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Analytic Q ball solutions in a parabolic-type potential
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We introduce a piecewise parabolic potential for a complex scalar field and we show that it admitQstable
ball solutions. These solutions can be found analytically, unlike the case of polynomial potentials. We find
stableQ ball solutions, for large enough values of the charge, even when the potential has only one minimum.
There can also exis balls immersed in a supercooled false vacuum.

PACS numbds): 11.27+d, 11.10.Lm

In some four-dimensional field theorie_s where an unbro- 1
ken continuous global symmetry gives rise to a conserved V(p)= —2[p2+ ev(v—p)—ev|v—pl], (1)
charge Q, there may appear extended localized solutions 2l
with nonzero charge, calle@ balls[1]. These are nontopo-
logical solitons, and their stability depends on whether their
charge can_be lost through emissi_on of ch_arged particles. p=\d* b, 2)
Their energies and volumes grow linearly wifh they are
spherically symmetric in position space, and the correspondwvherel has dimensions of length and<. Piecewise para-
ing fields are rotating with constant angular speed in internabolic potentials have also been used in the context of wetting
space. They often have no upper limit on their charge o@nd of oil-water-surfactant mixturgs].
mass, and they are important in cosmological considerations The resulting equations of motion are linear, albeit inho-
[2]. mogeneous, and as a result one can obtain exact closed form

A wide variety of Q balls has been studied, the simplest50|Uti0nS- The qualitative features of these solutions are
ones being those in theories with one complex scalar field?ound to be similar to the features of the corresponding so-

At large distances from the soliton the field must approacdUtions for poI_yno_miaI potentials c.)f a similar appeararnce. In
the vacuum solutionp=0, if the charge is to be finite. It act, an examination of the analytic vortex solutions admitted

turns out thatQ balls exist in a potentiaV(¢), for large by a symmetric piecewise par_abohc d_ouble well p_ote_ntlal
enough values of the chargg if the function 2//| |2 has a showed thgt even the-quan'qtanve details are very similar to

e ) = those obtained numerically in the casedst vortices[4].
minimum at some nonzero value @f[1]. Since the potential

. 2 a . ) The unusual potential of E@1) is thus a convenient test-
looks I|ke2|¢| /2 near¢=0, this means thaV must dip  jnq ground for calculations of localized solutions. We shall
below |¢|/2 at some point. If the potential is a polynomial maye use of this kinky potential in order to find analytic

of ¢* ¢, then a negativég|* term is needed to maké dip  sojutions forQ balls. Note that ¥/| 4|2 is equal to 12 for
below|¢|?/2, and a positivés|° term to render the potential ,<y while it has a minimum value of (2€)/(21?) at
bounded from below. Such a potential will be nonrenormal-, =2y . Thus the necessary condition for the creation €f a
izable, but it does have localized classical Q ball solutions.pa]| is satisfied.

Unfortunately, the polynomial potentials give nonlinear The action for our model is
equations of motion, and solving them is a formidable task.
It would be, however, very interesting to obtain analytic ex- 4
pressions describing classical localized solitons. These soli- S:f d*x
tons rely usually on potentials with at least two vacua. The
polynomial potentials that would be functions @f ¢, ad-  If we measure, y, z, andt in units ofl, having takert to be
mitting thus a global symmetry, and that would have twol, ¢ andp in units ofv, Vin units ofv?/12, andSin units of
minima are necessarily of a degree higher than 24h  v2l2, then the above action becomes dimensionless, with
resulting in highly nonlinear equations. There is however no
reason, at least at the classical level, to restrict ourselves to
polynomial potentials. In fact, we need not even restrict our-
selves to potentials that are continuously differentiable ev-
erywhere. We could examine piecewise continuous potendf 0<e<1, this potential will have only one minimum, at
tials. p=0. For 1<e<2, the global minimum is g¢= 0, but there

Indeed, this will provide us with a way to make the po- is a local minimum ap = ¢, the whole potential being posi-
tential dip below| ¢|2/2, producing thus stabl® balls. This  tive everywhere. Finally, foe>2 the global minimum is at
paper will examine a piecewise continuous parabolic potenp=¢€, while there is a local minimum gb=0. The two
tial that does just that, and that is analytically solvable, sincaninima become degenerate wher2, and a first order
all its pieces will be at most quadratic jih|. phase transition takes place there.

This potential is The field equation that minimizes the action is

1
30u b PV |, 3

1
V(p)=5Lp*+e(1=p)—e€l1-pl]. (4)
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The fact thatV is a function of¢* ¢ means that there is a

U(1) global continuous symmetry and a corresponding con-

served charge

J dP*
Q= J2|(¢* - ;)d3x (6)
The corresponding energy is
_ 29|° 2
—J {2 = Vqs +Vid (7)

The Q ball problem consists in minimizing the energy for a
given fixed charg&. We shall use the method of Lagrange
multipliers. We shall thus want to minimize the functional

d

E=E+w ¢>*——¢

8

&¢*)

3l

with respect to independent variations ¢fx,t) and of w.
We can rewrite€ as

&= +f o i V 2+v
=Quw S| Tled ¢

1

—§w2¢*¢ d3x. 9)
The wusual assumption leading t@Q ball solutions

is ¢=p(r)e'“t. It is a consistent solution of the full field
equation(5), which reduces to

Vep+ N =0 (10
pw?=V?p ap
Then we have to find the extremum &f where& has been
reduced to

1 1
V+ E(Vp)z—zwzpz d3x. (11

ot |

This can be minimized by varying(r) first, with » kept
fixed, and then minimizing with respect ®. In fact, the
variation with respect tp(r) yields Eq.(10). It is this equa-
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1
(dé/dx)h:l:o:—f§(Vp)2d3x—3f V d®x
3 2
P (12
ZJ p?d3x

This virial relation must be satisfied by the exact solution
p(r). Furthermore, the solution is stable only if
(d?E/d\?)|, >0, whenceE<4Qu, a relation that is cer-
tainly true when 6<e<<2.

The real danger fo@ balls, however, does not arise from
deformations, but from the possible decay into particles. In-
deed, the fieldp=(A/Q)e K **iot where() is the vol-
ume of space available, is an exact solution of the equation
of motion (5) if w=+/1+Kk2. This is the free particle solu-
tion, with energyE=Q/1+k?. Thus theQ ball will not
decay into particles only IE<Q.

Let us now proceed to solve the field equatid®). If
p<1, then

(13)

Outside theQ ball is the =0 vacuum. Hencep()=0.
The corresponding solutions of Eq.(13) are
r~Isinfyw?—1) andr ‘cos¢Vw?—1), if @>1. But in
that case the integral that giv€swill diverge at infinity. So,
if Q is to be finite, we must have<1:

(14)

Thenp falls off exponentially at infinity, as it is supposed to.
Let us assume that is monotonic, withp(R)=1. Then the
full solution of field equatior{10) that is regular ap=0 and
that falls off exponentially at infinity is

R .
p(r)= ?e”(R‘r) if rI>R (p<1)

€
o1

R sinhvr
T sinhvR

> if r<R(p>1). (15

14 V2

The field equation(10) indicates thatV?p has a finite
discontinuity atr =R; hencedp/dr is continuous there. This
continuity implies that

vle=f<1/2, (16)

where

tion that we shall solve exactly. Before we undertake this
task, though, we can obtain some very useful exact results by
scaling the spatial dimensions.

Indeed, letp(r) be the field that minimizes exactly the and

(17

functional £. The corresponding charge of E@) becomes
Q= [wp? d3x, with Qw always positive. After expressing
in terms ofp and Q, we let&(\) be the value of the func-
tional £ when the field isp(\r). Sincep(r) is the exact
extremum of€, £(\) must have a minimum at=1. Thus

1
(18)

The functionf varies monotonically between 0 and 1/2.
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The mean valuep of p(r), defined by (4rR%3)p
= [54mr2p(r)dr, can be calculated by integrating directly
Eq. (10), without using at all the explicit solution of E(L5),
and turns out to be=1/f(x).

Equation(15) gives the full solution. The radiug, which
gives the size of th€ ball, is determined in terms of and
w through Eqs(14), (16), (17) and(18). Examination of the
stability shows that th€ ball is stable when/>y and un-
stable1 whleny> J3wZ+1, whereyR[1+coth(yR)] =x3(x
+1)
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FIG. 1. The energy per unit charge/Q, versusQ/1000 for
€=0.9. The cusp is a@=239.229.
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Let us now embark on the main calculation, the calcula-

tion of £ and Q. We have already found the exact solution
p(r) which satisfies the field equatigh0). Use of this equa-
tion (10), and of Eq.(15), yields

R
E=Quw+ J 41rr2e(—pl2+1)dr
0

47eR®

27me’R®  27R% 2mweR
3 + +

312 V2

=Qo+ . (19

14

We can rewrite this as

E=Q1—ef +2me Y2757 2fx313— x3/3+ x>+ fx].
(20

Thus€& is now a function ofQ andx only. Minimization of €
with respect tow is equivalent then to minimization with
respect tox, at fixedQ, and we get thus

4w
Q= a2 [5x3/6— fx3—5fx?/2—5fx/2)]. (22)
14

These last two equations determiBeand x, for a givenQ
and €, and fromx we can findv,  andR. We have thus

dex 517ex?
15 1050 °

E
——

0 (23

Thus Q diverges for smalk. However,E/Q remains finite.
We see in fact that it rises above 1 and then comes back
down, having passed through a maximum. THEU will
descend below 1 oncebecomes large enough.

Let us now go on to distinguish two cases:

(i) 0<e<2. In the limit x—x~ we get f—1/2,
w—(2—¢€)/2, v—€l2, v— \/72, R—x,
Q~32me ¥23\2—€/3, Q/(47R%3)—4.\(2—¢€)/2 and
E/Q—(2—¢€)/2.

We see thus thaD diverges wherx— «, as well as when
x—0. In fact, as shown in Fig. 1£/Q is a multivalued
function of Q, with the cusp corresponding to an extremum
of Q with respect tox. The upper branch corresponds to
small values ofx, while the lower branch corresponds to
large values ok. SinceE/Q has to be less than 1, it is the
branch below th&) axis that represents th@ ball. The Q
ball is stable, as long as its charge is above that critical
charge where its energy becomes equabio

It is worth noting that the mean valyeof the field tends
to 2 for largex, i.e. for largeQ, and is thus independent Qf
The energy density and the charge density, as well as the

solved completely the problem, and we have closed fornj€@n value of the field, are all independentin the high

expressions for all the physical quantities. Note that w
could have obtained) from the virial relation, Eq.(12),
without having to do the tedious minimization of the expres-
sion of Eq.(20).

Let us now findE/Q in a compact form:

VZ

5w

87 eR®
+EF

E
——w—

o (22

This quantity must be less than 1 ana 4simultaneously, if

Q limit. We have, in other words, a lump of matter.

Q balls then with large enough charge are stable. There is,
however, always a classical lower limit on the charge of a
stableQ ball, as noted iri1], and at that value o we have
E/Q=1. The recent claims that there dpeballs with small
charge concern polynomial theories, and do not hold for our
potential[5]. Note that fore<1 there is only one minimum,
and yet we still get stabl® balls, unlike the case of thé®
potential.

It is instructive, in fact, to see what happens in the limit
€e—0. In that caseE/Q becomes smaller than 1 at

the Q ball is going to be stable against decay and deformax=1.234. Thus, as—0, we have a finitex, but v—0,

tions.

The basic results of this work are Eq2), (21), (18),
(17), (16), (15 and (14). Thus, for a givenQ, since v
=\ ef andw=+/1— €f, we can findk from Eq.(21), using it
afterwards for findingr, , R=x/v, andE/Q.

w—1, andR—oe. In this region of smalk, E becomes equal
to Q whenQ~369 %2 Thus, higher and higher values@f
are required to render th@ ball stable as—0.

(i) e>2. Whene>2, the global minimum of the poten-
tial is at p= ¢, while there is a local minimum gi=0. We

Let us now examine more closely the behavior of ourthus expect that there will be a first order transitioreat2.

solution in various limits. We look first at the limit—0. In
this limit, we can easily show that—x?/3, v—x\/e/3,
w—1, R— \3le. FurthermoreQ— 6m+/3¢ ¥%x and

04770

It is nonetheless interesting to examine the possibility of hav-
ing Q balls in the midst of a supercooled metastable vacuum.
We assume, in other words, thaf) =0, so that the field is
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E/Q too great a charge are going to decayif2.
Eventually, the equatiofe=Q stops having two roots.
For e= 3.3 the two roots coincide. For larger valueseoive
haveE/Q>1 for all values ofQ.
We conclude then that there are staQléalls for e<2,
~—\ Q1000 \t/)vgglor;r?el;pper limit fpr the qharge and with a lower limit that
0.05 Ws 0.3 progressively higher asdecreases towards O.
There are als® balls in the midst of a supercooled meta-
stable vacuum, unlike the case of #& potential, but only if
the chargeQ is within an interval of allowed values, an in-
terval that becomes progressively smalleeascreases, un-
til it disappears completely whea becomes equal to 3.3.
in the metastable vacuum at infinity. The question is therNote that at the poink=2, where the phase transition is
whether there ar® balls in this case. supposed to occur, th@ ball has a finite size and can thus
Forx=2, Eq.(16) reduces ta’~e(x—1)(2x) 1. How-  continue to exist if supercooling occurs. In particular, if
ever,y<1, from Eq.(14). This can only happen KX<¢€/(e e=2, the Q ball with the least possible charge has
—2). In fact, asx approaches this asymptotic valuetends R=2.2137 andQ=117.39.
to 1, w tends to 0,Q—0, while E/Q diverges. ThuE/Q All these results are classical and fully exact. We have
begins atx=0 with the value 1, goes to a maximum, then thus been able to examine thoroughly the formationQof
descends below 1, reaches a minimum, and then it comdsalls in a piecewise parabolic potential, obtaining analytic
back up, passes the value 1 and diverges~at/(e—2). results that are confirmed by the virial relations. Such poten-
Figure 2 shows tha/Q is a multivalued function of), with  tials can therefore be useful in cosmological calculations, in
the cusps corresponding to the extremaQoivith respect to  spite of the kinks they involve, because they enable one to
X. Here we see that there is a maximum, as well as a miniavoid the difficult task of solving the nonlinear equations of
mum, charge if we are to have stalfleballs. Q balls with motion that pertain to polynomial potentials.

el
N O @

0.8

FIG. 2. The energy per unit chargg/Q, versusQ/1000 for
€=2.5. The cusps are =49.4635,Q=258.629.
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