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Higher derivative Weyl gravity
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A higher derivative Weyl model is analyzed carefully. We show that there is a nontrivial constraint if a
symmetry-breaking potential is added to the system. A rigorous proof for the constraint is presented. One,
hence, studies the applications of this conformal theory in the inflationary universe.
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[. INTRODUCTION try. This may also be an indication to the resolution why the
Higgs field has not been traced so far. In addition, it can be
Scale-invariant theory is conjectured to be the effectiveshown that this constraint is related to the special combina-
theory of our physical universe for various reasons, agion of the Weyl connection and its associated conformal
pointed out in Refs[1,2]. Evidence also indicates that scale fields.
symmetry appears to be very important in various branches

of physics. For example, QC[3] is scale invariant and it is Il. WEYL SYMMETRY AND WEYL CONNECTION
also argued that Weyl symmetry may have to do with the ) ) ) ) ]
missing Higgs problem in electroweak thed#]. In addi- Consider the scale-invariant action given [I8}

tion, the Weyl gauge field is speculated to be a candidate for
dark matter. It also has many applications in the physics of
the early univers¢5-9|. Set= f d*x+\g
It was also shown that if the scale symmetry was broken,
the consistent vacuum configuration of the system is not the 1
same as most field theories. Most field theories will admit a — —H,WH“V—fﬁZ—Veff(dJ)} (2)
vacuum of the formdV(¢g)/d¢p=0. Instead, the scalar 4
vacuum of the Weyl model will takegpq[ dV(pg)/ddp]
—4V(¢o) =0, for any kind of symmetry-breaking potential HereR is obtained by replacing all,g,,, in the scalar cur-
coupled to the Weyl invariant theoryl]. In addition, the vature R by covariant derivatives/ ,g,,,= (d,+2S,)9 . -
;calar vacuum equals the lowest energy sii¢;) =0 only  one can hence show thR= R+6(D,+S,)S* after some
if o happens to be the lowest energy state. algebra. Moreover, the covariant derivative of the scalar field
In fact, one is able to show that the equation ¢ is defined a7 ,¢=(d,—S,) ¢ while the field tensor for
the Weyl vector meson is defined &,,=4d,S,-4,S,.
Note that one can also consider other combinations of higher
b N(¢) —4V(¢$)=0 (1) derivative terms. All of our results still hold in these models.
dp We will ignore these terms sind%fwaﬁ and wa are related
to R? term in four-dimensional Friedmann-Robertson-
remains valid for all solutions to the equation of motion of Walker (FRW) space due to the Euler constraint and the
any Weyl model coupled to a symmetry-breaking potentiavanishing of the Weyl conformal tens¢i3]. One notes,
V(¢). This was first done from direct derivation from the however, that the stability behavior of different curvature
field equationg10,11]. A systematic method is also devised squared terms is known to be different with respect to aniso-
later [12]. This constraint is valid for all on-shell scalar tropic perturbation$14].
fields, not just for the vacuum configuration. In other words, ~Note that this action is invariant under the Weyl transfor-
the physical scalar field will in fact be frozen to one of the mation (WT) g5, =Q2(x)g,,, ¢"=Q *(x)¢, and S,
solutions of the constraint equati¢h). Therefore, the scalar =S,—4,0/Q, provided thatygV(¢) is scale invariant by
field has to be a constant if an effective symmetry-breakingtself.
potential develops. One notes in particular that the scale- In writing the effective action2), we have assumed that
invariant c¢* potential solves the constraint equatiGh.  the only conformal symmetry-breaking term relevant to the
Therefore, the scalar field will not be constrained by thelow-energy region is due to the effective potential introduced
constraint equation in the scale-invariant limit. above. In other words, our concern here is the microscopic
This phenomenon is certainly very different from the con-origin of the hypothesis that matter receives its mass scale
ventional field theories defined with various broken symme-+from a graviton in contrast to the conventional wisdom of the
Brans-Dicke theory1]. Therefore, one will assume that the
measuring fieldp acquires a vacuum expectation value as a
*Email address: wfgore@cc.nctu.edu.tw result of instabilities of the full quantum theory. To be more
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precise, one has assumed that the effective action at loWote that there is another way to derive this constrgirt
energies is of the form given by E@R) with an effective But it was also pointed out by the authpt] that such a
potential V¢ favoring an asymmetric vacuum for the mea- derivation is not valid for singular field reparametrization.
suring field ¢. In many circumstances, there will be a

symmetry-breaking effect induced by the quantum fluctua- Ill. EEEECTIVE ACTION AND STABILITY

tion of the scalar field. The one-loop effective potential start- OF INFLATION

ing from a scale-invariant potential has been known from

derivations based on many different meth¢@dsl5]. There- Note that one can show that the effective action becomes

fore, one may have a very complicated effective potential
signifying the effect of dynamical symmetry breaking.

In order to look closely at the physics of the constraint . 1, )
(1), one will derive it in a rigorous way. Indeed, one can Seff:J d*x\g| —§€¢0R—fR — Vet o) )
show that

once the dynamics of the scalar field was frozen by the con-
oLy straint(1). The Weyl vector meson will acquire a mass of the
5_¢5¢’ order of the Planck mass and will be physically decoupled
from the effective action in the low-energy limit. In addition,
one can also show that the Weyl meson vanishes for the
quadratic Lagrangian if it takes the for®),=(s(t),0,0,0
[13] in the background of FRW space. Moreover, one can
: _ _ : _ _ also show thas=0 is a solution to the actio(b) provided
:gt:ﬁ gogﬁ g:gﬁg?y_fﬁéiggglv&z \l/\lgo\t/ev?r:gtvaﬁgls(f)c odn(:- R=const, which is consistent with the de Sitter background
in perturbative analysis we will be discussing shortly. There-

ponents have been rearranged i#9,g9,, and 6V,¢ ac- o
cording to the prescribed scale symmetry. In addition, thé‘qre, we will simply turn off the Weyl vector meson for our

above variation is understood to be done with respect to th |scqssions fr_om now on. Note th‘f"t similar stability gnalysis

Weyl transformatiolWT) introduced earlier. Note also that [%hll%her derivative gravity theories can be found in Refs.

the last term of the above equation vanishes becdise o . .

54.S, is proportional tod,d, In Q which is symmetric with hNote thkf;\t the Friedmann equation of the system can be
respect tax andv, while (i) 6L4/63,S, is skew symmetric shown to be 18]

with respect toe and v. It is also straightforward to show

51:—5v—5£95 + oL oV g, +
g g_@ gp,v 5Vag,uv ag,uv

+ oLy SV b+ oLy 59, S 3
5Va¢ CY¢ 5[?QSV o v ( )

that ) k
6¢§( H2+ — =4f[2HI:| —H2+6H2H —2H?
oV, SC
Q_g=2Va(—gg " _Va(_g¢), (4) K 2
o) 5Va nv H 5Va¢ + ; +VO_ (6)

from Eq. (3) and the scale transformatiofid/T) introduced

earlier. Here we have also applied the equations of motion alHereH =a/a with a(t) denoting the scale factor of the FRW
together with proper rearrangement. Note also that varyingpace. In additiony,=V.4(¢,) denotes the effective cos-
L4 with respect tdv ,g,,, is effectively equivalent to varying mological constant. It is not easy to solve this equation di-
L4 with respect to 8,9,,, and hence equivalent to the varia- rectly. One can, however, assume first that there is a zeroth-
tion with respect to the connectiorSg associated with the order solution such thatH=H, or effectively a
metric g,,,,. Similarly, one can do the same thing for the =a;expHgt. One can then set the full solution to the above
connection—S, associated with the scalar fiell. Hence, equation a$i=H,+ SH and perturb the Friedmann equation
one hasQoVy/0=V ,(6Ly/5S,). Note that the above accordingly[18,19. The linear order equation ifH will tell
equation is nothing but a recombination of various connecus whether the inflationary solutidd=H, is stable or not.
tions all together as specified in E@). One can thus show One wishes to obtain an inflationary solution that is stable
that A 6V,/60=V ,V ,(8Ly/6V ,S,) with the help of the only for a very brief period of time and the later stage of our
variational equation 0§, . Finally, one reaches the promised universe can exit the inflationary phase afterward. Therefore,
conclusion() 6V4/ 60 =0 due to the skew-symmetric prop- one is looking for models such that the perturbed figkd

erty of the S, equation. This gives exactly the constraint can admit one stable and one unstable solution to the per-
equation(1). Note that the constraint can also be shown to baurbed equation. This will indicate that the universe could
valid with the inclusion of gauge fields and matter fields. It ispossibly start with the inflationary de Sitter phase and exit
also valid inD-dimensional conformal theory. The proof can the inflationary phase due to the unstable perturbation. One
be generalized straightforwardly. Note also that the abovés about to show that this effective theory can in fact accom-
argument also applies to the case —1/6 where the Weyl modate one stable mode and one unstable mode in the per-
gauge fieldS, disappears except in the kinetic te#ﬁfw. turbation introduced here.
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Indeed, one can show that the leading order and the corsimilar to the case wherg, is comparably large. The stabil-
secutive order linear iH of the Friedmann equation are ity analysis shown earlier indicates that this soft inflationary

given by phase can remain stable for a longer duration. Hence, this
model represents a strong inflationary phase in the past plus
epiHI=V,, (7)  a soft inflationary phase in the future. This could also be a
reasonable resolution to the evolution of the universe.
3 . e Alternatively, the Bicknell theorerf20] shows that afk?
6H+3HyoH — FéH =0, (8)  termin higher derivative gravity is conformally equivalent to

a massive scalar field theory described by the following ef-

. fective action:
respectively. Hence, one hasdH.=exd—3Hy(1

+\1+ egp2/9fVy)t]. Here H2=V,/ep3. Therefore, one

shows that there are one stable mode and one unstable mode . 6f2

if f>0. In addition, one can show that the De Sitter universeSefr= \/E R-——Fr+
L X ) . . (1—2f)

can exist in the inflationary phase in a duration of the order

-~ = 1 A
N 2

of At~2/3Ho(\1+€2/9fVo—1). Therefore, one finds ©)
that it is possible to induce enough @dold inflation with  Here tilde notation in this section indicates field evaluated in
properly adjusted parameters. a conformal coordinatef20]. Note that the scalar field is

One can follow the argument of R¢fL6] with the help of  gffectively represented by the scalar curvat@evhich is
the H-H phase diagram and show that the radiation domieffectively proportional taH2 in an inflationary background.
nated(RD) solutiona=ayt does not exist whel, is com-  Therefore, one can assume that the scalar field action
parably large. In fact, one can show that the higher derivativg9) is a constant field during the inflation era. Therefore, for
terms HH—H?+6H?H=0 if a=ayt. Therefore, RD so- simplicity, one will focus on the effective action
lution has to be created with the help of the gauge field
coupled to the quadratic gravitational field. In fact, one can
show that the higher derivative term is negligible at large s :f d“x\/a
time t—o for a—tP with any positivep<1. 1

In addition, unlike other scalar gravity theory, we do not
have a dynamical scalar field that generates a small cosmqyith v/, denoting the total effective cosmological constant.
logical constant by slipping down to its minimum potential  Note that if the symmetry-breaking potential has more
state after the inflation. Note that the constraint equation  than one solution to the constraint equatih the argument
indicates thaip, is not a minimum potential solution unless of cosmological wave function may be able to provide a
Vo=0. Therefore, this theory apparently cannot explain whyresolution of this problerfi21]. For example, if the effective

the cosmological constant is so small, while it was so largesymmetry-breaking potential takes the following fof5]:
in the earlier stage of the inflationary universe. Fortunately,

this conformal theory is assumed to be nothing more than an

effective theory near some fixed point of the renormalization b
group[1,2]. Hence one can assume that the effective theory Veﬁ:)\[d"‘ln(g
remains effective only during the inflationary scale. Later on, !
the effective theory no longer holds as an effective theory ) ,
responsible for the theory for the later evolution of the um_sucg that the constraint equation becomes’ ¢>§).(¢2
verse. Hence, if the present universe with small values of th€4¢{o):0- Notg that the Inplusmn of terms propor'tlonal to
cosmological constant has to do with the similar conformal®” in the effective action will not affect the constraint equa-
model proposed here, one will need another form of thdion. This homogeneous term can thus be added to adjust the

symmetry-breaking potential; responsible for the physics nal form of V,=Veg(d=¢;) one wishes without affecting

at a different energy scale. This potential should admit he (;o;/s{';rai(r:; )equ(a;io/r:b. )'Qm"’zidi/t(‘;;‘; ifor(;e:;n 15_:2\:(; that
~ — = . -
constraint solutiongp= ¢, such thatVg«( ;) is closed to effl 07 Tl 0 1 ot ot

" € : fore, this kind of potential does give two solutiorier
zero. In addition, the symmetry of this effective symmetry- P g |

) X vacuum states (i) ¢= ¢, gives a large cosmological con-
breaking potential should also reflect the symmetry of thestant andii) ¢= ¢, gives a small cosmological constant.

post-inflationary universe. This effective theory would also The argument of Hartle-Hawkinf21] based on the no-

require a gauge field coupled to the system in order to gerBoundary boundary condition shows that the probability of
erate a RD universe. _ _ finding a universe in the constal, states is given byP
Note that one can m_stead start with a model whégas ~exp(3/8/,). This approach favors a universe with a small
comparably small. In this case, one can show [fi} there cosmological constanf21] which appears to describe the
exists a solution such tha=acexgHoexp(Jedo/4f )] |ater stage of our physical universe. One may follow the
(fromH= \/E¢02/4fH) in the limit t— —<e. In addition, this  comment of Hawking that we live in the tail of the distribu-
model with a small effective cosmological constant will alsotion [22] such thatV;=Vx(¢,) possibly for anthropic rea-
admit a soft inflationary solutiora=ag exp(\/Vo/ed)O2 t) sons. As a result, this conformal model indicates thatghe

1 2
— 5 €diR-V; (10)

4
+2(P3+ p2) - p2h3|, (1)
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vaccum is chosen by accident and tends to be unstabldeserves more attention even if the abgpeculationis not
Hence the system has to undergo a quantum jump t@the rigorous. Hence the above argument may also provide a
vacuum in the post-inflationary era. This leaves us a universgesolution to the existing problem.

with a small cosmological constant. Released energy during
the quantum jump may have to do with the reheating of the
post-inflationary evolution. It is known that the quantum cos-
mological argument remains controversial partly due to the
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