n-point Green’s function of theAm
i

field containing internal heavy quark lines and with giv
1-2
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sourcesI i
m . For simplicity, the gluon field integration in thi

paper is limited to the topologically trivial sector. Inclusio
of topologically nontrivial sectors only changes the interm
diate results but not the final result~45!.

By Fierz reordering, we can further diagonalize the co
indices of the light-quark operators, and get

Gm1•••mn

i 1••• i n ~x1 ,•••,xn!F c̄a1

a1~x1!S l i 1

2
D

a1b1

gm1cb1

a1~x1!G •••
3F c̄an

an~xn!S l i n

2
D

anbn

gmncbn

an~xn!G
5E d4x18•••d4xn8g

n22Ḡr1•••rn

s1•••sn~x1 ,x18 ,•••,xn ,xn8!

3c̄a1

s1~x1!ca1

r1~x18!•••c̄an

sn~xn!can

rn~xn8!, ~4!

where Ḡr1•••rn

s1•••sn(x1 ,x18 ,•••,xn ,xn8) is a generalized Green’

function containing 2n space-time points. Then Eq.~2! can
be written as

Z@J#5E DcDc̄ expi H E d4xc̄~ i ]”1J!c

1 (
n52

` E d4x1•••d4xnd4x18•••d4xn8
~2 i !n~g2!n21

n!

3Ḡr1•••rn

s1•••sn~x1 ,x18 ,•••,xn ,xn8!

3c̄a1

s1~x1!ca1

r1~x18!•••c̄an

sn~xn!can

rn~xn8!J . ~5!

III. THE AUXILIARY FIELDS

A. The bilocal auxiliary field

For integrating out the light quark fieldsc and c̄, we
introduce a bilocal auxiliary fieldF (ah)(bz)(x,x8) by insert-
ing the following constant into Eq.~5!:

E DFd~NcF
(ah)(bz)~x,x8!2c̄a

ah~x!ca
bz~x8!!. ~6!

We see from Eq.~6! that the bilocal auxiliary field
F (ah)(bz)(x,x8) embodies the bilocal composite operat
c̄a

ah(x)ca
bz(x8) which reflects the meson fields. Inserting E

~6! into Eq. ~5! we get

Z@J#5E DcDc̄DFd~NcF
(ah)(bz)~x,x8!

2c̄a
ah~x!ca

bz~x8!!expi H E d4xc̄@ i ]”1J#c

1Nc(
n52

` E d4x1•••d4xnd4x18•••d4xn8
05401
-
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3
~2 i !n~Ncg

2!n21

n!
Ḡr1•••rn

s1•••sn~x1 ,x18 , . . . ,xn ,xn8!

3Fs1r1~x1 ,x18!•••Fsnrn~xn ,xn8!J . ~7!

The d function in Eq. ~7! can be further expressed in th
Fourier representation

d„NcF~x,x8!2c̄~x!c~x8!…

;E DPei *d4xd4x8P(x,x8)[NcF(x,x8)2c̄(x)c(x8)] .

With this we can integrate out thec and c̄ fields and get

Z@J#5E DFDP expi H 2 iNcTr ln@ i ]”1J2P#

1E d4xd4x8NcF
sr~x,x8!Psr~x,x8!

1Nc(
n52

` E d4x1•••d4xnd4x18•••d4xn8

3
~2 i !n~Ncg

2!n21

n!
Ḡr1•••rn

s1•••sn~x1 ,x18 , . . . ,xn ,xn8!

3Fs1r1~x1 ,x18!•••Fsnrn~xn ,xn8!J , ~8!

where Tr is the functional trace with respect to the spa
time, spinor and flavor indices.

Let us define the classical fieldPc

Pc[
E DP PeiS

E DPeiS

, ~9!

whereS is the argument on the exponential in Eq.~8!. Let
G0@J,F,Pc# be the effective action forPc with givenJ and
F. Pc satisfies1

]G0@J,F,Pc#

]Pc
sr~x,x8!

50. ~10!

ThenG0@J,F,Pc# is explicitly

1In the conventional approach, one usually introduces an exte
sourceJ coupling to the fieldP. With this, the right-hand-side o
Eq. ~10! equals2J @13#. Equation~10! corresponds to takingJ
50. Similarly, when takingJ50, the effective actionG0@J,F,Pc#
equals the generating functionalW0@J,F,J#uJ50 for the connected
Green’s fuctions. This leads to the left-hand side of Eq.~11!.
1-3
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eiG0[J,F,Pc]

[E DP expiNcH 2 iTr ln@ i ]”1J2P#

1E d4xd4x8Fsr~x,x8!Psr~x,x8!

1 (
n52

` E d4x1•••d4xnd4x18•••d4xn8

3
~2 i !n~Ncg

2!n21

n!
Ḡr1•••rn

s1•••sn~x1 ,x18 , . . . ,xn ,xn8!

3Fs1r1~x1 ,x18!•••Fsnrn~xn ,xn8!J . ~11!

With these symbols, we can formally carry out the integ
tion over theP field in Eq. ~8!, and express the result by

Z@J#5E DF exp$ iG0@J,F,Pc#%, ~12!

B. Localization

Since we are aiming at deriving the low energy effect
chiral Lagrangian in which the light mesons are appro
mately described by local fields, we need toconsistentlyex-
tract the local field degree of freedom from the bilocal au
iliary field F (ah)(bz)(x,x8). The extraction should be
consistentin the sense that the complete degree of freed
of the mesons resides in the local fields without leaving a
in the coefficients in the chiral Lagrangian. Otherwise, it w
affect the validity of the momentum expansion@2#. In this
paper, we propose the following way of extraction, and
shall see in Sec. IV that it is reallyconsistent.

The auxiliary fieldF introduced in Eq.~6! has such a
property which allows us to define the fieldss and V8 re-
lated to the scalar and pseudoscalar sectors ofF as

~V8sV81V8†sV8†! ab~x!5~1!zhF (bz)(ah)~x,x!

~V8sV82V8†sV8†!ab~x!5~g5!zhF (bz)(ah)~x,x!.
~13!

Here thes field repesented by a Hermitian matrix describ
the modular degree of freedom, and theV8 field represented
by an unitary matrix describes the phase degree of freed
i.e.,

s†~x!5s~x!, V8†~x!V8~x!51. ~14!

As usual, we can defineU8(x)[V82(x) which contains a
U(1) factor such that detU8(x)5eiq(x), where the determi-
nant is for the flavor matrix. The unitarity property ofU8(x)
implies thatq(x) is a real field. We can further extract ou
the U(1) factor and define a fieldU(x) as U8(x)
[e( i /Nf )q(x)U(x). It is easy to see that detU(x)51. Then we
can define a new fieldV and decomposeU into
05401
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U~x!5V2~x!, ~15!

which is the conventional decomposition in the literatu
This U(x), as the desired representation of SU(Nf)R
3SU(Nf)L , will be the nonlinear realization of the peudo
calar meson fields in the chiral Lagrangian. Note that
way of introducing theU(x) field is not unique but is up to
a chiral rotation which does not affect the final effecti
chiral Lagrangian since the chiral Lagrangian is chirally
variant. The fieldss andq are intermediate fields which wil
not appear in the final effective chiral Lagrangian. It
straightforward to subtracts from the two equations in Eq
~13! and using Eq.~14! to get

e2 i [q(x)/Nf ]V†~x!trl@PRFT~x,x!#V†~x!

5ei [q(x)/Nf ]V~x!trl@PLFT~x,x!#V~x!, ~16!

wherePR andPL are, resprectively, the projection operato
onto the right-handed and left-handed states, the supers
T stands for the functional transposition~transposition of all
indices including the space-time coordinates!, and we have
expressed the result in terms ofV. Equation~16! builds up
the relation betweenF(x,x) and U(x) @or V(x)]. Taking
the determinant of Eq.~16! we can expressq(x) in terms of
FT(x,x) as

e2iq(x)5
det†trl@PRFT~x,x!#‡

det†trl@PLFT~x,x!#‡
, ~17!

where trl is the trace with respect to the spinor index.
Equations~13!–~16! describe our idea of localization. T

realize this idea in the functional integration formalism, w
need a technique tointegrate inthis information to the gen-
erating functional~12!. For this purpose, we start from th
following functional identity for an operatorO satisfying
detO5detO † ~see the Appendix for the proof!

E DUd~U†U21!d~detU21!

3F @O#d~VO †V2V†OV†!5const, ~18!

in which *DUd(U†U21)d(detU21) is an effective invari-
ant integration measure and the functionF@O# is defined as

1

F @O#
[detOE Dsd~O †O2s†s!d~s2s†!. ~19!

With the special choice of

O~x!5e2 i [q(x)/Nf ] trl@PRFT~x,x!#, ~20!

which satisfies detO5detO †, Eq. ~18! serves as the func
tional expression reflecting the relation~16!. Inserting Eq.
~18! and~20! into the functional~12! and taking the Fourier
representation of thed function

d~VO †V2V†OV†!;E DJe2 iNc*dxJ(VO †V2V†OV†),

~21!
1-4
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we get

Z@J#5E DFDUDJd~U†U21!d~detU21!

3expH iG0@J,F,Pc#1 iG I@F#1 iNcE d4x

3trf†J~x!„e2 i [q(x)/Nf ]V†~x!trl@PRFT~x,x!#

3V†~x!2ei [q(x)/Nf ]V~x!trl@PLFT~x,x!#V~x!…‡J ,

~22!

with

e2 iG I [F][)
x

1

F@O~x!#

5)
x

S $det@ trl PRFT~x,x!#det@ trl PLFT~x,x!#%1/2

3E Dsd@~ trl PRFT!~ trl PLFT!2s†s#

3d~s2s†! D . ~23!

In Eq. ~22!, the information about the relation~16! has been
integrated in.

Next, we deal with the functional integration over th
F-field. For this purpose, we define an effective acti

G̃@V,J,J,Fc ,Pc# as

ei G̃[V,J,J,Fc ,Pc]

5E DF expH iG0@J,F,Pc#1 iG I@F#1 iNcE d4x

3trf†J~x!„e2 i [q(x)/Nf ]V†~x!trl

3@PRFT~x,x!#V†~x!

2ei [q(x)/Nf ]V~x!trl@PLFT~x,x!#V~x!…‡J , ~24!

in which the classical fieldFc(x,x8) is defined as

Fc5

E DFFeS̃

E DFeS̃

, ~25!

where S̃ stands for the argument in the exponential in E
~24!. Fc satisfies

]G̃@V,J,J,Fc ,Pc#

]Fc
sr~x,x8!

50. ~26!
05401
.

With these symbols, we can formally carry out the*DF
integration in Eq.~22! and obtain

Z@J#5E DUDJd~U†U21!d~detU21!

3exp$ i G̃@V,J,J,Fc ,Pc#%. ~27!

Here we have formally integrated out all the degrees of fr
dom in F(x,x8) in addition to the extracted local degree
freedomU(x). This localization is different from those in
the literature@14#.

Similar to the above procedures, we can formally in
grate out theJ-field by introducing an effective action
Seff@U,J,Jc ,Fc ,Pc# as follows:

eiSeff[U,J,Jc ,Fc ,Pc]5E DJ expi G̃@V,J,J,Fc ,Pc#,

~28!

where the classical fieldJc is defined as

Jc5

E DJJ expi G̃@V,J,J,Fc ,Pc#

E DJ expi G̃@V,J,J,Fc ,Pc#

~29!

and satisfies

]Seff@U,J,Jc ,Fc ,Pc#

]~Jc!
ab~x!

50. ~30!

Then theJ-integration in Eq.~27! can be formally carried
out, and we obtain

Z@J#5E DUd~U†U21!d~detU21!

3exp$ iSeff@U,J,Jc ,Fc ,Pc#%. ~31!

We see from Eq.~31! that Seff@U,J,Jc ,Fc ,Pc# is just the
action forU with a givenJ.2

Using Eqs.~11!, ~24!, ~30!, ~26!, ~25!, and~10!, one can
further show the following important relation

dSeff@U,J,Jc ,Fc ,Pc#

dJsr~x!
U

Ufix

5Nc

E DJFc
sr~x,x!expi G̃@V,J,J,Fc ,Pc#

E DJ expi G̃@V,J,J,Fc ,Pc#

[NcF̄c
sr~x,x!. ~32!

2Note thatJc , Fc , andPc are all functionals ofU and J through
Eqs.~29!, ~25!, and~9!.
1-5
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In Eq. ~32!, the symbolF̄c denotes the functional average
Fc over the field J weighted by the action

G̃@V,J,J,Fc ,Pc#. Equation~32! is crucial in the derivation
of the effective chiral Lagrangian.

IV. THE EFFECTIVE LAGRANGIAN

To derive the effective chiral Lagrangian, we need to o
tain the U(x) and J dependence ofSeff@U,J,Jc ,Fc ,Pc#.
Note thatSeff@U,J,Jc ,Fc ,Pc# depends onU and J not only
explicitly in Eq. ~28! but also implicitly viaJc ,Fc andPc
through Eqs.~29!, ~25!, and ~9!. The remaining task of the
derivation of the effective chiral Lagrangian is to work o
explicitly the complete U and J dependence o
Seff@U,J,Jc ,Fc ,Pc#. The procedure is described as wh
follows.

First we consider a chiral rotation

JV~x!5@V~x!PR1V†~x!PL#@J~x!1 i ]” #

3@V~x!PR1V†~x!PL#,

FV
T ~x,y!5@V†~x!PR1V~x!PL#FT~x,y!

3@V†~y!PR1V~y!PL#,

PV~x,y!5@V~x!PR1V†~x!PL#P~x,y!

3@V~y!PR1V†~y!PL#. ~33!

The present theory is symmetric under this transformat
Since theJ-field is introduced in Eq.~21! and the operator
VO †V2V†OV† is invariant under the chiral rotation, ther
is no need to introduceJV . Furthermore, since detV51,
we can easily see from Eq.~17! that qV(x)5q(x). The
explicit dependence ofSeff@U,J,Jc ,Fc ,Pc# on U(x) comes
from the explicit V(x)@V†(x)# dependence o
G̃@V,J,Fc ,Pc# in Eq. ~24! @see Eqs.~24! and ~28!#. After
the chiral rotation, this term becomes

1 iNcE d4x trf„J~x!$e2 i [q(x)/Nf ] trl@PRFV
T ~x,x!#

2ei [q(x)/Nf ] trl@PLFV
T ~x,x!#%…,

which no longer depends onU(x) explicitly. Therefore, after
the chiral rotation, there is no explicitU(x) dependence o
Seff@U,J,Jc ,Fc ,Pc#, i.e., the completeU(x) dependence
resides implicitly in the rotated variables with the subscr
V. For instance, the effective actionsG0@J,Fc ,Pc#, G I@F#,
G̃@V,J,J,Fc ,Pc#, and Seff@U,J,Jc ,Fc ,Pc# can be writ-
ten as

G0@J,F,Pc#5G0@JV ,FV ,PVc#1anomaly terms,
~34!

G I@F#5G I@FV#, ~35!

G̃@V,J,J,Fc ,Pc#5G̃@1,JV ,J,FVc ,PVc#

1anomaly terms, ~36!
05401
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Se f f@U,J,Jc ,Fc ,Pc#5Se f f@1,JV ,Jc ,FVc ,PVc#

1anomaly terms. ~37!

From Eq.~24! we see that

ei G̃[1,JV ,J,FVc ,PVc]

5E DFVexpH iG0@JV ,FV ,PVc#1 iG I@FV#

1 iNcE d4xtrl f H J~x!F2 i sin
q~x!

Nf

1g5cos
q~x!

Nf
GFV

T ~x,x!J J , ~38!

where trl f denotes the trace with respect to the spinor a
flavor indices. The anomaly terms in Eqs.~34!, ~36!, and
~37! are all the same arising from the non-invariance
Tr ln@i]”1J2P# under the chiral rotation. Note that the fun
tional integration measure does not change under the c
rotation, i.e.DFDP5DFVDPV since the Jaccobians from
F→FV and P→PV cancel each other. We see that t
U(x) dependence is simplified after the chiral rotation.

The second approach is the use of Eq.~32!. As we have
mentioned in Sec. II that we ignore the irrelevant anom
terms in this study. Then after the chiral rotation, Eq.~32!
becomes

dSe f f@1,JV ,Jc ,FVc ,PVc#

dJV
sr~x!

U
Ufix, anomaly ignored

5NcFVc
sr ~x,x!. ~39!

We see from Eq.~39! that once theJV dependence ofFVc is
explicitly known, one can integrate Eq.~39! overJV and get
the U(x) dependence ofSeff@1,JV ,Jc ,FVc ,PVc# up to an
irrelevant integration constant independent ofU(x) and
J(x). From that we can derive the effective chiral Lagran
ian and the expressions for its coefficients. There can be
ways of figuring out theJV dependence ofFVc. One is to
write down the dynamical equations for the intermedia
fields Jc , FVc , andPVc and solve them~usually this can
be done only under certain approximations! to get theJV

dependence of these intermediate fields. The other one
track back to the original QCD expression for the chira
rotated generating functional~2! through ~32! and ~25! by
reverting the procedures in Secs. III and II, which can lead
the fundamental QCD definitions of the chiral Lagrangi
coefficients without taking approximation. We take the lat
approach in this paper. Because of thed function
d„NcF

(ah)(bz)(x,x8)2c̄a
(ah0)(x)ca

(bz)(x8)… in Eq. ~7!, we
can expressFVc

(ah)(bz)(x,y) as
1-6
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NcFVc
(ah)(bz)~x,y!5

E DcDc̄DCDC̄DAmDJc̄a
ah~x!ca

bz~y!eiŜ[c,c̄,C,C̄,A,J]

E DcDc̄DCDC̄DAmDJeiŜ[c,c̄,C,C̄,A,J]

, ~40!
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where

Ŝ@c,c̄,C,C̄,A,J#

[G IF 1

Nc
c̄c G1E d4xHL~c,c̄,C,C̄,Am!

1c̄Fv”V1a”Vg52sV1 ipVg5

1JS 2 i sin
q8

Nf
1g5cos

q8

Nf
D GcJ . ~41!

In Eq. ~40! and all later equations in this paper, the symboc
is used as a short notation for the chirally rotated quark fi
cV .3 In Eq. ~41!, G I@(1/Nc)c̄c# and q8 are the quantities
defined in Eqs.~23! and ~17! expressed in terms of quar
fields, i.e.,

e2 iG I [(1/Nc] c̄c]

5)
x

H FdetS 1

Nc
trlc@cR~x!c̄L~x!# D

3detS 1

Nc
trlc@cL~x!c̄R~x!# D G1/2

3E DsdS 1

Nc
2
trlc~cRc̄L!trlc~cLc̄R!2s†s D

3d~s2s†!J , ~42!

e2iq8(x)[
det@ trlc@cR~x!c̄L~x!##

det@ trlc@cL~x!c̄R~x!##
, ~43!

where trlc is the trace with respect to the spinor and co
indices. Equation~43! implies that the range ofq8(x) is
@0,p).

Note that instantons contribute to both Eqs.~42! and~43!
@15#. The UA(1) violating field-configurations only caus
nonvanishingq8 but do not contribute toG I@(1/Nc)c̄c#.

3As an integration variable, whether or not there is a subscripV
makes no difference. Once the classical equation of motion is c
cerned, distinguishing the rotatedcV from the unrotatedc will be
necessary.
05401
d
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With Eqs.~40!–~43!, one can integrate Eq.~39! over the
rotated souces and obtain

eiSe f f[1,JV ,Jc ,FVc ,PVc] uanomaly ignored

5E DcDc̄DCDC̄DAmDJ expS iG IF 1

Nc
c̄cG

1 i E d4xHL~c,c̄,C,C̄,Am!1c̄Fv”V1a”Vg52sV

1 ipVg51JS 2 i sin
q8

Nf
1g5cos

q8

Nf
D GcJ D . ~44!

For realistic QCD (Nf53), cos(q8/Nf) does not vanish. We
can then shift the integration variableJ→J
2 ipV /cos(q8/Nf) to cancel thepV-dependence in the pseu
doscalar part of Eq.~44!. After carrying out the integration
over J, we obtain

eiSeff[1,JV ,Jc ,FVc ,PVc] uanomaly ignored

5E DcDc̄DCDC̄DAm

3dS c̄aF2 i sin
q8

Nf
1g5cos

q8

Nf
GcbD

3expS iG IF 1

Nc
c̄cG1 i E d4xHL~c,c̄,C,C̄,Am!

1c̄Fv”V1a”Vg52sV2pVtan
q8

Nf
GcJ D . ~45!

In Eq. ~45!, there is nopV dependence in the pseudosca
channel, and thepV dependence appears in the scalar ch
nel as the combinationsV1pVtan(q8/Nf).

Equation~45! shows thatSeff@1,JV ,,Jc ,FVc ,PVc# is the
QCD generating functional for the rotated sourcessV

1pVtanq8/Nf , vV
m , andaV

m with a special parity odd degre

of freedoms 2 i c̄acbsinq8/Nf 1c̄ag5cbcosq8/Nf frozen.
After making a furtherUA(1) rotation of thec andc̄ fields,
the angleq8/Nf can be rotated away and the frozen deg
of freedom becomes just the pesudoscalar degree of free
c̄ag5cb as it should be since this degree of freedom is
ready included in the integrating in of theU field. The auto-
matic occurance of this frozen degree of freedom in
present approach implies that our way of extracting
U-field degree of freedom is reallyconsistent, i.e., nothing of
the pseudoscalar degree of freedom is left outsideU. After
the UA(1) rotation,G I and the Jacobian due to the rotatio

n-
1-7
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will give rise to an extra factor in the integrand, which is t
compensation factor for the extraction of theU-field degree
of freedom. From the point of view of the auxiliary fieldF,
this corresponds to the contributions from integrating out
degrees of freedom other thanU, say thes andh8 mesons.

Now we are ready to explicitly work out the effectiv
chiral Lagrangian to thep2 andp4 order. As is pointed out in
Ref. @2#, the vector and axial-vector sources should be
garded asO(p) and the scalar and pseudoscalar sour
should be regarded asO(p2) in the momentum expansion.

A. The p2 terms

We first consider thep2-order terms. To this order, th
anomaly can be safely ignored. Expanding Eq.~45! up to the
order ofp2, we obtain

Seff@1,JV ,Jc ,FVc ,PVc#up2 order

5E d4xtrf@Fab~x!sV
ab~x!1F8ab~x!pV

ab~x!#

1E d4xd4zGmn
abcd~x,z!aV

m,ab~x!aV
n,cd~z!,

~46!

where

Fab~x!52^@c̄a~x!cb~x!#&,

F8ab~x!52 K @c̄a~x!cb~x!#tan
q8~x!

Nf
L ,

Gmn
abcd~x,z!5

i

2
@^@c̄a~x!gmg5cb~x!#@c̄c~z!gng5cd~z!#&

2^@c̄a~x!gmg5cb~x!#&

3^@c̄c~z!gng5cd~z!#&#, ~47!

and the symbol̂O& for an operatorO appeared in Eq.~47! is
defined as

^O&[
E DmO

E Dm

, ~48!

where

Dm[DcDc̄DCDC̄DAm

3dS c̄aF2 i sin
q8

Nf
1g5cos

q8

Nf
GcbD

3eiG I [(1/Nc)c̄c] 1 iE d4xL(c,c̄,C,C̄,Am).
05401
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For Fab(x), translational invariance and flavor conserv
tion @16# leads to the conclusion that it is simply a space-tim
independent constant proportional todab. So that it can be
written as

Fab~x!5F0
2B0dab, ~49!

where

F0
2B0[2

1

Nf
^c̄c&. ~50!

For F8ab(x), parity conservation@17# leads to

F8ab~x!50. ~51!

For Gmn
abcd(x,z), translational invariance leads to the concl

sion that it can only depend onx2z. We can further expand
this dependence in terms ofd(x2z) and its derivatives. To
p2 order, the derivative terms do not contribute, and the o
term left is d(x2z)*d4zGmn

abcd(x,z). The coefficient
*d4zGmn

abcd(x,z) is again independent of the space-time c
ordinates due to translational invariance. Then Lorentz
flavor symmetries imply that*d4xGmn

abcd is proportional to
gmndaddbc. There cannot be terms of the structuredabdcd

since this term is to be multiplied byaV
m,ab aV

n,cd , andaV
m is

traceless. Therefore the only relevant part ofGmn
abcd(x,z) is

Gmn
abcd~x,z!5d~x2z!gmndaddbcF0

21 irrelevant terms,

~52!

where

F0
2[

1

4~Nf
221!

E d4xFGm8
m8,abba

~0,x!2
1

Nf
Gm8

m8,aabb
~0,x!G

5
i

8~Nf
221!

E d4xF ^@c̄a~0!gmg5cb~0!#

3@c̄b~x!gmg5ca~x!#&2
1

Nf
^@c̄a~0!gmg5ca~0!#

3@c̄b~x!gmg5cb~x!#&2^@c̄a~0!gmg5cb~0!#&

3^@c̄b~x!gmg5ca~x!#&1
1

Nf
^@c̄a~0!gmg5ca~0!#&

3^@c̄b~x!gmg5cb~x!#&G . ~53!

Note that there is no term similar to trf@vV
2 # in Eq. ~46!.

The reason is that there exists a hidden symmetrysV

→h†sVh, pV→h†pVh, aV
m →h†aV

m h, and vV→h†vV
m h

1h†i ]mh in which the vector source transforms inhomog
neously. So that the vector source can only appear toge
with the derivativei ]m to form a covariant derivative, and
hidden symmetry covariant quadratic form of the covaria
derivative can only be an antisymmetric tensor@see Eq.~56!#
1-8
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which does not contribute when multiplied by a symmet
coefficient of the type of Eq.~52!.

With Eqs.~50!, ~51!, and~52! the effective action~46! is
then

Seff@1,JV ,Jc ,FVc ,PVc#up2 order

5F0
2E d4xtrf@aV

2 1B0sV#

5F0
2E d4xtrfF1

4
@¹mU†#@¹mU#1

1

2
B0@U~s2 ip !

1U†~s1 ip !#G , ~54!

where¹m is the covariant derivative related to the extern
sources defined in Ref.@2#. The integrand is just thep2 order
chiral Lagrangian given by Gasser and Leutwyler in Ref.@2#.
Now the coefficientsF0

2 andB0 are defined in Eqs.~53! and
~50! and are expressed in terms of certain Green’s functi
of the quark fields. These can be regarded as the fundam
QCD definitions ofF0

2 andB0.

B. The p4 terms

The p4-order terms can be worked out along the sa
line. The relevant terms for the normal part contributio
~ignoring anomaly contributions! are
05401
l

s
tal

e
s

Seff@1,JV ,Jc ,FVc ,PVc#up4 order, normal

5E d4x trf@2K1@dmaV
m #22K2~dmaV

n 2dnaV
m !

3~dmaV,n2dnaV,m!1K3@aV
2 #21K4aV

m aV
n aV,maV,n

1K5aV
2 trf@aV

2 #1K6aV
m aV

n trf@aV,maV,n#1K7sV
2

1K8sVtrf@sV#1K9pV
2 1K10pVtrf@pV#1K11sVaV

2

1K12sVtrf@aV
2 #2K13VV

mnVV,mn1 iK14VV
mnaV,maV,n

1K15pVdmaV,m#, ~55!

where the covariant derivativedm and the antisymmetric ten
sor VV

mn are defined as

dmaV
n []maV

n 2 ivV
m aV

n 1 iaV
n vV

m ,

VV
mn5]mvV

n 2]nvV
m 2 ivV

m vV
n 1 ivV

n vV
m , ~56!

and the fifteen coefficientsK1 . . . K15 are determined by the
following integrations of the Green’s functions:
i

4E d4xxm8xn8^@c̄a~0!gmg5cb~0!#@c̄c~x!gng5cd~x!#&C

5F S 1

2
K12K2D ~gmm8gnn81gmn8gnm8!12K 2gmngm8n8Gdaddbc1 irrelevant terms,

2
i

24E d4xd4yd4z^@c̄a1~0!gm1g5cb1~0!#@c̄a2~x!gm2g5cb2~x!#@c̄a3~y!gm3g5cb3~y!#@c̄a4~z!gm4g5cb4~z!#&C

5
1

6 H da1b2Fda2b3da3b4da4b1S 1

2
~gm1m2gm3m41gm1m4gm2m3!K31gm1m3gm2m4K4D1da2b4da4b3da3b1S 1

2
~gm1m2gm3m4

1gm1m3gm2m4!K31gm1m4gm2m3K4D G1da1b3Fda3b2da2b4da4b1S 1

2
~gm1m3gm2m41gm1m4gm2m3!K31gm1m2gm3m4K4D

1da3b4da4b2da2b1S 1

2
~gm1m3gm2m41gm1m2gm3m4!K31gm1m4gm2m3K4D G1da1b4Fda4b2da2b3da3b1S 1

2
~gm1m4gm2m3

1gm1m3gm2m4!K31gm1m2gm3m4K4D1da4b3da3b2da2b1S 1

2
~gm1m4gm2m31gm1m2gm3m4!K31gm1m3gm2m4K4D G

1da1b2da2b1da3b4da4b3@gm1m2gm3m42K51~gm1m3gm2m41gm1m4gm2m3!K6#1da1b3da3b1da2b4da4b2@gm1m3gm2m42K5

1~gm1m2gm3m41gm1m4gm2m3!K6#1da1b4da4b1da2b3da3b2@gm1m4gm2m32K51~gm1m2gm3m41gm1m3gm2m4!K6#J
1 irrelevant terms,
1-9
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i

2E d4x^@c̄a~0!cb~0!#@c̄c~x!cd~x!#&C5K 7daddbc1K 8dabdcd,

i

2E d4xK @c̄a~0!cb~0!#tan
q8~0!

Nf
@c̄c~x!cd~x!#tan

q8~x!

Nf
L

C

5K 9daddbc1K 10d
abdcd,

1

8E d4xd4y^@c̄a1~0!cb1~0!#@c̄a2~x!gmg5cb2~x!#@c̄a3~y!gmg5cb3~y!#&C

5
1

2
K11~da1b2da2b3da3b11da1b3da3b2da2b1!1K 12d

a1b1da2b3da3b21 irrelavent terms,

K135
i

576~Nf
221!

E d4xF ~5gmngm8n822gmm8gnn8!x
m8xn8

3S ^c̄a~0!gmcb~0!c̄b~x!gnca~x!&C2
1

Nf
^c̄a~0!gmca~0!c̄b~x!gncb~x!&CD G ,

K145
i

36
@2gm1m4

gm2m3
TA

m1m2m3m412gm1m2
gm3m4

TA
m1m2m3m42gm1m3

gm2m4
TA

m1m2m3m4

22gm1m4
gm2m3

TB
m1m2m3m422gm1m2

gm3m4
TB

m1m2m3m41gm1m3
gm2m4

TB
m1m2m3m4#,

K155
i

4~Nf
221!

E d4xxmF K c̄a~0!cb~0!tan
q8~0!

Nf
c̄b~x!gmg5ca~x!L

C

2
1

Nf
K c̄a~0!ca~0!tan

q8~0!

Nf
c̄b~x!gmg5cb~x!L

C
G
~57!
of
with TA , TB defined as

2
1

2E d4xd4yxm4^c̄a1~0!gm1cb1~0!

3c̄a2~x!gm2g5cb2~x!c̄a3~y!gm3g5cb3~y!&C

5da1b2da2b3da3b1TA
m1m2m3m4

1da1b3da3b2da2b1TB
m1m2m3m41 irrelevant terms.

~58!

In Eqs.~57! and ~58!, ^•••&C denotes the connected part
^•••&, and the irrelavent terms are those leading to trf@aV

m #
or tr f@vV

m # after multiplied by the corresponding sources.
To further evaluate the rotated source parts in Eq.~55!,

we make use of thep2-order equation of motion

dmaV
m 52B0FpV2

1

Nf
trf~pV!G ~59!
05401
and the following identities:

dmaV
n 2dnaV

m 5
1

2
@V†FR

mnV2VFL
mnV†#,

aV
m 5

i

2
V†@¹mU#V†~x!,

sV5
1

2
@V~s2 ip !V1V†~s1 ip !V†#,

pV5
i

2
@V~s2 ip !V2V†~s1 ip !V†#,

VV
mn5

1

2
@V†FR

mnV1VFL
mnV†#

1
i

4
V†@2~¹mU !U†~¹nU !

1~¹nU !U†~¹mU !#V†, ~60!
1-10
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whereFR
mn andFL

mn are, respectively, the field-strength tensors of the right-handed and left-handed souces defined in@2#.
With Eqs.~59! and ~60! and takingNf53, Eq. ~55! becomes

–Seff@1,JV ,Jc ,FVc ,PVc#up4 order, normal

5E d4x@L1
(norm)@ trf~¹mU†¹mU !#21L2

(norm)trf@¹mU†¹nU#trf@¹mU†¹nU#1L3
(norm)trf@~¹mU†¹mU !2#

1L4
(norm)trf@¹mU†¹mU#trf@x†U1xU†#1L5

(norm)trf@¹mU†¹mU~x†U1U†x!#1L6
(norm)@ trf~x†U1xU†!#2

1L7
(norm)@ trf~x†U2xU†!#21L8

(norm)trf@x†Ux†U1xU†xU†#2 iL 9
(norm)trf@Fmn

R ¹mU¹nU†1Fmn
L ¹mU†¹nU#

1L10
(norm)trf@U†Fmn

R UFL,mn#1H1
(norm)trf@Fmn

R FR,mn1Fmn
L FL,mn#1H2

(norm)trf@x†x##, ~61!
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wherex[2B0(s1 ip).4 The integrand in Eq.~61! is just the
normal part contributions to thep4-order terms in the chira
Lagrangian in Ref.@2#, and the coefficients are now define
by

L1
(norm)5

1

32
K41

1

16
K51

1

16
K132

1

32
K14,

L2
(norm)5

1

16
~K41K6!1

1

8
K132

1

16
K14,

L3
(norm)5

1

16
~K322K426K1313K14!,

L4
(norm)5

K12

16B0
,

L5
(norm)5

K11

16B0
,

L6
(norm)5

K8

16B0
2

,

L7
(norm)52

K1

16Nf
2

K10

16B0
2

2
K15

16B0Nf
,

L8
(norm)5

1

16FK11
1

B0
2
K72

1

B0
2
K91

1

B0
K15G ,

L9
(norm)5

1

8
~4K132K14!,

L10
(norm)5

1

2
~K22K13!,

4In Ref. @2#, x is defined asx[2B0(s1 ip)e( i /3)u. In this paper
we have takenu50.
05401
H1
(norm)52

1

4
~K21K13!,

H2
(norm)5

1

8 F2K11
1

B0
2
K71

1

B0
2
K92

1

B0
K15G .

~62!

The twelve standard coefficients L1
(norm),

L2
(norm), . . . ,L10

(norm), H1
(norm), H2

(norm) are expressed in term
of twelve independentp4-order coefficientsK2 , K3,4[K3
22K4 , K4,5[K412K5 , K4,6[K41K6 , K7 , K8 , K1,9,15

[K12(1/B0
2)K91(1/B0)K15, K1,10,15[K11(Nf /B0

2)K10

1(1/B0)K15, K11, K12, K13, andK14.
The total coefficients are then

Li5Li
(norm)1Li

(anom), i 51, . . .,10,

H j5H j
(norm)1H j

(anom), j 51,2, ~63!

whereLi
(anom) and H j

(anom) are the anomaly contributions t
the coefficients given in Refs.@9,10#.

So we have formally derived thep4-order terms of the
chiral Lagrangian from the fundamental principles of QC
without taking approximations and have expressed all
coefficients in terms of the integrations of certain Gree
functions in QCD. Equations~57!, ~58!, and ~62! give the
fundamental QCD definitions of the the twelve coefficien
L1

(norm)
•••L10

(norm), H1
(norm), andH2

(norm). The procedure can
be carried on order by order in the momentum expans
The expressions~50!, ~53!, ~57!, ~58!, and ~62! are conve-
nient for lattice QCD calculations of the fifteen coefficien

V. ON THE COEFFICIENTS F0
2 AND B0

So far, we have given the formal QCD definitions of th
fourteen coefficients of the chiral Lagrangian up top4 order.
To get the values of the coefficients, we need to solve
relevant Green’s functions which is a hard task, and we s
present the calculations in a separate paper@12#. To have an
idea of how our present formulas are related to other kno
approximate results, we take thep2-order coefficientsF0

2 and
B0 @Eqs.~50! and~53!# as examples and make the followin
simple discussion.
1-11
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As we have mentioned in Sec. IV, there can be two w

of figuring out the explicitJV dependence ofFV c̄ for evalu-
atingSeff from Eq.~39!. One of them is to solve the dynam
cal equations for the intermediate fieldsFVc , PVc , andJc ,
and the other is to track back to the original QCD generat
functional without the intermediate fields. For convenien
we took the latter way in the above derivation of the chi
Lagrangian. To compare our results with the known appro
mate results, we are going to take certain approximatio
say the largeNc limit, with which the calculation of the
intermediate fields becomes even more convenient. Thus
take the former way in the following discussion.

First we take the largeNc limit. It can be easily checked
that, in this limit, the functional integrations in Eqs.~11!,
~24!, and~28! can be simply carried out by the saddle po
approximation~taking the classical orbit in the semiclassic
approximation!. The saddle point equations~10!, ~26!, and
~30! are just the dynamical equations determini
PVc ,FVc ,Jc as functions ofJV , which are

FVc
(ah)(bz)~x,y!52 i @~ i ]”1JV2PVc!

21# (bz)(ah)~y,x!,

J̃sr~x!d~x2y!1PVc
sr ~x,y!

1 (
n51

` E d4x1•••d4xnd4x18•••d4xn8
~2 i !n11~Ncg

2!n

n!

3Ḡrr1•••rn

ss1•••sn~x,y,x1 ,x18 , . . . ,xn ,xn8!FVc
s1r1~x1 ,x18!•••

3FVc
snrn~xn ,xn8!50,

trlF S 2 i sin
q~x!

Nf
1g5cos

q~x!

Nf
DFVc

T ~x,x!G50, ~64!

whereJ̃ is a short notation for the following quantity:

J̃sr~x![
]

]Fc
sr~x,x!

E d4ytrl f H Jc~y!F2 i sin
qc~y!

Nf

1g5cos
qc~y!

Nf
GFV,c

T ~y,y!J U
Jcfixed

. ~65!

In Eqs.~64! and~65!, qc(x) depends onF(x,x) through Eq.
~17!. Note that the effective actionG I@FV# belongs to
O(1/Nc), so that it does not contribute in the present a
proximation. In~64!, the fieldPVc can be easily eliminated
and the resulting equation is
05401
s

g
,
l
i-
s,

e

t
l

-

@ i ]”1 iFVc
T,211v”V1a”Vg52sV1 ipVg51J̃#sr~x,y!

1 (
n51

` E d4x1•••d4xnd4x18•••d4xn8

3
~2 i !n11~Ncg

2!n

n!
Ḡrr1•••rn

ss1•••sn~x,y,x1 ,x18 ,•••,xn ,xn8!

3FVc
s1r1~x1 ,x18!•••FVc

snrn~xn ,xn8!50. ~66!

In order to compare our results with the usual dynami
equations in the ladder approximation, we further take
ladder approximation which, in the present case, correspo
to ignoring all then.1 terms in Eq.~66! and with

Ḡr1r2

s1s2~x1 ,x18 ,x2 ,x28!

52
1

2
Gm1m2

~x1 ,x2!~gm1!s1r2
~gm2!s2r1

3d~x182x2!d~x282x1!1OS 1

Nc
D term,

where Gmn(x,y) is the gluon propagator without interna
light-quark lines. Then, in the ladder approximation, Eq.~66!
becomes

@ i ]”1 iFVc
T,211v”V1a”Vg52sV1 ipVg5

1J̃#~x,y!1
1

2
g2NcGmn~x,y!gmFVc

T ~x,y!gn50.

~67!

On the other hand, in the largeNc limit, FV c̄ is just FVc
which is the full physical propagator of the quark with th
rotated sources. When the sources are turned off,FVc can be
expressed in terms of the quark self-energyS(2p2) and the
wave function renormalizationZ(2p2) by the standard ex-
pression

F0
T(ah)(bz)~x,y!

[@FVc
T # (ah)(bz)~x,y!usV5pV5v

V
m 5a

V
m 50

5dabE d4p

~2p!4
e2 ip(x2y)F 2 i

Z~2p2!p”2S~2p2!
Ghz

,

~68!

in which translational invariance and the flavor and par
conservations have been considered. Plugging Eq.~68! into
Eq. ~67! we have
1-12
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2@Z~2p2!21#p”1S~2p2!1
1

2
iNcg

2E d4q

~2p!4

3Gmn~p2q!gm
1

Z~2q2!q”2S~2q2!
gn50, ~69!

where Gmn(p) is the gluon propagator in the momentu

representation, and the factJ̃usources5050 is taken into ac-
count. Equation~69! is just the usual Schwinger-Dyso
equation in the ladder approximation.

With the solution of the Schwinger-Dyson equation, t
formula ~50! for F0

2B0 can be expressed as

F0
2B054iNcE d4p

~2p!4

S~2p2!

Z2~2p2!p22S2~2p2!
. ~70!

By definition @see Eqs.~46! and ~52!#, F0
2 is related to the

coefficient of the term linear inaV in the expansion ofF̄Vc .
We denote

E d4zF1,m
ThzS x1y

2
2z,x2yDaV

abm~z!

[@FVc
T # (ah)(bz)~x,y!u linear ina

V
m

5E d4z
d4pd4q

~2p!8
e2 ip[(x1y)/22z] 2 iq(x2y)

3F1,m
Thz~p,q!aV

abm~z!. ~71!

ThenF0
2 is determined by5

F0
25

Nc

8
~gmg5!hzE d4q

~2p!4
F1,m

Tzh~0,q!. ~72!

To this order, we still haveJ̃u linear ina
V
m 50, and Eq.~67!

reduces to

2 i FF0
TS q1

p

2D G21

F1,m
T ~p,q!FF0

TS q2
p

2D G21

1gmg5

1
1

2
g2NcE d4k

~2p!4
Gm8n8~k2q!gm8F1,m

T ~p,k!gn850.

~73!

In the literature, a further approximation of dropping t
last term in Eq.~73! is usually taken@18# ~It can be shown
that to leading order in dynamical perturbation@11#, this

5This is an alternative expression forF0
2 equivalent to Eq.~53!.
05401
term can be reasonably ignored@12#.! Moreover, to leading
order in dynamical perturbation or in the Landau gaugeZ
(2p2)51. ThenF0

2 becomes

F0
25

iNc

8 E d4q

~2p!4
trlFgmg5

1

q”2S~2q2!
gmg5

1

q”2S~2q2!
G

524iNcE d4q

~2p!4
F 1

8

]

]qm S qm

q22S2~2q2!
D

1

FS~2q2!1
1

2
q2S8~2q2!GS~2q2!

@q22S2~2q2!#2
G . ~74!

The anomaly contribution toF0
2 calculated in Ref.@10# is of

the same form as the first term in Eq.~74! but with an op-
osite sign, so that it just cancel the first term in Eq.~74!.
Then Eq.~74! is just the well-known Pagels-Stokar formu
for F0

2 @11#. Thus the Pagels-Stokar formula is an appro
mate result of our formula by taking the approximations
the largeNc limit, the ladder approximation and dropping th
last term in Eq.~73! ~or to leading order in dynamical per
turbation!.

VI. CONCLUSIONS

In this paper, we have derived the normal part contrib
tions to the chiral Lagrangian for pseudoscalar mesons u
the p4 terms from the fundamental principles of QCD with
out taking approximations. Together with the anomaly p
contributions given in Refs.@9,10#, it leads to the complete
QCD theory of the chiral Lagrangian.

We started, in Sec. II, from the fundamental generat
functional ~2! in QCD, and formally expressed the integr
tion over the gluon-field in terms of physical gluon Green
functions. Then we integrated out the quark fields by int
ducing a bilocal auxiliary fieldF(x,y) @see Eq.~6!#. To
extract the degree of freedom of the local pseudosca
meson fieldU(x), we developed, in Sec. III, a technique fo
extractingit from the bilocal auxiliary fieldF(x,y) @see Eqs.
~13! and ~15!#, and integrating in the extraction constrain
into the generating functional@see Eqs.~18!, ~20!, and~22!#.
This procedure isconsistentin the sense that the comple
pseudoscalar meson degree of freedom is converted into
U(x) field such that the pseudoscalar degree of freedom
the quark sector is automatically frozen in the path-integ
formulation of the effective actionSeff .

We then developed two techniques for working out t
explicit U(x) dependence ofSe f f in Sec. IV. The first one is
to introduce a chiral rotation~33! which simplifies theU(x)
dependence in such a way that theU(x) dependence reside
only implicitly in the rotated sources and some rotated int
mediate fields, and the second one is to implement Eq.~39!

to obtainSeff from the averaged fieldF̄Vc . To avoid dealing
1-13
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with the intermediate fields, we tracked back to the origi
QCD generating functional with which the implicitU(x) de-
pendence only resides in the rotated sources. With all th
we expandedSeff in power series of the rotated sources a
explicitly derived thep2 terms andp4 terms of the chiral
Lagrangian for pseudoscalar mesons@2#. In this formulation,
all the fifteen coefficients in the chiral Lagrangian are e
pressed in terms of certain Green’s functions in QCD@see
Eqs. ~50!, ~53!, ~62!, and ~57!#. These formulas can be re
garded as the fundamental QCD definitions of the fifte
coefficients in the chiral Lagrangian. These expressions
convenient for lattice QCD calculation of the fifteen coef
cients.

To see the relation between our QCD definition and
well-known approximate results in the literature, we took t
p2-order coefficientsF0

2 andB0 as examples in Sec. V. With
the approximations of largeNc limit, ladder approximation,
and dropping the momentum-integration term in the appro
mate Bethe-Salpeter equation~73!, our formula reduces to
the well-known Pagels-Stokar formula for the pion dec
constantFp @11#. The complete calculation of the fiftee
coefficients will be presented in a separate paper@12#. The
derivation of the effective chiral Lagrangian further inclu
ing theh8 meson or ther meson, and the application of th
present approach to the electroweak chiral Lagrangian ar
in preparation.
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APPENDIX

Here we give the proof of Eqs.~18! and ~19! in the text.
Consider a matrix operatorO satisfying detO5detO †, we
calculate the following functional integration:

I[E DUd~U†U21!d~detU21!

3F @O#d~VO †V2V†OV†!,

whereDUd(U†U21)d(detU21) serves as the invariant in
tegration measure at the present case. The two d
functionsd(U†U21), d(detU21) constrain the integration
to the subspace with unitary and unity determinant of theU
field.

We can rewrited(detU21)d(U†U21) as
05401
l

e,

-

n
re

e
e

i-

y

all

e
n-

ta-

d~detU21!d~U†U21!

5
1

2
d~@detU#221!u~detU !d~U†U21!

5
1

2
d~detU@detU2detU†# !u~detU !d~U†U21!

5
1

2
d~detU2detU†!

u~detU !

detU
d~U†U21!,

so that

I 5
1

2E DUd~U†U21!d~detU2detU†!

3
u~detU !

detU
F @O#d~VO †V2V†OV†!.

Next, we introduce two auxiliary fieldsS andS̃ and writeI
as

I 5
1

2E DUDSDS̃d~U†U21!d~detU2detU†!

3
u~detU !

detU
d~S̃2S!F@O#d~S2V†OV†!

3d~S̃2VO †V!

5
1

2E DUD@V†SV#D@V†S̃V#d~U†U21!

3d~detU2detU†!
u~detU !

detU
F@O#

3d~V†@S̃2S#V!d~V†SV2U†O!

3d~V†S̃V2O †U !.

We then change the integration variablesS and S̃ into

S→S85V†SVS̃→S̃85V†S̃V ~A1!

and get
1-14
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I 5
1

2E DUDS8DS̃8d~U†U21!d~detU2detU†!
u~detU !

detU
d~S̃82S8!F@O#d~S82U†O!d~S̃82O †U !

5
1

2E DUDS8DS̃8d~U†U21!d~detU2detU†!
u~detU !

@detU#2
d~S̃82S8!F@O#d~US82O!d~S̃82S8† !

5
1

2E DUDS8DS̃8det~S85 !d~S̃8@U†U21#S8!d~det@S̃8U#2det@S̃8U†# !
u~detU !

@det~US8!#2
d~S̃82S8!

3F@O#d~US82O!d~S̃82S8† !

5
1

2E D@US8#DS8DS̃8det~S84 !d~S8† U†US82S8† S8!3d~det@US8#2det@S8†U†# !
u~detU !

@det~US8!#2

3d~S̃82S8!F@O#d~US82O!d~S̃82S8† !.

We further change the integration variablesU into

U→U85US8, ~A2!

and get

I 5
1

2E DU8DS8DS̃8d~U8† U82S8† S8!d~detU82detU8† !
det~S84 !u~detU8/detS8!

@det~U8!#2

3d~S̃82S8!F@O#d~U82O!d~S̃82S8† !.

The U8 and S̃8 integrations can be carried out and we obtain

I 5
1

2@detO#2
d~detO2detO†!E DS8d~O †O2S8† S8!det~S84 !uS detO

detS8
DF @O#d~S82S8† !

5
1

2@detO#3
dS 12

detO †

detO D E DS8d~O †O2S8† S8!@det~S8† S8!#2uS detO

Adet@S8† S8#
D F @O#d~S82S8† !

5
1

2@detO#2
dS 12

detO †

detO D E DS8d~O †O2S8† S8!@det~O †O!#2uS detO
Adet@O †O#

DF @O#d~S82S8† !

5
1

2
detOdS 12

detO †

detO DF @O#E DS8d~O †O2S8† S8!d~S82S8† !

5
1

2
detOd~0!F @O#E DS8d~O †O2S8† S8!d~S82S8† !. ~A3!
In the last step, we have used the property detO5detO †.
Taking F@O# to be

1

F @O#
[detOE DS8d~O †O2S8†S8!d~S82S8†!,

~A4!

Eq. ~A3! becomes
05401
E DUd~U†U21!d~detU21!

3F @O#d~VO †V2V†OV†!5const, ~A5!

which is of the form of Eq.~18! in the text.
Next we look at the meaning of the variableS8 in Eq.

~A4!. The constraints onS8 in Eq. ~A4! are
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S8†5S8, S825O †O. ~A6!

On the other hand, Eqs.~13!, ~14!, and~20! in the text show
that thes field is constrained as

s†5s, ~V†sV!25O †O. ~A7!

Comparing Eq.~A6! with Eq. ~A7!, we find S8;V†sV.
We know that the definition ofs is not unique. It is up to a
.

05401
hidden symmetry transformations→h†sh. ThereforeS8
can be regarded as an equivalent definition ofs, and thus
Eq. ~A4! can be written as

1

F @O#
5detOE Dsd~O †O2s†s!d~s2s†!, ~A8!

which is just Eq.~19! in the text.
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