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We generalize our previous model to anN)(symmetric two-dimensional model which possesses chiral
symmetry breaking(@«/x} condensateand superconductin@Cooper paif ) condensatesphases at large
N. At zero temperature and density, the model can be solved analytically in theNdngét=- We perform the
renormalization explicitly and obtain a closed form expression of the effective potential. There exists a renor-
malization group invariant parametérthat determines which of th(a%p} (6>0) or () (6<0) conden-
sates exist in the vacuum. At finite temperatures and densities, we map out the phase structure of the model by
a detailed numerical analysis of the renormalized effective potentiald pasitive and sufficiently large, the
phase diagram in the-T (chemical potential-temperatyrelane exactly mimics the features expected for
QCD with two light flavors of quarks. At low temperatures there exists lowhiral symmetry breaking and
high-u Cooper pair condensate regions which are separated by a first-order phase transition. At\ufgin
the temperature is raised, the system undergoes a second-order phase transition from the superconducting phase
to an unbroken phase in which both condensates vanish. For a range of val@éleotheory possesses a
tricritical point (u,. and Ty.); for w> . (k<pu) the phase transition from the low temperature chiral
symmetry breaking phase to unbroken phase is first oiglrond order For the range o in which the
system mimics QCD, we expect the model to be useful for the investigation of dynamical aspects of nonequi-
librium phase transitions, and to provide information relevant to the study of relativistic heavy ion collisions
and the dense interiors of neutron stars.

PACS numbgs): 11.30.Qc, 11.10.Kk, 11.10.Wx, 11.15.Pg

[. INTRODUCTION high densitie2—4]. In the chiral condensation regime at
zero chemical potential, the phase transition to the unbroken
The phase structure of QCD at non-zero temperature anehode is second order as we raise the temperdfjré\s we
baryon density is important for the physics of neutron starsncrease the chemical potential at fixed low temperature there
and heavy ion collisions. is a first order transition to a superconducting phase. There is
An approximate phase structure for QCD with two mass-also a regime where as we increase the temperature the phase
less quarks has been mapped out in various mean field andansition from the chirally broken phase to the unbroken
perturbative approximations and a rich structure hagphase is first order, so that somewhere along the line sepa-
emerged. For a recent review, sgd. In addition to the rating these phases there is a tricritical pdi®L These re-
well-known chiral symmetry broken and restored phases results are summarized iri].
cent investigations have revealed the possibility of a color One of the more interesting questions is what happens in
superconducting phase at low temperatures and relatively dynamical situation such as a heavy ion collision, in which
the system traverses the various phase transitions as it ex-
pands and cools. One would like to study the correlation

*Electronic address: alan.chodos@yale.edu functions to see whether there is qualitatively different be-
"Electronic address: cooper@schwinger.lanl.gov havior in crossing the first order or second order transition
*Electronic address: maow@physics.bc.edu region as a function of the proper evolution time and whether
SElectronic address: minakata@phys.metro-u.ac.jp this difference would lead to some interesting experimental
IElectronic address: singh@lanl.gov signatures at the BNL Relativistic Heavy lon Collider
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(RHIC). condensates vanishes except at the particular @i (to

In order to get a better handle on this latter question, weébe discussed further belgwwhere one is at a first order
propose a simplé¢l+1)-dimensional model which contains phase transition so that phase coexistence can occur. De-
several of the features of two flavor massless QCD in meapending on the sign o6 we therefore have very different
field approximation(similar phase structure and asymptotic behavior at zero temperature and chemical potential—
freedom which would lend itself to dynamical computa- hamely either chiral condensates or Cooper pairs being
tional simulations pertinent to th@ne dimensionalexpan- ~ Present. o _ _
sion of a Lorentz contracted disk of quark matter. Thus we 1he phase structure of the limiting theories which have
hope to explore the behavior of a system of “quarks” evolv- only one coupling constant is easy to @term_me analytically,
ing through first and second order phase transitions to eithét"d We include for completeness a discussion of these two

a final state with chiral condensates or to a superconducting""rt'cuIlar cases V\;h'Ch. be?ﬁhm?rk Oltj.r nqmencal study .Of t?e
final state. This calculation would be similar in spirit to those eneraicase. Ferforming the integration in our éxpression for

. X . L the renormalized effective potential numerically, we then
that were done in exploring the chiral phase transition in the .
. . map out the phase diagram for the more general two cou-
linear sigma mod€]7].

. . . epling constant case as a function & We find a regime of
In this paper we resrict our;glves to mapping out th positive) 6 which remarkably mimics the phase structure of
phase structure of our model at finite temperature and chem

| ootential in a laraey imation. f " obtain E\-NO flavor QCD described above. It has a tricritical point as

rn?tigfc%?méj?tignng fg:gouraﬁfttcr)glg];n:rg’icglr (L:j;Iec l:rlla(t)ior?slmgﬂr well as a first order phase transition as a function of chemical

. . o otential from the chirally broken phase into the supercon-
simple model combines the Gross-Neveu md@slwith a P y b P

del for C irs that introduced It ducting phase. We determine the tricritical point and the
model for Cooper pairs that we introduced recergy. . critical temperature at which the superconducting phase tran-
turns out to have many of the features of QCD that we ulti-

matel ant to caoture in more realisiic calculations sition occurs as a function af. As we decrease the magni-
Name)ll V;Ihe theor ir[1) ;Jhe (‘lross—Neveu slecltor hasuthel sa ‘tude of g, first the regime of first order phase transition from
Y, ory Lo ) . Mfie chiral phase disappears, and then at the special point
second-order, flrsi—order, tricritical point behavior for the — 0 the possibility of a chiral symmetry broken phase totally
chiral condensatéqq) as a function of temperatuf@0] and  gisappears so that wheix 0 one only has the possibility for

chemical potentia[10,11] as QCD with two massless fla- 5 gyperconducting broken symmetry mode at low tempera-
vors. Adding the second interaction also adds a new phasgeg.

where there is superconductivity at some finite chemical po-
tential as also expected in QCD with two massless flavors.
The model has a well-definedNl/expansion and is asymp- Il. GENERAL CONSIDERATIONS
totically free so that it does not suffer from the cutoff depen-
dences of (3-1)-dimensional effective field theories consid- fer
ered by other$2,3].

Thus we will be investigating L+ 1)-dimensional model
governed by two independent couplings: the original Gross- 1
Neveu term[8], which promotes the condensation (@fq), L=V gD+ Z g2 gDy gDy
and the term considered in our earlier paf@r which pro- 2
duces &qq) condensate. We first determine the unrenormal- 2770 T (D) ) (1)
ized effective potential at leading order in a lafgeexpan- +2G (P s ) (P ysy) — i Y. (2.1)
sion, by introducing collective coordinates for the andqq

operators, and integrating out the fermions in the usual fasht "€ flavor indices, summed from 1 ¥4 have been explic-
ion by using the Hubbard-Stratonovich trifk2]. itly indicated. The first quartic term is the usual Gross-Neveu

At zero temperature and chemical potential we derive dnteraction, whereas the second such term, which differs in

closed-form analytic expression for the renormalized effecih® arrangement of its flavor indices, induces the pairing
tive potential. We find that there is one dimensionless paramrce to leading order in N. This term is possible because
eter 5, independent of the renormalization scale, whoseV® demand onhO(N) symmetry as opposed to t&U(N)
value determines which of the condensates is present. ThRymmetry of the original Gross-Neveu model. In the final
situation might be described as “partial dimensional trans{€'M. « is the chemical potential.

mutation”: the unrenormalized theory has two bare cou- Strictly speaking, () condensate cannot form, be-
plings whereas the renormalized one has a renormalizatiofUse it breaks thel(1) of fermion number and hence vio-
scale, which is arbitrarfbut which can be related to the lates Coleman’s theoreffil3]. Similarly, (¢¢) as well as
physical fermion or Cooper pair gap masand a dimension- () condensates cannot exist at finite temperature in one
less parameteb independent of this scale, which controls spatial dimension because of the Mermin-Wagner theorem
the physics. We find that the gap equations have three typgd3]. Nevertheless, it is meaningful to study the formation of
of solution: two in which one or the other of the condensatesuch condensates to leading order ifN,1as explained in
vanish and a third, mixed case, in which both condensateBef.[14].

are non-vanishing. It turns out, however, that the true mini- Our conventions are’=o,, y'=—io,, ys=03. The
mum of the effective potential is at a point where one of thepairing term, proportional t&2, may then be rewritten:

We consider the most general Lagrangian with quartic
mion couplings, possessim@(N) flavor symmetry and
discrete chiral symmetry:

1

045011-2



TWO-DIMENSIONAL MODEL WITH CHIRAL . ..

2G%Y ) ysy Dy ysu = = G et "]
X[yt w1,

Following standard techniques] we add the following
terms involving auxiliary fieldsn, BT, andB:

(2.2

ML=~ 5[t g
292 g

1 ) :
~ g2 (B'=GPeugtl v
X (B+G?e, sy ). (2.3

This addition to£ will not affect the dynamics. InC' =L

+ AL, the terms quartic in fermion fields cancel, and we

have
m? B'B
292 G2
+Be, stV —Ble, gyl

We integrate outy and ¢ to obtain the effective action
depending on the auxiliary fields, B andB™:

L=V —m=py")y—

(2.9

m2 B'B| i .
_——— —ETrInAA

Feff(mlBlBT):f d4x( 292 G2

i
—5Trin[1+M 2(AN) Lo,A" o]

(2.9

where we have subtracted a const@éndependent of the
auxiliary field9 and have defined

A=~V —m—puy®)=idy+iozdy— u—mo; (2.6)
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Negs IV
=—2"=0. 2.9
am M

We evaluate the matrix productsV} in momentum space,
with d,—ik, . The traces can be done with the help of

1
Vo+V- o

2V,

tr = -
VZ—\?2

(2.10

for any V,,V. After some manipulation, Eq2.9) becomes

EA
2)\ amz
[ d%*k [k3— K2+ uP+M2—m?] -
') @m2 D 219
1 v
K IM?
[ d%*k [K5—K2—uP—MZ+m?] ,
=j 2m)? D (2.12

where

D =[k§—K;—MZ+m?— u?]?— 4 m?kj+ #Zki—m%(q].a
2.1

In this expressionk, is shorthand foky+ie sgnky, where
e—07. This prescription correctly implements the role.of
as the chemical potential.

The equations can be reduced further by doing khe
integration. Let us definé. = \b,+2b,, whereb;=M?
+m?+ u?+k3, and b,=[M?m?+ u?(k+m?)]¥2 Then
evaluating thek, integral by contour methods, taking proper
account of the e prescription mentioned above, we find

1 1 (M?+ u?)

so thatAT= —idy—i03d5— u—Mmoy. 1 1
T RN vy S,
+ ke MM+ WPk mP)

A
Since we are looking for a vacuum solution, we have ﬁzﬁf_A
assumed in Eq2.5) thatB, B" andm are constants and have

dk,

setM2=4B"B. The trace on flavor indices will give a factor 1 1
N. The largeN limit is achieved by settingg?N=X\ and X k__k_) (2.14
G°N=«/4, and lettingN— o with N\ and« fixed. We define - -
the effective potentiaV/ ¢ via and
2
Tor=—N deX)veff (2.7) }ZLJA ael L Lo m
8m)-n ki ko IMZmZt (I +m?)
and we therefore have
1 1
m2 M2 X k——k—)] (2.15
Ver(MM) =2+ ——+Vgi(mM), (29 o

The k; integrals are logarithmically divergent and we have
regularized them by imposing a cutoff. This will be ab-
sorbed in the renormalization process to be described in the
next section. Note, however, that the combinati®n 1/«
—1/2\ is given by a convergent integral. This fact will ulti-

with VM, M) = (i/2){tr In(ATA) +tr In[1
+M2(AT) "to,A1o,],, ), Where now the trace is only over
the spinor indices.

We next generate the local extrema\f;; by solving
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mately Iea_d to the renormaliza‘Fion-scaIe independent con- 4 avgf)f d2k [—kﬁ—k"{—,uz—M2+m2]
stant mentioned in the Introduction. —=— =J 5

We observe from the form of Eq§2.11) and (2.12) that K IM? (2m) D
the functionV{} can be reconstructed by integrating with
respect tom? and M? in the expressions for 1X2and 1k.  where now the integral ok, is defined by Eq(2.17), where
This will determineV{ up to a single constant{}(0,0), D=[—kj—ki—M2+m?— u2]?—4[ —m?kj+ uki—m?kZ].
which can be chosen arbitrarily without affecting any physi-There is no longer any need for anin the definition ofk,.
cal quantity. Explicitly performing this integration we obtain Performing the sums over the Matsubara frequencies we ob-
for the unrenormalized determinant correction to the effectain the unrenormalized form of the equations which are
tive potential given by the same expression as the zero temperature ones

found earlier, with the replacements

1 (A
v<1>(m,|v|)=—zf dky [k, +k_]. (2.1 1
0

1
—— - [1-2n4(k)]
o : ki ks

To generalize this discussion to the case of non-zero tem-
perature, one returns to Eq2.11 and(2.12, and one con-
. . . . 1 1
tinues to Euclidean space via the replacemiept> —ik, = T 1-2nq(k))]. (2.20
with k, now considered real. The statistical-mechanical par- ko ke
tition function is obtained from the Euclidean zero tempera-
ture path integral by integrating over a finite regime in  As before we can integrate this to get the determinant
imaginary timer=it from O to 8=1/kT. Because of the correction to the effective potential which in unrenormalized
cyclic property of the trace, the fermion Green’s functionsform is
are anti-periodic inr and one has the replacement

2m v®(m M)=—ifAdk ki +k +3|n(1+e—ﬂk+)
f dkAHFE (2.17 ' 2mn)o 1T T OB
n
2
where the antiperiodicity gives the Matsubara frequencies + E|n(1+eﬁk‘)}- (2.2
2n+1)m
on=ke=—73— (2.18 lll. CASE p=T=0

To do the sum over the Matsubara frequencies. one use Renormalization of the effective potential is best dis-
. X Irequ ' tussed in the context of the zero temperature and density
the calculus of residues to obtain the identity

sector of the theory where we can define the renormalized
> coupling constant in terms of the physical scattering of fer-
. Bz, : ; ! :
> f(iw,)=—2, tanh— Resf(zy) (2.19  mions at a particular momentum scale. This vacuum sector is
B s 2 interesting in its own right and we shall be able, by analytic
_ ) means, to derive the result that depending on a parameter
where z; are the poles of(2) in z in the complex plane; related to the relative strengths of the two couplings the
Resf(zy) is the residue of (z) at z; and we have assumed theory will be in one or another broken phase and only in a

that the functionf(z) falls off at least as fast as|t/**€ for  mixed phase whed=0. Settingu=T=0 we obtain
large|z|. It will be convenient to use

Bz, NG 1 el (1 M 1
tanf5==1-2n(z,) om?  Amlo T m/ JkZ+(m+M)2
where ( M) 1
1 —|————— 3.1
m/ Jk2+(m—M)? (3D
1
ne(z)=
Bz
er+l ND 1A m 1
. o N . o RS AR v o awsarvry
is the usual Fermi-Dirac distribution function. oM ™Jo Vki+(m+M)
Rotating Egs.(2.11) and (2.12) into Euclidean space as .
i m
described above, we get N ( 1— M) - . (3.2
(1) 2 2_ 120 20 M2 m2 Vki+(m=M)
1 &Veff d k [_k4_kl+M + M —m ]
2n om? (2m)* D which is solved by
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1 (A m=mg, M=0. 3.9
v<1>(m,|v|)=—gf dke[ VKZH (M +m)? F 3.9
0

For the choiceny=mg, My=0, a remains the same but

+ I+ (M—m)Z—2k,]. (3.3  breducesto

This can be integrated to give the unrenormalized effective 1 _ 3
; b=——-—. (3.10
potential Kr 4
1 1 1 1 1 The renormalized couplingy takes on the particular value
—_m2l D= P e 2 R
Ver(mM)=M [K A +m 2\ 477} A (M+m) 7 and Vs simplifies to
win| 22 )+(|v| )2 ( 2A ) (3.4 vooem? Lot +(m2+M2)/| M?— m? 1
nf —— —m)“In| —— |. . = —_ -
M+m M—m| eff Kn 4 ar | m2 |
We renormalize by demanding that the renormalized cou- 1 M-+m
plings kg and Ay satisfy + 5 - mMino— 311
Vet 4 3
JBIBT IM=My kg @9 Here we want to point out that the quantity
m=m0
1 1 1 1
and o=b—a=——-—= (3.12

KR 27\R ;_ x
Vs

: ! (3.9  so thato is the same number before and after renormaliza-
om

M=Mo AR’ tion.

M=o The gap equations are properly derived by differentiating
Here M=M,, m=m, designates an arbitrary renormaliza- Veff with respect toB andm and then setting these deriva-
tion point on which the couplings will depend. Using theseliVeS 0 zero. Because,; depends only O’B_TB andm?, it
conditions to solve fok and« in terms ofAg and xg yields will always be possible to have solutions with onenobr B

the renormalized form of the effective potential: or perhaps both set to zero. Differentiating &8.7) we ob-
tain the gap equations

) 1 |M2—m?
Verri=m a+ —Inj—— 1 1 M2-mj] M |[M-m
4
Yo m|2a+ z—+ z—In———|— =—In =0
2T 2w Yo 27 |M+m
1 |[M%2—m? 1 M+m (3.13
+M?2 b+ﬂln— +EmMInM_m
Yo and
(3.7
. 1 1 [M2>-m?] m |[M-m
wherea andb are the following constants: M| b+ —+ —I - =0.
4 4 Yo 47 |M+m
1 3 (3.14
A= 4
R The solutionam=m* andM =M* will give us the local
1 1 1 my |Mo—mg extrema ofVg¢¢. The first of these equations is an identity if

(3.9 m=0, and the second M=0. Also the valuesn* andM*
that solve these equations are physical parameters that must
be independent of the renormalization scgdge Thus these
Fquations tell us hova andb individually run with y,. We
note, however, that if we solve for the combination

= —t — —
b KR 27 87TMOIn‘

Mo+ mg
and yo=|M§—mg|.

Note that the renormalization we have just performed a
u=T=0 is also sufficient to remove all divergences from

the effective potential in the more general case of non- .2 2

. . . . . 1 | m*2— M* * _ ok ‘
vanishing chemical potential and temperature. The addition S=b—a= — In (3.15
of w and T will only result in finite corrections to the gap 4w m*Mm* M* +m*|’
equations and therefore to the vacuum valuesnaind M.
We shall return to this point in Sec. V. the scaley, drops out. Thereforé is a true physical param-

For future reference we also want to consider the speciatter in the theory; we shall see in the next section that its
renormalization point relevant for the sector where there isvalue controls which of the two condensatesand M can
chiral symmetry breaking but no Cooper-pair gap when exist. In the particular case where the minimum of the po-
=T=0. That is we will choose our renormalization point to tential occurs whem* =mg andM* =0 we have the simple
be the minimum of the potential which occurs in that case atesult
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1 1 1 1 V. RENORMALIZED EFFECTIVE POTENTIAL
0= ———=———. (3.16 ,
KR 2\g Kr 27 From Eq.(2.21) we can see that the corrections due to
non-vanishing temperature and density do not affect the ul-
IV. ANALYSIS OF THE GAP EQUATIONS traviolet behavior of the integrand in tlkg integral defining

V). Therefore, the renormalization that we have performed
It will be useful in the following to note that, at a solution at x=T=0 in Sec. lll suffices to remove the ultraviolet
of the gap equation@.12 and(3.13, the effective potential divergences from the effective potential, and will allow us to
takes the simple form send the cutoff to infinity. It is perhaps worth recording the
complete result explicitly. We find, from Eg&.5) and(3.6),

1 that
veff(m,M)z—E(m%Mz). (4.1

Our goal is to analyze all the solutions of the gap equations i:aJr i+x (5.1)
and to find the one that produces the global minimum of VAN A '
Veis. This will then represent the true vacuum of the theory.

There are four types of solution to Eq8.13 and(3.14).
The first is simply to sem=M =0, leading of course t& 1
=0. Clearly, from Eq(4.1) we see that if any other solution =b+ A +X (5.2
exists,V=0 cannot be the minimum of. The second and
third types are obtained by settifg=0, m#0 andm=0,
M #0 respectively. M =0, then from Eq(3.13, we have  wherea andb are defined by Eq3.8), andX is a divergent

integral given by

m2: Yo e*(1+417a), (42)
SO 1 fA 1 1
X: - dkl +
Yo - arare 4mJo Vki+(mo+Mg)?  Jki+(mo—Mg)?
Vo(m, M=0)=— Ee (43) 1 2A | -
=5 In| — | +terms which vanish as\ —o.
(we shall useV/, to denote values 0¥; at solutions of the 7 V7o
gap equation Likewise, if m=0M#0, then, from Eg. (5.3
(3.14,
M2=y, e (1F47D) (4.4)  Thus the full renormalized effective potential may be written

Yo _
Vo(m=0M)=— — g (1T4mb), 4. 1 (=
O( ) 4 ( 5) Veff: a1m2+a2M2— Efo dkl

Thus we see that

2 2
, X| kitk_+=In(1+e A+ —In(1+e P
Vo(M=0M)<Vo(mM=0) if 6<0 (4.6 Ketkt gin(l+e )+ gin(1+e 7
and m2+4M?2
ki— —
Vo(mM=0)<Vo(m=0M) if 5>0. 4.7
1 1
The fourth case is when both andM are non-vanishing. X 7= >t 7= — l
The analysis of this case is presented in the Appendix where Vi (mo+Mo)* ki +(mo—Mo)
it is shown that the solution with non-vanishimy and M (5.9
always has/s intermediate between the values\of;; as-
sociated with the two cases where one or the other of the
condensates vanish. Wherealz(l/477)(1+477a) anda2=(l/477)(1+477b). If
We conclude that the global minimum &f;; hasM ~ @1<a,, then at u=T=0 the vacuum hasm’=mg
=0, m#0 if >0, andm=0, M#0 if §<0. =y,e 4™ andM?=0. Herem is the dynamically gener-

As we shall find later, the special poiAt=0 is the limit ~ ated fermion mass. It is convenient to choose the renormal-
point of the line inu, T space where there is a first order ization scale so thamZ=y,. This entails settingr;=0.
phase transition from the phase with chiral symmetry breakFurthermore, we are free to choo$&,=0, so thatmg
ing to the phase where there is only superconductivity. =mg. ThenVy; takes the form
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VI. PHASE STRUCTURE OF THE CLASS OF MODELS

1 (= 2
Veii=a;M?— EJ’O dkq| ki k- E[In(1+ e F) A. Cooper pair model
The pure Cooper pair modgd] has the property that the
chemical potential is irrelevant and can be transformed away.
m ' The form of the effective potential is exactly the same as that
for the Gross-Neveu model at zero chemical potential With
(5.5 replacingm and the gapA replacingmg. Thus in leading
order largeN there is a second order phase transition to the

+In(1+e Pk-)]— 2k, — (m?+M?)

Here unbroken mode at a critical temperature which can be deter-
1 1 mined by the high temperature expansion. FerM we can
ap=0=—— 2_>o, AR= 1, expand the integral in Eq5.8) to obtain[10]
KR o
M2[ [ @T
as described above in Sec. Ill. Verr=5—|In{ 37|~ 7|, (6.9

It is this branch of the theory that we are interested in as
a model for QCD, since QCD at zero temperature has &herey is Euler's constant. The minimum of this function
chiral condensate, but does not have a Cooper-pair gap. Wecurs atM =0, which means that the condensate vanishes
observe that if we seM =0 in this expression, we obtain, for largeT, as expected. The critical temperature is that tem-

with E= \kZ+m?, perature for which
\Y 2T 2|212wdk |7TT —OT—AV 6.2
er(M5T,u)= 71— nHQF'_ " 3)o 2 x|~ r=0—-Tc=—€" (6.2
X[In(1+e PETM) 4 n(1+e FE-M)] The same critical temperature was obtained in another

variant of the Gross-Neveu model which had a supercon-
ducting phas¢17], so that this temperature seems ubiquitous

which is the effective potential for the Gross-NevesN) N 4-Fermi models in +1 dimensions.
model in agreement with Refgl0,16. We will use the ana-
lytic information already known about the GN model as a B. Gross-Neveu sector

benchmark for our numerical work below. As is well known, the Gross-Neveu model has spontane-

In the opposite cas&,<a;, we have, in theu=T=0  ous symmetry breaking at zero chemical potential and tem-
vacuum,m*=0 and M?=A%=y,e *7%2, whereA is the  perature. At zero temperature, the symmetry is restored at
dynamically generated gap. So we choasg=0, @;>0, finite chemical potential at a critical value pf[10,11]. This
andmy=0, A?= y,=M7. The effective potential becomes  transition is first order. At zero chemical potential the system
undergoes a second order phase transition to the unbroken
symmetry phase as we increase the temperature. Thus at
some point in the phase diagram there is a tricritical point.
For this model we have performed both high and low tem-
perature expansions of the leading order iN Idotential
which is given by

(5.6

2
Ky +k_+ E[In(1+e‘5k+)

1 S
Veff: C!lmz_ EJ‘O dkl

+In(1+e Pk)]—2k; — (M + M?)—|.
( )]— 2k, — ( B
m2

BD Vo2 Tou) =4~

2 (=dk
5. 3m

1
n__ J—
mg

For this case, by choosing,=0 we obtain
Y ne X[In(1+e BE* M) 4 In(1+e AE )],

1 1 0. (6.3

- i m— — — =
kr=4rr, o=ay e 2

In the high temperature regime, using methods similar to
Whenm?=0, this expression gives us the effective po-those used for Bose condensat|ds] we obtain
tential at finite temperature for the pure Cooper-pairing 5 )
- : o T2 7 4(3) m
model considered ifi9]. Explicitly we have Nes + — 2
T2 2 T

2 %
|n%—1}—3f WK 1+ e 87T, 6.4
Blo m which leads to the relationship

2
Ver(m?,T,u)= yp

M2
Veff:E

(5.9

—_ . . me Tu2L(3)
Note that it is independent of the chemical potential, as was Toe=—exgy— ———— (6.5
the case al=0. ™ 4T
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which atu =0 gives the same critical temperature as for the 0.80 T T T T T T T
Cooper pair model, however withg replacingA. At small 070 L |
w? one has approximately '
, 0.60 [ .
TC=Ee7 1—7M—§2(3) . (6.6) 0.50 .
™ 4ymge”

0.40 |

T/m,

In the low temperature regime we want an analytic ex-
pression for the effective potential which would enable us to
determine values oft and T at which the first order transi-
tion occurs. At zerol the modification to the effective po-
tential due to the chemical potential is only in the region
<u. The standard low temperature expansion used in Bose
condensation15,18 unfortunately only gives the finite tem-
perature corrections whep<m and thus is not very rel-
evant to the question we want to answer. To obtain an ap- ) o
proximate analytic expression valid in the opposite regime FIG. 1. Phase dlggram for the _Gross-Neveu model. Partial lines
M= pertinent to the first order phase transition, we resorf€ results of the high an@pproximat low temperature expan-
to a crude approximation which captures the relevant physSions- The solid line is the numerical result.
ics. That is we make an approximation to the Fermi-Dirac
distribution function that allows us to perform all the inte-

0.30 |

0.20

0.10

0.00 .
00 O

02 03 04 05 06 07 08 09 1.0
wm,

2 2

grals. First we rewrite the derivative of the potential in the Vett=z Inm—é—l +C(u). (6.1
form
NV The arbitrary integration constant can be eliminated by

choosingVq¢(m=0)=0, which yields

_mImZerfwdk2 . r‘E+,u t }"E_M
m_ 2m m2 wlo B[S Mo TR T )

(6.7 2

Clu)= - (6.12

where E=\k?+m?, and then replace the function ta(h W= om '
—w)/T] using the straight line interpolation

For all T we can use the approximation in E@®.8) to
perform all the integrals explicitly. Doing this, we obtain an
approximation to the exact phase structure in the regime
where there is a first order phase transition as shown in Fig.
1. In that figure we also include the high temperature analytic
r{esult. Our analytic calculation gives us an approximate
value for the tricritical point which separates the regime be-
tween the first and second order phase transitipRgmg

tanh(x)—{1 if x>2, —1 if x<2, x if |x|]<2}.
(6.9

This has the correct behavior @s-0 and captures the phys-
ics of the broadening of the Fermi surface. A& 0, the
effect of the chemical potential is the most dramatic. Since i
that limit tanhx=€(x), we get immediately that

N m m2+m e dk@ =.6(|51, T(]i/mpz.:’:.l,I cfompar_ed toﬂth.e “exact” numerical
e o nm—% 71 = (pm—m) result as for example found in RfL0]:
m m? m M Te
=— In—4+—0O(yu— —=.608, —=.318. 6.1
27T|nm|2: 77(# m) Mg Mg (613

X (6.9 C. Full phase structure

1 m?
In(1+y1— mzl,uz) - Eln?] ,

The phase structure is quite different depending on

This can be integrated to give the result that fio< o the
effective potential is given by

1 +pi-m?
Vo 2

—2pu\p?—m? +C(p) (6.10

whereas, fom> u, the effective potential is equal to is
=0 value, namely

whether we choose the cade-0 which has chiral symmetry
breaking in the vacuum of<0 where there is Cooper pair
formation in the vacuum. In the regime wheée>0, the
phases of this model are quite similar to QCD as shown in
Fig. 2 with the value ofx,= 6=1/27. In the vacuum there

is chiral symmetry breakdown. As we increase the chemical
potential at low temperatures there is a first order phase tran-
sition into a phase with Cooper pairs. At and near the phase
transition line there can be the coexistence of the two sepa-
rate phases, one with Cooper pairs and one with a chiral
condensate which breaks chiral symmetry. For the range
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o,=1/21 o,=1/4m
0.6 b 0.6 b
Unbroken
05 Unbroken 05 |
04 04 .
£ £
= -
03 r Chiral Condensation 03 r |
Chiral Condensation
Cooper
0.2 0.2 Condensation
Cooper
04 L Condensation | 04 L |
0.0 1 1 1 1 1 1 1 1 L 0.0 1 1 1 1 1 1 1 1 L
00 01 02 03 04 05 06 07 08 09 1.0 00 01 02 03 04 05 06 07 08 09 1.0
w/m, p/m,
FIG. 2. Phase structure @=1/27. The ftricritical point is at FIG. 4. Phase structure &&= 1/47.

T/me=.318, u/m.=.608.

This dependence is displayed in Fig. B reaches the tri-
critical valueT./mg=.318 whend=§.. Figure 2 is in the
regime where5> 6, so that it displays a tricritical point. For
values of 6< 4., the chirally broken phase only can be re-
the theory will have a tricritical point at the value given by stored via a second order phase transition. This case is illus-
Eq. (6.13), so that the regime where there is chiral symmetrytrated in Fig. 4 which is fors=1/47<45.. In between the
breakdown will, for chemical potentials below the tricritical chirally broken and superconducting phases is a coexistence
value, undergo a second order phase transition at large terdurve. The intersection of this curve with the lifie=0 can
peratures. For values of the chemical potential between thge determined as a function & which we will shall do
tricritical value and the value for the first order transition to pelow. The existence of two phases having the same energy
the superconducting phageletermined beloly the phase s shown in the 3D plot of the effective potential as a func-
transmon from the chirally broken mode to the unbrokention of m,M in Fig. 5 and in the two dimensional slices of
mode will be first order at large temperatures. _this figure shown in Figs. 6 and 7. The particular case dis-
=0.56 which is numerically determined to lie along the

erconducting phase with nonzero gap. As we increase thg . . . .
Femperature gt Ff)ixed large chemical goi)ential the system unf!lerst order line separating the chiral condensation phase from

dergoes a second order transition into the unbroken modéhe Cooper condensation phase. dpproaches zero, the

with the critical temperature depending only 8@nd not. f;onegxéftﬁggea %ug;:eavsﬁgofﬁi?ﬁ Smi:‘gtrgfﬁ;;zggxge no

1.13097
> =

4 ¢

(6.19

ST T ]

L7
i oy 9 ¥ 9

0.8

FIG. 3. Critical temperature for the superconducting phase as a FIG. 5. Phase coexistence dffective potentialTat0.02,
function of a,= 4. =0.56, 56=1/4.
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Infinitesimally to either side of the coexistence curve we V[m=mg,M=0]=V[m=0M=M*]. (6.15
are at two separate minima of the potential. In each phase the
minimum takes place with the value of the other condensat&he value ofM* is chosen to minimiz&[0,M ] for a given
mass equal to zero. Thus the condition defining the coexistvalue of u,6. Recall that aiT=0 the effective potential is
ence curve is given by

1 o]
Veri= oM?— 2—f dk| VKk2+m?+ M2+ 2242 VM2 M2+ (K24 m2) u?
mTJOo

m?+M?
+ VI M2 M2+ 12— 2 2 M2+ (2t m2) p?— 2K— ——— |+ C( ). 6.16
VmZ+k?
|
We notice that wheiM =0, this potential becomes that of or
the Gross-Neveu model. Thus, if we choo¥g:(m=0,
—0)= i — 2 i
M=0)=0, then agairC(u)= /2%, as in Eq.(6.12. M* 2= m2e~470, 6.20

At T=0 it is possible to analytically determine the value
of the chemical potential as a function &fas well the value
of M at the minimum. On the left hand side of the coexist-|nserting this value into the equation equating the value of
ence we need to evaluate the GN effective potential in thene potential on both sides of the phase transition we then

regime wherem=mg>u, since the phase transition to the gbtain the critical value of the chemical potential
superconducting phase always occurs in that regime. Thus

we have L2 et
m  u? mo 2 (621
Veff(m:mF,O):_E"'ﬂ (6.17 F
On the right hand side we need to evaluate the zero tempera- VII. CONCLUSIONS
ture effective potential fom=0, M=M*. We have, on the _ . .
Cooper condensation side, In this paper we have analyzed (4+1)-dimensional

model possessin@(N) flavor symmetry and discrete chiral

symmetry, and have found a phase structure remarkably
I”m_g_l . (618 similar to that conjectured for 2-flavor QCD. We have de-
rived the general forms for the effective potential in leading
The quantityM* is determined by that value & that mini- ~ order in IN. We have analyzed the cage=T=0 analyti-
mizes this function, namely cally, showing how the phase structure is governed by the
renormalization group invariard. For u=T=0 this struc-
ture is remarkably symmetric in the two condensateand

2
Vei(M=0M)= M2+ -

2

Ngr(M=0,M) Inﬁg M. We have performed a careful numerical analysis of the
———=0-6+ =0 6.19
M A .19
v
M -
0.2 0.4 0.6 0.8 1 1.2 0.05
-0.055
-0.02
-0.06
-0.04 -0.065
-0.07
-0.06
-0.075
m
-0.08 0.2 0.4 0.6 0.8 1 1.2

FIG. 6. Phase coexistence effective potential as a functidvi of FIG. 7. Phase coexistence effective potential as a function of
for m=0. for M=0.
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integrals involved in the determination of the effective po-to definep=M/m and to combine the gap equations in the
tential and have determined the dependenc¥ Gf on the  form

parameterss, u and T. What we have found is that when

there is chiral symmetry breakdown in the vacuum sector

(6>0), there are at least three different regions. In the low 5=(1-p?
temperature regime, as we increase the chemical potential

there is a first order phase transition to a regime which has a

Cooper pair gagsuperconductivitybut no chiral symmetry "

breakdown. Along and near the phase transition line, there is

a regime where the two phases coexist like ice and water. At 1 (1-pY inl?~ 1
T=0 we explicitly determine the value of the chemical po- o= 47 p n p+1
tential at which this occurs and also the value of the Cooper

pair gap as a function 0. At high enough temperatures Both these equations are everpinso we may takg>0 for

both symmetries are re_stored. In pa_lrticula( #>3:  convenience. EquatiofA2) tells us immediately that ifs
=1.13097/47, then there is also a tricritical point so that _ 0<p<1, and if >0, p>1. Furthermore, the right

depending on the value qf the phase transition out of the hand side(RHS) of Eq. (A2) is bounded betweer 1/27

chirally broken phase will be either first or second order. We,nd 1/27. Hence we conclude that i) > 1/27, there is no

illustrated the phase structure of this model by showing the  \vion with bothm and M non-vanishing. If|8|<1/2m
phase diagram of this model as a function of temperature angl . .« is such a solution. with the property that-M if 5
chemical potential for representative values&®fWe also ~0 andM<m if 5<0. '

plotted the effective potential at a representative place where It remains to decide whethat,(m,M) can be the global

t_here IS phase coexistence. In the opposite gas@ one minimum. To this end, it is convenient to re-express the gap
finds that in the vacuum sector the theory has a Cooper pal

Yquations once more in the following form:
gap but no chiral symmetry breaking. In that case the theoryq 9
has a transition at high temperatures to the unbroken mode

1
b+-—+—In

m?|p?—1|
47 A

Yo

|

. (A2)

where the m?p?—1| p—1l
_ gap goes to zero. —(1+4ma)=In —InH (A3)
Using this toy model we intend to study how the phase Yo p+ 1|
transition from the high temperature to low temperature re-
gime proceeds in time during an expansion of an initial Lor-gnd
entz contracted disk of quark matter starting from various
initial conditions related to different points on this phase m?|p?—1] p—1|1e
diagram. We hope to determine how various correlation —(1+47mb)=In —In{ |— ] (A4)
functions depend on the initial conditions of a scattering ex- Yo ptl

periment, assuming that it produces an initial state in local
chemical and thermal equilibrium somewhere on the phase From these, making use of Ed4.1), (4.3) and(4.5), we

diagram we obtained in this paper. immediately obtain
Yo _ -
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APPENDIX
and
In this appendix we give the details for determining that
the relative minimum which has both condensates is always (p+1)P Y p—1[1
between the two minima which have only one condensate. 9a(p) = p P (A8)
When bothm andM are non-vanishing, it is then convenient 1+ p?
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Equation(A5) is the relevant comparison if 14/2< <0 1 1
and 0<p<1, whereas Eq.(A6) is relevant for G<& h(p)=|1+— |n(1+P)+(1— —)In(l—p)—ln(1+p2)
<1/2m andp>1. P p
We observe, however, thaj,(1/p)=g:(p), so both +p| 1 1
cases reduce to the following: if we can show tiga(p) =In 1+ p2 + ;'”(1"‘9)"‘ 1- ;)Wl_ﬁ)- (A9)
>1 in the range & p<1, thenVy(m,M) is never the global
minimum (recall that theVy's are all <0). On the other In the range of interesp®<p, so the RHS is a sum of
hand, ifg,(p)<1 in this range, it will be possible to have positive terms. Hench(p)>0 andg;(p)>1.
Vo(m,M) be the global minimum. We conclude that the global minimum &f.;; has M
To settle this question, Writg1=eh, with =0, m#0 if >0, andm=0, M+#0 if §<O0.
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