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Analytic Q ball solutions in a parabolic-type potential

Stavros Theodorakis
Department of Natural Sciences, University of Cyprus, PO Box 20537, Nicosia 1678, Cyprus

~Received 4 August 1999; published 25 January 2000!

We introduce a piecewise parabolic potential for a complex scalar field and we show that it admits stableQ
ball solutions. These solutions can be found analytically, unlike the case of polynomial potentials. We find
stableQ ball solutions, for large enough values of the charge, even when the potential has only one minimum.
There can also existQ balls immersed in a supercooled false vacuum.

PACS number~s!: 11.27.1d, 11.10.Lm
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In some four-dimensional field theories where an unb
ken continuous global symmetry gives rise to a conser
charge Q, there may appear extended localized solutio
with nonzero charge, calledQ balls @1#. These are nontopo
logical solitons, and their stability depends on whether th
charge can be lost through emission of charged partic
Their energies and volumes grow linearly withQ, they are
spherically symmetric in position space, and the correspo
ing fields are rotating with constant angular speed in inter
space. They often have no upper limit on their charge
mass, and they are important in cosmological considerat
@2#.

A wide variety ofQ balls has been studied, the simple
ones being those in theories with one complex scalar fi
At large distances from the soliton the field must approa
the vacuum solutionf50, if the charge is to be finite. I
turns out thatQ balls exist in a potentialV(f), for large
enough values of the chargeQ, if the function 2V/ufu2 has a
minimum at some nonzero value off @1#. Since the potentia
looks like ufu2/2 near f50, this means thatV must dip
below ufu2/2 at some point. If the potential is a polynomi
of f* f, then a negativeufu4 term is needed to makeV dip
below ufu2/2, and a positiveufu6 term to render the potentia
bounded from below. Such a potential will be nonrenorm
izable, but it does have localized classical Q ball solution

Unfortunately, the polynomial potentials give nonline
equations of motion, and solving them is a formidable ta
It would be, however, very interesting to obtain analytic e
pressions describing classical localized solitons. These
tons rely usually on potentials with at least two vacua. T
polynomial potentials that would be functions off* f, ad-
mitting thus a global symmetry, and that would have tw
minima are necessarily of a degree higher than 2 inufu,
resulting in highly nonlinear equations. There is however
reason, at least at the classical level, to restrict ourselve
polynomial potentials. In fact, we need not even restrict o
selves to potentials that are continuously differentiable
erywhere. We could examine piecewise continuous po
tials.

Indeed, this will provide us with a way to make the p
tential dip belowufu2/2, producing thus stableQ balls. This
paper will examine a piecewise continuous parabolic pot
tial that does just that, and that is analytically solvable, si
all its pieces will be at most quadratic inufu.

This potential is
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V~f!5
1

2l 2
@r21ev~v2r!2evuv2ru#, ~1!

with

r5Af* f, ~2!

wherel has dimensions of length and 0,e. Piecewise para-
bolic potentials have also been used in the context of wet
and of oil-water-surfactant mixtures@3#.

The resulting equations of motion are linear, albeit inh
mogeneous, and as a result one can obtain exact closed
solutions. The qualitative features of these solutions
bound to be similar to the features of the corresponding
lutions for polynomial potentials of a similar appearance.
fact, an examination of the analytic vortex solutions admit
by a symmetric piecewise parabolic double well poten
showed that even the quantitative details are very simila
those obtained numerically in the case off4 vortices@4#.

The unusual potential of Eq.~1! is thus a convenient test
ing ground for calculations of localized solutions. We sh
make use of this kinky potential in order to find analyt
solutions forQ balls. Note that 2V/ufu2 is equal to 1/l 2 for
r,v, while it has a minimum value of (22e)/(2l 2) at
r52v. Thus the necessary condition for the creation of aQ
ball is satisfied.

The action for our model is

S5E d4x F1

2
]mf* ]mf2VG . ~3!

If we measurex, y, z, andt in units of l, having takenc to be
1, f andr in units ofv, V in units ofv2/ l 2, andS in units of
v2l 2, then the above action becomes dimensionless, with

V~r!5
1

2
@r21e~12r!2eu12ru#. ~4!

If 0 ,e,1, this potential will have only one minimum, a
r50. For 1,e,2, the global minimum is atr50, but there
is a local minimum atr5e, the whole potential being posi
tive everywhere. Finally, fore.2 the global minimum is at
r5e, while there is a local minimum atr50. The two
minima become degenerate whene52, and a first order
phase transition takes place there.

The field equation that minimizes the action is
©2000 The American Physical Society01-1
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1

2
]m]mf1

]V

]f*
50. ~5!

The fact thatV is a function off* f means that there is
U~1! global continuous symmetry and a corresponding c
served charge

Q5E 1

2i S f*
]f

]t
2f

]f*

]t Dd3x. ~6!

The corresponding energy is

E5E F1

2 U]f

]t U
2

1
1

2 U¹fU21VGd3x. ~7!

The Q ball problem consists in minimizing the energy for
given fixed chargeQ. We shall use the method of Lagrang
multipliers. We shall thus want to minimize the functiona

E5E1vFQ2
1

2i E S f*
]f

]t
2f

]f*

]t Dd3xG , ~8!

with respect to independent variations off(xW ,t) and ofv.
We can rewriteE as

E5Qv1E F1

2 U]f

]t
2 ivfU2

1
1

2 U¹fU21V

2
1

2
v2f* fGd3x. ~9!

The usual assumption leading toQ ball solutions
is f5r(r )eivt. It is a consistent solution of the full field
equation~5!, which reduces to

2rv22¹2r1
]V

]r
50. ~10!

Then we have to find the extremum ofE, whereE has been
reduced to

E5Qv1E FV1
1

2
~¹r!22

1

2
v2r2Gd3x. ~11!

This can be minimized by varyingr(r ) first, with v kept
fixed, and then minimizing with respect tov. In fact, the
variation with respect tor(r ) yields Eq.~10!. It is this equa-
tion that we shall solve exactly. Before we undertake t
task, though, we can obtain some very useful exact result
scaling the spatial dimensions.

Indeed, letr(r ) be the field that minimizes exactly th
functionalE. The corresponding charge of Eq.~6! becomes
Q5*vr2 d3x, with Qv always positive. After expressingv
in terms ofr and Q, we let E(l) be the value of the func
tional E when the field isr(lr ). Since r(r ) is the exact
extremum ofE, E(l) must have a minimum atl51. Thus
04770
-

s
by

~dE/dl!ul515052E 1

2
~¹r!2 d3x23E V d3x

1
3Q2

2E r2 d3x

. ~12!

This virial relation must be satisfied by the exact soluti
r(r ). Furthermore, the solution is stable only
(d2E/dl2)ul51.0, whenceE,4Qv, a relation that is cer-
tainly true when 0,e,2.

The real danger forQ balls, however, does not arise from
deformations, but from the possible decay into particles.
deed, the fieldf5(A/AV)e2 ikW•xW1 ivt, whereV is the vol-
ume of space available, is an exact solution of the equa
of motion ~5! if v5A11k2. This is the free particle solu
tion, with energyE5QA11k2. Thus theQ ball will not
decay into particles only ifE,Q.

Let us now proceed to solve the field equation~10!. If
r,1, then

d2r

dr2
1

2

r

dr

dr
5r~12v2!. ~13!

Outside theQ ball is the f50 vacuum. Hencer(`)50.
The corresponding solutions of Eq. ~13! are
r 21sin(rAv221) and r 21cos(rAv221), if v.1. But in
that case the integral that givesQ will diverge at infinity. So,
if Q is to be finite, we must havev<1:

12v25n2>0. ~14!

Thenr falls off exponentially at infinity, as it is supposed t
Let us assume thatr is monotonic, withr(R)51. Then the
full solution of field equation~10! that is regular atr50 and
that falls off exponentially at infinity is

r~r !5
R

r
en(R2r ) if r .R ~r,1!

5
e

n2
1S 12

e

n2D R

r

sinhnr

sinhnR
if r ,R ~r.1!. ~15!

The field equation~10! indicates that¹2r has a finite
discontinuity atr 5R; hencedr/dr is continuous there. This
continuity implies that

n2/e5 f <1/2, ~16!

where

x5Rn ~17!

and

f 5
1

2
2

1

2x
1e22xS 1

2
1

1

2xD . ~18!

The functionf varies monotonically between 0 and 1/2.
1-2
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The mean valuer̄ of r(r ), defined by (4pR3/3)r̄
5*0

`4pr 2r(r )dr, can be calculated by integrating direct
Eq. ~10!, without using at all the explicit solution of Eq.~15!,
and turns out to ber̄51/f (x).

Equation~15! gives the full solution. The radiusR, which
gives the size of theQ ball, is determined in terms ofe and
v through Eqs.~14!, ~16!, ~17! and~18!. Examination of the
stability shows that theQ ball is stable whenn.g and un-
stable wheng.A3v211, wheregR@11coth(gR)# 5x2(x
11)21f 21.

Let us now embark on the main calculation, the calcu
tion of E and Q. We have already found the exact solutio
r(r ) which satisfies the field equation~10!. Use of this equa-
tion ~10!, and of Eq.~15!, yields

E5Qv1E
0

R

4pr 2e~2r/211!dr

5Qv1
4peR3

3
2

2pe2R3

3n2
1

2pR2e

n
1

2peR

n2
. ~19!

We can rewrite this as

E5QA12e f 12pe21/2f 25/2@2 f x3/32x3/31 f x21 f x#.
~20!

ThusE is now a function ofQ andx only. Minimization ofE
with respect tov is equivalent then to minimization with
respect tox, at fixedQ, and we get thus

Q5
4pv

n3f 2
@5x3/62 f x325 f x2/225 f x/2!]. ~21!

These last two equations determineE and x, for a givenQ
and e, and fromx we can findn, v and R. We have thus
solved completely the problem, and we have closed fo
expressions for all the physical quantities. Note that
could have obtainedQ from the virial relation, Eq.~12!,
without having to do the tedious minimization of the expre
sion of Eq.~20!.

Let us now findE/Q in a compact form:

E

Q
5v2

n2

5v
1

8p

15

eR3

Q
. ~22!

This quantity must be less than 1 and 4v, simultaneously, if
the Q ball is going to be stable against decay and deform
tions.

The basic results of this work are Eqs.~22!, ~21!, ~18!,
~17!, ~16!, ~15! and ~14!. Thus, for a givenQ, since n
5Ae f andv5A12e f , we can findx from Eq.~21!, using it
afterwards for findingn, v, R5x/n, andE/Q.

Let us now examine more closely the behavior of o
solution in various limits. We look first at the limitx→0. In
this limit, we can easily show thatf→x2/3, n→xAe/3,
v→1, R→A3/e. Furthermore,Q→6pA3e23/2/x and
04770
-
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E

Q
→11

4ex

15
2

517ex2

1050
. ~23!

ThusQ diverges for smallx. However,E/Q remains finite.
We see in fact that it rises above 1 and then comes b
down, having passed through a maximum. ThusE/Q will
descend below 1 oncex becomes large enough.

Let us now go on to distinguish two cases:
~i! 0,e,2. In the limit x→` we get f→1/2,

v→A(22e)/2, n→Ae/2, g→Ae/2, R→`,
Q'32pe23/2x3A22e/3, Q/(4pR3/3)→4A(22e)/2 and
E/Q→A(22e)/2.

We see thus thatQ diverges whenx→`, as well as when
x→0. In fact, as shown in Fig. 1,E/Q is a multivalued
function of Q, with the cusp corresponding to an extremu
of Q with respect tox. The upper branch corresponds
small values ofx, while the lower branch corresponds
large values ofx. SinceE/Q has to be less than 1, it is th
branch below theQ axis that represents theQ ball. The Q
ball is stable, as long as its charge is above that crit
charge where its energy becomes equal toQ.

It is worth noting that the mean valuer̄ of the field tends
to 2 for largex, i.e. for largeQ, and is thus independent ofQ.
The energy density and the charge density, as well as
mean value of the field, are all independent ofQ in the high
Q limit. We have, in other words, a lump of matter.

Q balls then with large enough charge are stable. There
however, always a classical lower limit on the charge o
stableQ ball, as noted in@1#, and at that value ofQ we have
E/Q51. The recent claims that there areQ balls with small
charge concern polynomial theories, and do not hold for
potential@5#. Note that fore,1 there is only one minimum
and yet we still get stableQ balls, unlike the case of thef6

potential.
It is instructive, in fact, to see what happens in the lim

e→0. In that caseE/Q becomes smaller than 1 a
x51.234. Thus, ase→0, we have a finitex, but n→0,
v→1, andR→`. In this region of smalle, E becomes equa
to Q whenQ'369e23/2. Thus, higher and higher values ofQ
are required to render theQ ball stable ase→0.

~ii ! e.2. Whene.2, the global minimum of the poten
tial is at r5e, while there is a local minimum atr50. We
thus expect that there will be a first order transition ate52.
It is nonetheless interesting to examine the possibility of h
ing Q balls in the midst of a supercooled metastable vacuu
We assume, in other words, thatr(`)50, so that the field is

FIG. 1. The energy per unit charge,E/Q, versusQ/1000 for
e50.9. The cusp is atQ5239.229.
1-3
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in the metastable vacuum at infinity. The question is th
whether there areQ balls in this case.

For x>2, Eq.~16! reduces ton2'e(x21)(2x)21. How-
ever,n<1, from Eq.~14!. This can only happen ifx<e/(e
22). In fact, asx approaches this asymptotic value,n tends
to 1, v tends to 0,Q→0, while E/Q diverges. ThusE/Q
begins atx50 with the value 1, goes to a maximum, the
descends below 1, reaches a minimum, and then it co
back up, passes the value 1 and diverges atx'e/(e22).
Figure 2 shows thatE/Q is a multivalued function ofQ, with
the cusps corresponding to the extrema ofQ with respect to
x. Here we see that there is a maximum, as well as a m
mum, charge if we are to have stableQ balls. Q balls with

FIG. 2. The energy per unit charge,E/Q, versusQ/1000 for
e52.5. The cusps are atQ549.4635,Q5258.629.
a-

04770
n
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too great a charge are going to decay ife.2.
Eventually, the equationE5Q stops having two roots

For e53.3 the two roots coincide. For larger values ofe we
haveE/Q.1 for all values ofQ.

We conclude then that there are stableQ balls for e,2,
with no upper limit for the charge and with a lower limit tha
becomes progressively higher ase decreases towards 0
There are alsoQ balls in the midst of a supercooled met
stable vacuum, unlike the case of thef6 potential, but only if
the chargeQ is within an interval of allowed values, an in
terval that becomes progressively smaller ase increases, un-
til it disappears completely whene becomes equal to 3.3
Note that at the pointe52, where the phase transition
supposed to occur, theQ ball has a finite size and can thu
continue to exist if supercooling occurs. In particular,
e52, the Q ball with the least possible charge ha
R52.2137 andQ5117.39.

All these results are classical and fully exact. We ha
thus been able to examine thoroughly the formation ofQ
balls in a piecewise parabolic potential, obtaining analy
results that are confirmed by the virial relations. Such pot
tials can therefore be useful in cosmological calculations
spite of the kinks they involve, because they enable one
avoid the difficult task of solving the nonlinear equations
motion that pertain to polynomial potentials.
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