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We generalize our previous model to an O(N) symmetric two-dimensional model which possesses chiral

symmetry breaking (̂c̄c& condensate! and superconducting~Cooper pair̂ cc& condensates! phases at large
N. At zero temperature and density, the model can be solved analytically in the large-N limit. We perform the
renormalization explicitly and obtain a closed form expression of the effective potential. There exists a renor-

malization group invariant parameterd that determines which of thêc̄c& (d.0) or ^cc& (d,0) conden-
sates exist in the vacuum. At finite temperatures and densities, we map out the phase structure of the model by
a detailed numerical analysis of the renormalized effective potential. Ford positive and sufficiently large, the
phase diagram in them-T ~chemical potential-temperature! plane exactly mimics the features expected for
QCD with two light flavors of quarks. At low temperatures there exists low-m chiral symmetry breaking and
high-m Cooper pair condensate regions which are separated by a first-order phase transition. At highm, when
the temperature is raised, the system undergoes a second-order phase transition from the superconducting phase
to an unbroken phase in which both condensates vanish. For a range of values ofd the theory possesses a
tricritical point (m tc and Ttc); for m.m tc (m,m tc) the phase transition from the low temperature chiral
symmetry breaking phase to unbroken phase is first order~second order!. For the range ofd in which the
system mimics QCD, we expect the model to be useful for the investigation of dynamical aspects of nonequi-
librium phase transitions, and to provide information relevant to the study of relativistic heavy ion collisions
and the dense interiors of neutron stars.

PACS number~s!: 11.30.Qc, 11.10.Kk, 11.10.Wx, 11.15.Pg
a
ar

ss
a
a

r
lo
ve

t
ken

ere
e is
hase
en
epa-

s in
ich
t ex-
ion
e-

ion
her
tal
r

I. INTRODUCTION

The phase structure of QCD at non-zero temperature
baryon density is important for the physics of neutron st
and heavy ion collisions.

An approximate phase structure for QCD with two ma
less quarks has been mapped out in various mean field
perturbative approximations and a rich structure h
emerged. For a recent review, see@1#. In addition to the
well-known chiral symmetry broken and restored phases
cent investigations have revealed the possibility of a co
superconducting phase at low temperatures and relati
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high densities@2–4#. In the chiral condensation regime a
zero chemical potential, the phase transition to the unbro
mode is second order as we raise the temperature@5#. As we
increase the chemical potential at fixed low temperature th
is a first order transition to a superconducting phase. Ther
also a regime where as we increase the temperature the p
transition from the chirally broken phase to the unbrok
phase is first order, so that somewhere along the line s
rating these phases there is a tricritical point@6#. These re-
sults are summarized in@1#.

One of the more interesting questions is what happen
a dynamical situation such as a heavy ion collision, in wh
the system traverses the various phase transitions as i
pands and cools. One would like to study the correlat
functions to see whether there is qualitatively different b
havior in crossing the first order or second order transit
region as a function of the proper evolution time and whet
this difference would lead to some interesting experimen
signatures at the BNL Relativistic Heavy Ion Collide
©2000 The American Physical Society11-1
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~RHIC!.
In order to get a better handle on this latter question,

propose a simple~111!-dimensional model which contain
several of the features of two flavor massless QCD in m
field approximation~similar phase structure and asympto
freedom! which would lend itself to dynamical computa
tional simulations pertinent to the~one dimensional! expan-
sion of a Lorentz contracted disk of quark matter. Thus
hope to explore the behavior of a system of ‘‘quarks’’ evo
ing through first and second order phase transitions to ei
a final state with chiral condensates or to a superconduc
final state. This calculation would be similar in spirit to tho
that were done in exploring the chiral phase transition in
linear sigma model@7#.

In this paper we restrict ourselves to mapping out
phase structure of our model at finite temperature and che
cal potential in a large-N approximation, for use in obtaining
initial conditions for our future dynamical calculations. O
simple model combines the Gross-Neveu model@8# with a
model for Cooper pairs that we introduced recently@9#. It
turns out to have many of the features of QCD that we u
mately want to capture in more realistic calculation
Namely, the theory in the Gross-Neveu sector has the s
second-order, first-order, tricritical point behavior for t
chiral condensatêq̄q& as a function of temperature@10# and
chemical potential@10,11# as QCD with two massless fla
vors. Adding the second interaction also adds a new ph
where there is superconductivity at some finite chemical
tential as also expected in QCD with two massless flav
The model has a well-defined 1/N expansion and is asymp
totically free so that it does not suffer from the cutoff depe
dences of (311)-dimensional effective field theories consi
ered by others@2,3#.

Thus we will be investigating a~111!-dimensional model
governed by two independent couplings: the original Gro
Neveu term@8#, which promotes the condensation of^q̄q&,
and the term considered in our earlier paper@9#, which pro-
duces â qq& condensate. We first determine the unrenorm
ized effective potential at leading order in a large-N expan-
sion, by introducing collective coordinates for theq̄q andqq
operators, and integrating out the fermions in the usual fa
ion by using the Hubbard-Stratonovich trick@12#.

At zero temperature and chemical potential we deriv
closed-form analytic expression for the renormalized eff
tive potential. We find that there is one dimensionless par
eter d, independent of the renormalization scale, who
value determines which of the condensates is present.
situation might be described as ‘‘partial dimensional tra
mutation’’: the unrenormalized theory has two bare co
plings whereas the renormalized one has a renormaliza
scale, which is arbitrary~but which can be related to th
physical fermion or Cooper pair gap mass!, and a dimension-
less parameterd independent of this scale, which contro
the physics. We find that the gap equations have three ty
of solution: two in which one or the other of the condensa
vanish and a third, mixed case, in which both condens
are non-vanishing. It turns out, however, that the true m
mum of the effective potential is at a point where one of
04501
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condensates vanishes except at the particular pointd50 ~to
be discussed further below! where one is at a first orde
phase transition so that phase coexistence can occur.
pending on the sign ofd we therefore have very differen
behavior at zero temperature and chemical potentia
namely either chiral condensates or Cooper pairs be
present.

The phase structure of the limiting theories which ha
only one coupling constant is easy to determine analytica
and we include for completeness a discussion of these
particular cases which benchmark our numerical study of
general case. Performing the integration in our expression
the renormalized effective potential numerically, we th
map out the phase diagram for the more general two c
pling constant case as a function ofd. We find a regime of
~positive! d which remarkably mimics the phase structure
two flavor QCD described above. It has a tricritical point
well as a first order phase transition as a function of chem
potential from the chirally broken phase into the superc
ducting phase. We determine the tricritical point and t
critical temperature at which the superconducting phase t
sition occurs as a function ofd. As we decrease the magn
tude ofd, first the regime of first order phase transition fro
the chiral phase disappears, and then at the special pod
50 the possibility of a chiral symmetry broken phase tota
disappears so that whend,0 one only has the possibility fo
a superconducting broken symmetry mode at low tempe
tures.

II. GENERAL CONSIDERATIONS

We consider the most general Lagrangian with qua
fermion couplings, possessingO(N) flavor symmetry and
discrete chiral symmetry:

L5c̄ ( i )i ,” c ( i )1
1

2
g2@c̄ ( i )c ( i )#@c̄ ( j )c ( j )#

12G2~ c̄ ( i )g5c ( j )!~ c̄ ( i )g5c ( j )!2mc†(i )c ( i ). ~2.1!

The flavor indices, summed from 1 toN, have been explic-
itly indicated. The first quartic term is the usual Gross-Nev
interaction, whereas the second such term, which differs
the arrangement of its flavor indices, induces the pair
force to leading order in 1/N. This term is possible becaus
we demand onlyO(N) symmetry as opposed to theSU(N)
symmetry of the original Gross-Neveu model. In the fin
term,m is the chemical potential.

Strictly speaking, â cc& condensate cannot form, be
cause it breaks theU(1) of fermion number and hence vio
lates Coleman’s theorem@13#. Similarly, ^c̄c& as well as
^cc& condensates cannot exist at finite temperature in
spatial dimension because of the Mermin-Wagner theo
@13#. Nevertheless, it is meaningful to study the formation
such condensates to leading order in 1/N, as explained in
Ref. @14#.

Our conventions areg05s1 , g152 is2 , g55s3. The
pairing term, proportional toG2, may then be rewritten:
1-2
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2G2c̄ ( i )g5c ( j )c̄ ( i )g5c ( j )52G2@eabca
†(i )cb

†(i )#

3@egdcg
( j )cd

( j )#. ~2.2!

Following standard techniques@8# we add the following
terms involving auxiliary fieldsm, B†, andB:

nL52
1

2g2 @m1g2c̄c#2

2
1

G2 ~B†2G2eabca
†(i )cb

†(i )!

3~B1G2egdcg
( j )cd

( j )!. ~2.3!

This addition toL will not affect the dynamics. InL85L
1nL, the terms quartic in fermion fields cancel, and w
have

L85c̄~ i ,” 2m2mg0!c2
m2

2g2 2
B†B

G2

1Beabca
†(i )cb

†(i )2B†eabca
( i )cb

( i ) . ~2.4!

We integrate outc and c† to obtain the effective action
depending on the auxiliary fieldsm, B andB†:

Ge f f~m,B,B†!5E d4xS 2
m2

2g2 2
B†B

G2 D 2
i

2
Tr ln ATA

2
i

2
Tr ln@11M2~AT!21s2A21s2#

~2.5!

where we have subtracted a constant~independent of the
auxiliary fields! and have defined

A5g0~ i ,” 2m2mg0!5 i ]01 is3]x2m2ms1 ~2.6!

so thatAT52 i ]02 is3]x2m2ms1.
Since we are looking for a vacuum solution, we ha

assumed in Eq.~2.5! thatB, B† andm are constants and hav
setM254B†B. The trace on flavor indices will give a facto
N. The large-N limit is achieved by settingg2N5l and
G2N5k/4, and lettingN→` with l andk fixed. We define
the effective potentialVe f f via

Ge f f52NS E d2xDVe f f ~2.7!

and we therefore have

Ve f f~m,M !5
m2

2l
1

M2

k
1Ve f f

(1)~m,M !, ~2.8!

with Ve f f
(1)(m,M )5( i /2)$tr ln(ATA)xx1tr ln@1

1M2(AT)21s2A21s2#xx%, where now the trace is only ove
the spinor indices.

We next generate the local extrema ofVe f f by solving
04501
]Ve f f

]m2
5

]Ve f f

]M2
50. ~2.9!

We evaluate the matrix products inVe f f
(1) in momentum space

with ]m→ ikm . The traces can be done with the help of

trF 1

V01VW •sW
G5

2V0

V0
22VW 2

~2.10!

for any V0 ,VW . After some manipulation, Eq.~2.9! becomes

1

2l
52

]Ve f f
(1)

]m2

5 i E d2k

~2p!2

@k0
22k1

21m21M22m2#

D
~2.11!

1

k
52

]Ve f f
(1)

]M2

5 i E d2k

~2p!2

@k0
22k1

22m22M21m2#

D
~2.12!

where

D5@k0
22k1

22M21m22m2#224@m2k0
21m2k1

22m2k1
2#.

~2.13!

In this expression,k0 is shorthand fork01 i e sgnk0, where
e→01. This prescription correctly implements the role ofm
as the chemical potential.

The equations can be reduced further by doing thek0

integration. Let us definek65Ab162b2, where b15M2

1m21m21k1
2, and b25@M2m21m2(k1

21m2)#1/2. Then
evaluating thek0 integral by contour methods, taking prop
account of thei e prescription mentioned above, we find

1

2l
5

1

8pE2L

L

dk1F 1

k1
1

1

k2
1

~M21m2!

AM2m21m2~k1
21m2!

3S 1

k1
2

1

k2
D G ~2.14!

and

1

k
5

1

8pE2L

L

dk1F 1

k1
1

1

k2
1

m2

AM2m21m2~k1
21m2!

3S 1

k1
2

1

k2
D G . ~2.15!

The k1 integrals are logarithmically divergent and we ha
regularized them by imposing a cutoffL. This will be ab-
sorbed in the renormalization process to be described in
next section. Note, however, that the combinationd51/k
21/2l is given by a convergent integral. This fact will ult
1-3
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mately lead to the renormalization-scale independent c
stant mentioned in the Introduction.

We observe from the form of Eqs.~2.11! and ~2.12! that
the functionVe f f

(1) can be reconstructed by integrating wi
respect tom2 and M2 in the expressions for 1/2l and 1/k.
This will determineVe f f

(1) up to a single constantVe f f
(1)(0,0),

which can be chosen arbitrarily without affecting any phy
cal quantity. Explicitly performing this integration we obta
for the unrenormalized determinant correction to the eff
tive potential

V(1)~m,M !52
1

2pE0

L

dk1@k11k2#. ~2.16!

To generalize this discussion to the case of non-zero t
perature, one returns to Eqs.~2.11! and~2.12!, and one con-
tinues to Euclidean space via the replacementk0→2 ik4
with k4 now considered real. The statistical-mechanical p
tition function is obtained from the Euclidean zero tempe
ture path integral by integrating over a finite regime
imaginary timet5 i t from 0 to b51/kT. Because of the
cyclic property of the trace, the fermion Green’s functio
are anti-periodic int and one has the replacement

E dk4→
2p

b (
n

~2.17!

where the antiperiodicity gives the Matsubara frequencie

vn5k4n
5

~2n11!p

b
. ~2.18!

To do the sum over the Matsubara frequencies, one u
the calculus of residues to obtain the identity

2

b (
n

f ~ ivn!52(
s

tanh
bzs

2
Resf ~zs! ~2.19!

where zs are the poles off (z) in z in the complex plane;
Resf (zs) is the residue off (z) at zs and we have assume
that the functionf (z) falls off at least as fast as 1/uzu11e for
large uzu. It will be convenient to use

tanh
bzs

2
5122nf~zs!

where

nf~z!5
1

ebz11

is the usual Fermi-Dirac distribution function.
Rotating Eqs.~2.11! and ~2.12! into Euclidean space a

described above, we get

1

2l
52

]Ve f f
(1)

]m2
5E d2k

~2p!2

@2k4
22k1

21m21M22m2#

D

04501
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]Ve f f
(1)

]M2
5E d2k

~2p!2

@2k4
22k1

22m22M21m2#

D

where now the integral onk4 is defined by Eq.~2.17!, where
D5@2k4

22k1
22M21m22m2#224@2m2k4

21mk1
22m2k1

2#.
There is no longer any need for ani e in the definition ofk4.
Performing the sums over the Matsubara frequencies we
tain the unrenormalized form of the equations which a
given by the same expression as the zero temperature
found earlier, with the replacements

1

k1
→ 1

k1
@122nf~k1!#

1

k2
→ 1

k2
@122nf~k2!#. ~2.20!

As before we can integrate this to get the determin
correction to the effective potential which in unrenormaliz
form is

V(1)~m,M !52
1

2pE0

L

dk1Fk11k21
2

b
ln~11e2bk1!

1
2

b
ln~11e2bk2!G . ~2.21!

III. CASE µÄTÄ0

Renormalization of the effective potential is best d
cussed in the context of the zero temperature and den
sector of the theory where we can define the renormali
coupling constant in terms of the physical scattering of f
mions at a particular momentum scale. This vacuum secto
interesting in its own right and we shall be able, by analy
means, to derive the result that depending on a parametd
related to the relative strengths of the two couplings
theory will be in one or another broken phase and only i
mixed phase whend50. Settingm5T50 we obtain

]Ve f f
(1)

]m2
52

1

4pE0

L

dk1F S 11
M

mD 1

Ak1
21~m1M !2

1S 12
M

mD 1

Ak1
21~m2M )2G ~3.1!

]Ve f f
(1)

]M2
52

1

4pE0

L

dk1F S 11
m

M D 1

Ak1
21~m1M !2

1S 12
m

M D 1

Ak1
21~m2M )2G ~3.2!

which is solved by
1-4
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V(1)~m,M !52
1

2pE0

L

dk1@Ak1
21~M1m!2

1Ak1
21~M2m!222k1#. ~3.3!

This can be integrated to give the unrenormalized effec
potential

Ve f f~m,M !5M2F1

k
2

1

4pG1m2F 1

2l
2

1

4pG2
1

4p F ~M1m!2

3 lnS 2L

M1mD1~M2m!2lnS 2L

uM2mu D G . ~3.4!

We renormalize by demanding that the renormalized c
plings kR andlR satisfy

]2Ve f f

]B]B†UM5M0
m5m0

5
4

kR
~3.5!

and

]2Ve f f

]m2 U
M5M0
m5m0

5
1

lR
. ~3.6!

Here M5M0 , m5m0 designates an arbitrary renormaliz
tion point on which the couplings will depend. Using the
conditions to solve forl andk in terms oflR andkR yields
the renormalized form of the effective potential:

Ve f f5m2Fa1
1

4p
lnUM22m2

g0
UG

1M2Fb1
1

4p
lnUM22m2

g0
UG1

1

2p
mM lnUM1m

M2mU
~3.7!

wherea andb are the following constants:

a5
1

2lR
2

3

4p

b5
1

kR
2

1

2p
1

1

8p

m0

M0
lnUM02m0

M01m0
U ~3.8!

andg05uM0
22m0

2u.
Note that the renormalization we have just performed

m5T50 is also sufficient to remove all divergences fro
the effective potential in the more general case of n
vanishing chemical potential and temperature. The addi
of m and T will only result in finite corrections to the ga
equations and therefore to the vacuum values ofm and M.
We shall return to this point in Sec. V.

For future reference we also want to consider the spe
renormalization point relevant for the sector where there
chiral symmetry breaking but no Cooper-pair gap whenm
5T50. That is we will choose our renormalization point
be the minimum of the potential which occurs in that case
04501
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m5mF , M50. ~3.9!

For the choicem05mF , M050, a remains the same bu
b reduces to

b5
1

kR
2

3

4p
. ~3.10!

The renormalized couplinglR takes on the particular valu
p andVe f f simplifies to

Ve f f5M2S 1

kR
2

1

4p D1
~m21M2!

4p S lnUM22m2

mF
2 U21D

1
1

2p
mM lnUM1m

M2mU. ~3.11!

.
Here we want to point out that the quantity

d[b2a5
1

kR
2

1

2lR
5

1

k
2

1

2l
~3.12!

so thatd is the same number before and after renormali
tion.

The gap equations are properly derived by differentiat
Ve f f with respect toB andm and then setting these deriva
tives to zero. BecauseVe f f depends only onB†B andm2, it
will always be possible to have solutions with one ofm or B
or perhaps both set to zero. Differentiating Eq.~3.7! we ob-
tain the gap equations

mF2a1
1

2p
1

1

2p
ln

uM22m2u
g0

G2
M

2p
lnUM2m

M1mU50

~3.13!

and

M Fb1
1

4p
1

1

4p
ln

uM22m2u
g0

G2
m

4p
lnUM2m

M1mU50.

~3.14!

The solutionsm5m* andM5M* will give us the local
extrema ofVe f f . The first of these equations is an identity
m50, and the second ifM50. Also the valuesm* andM*
that solve these equations are physical parameters that
be independent of the renormalization scaleg0. Thus these
equations tell us howa andb individually run with g0. We
note, however, that if we solve for the combination

d5b2a5
1

4p Fm* 22M* 2

m* M*
G lnUM* 2m*

M* 1m* U, ~3.15!

the scaleg0 drops out. Therefored is a true physical param
eter in the theory; we shall see in the next section that
value controls which of the two condensatesm and M can
exist. In the particular case where the minimum of the p
tential occurs whenm* 5mF andM* 50 we have the simple
result
1-5
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d5
1

kR
2

1

2lR
5

1

kR
2

1

2p
. ~3.16!

IV. ANALYSIS OF THE GAP EQUATIONS

It will be useful in the following to note that, at a solutio
of the gap equations~3.12! and~3.13!, the effective potential
takes the simple form

Ve f f~m,M !52
1

4p
~m21M2!. ~4.1!

Our goal is to analyze all the solutions of the gap equati
and to find the one that produces the global minimum
Ve f f . This will then represent the true vacuum of the theo

There are four types of solution to Eqs.~3.13! and~3.14!.
The first is simply to setm5M50, leading of course toV
50. Clearly, from Eq.~4.1! we see that if any other solutio
exists,V50 cannot be the minimum ofV. The second and
third types are obtained by settingM50, mÞ0 andm50,
MÞ0 respectively. IfM50, then from Eq.~3.13!, we have

m25g0 e2(114pa), ~4.2!

so

V0~m,M50!52
g0

4p
e2(114pa) ~4.3!

~we shall useV0 to denote values ofVe f f at solutions of the
gap equation!. Likewise, if m50,MÞ0, then, from Eq.
~3.14!,

M25g0 e2(114pb) ~4.4!

V0~m50,M !52
g0

4p
e2(114pb). ~4.5!

Thus we see that

V0~m50,M !,V0~m,M50! if d,0 ~4.6!

and

V0~m,M50!,V0~m50,M ! if d.0. ~4.7!

The fourth case is when bothm andM are non-vanishing.
The analysis of this case is presented in the Appendix wh
it is shown that the solution with non-vanishingm and M
always hasVe f f intermediate between the values ofVe f f as-
sociated with the two cases where one or the other of
condensates vanish.

We conclude that the global minimum ofVe f f has M
50, mÞ0 if d.0, andm50, MÞ0 if d,0.

As we shall find later, the special pointd50 is the limit
point of the line inm,T space where there is a first ord
phase transition from the phase with chiral symmetry bre
ing to the phase where there is only superconductivity.
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V. RENORMALIZED EFFECTIVE POTENTIAL

From Eq. ~2.21! we can see that the corrections due
non-vanishing temperature and density do not affect the
traviolet behavior of the integrand in thek1 integral defining
V(1). Therefore, the renormalization that we have perform
at m5T50 in Sec. III suffices to remove the ultraviole
divergences from the effective potential, and will allow us
send the cutoff to infinity. It is perhaps worth recording t
complete result explicitly. We find, from Eqs.~3.5! and~3.6!,
that

1

2l
5a1

1

4p
1X ~5.1!

1

k
5b1

1

4p
1X ~5.2!

wherea andb are defined by Eq.~3.8!, andX is a divergent
integral given by

X5
1

4pE0

L

dk1F 1

Ak1
21~m01M0!2

1
1

Ak1
21~m02M0!2G

5
1

2p F lnS 2L

Ag0
D G1terms which vanish asL→`.

~5.3!

Thus the full renormalized effective potential may be writt

Ve f f5a1m21a2M22
1

2pE0

`

dk1

3F k11k21
2

b
ln~11e2bk1!1

2

b
ln~11e2bk2!

22k12S m21M2

2 D
3S 1

Ak1
21~m01M0!2

1
1

Ak1
21~m02M0!2D G ,

~5.4!

wherea15(1/4p)(114pa) anda25(1/4p)(114pb). If
a1,a2, then at m5T50 the vacuum hasm25mF

2

[g0e24pa1 andM250. HeremF is the dynamically gener-
ated fermion mass. It is convenient to choose the renorm
ization scale so thatmF

25g0. This entails settinga150.
Furthermore, we are free to chooseM050, so that m0
5mF . ThenVe f f takes the form
1-6
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Ve f f5a2M22
1

2pE0

`

dk1F k11k21
2

b
@ ln~11e2bk1!

1 ln~11e2bk2!#22k12~m21M2!
1

Ak1
21mF

2G .

~5.5!

Here

a25d5
1

kR
2

1

2p
.0, lR5p,

as described above in Sec. III.
It is this branch of the theory that we are interested in

a model for QCD, since QCD at zero temperature ha
chiral condensate, but does not have a Cooper-pair gap
observe that if we setM50 in this expression, we obtain
with E5Ak21m2,

Ve f f~m2,T,m!5
m2

4p F ln
m2

mF
221G2

2

bE0

` dk

2p

3@ ln~11e2b(E1m)!1 ln~11e2b(E2m)!#

~5.6!

which is the effective potential for the Gross-Neveu~GN!
model in agreement with Refs.@10,16#. We will use the ana-
lytic information already known about the GN model as
benchmark for our numerical work below.

In the opposite casea2,a1, we have, in them5T50
vacuum,m250 and M25D2[g0e24pa2, where D is the
dynamically generated gap. So we choosea250, a1.0,
andm050, D25g05M0

2. The effective potential becomes

Ve f f5a1m22
1

2pE0

`

dk1F k11k21
2

b
@ ln~11e2bk1!

1 ln~11e2bk2!#22k12~m21M2!
1

Ak1
21D2G .

~5.7!

For this case, by choosinga250 we obtain

kR54p, 2d5a15
1

2lR
2

1

2p
>0.

When m250, this expression gives us the effective p
tential at finite temperature for the pure Cooper-pair
model considered in@9#. Explicitly we have

Ve f f5
M2

4p F ln
M2

D2 21G2
2

bE0

`dk

p
ln@11e2bAk21M2

#.

~5.8!

Note that it is independent of the chemical potential, as w
the case atT50.
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VI. PHASE STRUCTURE OF THE CLASS OF MODELS

A. Cooper pair model

The pure Cooper pair model@9# has the property that the
chemical potential is irrelevant and can be transformed aw
The form of the effective potential is exactly the same as t
for the Gross-Neveu model at zero chemical potential withM
replacingm and the gapD replacingmF . Thus in leading
order largeN there is a second order phase transition to
unbroken mode at a critical temperature which can be de
mined by the high temperature expansion. ForT@M we can
expand the integral in Eq.~5.8! to obtain@10#

Ve f f5
M2

2p F lnS pT

D D2gG , ~6.1!

whereg is Euler’s constant. The minimum of this functio
occurs atM50, which means that the condensate vanis
for largeT, as expected. The critical temperature is that te
perature for which

lnS pT

D D2g50→Tc5
D

p
eg. ~6.2!

The same critical temperature was obtained in anot
variant of the Gross-Neveu model which had a superc
ducting phase@17#, so that this temperature seems ubiquito
in 4-Fermi models in 111 dimensions.

B. Gross-Neveu sector

As is well known, the Gross-Neveu model has sponta
ous symmetry breaking at zero chemical potential and te
perature. At zero temperature, the symmetry is restore
finite chemical potential at a critical value ofm @10,11#. This
transition is first order. At zero chemical potential the syst
undergoes a second order phase transition to the unbr
symmetry phase as we increase the temperature. Thu
some point in the phase diagram there is a tricritical po
For this model we have performed both high and low te
perature expansions of the leading order in 1/N potential
which is given by

Ve f f~m2,T,m!5
m2

4p F ln
m2

mF
221G2

2

bE0

` dk

2p

3@ ln~11e2b(E1m)!1 ln~11e2b(E2m)!#.

~6.3!

In the high temperature regime, using methods similar
those used for Bose condensation@15# we obtain

Ve f f~m2,T,m!5
m2

4p F ln
T2

Tc
2 1

7

2

z~3!

p2T2S m21
m2

4 D G
~6.4!

which leads to the relationship

Tc5
mF

p
expFg2

7m2z~3!

4p2Tc
2 G ~6.5!
1-7
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which atm50 gives the same critical temperature as for
Cooper pair model, however withmF replacingD. At small
m2 one has approximately

Tc5
mF

p
egF12

7m2z~3!

4gmF
2eg G . ~6.6!

In the low temperature regime we want an analytic e
pression for the effective potential which would enable us
determine values ofm andT at which the first order transi
tion occurs. At zeroT the modification to the effective po
tential due to the chemical potential is only in the regionm
<m. The standard low temperature expansion used in B
condensation@15,18# unfortunately only gives the finite tem
perature corrections whenm<m and thus is not very rel-
evant to the question we want to answer. To obtain an
proximate analytic expression valid in the opposite regi
m<m pertinent to the first order phase transition, we res
to a crude approximation which captures the relevant ph
ics. That is we make an approximation to the Fermi-Dir
distribution function that allows us to perform all the int
grals. First we rewrite the derivative of the potential in t
form

]V

]m
5

m

2p
ln

m2

mF
2 1

m

pE0

`dk

E F22tanh
E1m

2T
2tanh

E2m

2T G ,
~6.7!

whereE5Ak21m2, and then replace the function tanh@(E
2m)/T# using the straight line interpolation

tanh~x!→$1 if x.2, 21 if x,2, x if uxu<2%.
~6.8!

This has the correct behavior asT→0 and captures the phys
ics of the broadening of the Fermi surface. AtT50, the
effect of the chemical potential is the most dramatic. Since
that limit tanhx5e(x), we get immediately that

]V

]m
5

m

2p
ln

m2

mF
21

m

pE0

Am22m2 dk

E
Q~m2m!

5
m

2p
ln

m2

mF
2 1

m

p
Q~m2m!

3H ln~11A12m2/m2!2
1

2
ln

m2

m2J , ~6.9!

This can be integrated to give the result that form<m the
effective potential is given by

Ve f f5
1

4p H m2S 2 lnFm1Am22m2

mF
G21D

22mAm22m2J 1C~m! ~6.10!

whereas, form.m, the effective potential is equal to itsm
50 value, namely
04501
e
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p-
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Ve f f5
m2

4p F ln
m2

mF
221G1C~m!. ~6.11!

The arbitrary integration constant can be eliminated
choosingVe f f(m50)50, which yields

C~m!5
m2

2p
. ~6.12!

For all T we can use the approximation in Eq.~6.8! to
perform all the integrals explicitly. Doing this, we obtain a
approximation to the exact phase structure in the reg
where there is a first order phase transition as shown in
1. In that figure we also include the high temperature anal
result. Our analytic calculation gives us an approxim
value for the tricritical point which separates the regime b
tween the first and second order phase transitions,mc /mF
5.661, Tc /mF5.31, compared to the ‘‘exact’’ numerica
result as for example found in Ref.@10#:

mc

mF
5.608,

Tc

mF
5.318. ~6.13!

C. Full phase structure

The phase structure is quite different depending
whether we choose the cased.0 which has chiral symmetry
breaking in the vacuum ord,0 where there is Cooper pa
formation in the vacuum. In the regime whered.0, the
phases of this model are quite similar to QCD as shown
Fig. 2 with the value ofa25d51/2p. In the vacuum there
is chiral symmetry breakdown. As we increase the chem
potential at low temperatures there is a first order phase t
sition into a phase with Cooper pairs. At and near the ph
transition line there can be the coexistence of the two se
rate phases, one with Cooper pairs and one with a ch
condensate which breaks chiral symmetry. For the range

FIG. 1. Phase diagram for the Gross-Neveu model. Partial li
are results of the high and~approximate! low temperature expan
sions. The solid line is the numerical result.
1-8
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d.
1.13097

4p
5dc ~6.14!

the theory will have a tricritical point at the value given b
Eq. ~6.13!, so that the regime where there is chiral symme
breakdown will, for chemical potentials below the tricritic
value, undergo a second order phase transition at large
peratures. For values of the chemical potential between
tricritical value and the value for the first order transition
the superconducting phase~determined below!, the phase
transition from the chirally broken mode to the unbrok
mode will be first order at large temperatures.

As we move to higher values of the chemical potent
for sufficiently low temperatures the system exists in a
perconducting phase with nonzero gap. As we increase
temperature at fixed large chemical potential, the system
dergoes a second order transition into the unbroken m
with the critical temperature depending only ond and notm.

FIG. 3. Critical temperature for the superconducting phase
function of a25d.

FIG. 2. Phase structure atd51/2p. The tricritical point is at
T/mF5.318, m/mF5.608.
04501
y
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This dependence is displayed in Fig. 3.Tc reaches the tri-
critical valueTc /mF5.318 whend5dc . Figure 2 is in the
regime whered.dc so that it displays a tricritical point. Fo
values ofd,dc , the chirally broken phase only can be r
stored via a second order phase transition. This case is i
trated in Fig. 4 which is ford51/4p,dc . In between the
chirally broken and superconducting phases is a coexiste
curve. The intersection of this curve with the lineT50 can
be determined as a function ofd which we will shall do
below. The existence of two phases having the same en
is shown in the 3D plot of the effective potential as a fun
tion of m,M in Fig. 5 and in the two dimensional slices o
this figure shown in Figs. 6 and 7. The particular case d
played is fora25d51/4p. All the plots are forT50.02,
m50.56 which is numerically determined to lie along th
first order line separating the chiral condensation phase f
the Cooper condensation phase. Asd approaches zero, th
coexistence curve approachesm50 and after that one no
longer has a phase with chiral symmetry breakdown.

a

FIG. 4. Phase structure atd51/4p.

FIG. 5. Phase coexistence dffective potential atT50.02, m
50.56, d51/4p.
1-9
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Infinitesimally to either side of the coexistence curve
are at two separate minima of the potential. In each phase
minimum takes place with the value of the other condens
mass equal to zero. Thus the condition defining the coex
ence curve is
f

e

st
th
e
h

e

f

04501
he
te
t-

V@m5mF ,M50#5V@m50,M5M* #. ~6.15!

The value ofM* is chosen to minimizeV@0,M # for a given
value of m,d. Recall that atT50 the effective potential is
given by
Ve f f5dM22
1

2p
E

0

`

dkFAk21m21M21m212 Am2 M21~k21m2! m2

1Ak21m21M21m222 Am2 M21~k21m2! m222k2
m21M2

AmF
21k2G1C~m!. ~6.16!
of
hen

l
bly

e-
ng

the

the

f

We notice that whenM50, this potential becomes that o
the Gross-Neveu model. Thus, if we chooseVe f f(m50,
M50)50, then againC(m)5m2/2p, as in Eq.~6.12!.

At T50 it is possible to analytically determine the valu
of the chemical potential as a function ofd as well the value
of M at the minimum. On the left hand side of the coexi
ence we need to evaluate the GN effective potential in
regime wherem5mF.m, since the phase transition to th
superconducting phase always occurs in that regime. T
we have

Ve f f~m5mF,0!52
mF

2

4p
1

m2

2p
. ~6.17!

On the right hand side we need to evaluate the zero temp
ture effective potential form50, M5M* . We have, on the
Cooper condensation side,

Ve f f~m50,M !5dM21
M2

4p S ln
M2

mF
2 21D . ~6.18!

The quantityM* is determined by that value ofM that mini-
mizes this function, namely

]Ve f f~m50,M !

]M
50→d1

ln
M2

mF
2

4p
50 ~6.19!

FIG. 6. Phase coexistence effective potential as a function oM
for m50.
-
e

us

ra-

or

M* 25mF
2e24pd. ~6.20!

Inserting this value into the equation equating the value
the potential on both sides of the phase transition we t
obtain the critical value of the chemical potential

m2

mF
2 5

12e24pd

2
. ~6.21!

VII. CONCLUSIONS

In this paper we have analyzed a~111!-dimensional
model possessingO(N) flavor symmetry and discrete chira
symmetry, and have found a phase structure remarka
similar to that conjectured for 2-flavor QCD. We have d
rived the general forms for the effective potential in leadi
order in 1/N. We have analyzed the casem5T50 analyti-
cally, showing how the phase structure is governed by
renormalization group invariantd. For m5T50 this struc-
ture is remarkably symmetric in the two condensatesm and
M. We have performed a careful numerical analysis of

FIG. 7. Phase coexistence effective potential as a function om
for M50.
1-10
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integrals involved in the determination of the effective p
tential and have determined the dependence ofVe f f on the
parametersd, m and T. What we have found is that whe
there is chiral symmetry breakdown in the vacuum sec
(d.0), there are at least three different regions. In the l
temperature regime, as we increase the chemical pote
there is a first order phase transition to a regime which h
Cooper pair gap~superconductivity! but no chiral symmetry
breakdown. Along and near the phase transition line, ther
a regime where the two phases coexist like ice and water
T50 we explicitly determine the value of the chemical p
tential at which this occurs and also the value of the Coo
pair gap as a function ofd. At high enough temperature
both symmetries are restored. In particular ifd.dc
51.13097/4p, then there is also a tricritical point so th
depending on the value ofm the phase transition out of th
chirally broken phase will be either first or second order. W
illustrated the phase structure of this model by showing
phase diagram of this model as a function of temperature
chemical potential for representative values ofd. We also
plotted the effective potential at a representative place wh
there is phase coexistence. In the opposite cased,0 one
finds that in the vacuum sector the theory has a Cooper
gap but no chiral symmetry breaking. In that case the the
has a transition at high temperatures to the unbroken m
where the gap goes to zero.

Using this toy model we intend to study how the pha
transition from the high temperature to low temperature
gime proceeds in time during an expansion of an initial L
entz contracted disk of quark matter starting from vario
initial conditions related to different points on this pha
diagram. We hope to determine how various correlat
functions depend on the initial conditions of a scattering
periment, assuming that it produces an initial state in lo
chemical and thermal equilibrium somewhere on the ph
diagram we obtained in this paper.
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APPENDIX

In this appendix we give the details for determining th
the relative minimum which has both condensates is alw
between the two minima which have only one condens
When bothm andM are non-vanishing, it is then convenie
04501
-

r

ial
a

is
At

r

e
e
nd

re

ir
ry
de

e
-
-
s

n
-
l
e

E
S.

-
e
l-
ty
f
r
.

t
s

e.

to definer5M /m and to combine the gap equations in t
form

d5~12r2!Fb1
1

4p
1

1

4p
lnS m2ur221u

g0
D G ~A1!

and

d5
1

4p

~12r2!

r
lnUr21

r11U. ~A2!

Both these equations are even inr, so we may taker.0 for
convenience. Equation~A2! tells us immediately that ifd
,0, 0,r,1, and if d.0, r.1. Furthermore, the righ
hand side~RHS! of Eq. ~A2! is bounded between21/2p
and 1/2p. Hence we conclude that ifudu.1/2p, there is no
solution with bothm and M non-vanishing. Ifudu,1/2p,
there is such a solution, with the property thatm.M if d
.0 andM,m if d,0.

It remains to decide whetherV0(m,M ) can be the global
minimum. To this end, it is convenient to re-express the g
equations once more in the following form:

2~114pa!5 ln
m2ur221u

g0
2 lnH Ur21

r11U
rJ ~A3!

and

2~114pb!5 ln
m2ur221u

g0
2 lnH Ur21

r11U
1/rJ . ~A4!

From these, making use of Eqs.~4.1!, ~4.3! and~4.5!, we
immediately obtain

V0~m50,M !52
g0

4p
e2(114pb)5g1~r!V0~m,M !

~A5!

and

V0~m,M50!52
g0

4p
e2(114pa)5g2~r!V0~m,M !

~A6!

where

g1~r!5
~11r!111/ru12ru121/r

11r2
~A7!

and

g2~r!5
~r11!r11ur21u12r

11r2
. ~A8!
1-11
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Equation~A5! is the relevant comparison if 1/2p,d,0
and 0,r,1, whereas Eq.~A6! is relevant for 0,d
,1/2p andr.1.

We observe, however, thatg2(1/r)5g1(r), so both
cases reduce to the following: if we can show thatg1(r)
.1 in the range 0,r,1, thenV0(m,M ) is never the global
minimum ~recall that theV0’s are all ,0). On the other
hand, if g1(r),1 in this range, it will be possible to hav
V0(m,M ) be the global minimum.

To settle this question, writeg15eh, with
.

.

ys

. D

04501
h~r!5S 11
1

r D ln ~11r!1S 12
1

r D ln~12r!2 ln~11r2!

5 lnF 11r

11r2G1
1

r
ln~11r!1S 12

1

r D ln~12r!. ~A9!

In the range of interest,r2,r, so the RHS is a sum o
positive terms. Henceh(r).0 andg1(r).1.

We conclude that the global minimum ofVe f f has M
50, mÞ0 if d.0, andm50, MÞ0 if d,0.
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