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Infrared asymptotic dynamics of gauge invariant charged fields: QED versus QCD
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The freedom one has in constructing locally gauge invariant charged fields in gauge theories is analyzed in
full detail and exploited to construct, in QED, an electron field whose two-point fun&ti¢p), up to the
fourth order in the coupling constant, is normalized with on-shell normalization conditions and is, nonetheless,
infrared finite; as a consequence the radiative corrections vanish on the mags’shefl and the free field
singularity is dominant, although, in contrast with quantum field theories with mass gap, the eigent/alue
the mass operator is not isolated. The same construction, carried out for the quark in QCD, is not sufficient for
cancellation of infrared divergences to take place in the fourth order. The latter divergences, however, satisfy
a simple factorization equation. We speculate on the scenario that could be drawn about infrared asymptotic
dynamics of QCD, should this factorization equation be true in any order of perturbation theory.

PACS numbgs): 11.15.Bt, 12.38.Bx

I. INTRODUCTION AND MAIN RESULTS even less to say. Many mechanisms and criteria have been

In ordinary quantum field theor§QFT) with a mass gap proposed over the years: soitas, e.g., the Wilson loop area
the notion of a particle is recovered from that of an interact-behavior[4], or the fundamental role of topology leading to
ing local field as a consequence of infrarg) asymptotic  the dual Meissner effed6]) are so suggestive that have be-
dynamics: a near-mass-shell pole singularity in each of theome common language; othdthe 1/%)? IR behavior of
momenta incoming any Green functigguaranteed in La- the full gluon propagatof6—9], the quartet mechanispiQ]
grangian QFT’s by the possibility of imposing on-shell nor- and the metric confinemefit1] both based on the existence
malization conditions on both mass and wave function renorof LSZ asymptotic limits for color fields, violation of
malization$ ensures the existence of the Lehmann-asymptotic completenesl?], the obstruction in the IR
Symanzik-ZimmermaniiLSZ) asymptotic limit of the field dressing due to Gribov ambiguitig$3], and so many others
[1]. One is thus provided with an ordinary free Fock field, bythat it would be impossible—and nonsensical—to quote
means of which an irreducible Wigner-type representation ofhem all her¢.do not share the same popularity, but time and
the Poincaregroup, sitting on an isolated mass hyperboloid,again are r(_econ5|dered and revwed: However, so far none of
is in turn constructed. In this context the fact that the field oth€S€ Critéria has led to a systematic and generally accepted

particle may or may not carry quantum numbers associatel€SCriPtion of what confinement is.

with some unbroken global internal symmetry is irrelevant. f P:ugentlsllytwe regardlcol?flr][epentda'lfsf a df“(’:[atec’i m.U|tt"
In gauge theorieswe will always have in mind QED and aceted subject one can ook at from ditterent standpoints.

QCD in continuum Minkowski four-dimensional space-time We try here just to offer a further standpoint, not necessarily
. . . P . in conflict with others, but endowed with the possibility of a
with unbroken electric and color chargehkings go in a dif-

¢ ‘ Indeed. the i . bout which tth sound mathematical verification based on the only input of
rerent way. Indeed, the ISSUe IS one about which, as yet, tnetg, »jementing in QCD the symmetries that we believe rel-
is no general consensus.

: ) . . evant: local gauge invariance and Poincare
On the one side QED—with the exception of its zero i js convenient to state the terms of the problem of the
charge sector—still is only a theory of inclusive cross secyarticle content of charged sectors in gauge theories within
tiOI’IS, in Wh|Ch a.” the theoretical Setup Of quantum mechan‘[he framework of the Lagrangian approach. We Sha" also
ics (states, observables, representation of symmetries, angssume that all the fields entering the Lagrangian are local
the like) has no satisfactorgxplicit representation, in spite fields. These will be referred to as the basic fields of the
of the general model-independent investigati¢2s3] that  model. Referencgl4] gives in detail the local covariant for-
have delimitated, so to speak, a possible battlefield: the battiewulation of the theory we shall rely on in the sequel. In
is not yet won and one could, in a provocative way, summagparticular the adjective “physical” will be referred to the
rize the situation by saying that the question: “what is anfields that commute with—or to states that are annihilated
electron in QED” is still open. by—the Becchi-Rouet-Stora-Tyutin generaftive choice of
On the other side there is, in QCD, the problem of con-the local covariant formulation deserves a further comment:
finement of colored gluons and quarks, about which there ithe fact that manifest covariance is necessary to implement
the renormalization procedure may be regarded upon as a
technical complication; to our knowledge, however, a proof
*Email address: demilio@difi.unipi.it of renormalizability is given only in this conteki5]: that is
"Email address: S.Micciche@Lboro.ac.uk why we stick to ij.
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In this framework it is convenient to distinguish four divergences at the level of the scattering matrix: i.e., it has
steps, all relevant in designing the relationship between fieltheen the first attempt to propose an alternative to the last of
and particle. We will try to keep these steps as nonoverlapthe _aboye steps: )

(i) form of physical(composit¢ charged fields, The work of Kulish and Faddee_[\ZO] represents, to our

(i) IR asymptotic dynamics, knowledge, th_e most refined version of how to effect this

(iii ) existence of asymptotic limits and on-shell particle step. But, for it too, the assumption of a Fock space of on-

shell particle states is the starting point and it must, there-

_ states, fore, be regarded as a refinement of the Dyson interaction

(iv); Smatrix. , _ , _ picture approach. The main points of this work can be sum-

In this paper we will be mainly concerned with only  marized as follows. First the origin of IR divergences is iden-
and (ii). It should be clear, however, that the study of thesejfieq in the splitting of the total Hamiltonian in the free and
points is relevant noper se but only in the perspective of interaction partH=H,+V, showing that the time evolution
either going through the entire prograas possible for factor associated t& is not well defined in perturbation
QED) or spotting where the chain breaks down, as one extheory; it is then argued that a different splittigj=H,
pects to happen in the case of QCD. The following discus-+V, o+ (V—V,) =H.s+ (V—V,J, operated on the basis of
sion should help clarifying why onlyi) and ii) need to be physical intuition, gives rise to a consistent asymptotic well
considered. defined time evolution operatW,{t) associated tid . It

In the case of QFT with mass gap is simply non- is then shown that the asymptotic states obtained either as
necessary: the LSZ program, consisting (9, (ii), and  Hae=W'(t)Hroex fOr t——oo, or equivalently asH,g
(iv),, is fully exhaustive. In particulafiii) provides free =W(t)Hgock fOr t— +o, are suitable in and out states giv-
fields whose two-point function is the usual one with aning rise to a IR finiteS matrix and that the associated tran-
isolated pole atp?=u?. A Hilbert space is reconstructed Sition probabilities exactly concide with those of Block and
from this two-point function via the well known Fock pro- Nordsiek. It is correctly emphasized that the price for this
cedure and the scattering matBxs,, provided by stegiv),, ~ @chievement is to realize that the operat(—o) and
is regarded upon as a unitary operator that maps the Fodf/(+°) must be thought as defined on a space larger than
space onto itself. The historical alternative to this program igtrock @nd that the space of generalized coherent asymptotic
provided by the use of the interaction picture: this skips poinfaleS/as is not included inflgq. In connection with this,

(i), assumes the existence of on-shell states(iiig. and the 1€ authors also explicitly mention that, from the point of
outcome is Dyson’s scattering mati . In comparing the V'feW of representing Poincargroup, the _pr|1yS|caI sub_shpace
two strategies one ends up wishs,= Sy, but, from a con- of H,s does not contain discrete irreducible terms with non-

ceptual point of view, there is, in our opinion, no point aboutvansizhtir?g rrgaassgh why we investigdtein QED is to provide
the superiority of the LSZ scheme: deriving the scatteringa y

: . set of gauge invariant and Poincarevariant correlation
matrix from a set of off-shelll-ordered correlations func- ¢,.ctions whose IR asymptotic dynamics should provide

tions brings the model closer to the.ralls provided by W'ght'positive evidence in favor of poiriiii). There remains the
man r'econstructlon' theorem, and, in tu_rn, helps to have agyct that, even succeeding in giving such evidence, the pos-
explicit representation of all the theoretical set up of quansiple outcomes are either Zwanziger's (natrix perfectly
tum mechanics. defined, but depending on an unphysical mass parajater

In the case of QED, barring the problem of deriving the Kulish-Faddeev'sthe “softness” of undetected photons as-
scattering matrix from a set of gauge invariant correlationsociated to Block-Nordsieck inclusive cross sections enters
functions[this is precisely one of the problerfi$ aims a}, it the definition of charged particle states, thus compromising
has been clear from the very outset tigtis plagued with  the representability of Lorentz boosts
IR divergences and efforts have been made to overcome this For QCD there exists no analogue to our knowledge, of
drawback: the Block-Nordsieck prescription for inclusive the Kulish-Faddeev work. We like to think that one reason
cross sectiond16], culminated in the Yennie-Frautschi- for this is the implausibility of assuming on-shell quark and
Suura papef17] is well known. gluon states, even in the senseiof. We will indeed shortly

It is important to mention that Zwanziggt8] has shown  Offer evidence that the above chain breaks down exactly in

the possibility of replacing the logarithms of the “vanishing 90ing from(ii) to (iii) and the problem of defining the scat-
photon mass” with the logarithms of an arbitrary finite masstefing matrix on color states, according to eitt{@r), or
(thus averting the infrared catastroptend that the depen- (V). becomes ill posed. This concludes the discussion about
dence on this unphysical parameter drops out in the compt}:he possibility of restricting our investigations to orgly and
tation of the Block-Nordsieck cross sections. So, by this ).

; - : - Going into more detail fofi), it is well known that physi-
way, one is left with a technically defendalilee., IR finite) : ; . o
: : o : cal fields that are localized functions of the basic fields trans-
Sig;:énx’roil)g]t?iﬁ? htrtgr?slirtTi]opnosS?/:/ti)tlrlllt)é; fecr(i)r;nepnigrgatth; rizskgsform trivially (i.e., have zero chargainder any charge op-
its utilits rather dyoubtful P erator associated to a current obeying a Gauss lgw:

. N . =J"F ,,. Indeed, in intuitive terms, thanks to the latter, the
There has been instead another direction pioneered b mr

Action of the ch fiettl takes the f
Chung’ work[19]: this has been the first attempt to imple- ction ot the charge on any nel taxes the form
ment the Block-Nordsiek prescription by re-defining the

asymptotic on-shell states in such a way to get rid of IR 6@ = lim

R—

dSF;,®
Sr

: (1.9
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where Sy is the surface of the sphere of radiRsin three-  the need of breaking Lorentz symmetry. It has also been
space. Therefore, ib is (or the fields in terms of which itis argued in Ref[25] that, for QED, one expects to recover the
constructed ajesmeared with functions of compact support, usual IR divergentor alternatively, Zwanziger’s18]) Sma-
thanks to locality 5@ vanishes foR large enough. To avoid trix, so that the undertaking of the Kulish-Faddeev program
this the field® must have at least a “tail” through the remains, if attractive, necessary. In the present paper, in-
sphere at infinity in Minkowski spacéwhether only in stead, we will continue in making the effort of enforcing
spacelike or even in timelike directions is a subject to beLorentz symmetry fronti) down to(iii ), because in this way
taken up in the next sectipnin this sense, as long as one is the comparison between QED and QCD turns out to be much
interested in physical nontrivially charged fields, only nonlo-more suggestive. We admit, our results only concern some
calized functions of the basic fields ought to be consideredtwo-point functions and are, for now, incomplete. It is true,
Since the above statement has been given the status ofoa the other hand, that the results of the present and the
theorem[21], there is little to add and there is general agreefollowing paperd33] open the possibility of performing sys-
ment about it. tematic model calculations that could help putting this com-
The theorem gives no hint, however, about the explicitparison on a sounder basis: this is one of the several ques-
form of such fields. According to the terminology also re- tions to be discussed in the conclusions.
cently used in Ref{13], such nonlocalized functions will be Among the references we have cited, the work by Stein-
shortly referred to as “dressed” fields: a physicalteract- mann deserves a special mention, for not only it has been
ing (i.e., Heisenbergelectron field should be dressed with a close in spirit to ours along the years, but it has been con-
cloud of photons, as well as with its own Coulomb field.  stantly inspiring. We feel it is not by chance that another part
Dirac [22] was the first to show, in an explicit way, how of Steinmann’s and collaborator’'s work, not immediately
the dressing could be done in order to endow an electrononnected with the problems specific to gauge theories, is
with its own Coulomb field. His aim was a quantization of invaluable to the approach presented here. Indeed, it turns
QED that would involve only those degrees of freedom thaiout that the usual Dyson expansion formula for the calcula-
actually contribute to the dynamic evolution of the system.tions of vacuum expectation valug¥EV) of the type
In retrospective, it does not sound as a surprise that he gayd (- - -)) is not sufficient for our purposes. The composite
up the manifest covariance properties of the physical field§ields we will introduce, will themselves BE™-ordered for-
under Lorentz transformations: it was well known, after themal power series. So the calculation of their correlation func-
Gupta-Bleuler formulation, that, even when restricting to thetions will demand the ability at computing—in perturbation
zero charge sector, such manifestly covariant formulationtheory(PT)—both Wightman functions and, more in general,
do involve indefinite metric, i.e., extra degrees of freedommulti-time-ordered VEV'’s of the typdT=(---)---T*(--
irrelevant to the dynamic evolution. -)). Referenceg34—-3€¢ exactly provide the algorithm for
After Dirac other authors have investigated different waysdoing all this.
of dressing the basic fields, with different motivations and Our attitude in the present paper is that we do not want to
with different aims. The list given by Ref$23—-32 only = make anya priori assumption about IR asymptotic dynam-
gives some references that are closer in spirit to the preseits, with the exception of enforcing symmetries: local gauge,
article and, in any event, has no pretension to completenessanslations and Lorentz in particular. IR asymptotic dynam-
Referencd 13] provides a much more comprehensive bibli- ics should, hopefully, emerge by itself, i.e., only by our abil-
ography, whereas Ref32] provides its updating. ity at calculating the near-mass-shell behavior of correlation
On the same footing as Dirac, covariance is given up alsdéunctions, once a particular gauge invariant charged field has
in the model investigations of Steinmafi@6], who has the been selected within the framework of stéip above. In
same aim as Dirac, and of R¢f.3] and other works by the other words the main point is théi) leaves a remarkable
same group, who instead think of the dressed fields as confreedom and evidently any choice made in selecting the form
posite operators within the usual formulation of the gaugeof physical charged fields may, and indeed does, affect the
theory. outcomes ofii). Our work will, as a consequence, consist in
The nonimplementability of Lorentz boosts in the chargedexploiting all the freedom(i) leaves to see whether there
sectors of QED is indeed, after the model independent invesxists a field with a near-mass-shell behavior mild enough to
tigations of Refs[2,3], taken for granted to the point that, enable one to face poifiiii) and eventuallyiv). In the case
once the symmetry is broken by hand from the very beginthe motivations about the necessity of having fields with a
ning of the construction, no attempt is made to restore it. mild near-mass-shell behavior should be recapitulated in
We understand that this breaking of Lorentz symmetrymore intuitive and physical terms, we have found the discus-
put in by hand in model investigations is different from the sion given in Ref[30] about QED particularly sound.
breaking claimed in Ref4§2,3]. The latter refers to the im- So, in order to directly compare QED and QCD, we will
possibility of having a unitary representation of Lorentz construct “dressed electrong(x) and “quark” q(x) fields
boosts orfH,s, the space of asymptotic generalized coherentwe could also construct the “gluon[28], but the investi-
states, i.e., it is a statement that finds its collocation withingation of its behavior in higher orders is better postponed to
(iv),. In this context it is far from being clear whether Lor- future work, for a comparison with its QED analogue would
entz symmetry must be given up right away from sgp  be less stringent: the photon has no chakgeose two-point
One of us and his coworkef&5,28 have endorsed the state- functions up the fourth order in the coupling constant—the
ment that it should be possible to go frdimto (iii ) without ~ simplest place where a difference between QED and QCD
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may emerge—have the following properti¢$) they are in-  The first evident comment about the above results is that the
dependent of the gauge-fixing parame{@, ultraviolet di- game, played twice with the same rules, gives two qualita-
vergences brought about by the compositeness of the dredsvely different results. It is sufficienper se to state that the
ing are cured by a single renormalization constant introducetR asymptotic dynamics of the two models is differétftis

in the definition, and3) on-shell normalization conditions was expected even in perturbation theoiypossibly, this is a
can be imposed, in the IR regularized theory, on the singléess widespread beligf

IR divergent graphs with two different outcomes. Concerning Eq(1.3), although the result is that the sin-
(3a) In QED a complete cancellation of IR divergencesgularity of the free field theory is not altered by the radiative
takes place, and the two-point function is given by corrections that vanish on the mass shell, it is true that the

mass hyperboloigp?= w2 is not isolated as in the mass gap
_ 4o Aip- (X— — case. This result, expected on the basis of simple physical
W(p)—f d'xe? M (e(x)e(y), (1.2 intuition, does not seem, on the one hand, to invalidate the
possibility of effecting the Fock construction. On the other
a\? hand a careful comparison with the observations made in
;) Wot -, (1.3} Ref.[39] (where it has been pointed out that, in the case of
gauge theories, the particle content might be recovered at the
where cost of abandoning Wigner notion of an irreducible represen-
tation of Poincaregroup sitting on an isolated mass hyper-
Wo(p)=(p+ w)(27) 0(p°) 8(p>— w?) (1.4  boloid) would certainly be instructive. The investigation of
this point pertains however the stéjj) above, so we will
is the Wightman function of the free spinor field, whereas thenot pursue it in this article.
higher order terms, described by the two invariant functions Concerning the second resylt.8), we find it intriguing
a;(p?/ u?) andb;(p¥ u?), i=1: for two reasons. The first is that it is simple—we mean the
factorization. The second is the occurrence of the celebrated

W(p) =Wo(p) + — W, +

1 i c, factor, with the plus sign
_ 0 2_ .2 ) : 6 A ’ ; . .
Wi(p)=0(p") 0(p"— );f(a"ber"“) (1.9 We cannot therefore resist the temptation of commenting
on the consequenced4.8) would have, were it true in any
are given, to the first order, by order of PT. In the latter case its integration would yield
MZ ,LL2 (I A e—0"
a=507| 1~ F)’ b,=0, (1.6) w(p,e)=e“M*w(p) — o, (1.11
11 1
and, to the second ordéwhose full form is given in Sec. v Ale)=5Cag (1.12

have the near-mass-shell asymptotic form
with w(p) IR finite. This hints at a different scenario, in

5 l 7 H H “ n £
fy~ o+ =2 INT— o2t which the Heisenberg “quark” fieldas a result of IR

9 6 4 asymptotic dynamicss a free field not asymptotically, but at
(1,77 ~ anymomentump.
7 1 5 It may be useful to recall the example of the Faddeev-
by=— %f— grzm r+ ﬂr2+ sy Popov (FP) ghost in QED: in that case the field is free by

construction and there is a factorization of correlation func-
tions involving the ghost into a bunch of free ghost two-

with r=p?/u?—1-0. . . ; : :
(3b) In QCD, assuming dimensional regularization for IR point-functions times a connected correlation function only

divergences—i.e.D=4— 4+ 2¢ [37,38—the latter do not involving fields with zero ghost number. Could one say that

i : the ghost number is confined?
cancel, but obey the factorization equation . .
y d In QCD, even if Eq.(1.11) were true, one could not im-

1\ 11 mediately conclude, as in the case of local figld6] (we
—) —CawWq(p,€), (1.9 remind that dressed fields do not share the locality property
2¢) 6 that theq;(x) is a free field. Nonetheless a working hypoth-
esis could be to check whether, as a consequence of IR
asymptotic dynamics, the factorization of quark and gluon
free two-point functions, out of connected correlation func-
tions only involving color singlets, does indeed take place. If
W (p,€)= J d4xe‘p'(x‘y)(qi(x)aj(y)), (1.9 all this happens the quark field may exist only as a free field:
the problem of theS matrix would regardas has long since
i been the case in practicenly color singlets.
(p.e) —! Of course, it is not necessary for the above scenario to
Pp—u—i0’ take really place that the functiak(e) preserves, on possi-
(1.10  bly going from Eq.(1.8) to an exact result, the specific form

Jd
eﬁwz(p,e)=+

wherew= 3 (a/7)"w, is defined by the amputation of the
interacting part

Wi (p, €)= 6;;Wo(p) + OijW

|
p—u+i0
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given by Eq.(1.12 suggested by our fourth order calcula- Consider now the formal power serigz7]
tion. It might dress up even as a full seriesdn provided
that A— +« for e—0" carried on holding.

We are aware that, on extrapolating our resiil8) to Eq. = N 4
(1.11), we have raised more questiofal orders, gluon, IR V(y?f):NE:O (+ig) f d*ny-- f d*
asymptotics of many-point functiopthan we will answer in
this article. But, in the framework we will set up, these ques- XEE TNy =71,y )
tions do not seem to us prohibitively out of the range of
traditional and well established tools of QFT. XA, (171)- A, (7n), 2.3

The paper is organized as follows. In Sec. Il the freedom
+

one has in dressing the basic fields is analyzed in detail on

the level of classical fields. Section Il sets the stage for the Vi )= > (—ig)MJ d*¢;- - J d*éy
calculation of quantum correlation functions: it is argued that M=o

an algorithm for computing VEV with several time order- XERE MK — &g, x— Ey)

ings, i.e., of the typdT=(---)---T"(---)), is needed and

the exhaustive work of Ostendorff and SteinmdBa—36, XA ) Ay (E1), (2.9

giving such an algorithm, is summarized. Section IV system-

atically explores in PT the lowest order of the two-point

functions relative to the fields constructed in Sec. Il, and thavhere the term#1,N=0 are by definition 1.

full form of Wy, Eq. (1.6), is established. Section V gives a  We claim that one can chooseal kernel functionsf’s
concise outlook of the fourth order calculations: the full form such thatv and V' transform under Eq2.2) according to

of W,, Eq. (1.7), is given together with a description of the

way we follow to calculate it and to obtain E@..8). The full

derivation of the latter results, as well as the proofs of their 6V=+igCV, DVAES —igVTC. (2.5
properties(1)-(3) above, are left for forthcoming papers. In

Sec. VI we give a retrospective of the construction we havédefore we proceed to enforce the transformation properties
done and pinpoint the open problems that, in our opinion(2.5), two comments are in order about the multiple convo-
most urgently should be faced in order to give the furtherJutions displayed in Eq92.3) and(2.4). (i) The first is that

necessary support to such a construction. they are mandatory if one is interested, as we are, in obtain-
ing translation covariant solutions to E@.5). (ii) The sec-
Il. CLASSICAL FIELDS ond is that the convolutions extending to the whole

Minkowski space explicitly expose the fact thétand V'

Let (x) denote a multiplet of Dirac fields transforming may be nonlocalized functions of the basic local fiekls
as the fundamental representati®h of the color group provided the support of thEs is suitably chosen. In view of
SU(N) (the extension to whatever compact semisimple Liethe discussion about E¢L.1), this is quite welcome because
group being trivial. We shall denote bx\M(x)=taAZ(x) the  we are aiming at constructing locally gauge invariant fields
Yang-Mills potentials. Heret?, a=1, ... N?>—1, are the that carry nontrivial global color numbers: indeed, concern-
Hermitian generators iR, satisfying the commutation rela- ing local gauge transformations, once E2.5) are satisfied,
tions [t2,t°]=if2P%°, titf=Cr5;, Cp=(N?-1)/(2N); the spinor fields
whereas the structure constaft§® are real, completely an-

tisymmetric and obey2°%P¢d=C,*", C,=N. The scalar V)=V Hw(x), Wy)=d(y)V(y;f) (2.6
and wedge products iR are accordingly defined bs-B
=2 Tr(AB), AAB=—i[A, B]. are obviously invariant under E(.2) while they transform

It will be understood that the dynamics of the above fieldsasR andR whenC is not chosen according to E.1), but
is defined by the Lagrangiad given, e.g., in Ref[14], in is constant with respect ta
which the gauge-fixing term- ¢/2(9A) - (dA) as well as the Let us go back to enforcing Eq2.5. Steinmann has
Faddeev-Popov ghosts have been introduced and the Becclfédced this problem in Ref27]. He assumes that, on intro-
Rouet-Stora-Tyutin symmetry is at work. All the fieldsdh  ducing Eq.(2.2) into Egs.(2.3) and(2.4), the derivatives can
are assumed to be local fields. be reversed by parts. While this can be justified for space
Let C(x)=tC?(x) e R be the FP ghost field, satisfying derivatives, thanks to the boundary conditiq@isl) on the
ghost, the thing is less justifiable for the time derivatives, as
C(t,x)—0, for [x|—c. (2.)  one has na priori control on asymptotic behavior in time.
_ In electrodynamics there is a way out: since the ghost is free,
We shall call local gauge transformationsiaf andA , the  one can choose suitable solutions of the d’Alambert equation

following: [25] that justify the neglect of boundary terms. In the non-
abelian case the problem is there: we shall, as in R,
oA,=3d,C+gA, NC, just ignore it, recalling however the stateméht of the in-
o o troduction that, in the case of quantum fields, we will be able
Sy=+igCy, Jy=—igyC. (2.2 to prove the¢ independence of correlation functions.
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With this provisq Steinmann has shown that the require- K ﬁ(k)=i, 2.7
ment that Eq(2.5) be satisfied by Eqg2.3) and(2.4) order Y
by order ing leads to a linear inhomogeneous recursive sys-
tem for thef’s. The Fourier transforms of the first of the whereas thé with N>1 arguments is determined in terms of
equations he gives is thef with N—1 arguments by

(Kg)y, TR NGk, - k) =2 MK k) = B2 (KK Kg o k) T,
(ka)Va:\rKll“-Va‘“VN(kl" o ’ka" o ’kN): +i[’fllill—“llvailva+1.“VN(kll' te 1ka—2|ka—1+ka!ka+li' o !kN)
_’f’zll_"l"’a—l”a#—l'”VN(kl,_ o !kaflvka+ka+lvka+21' c ka)]a (28)

(kn)w T kg, k) =iF T r kg ko ke g K,

with 2= a<N—1. We also take from Ref27] that the so- separately satisfy all Eq$2.8)—(2.10. These solutions also
lutions of Egs.(2.7) and(2.8), that for any integeN satisfy  fulfil the factorization property

N
z 2 rIZ R4 1 raz v
JZO (_1)Jf3’1..-v3(kl,. .. ,kJ)f;,j;]--V‘]-%-l(kN - Ky11)=0, gm F Ny, - Ky ;n):mfill(kl;n)' BN (k)
(2.9 (2.15
N A A well known as eikonal identity, as well as timereflection
320 (DN kg, k) Gk k) exchange relation
~0, 2.10 Foy Nk k) =F N kg, k).
(2.1
give rise to unitary serie¥(x;f)VT(x;f)=VT(x;f)V(x;f) _ _ _
—1. We will also need a third set of solutions, that extend to
Let us first focus on Eq(2.7). A family of solutions to higher orders the lowest order solution obtained by setting
this equation that also satisfies E¢®.9) and (2.10 is ¢=0in Eq.(2.1D:
R 1/ 1+c 1-c . _in_” 1 1
Lko=in"z| o thkrio)r @Y folkim =7 70 Tokeio) @19

wherec is a real parameter and” is a 4-vector that we With the principal value(PV) prescription for then-k de-
leave, for the moment, unspecified. Two particular solutiond’0minator. This is evidently connected with the problem of
from Eq. (2.1 are exposing a family of solutions that interpolates betwéeg

and f_y. We have found that, witin” kept fixed and even

v (k:n)= 'ny_ (2.12 after imposing the unitarity constrain(g.9) and(2.10, the
L n-k—i0’ higher theN the higher the number of complex parameters
due to the occurrence of PoincaBertrand terms. However,
se in” if also the eikonal identity2.15 is enforced, the interpolat-
fra(kin) = n-k+io" (2.13 ing family only depends on the real parameateppearing in

Eqg. (2.11). Just to give a flavor of the thing, it is found that
It caP be verified that the two following sets of functi&nsN B2 i 0) = P4 K102 C)
andf_ , given by 2 1282, 1 (K1 K2,C)T,7(Ka,
77_2
P Mk k) 5 (1=cH)n"in"28(n-ky) 8(n- ko).

in”1 in*n (2.18
“no(kyt-o-+ky)Fi0 n-kyFi0

We have explicitly found up td,(kq, ... ks;c) and we
(2.149 also have a guess abofif(k,, ... ky;c) for genericN.
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But, for the sake of conciseness we will no longer elaborate Suppose now that, we choose C.. , i.e., in the future or
on this topic, also because higher orders will not be needepast light cone. Then the statement that, respectively,
in the perturbative calculations we will perform in later sec-=0 is Lorentz invariant, and alsx’®—wn°=rs7_;

tions. The important for the sequel is that there exists a sos - .- s=7°=x% In view of this, Eq.(2.20 can be written

lution, denoted by?g;"'”'“(kl, ... kyn:n), that extends Eq. using theT™ chronological ordering symbols: fore C..
(2.17) to any orderN. In connection with Eq(2.16), note +oo
that the solutiorf,, in addition to satisfying the eikonal iden- Vo(x;n)=T- exp{ +ig fo don-A(x— nw)}
tity, is also invariant unden reflection (2.23
fSi,mVN(kl’ ook ;n):{cg:--m(kl, oKy ). and likewise for Eq(2.21): for neC.
(2.19 .
T ryeny—T* ;
The relationship between the present approach and other ~ V+(xn)=T exp{—lgfo d‘*’”'A(X“Ln“’)}
ones[13,23,26,27T, can now be clarified. (2.24

Consider, to this purpos¥,_(y;n), i.e., theV obtained by
inserting the so|utior?_N [i.e., Egs.(2.13 and (2.14 with  So far this is no big difference: the ordering operators, either
the minus sighinto Eq.(2.3). It is useful to represent all the 7 OF T, only order the color matrices, ... t°N in the

. 2 . Nth term of the above series, whereas the fields
denominators irf _ by means of the one-parameter integral 5 an . . , .
_ N e _ _ At ... AN, inasmuch as classical fields, are not sensitive
representation i(+i0) *=—if; dwexdiw(b+i0)]. In 1 N

this way it is possible to explicitly perform thiyk; integra- to this ordering. In the case of classical electrodynamics—

. . . . 2 : t®—1—such operators are simply useless. The role of the
tions in the_ anti-Fourier transform of tes. 'I_'hese Integra- - .. ordering will instead become crucial when we will keep
tions give rise ta,(x— 7; + 2 w;) that allow, in turn, for the

elimination of thed“nj integrations in Eq(2.3). Some fur- it in the definition of the quantum Heisenberg operators.

ther obvi manioulation nvert Q.3 int We have also to consider string operators in which the
er obvious manipulations convert Hg- 0 string vectom is chosen spacelike. In this case the difference

o o o between the arguments of two neighborig is spacelike,
V_(y;n)=2 (ig)Nj do;- f doy so only the color mat_rices are _sensitive to the ordering,
N=0 0 oN-1 whereas even the Heisenberg fields of the quantum case

commute with one another, due to locality. The solution we
will consider forneC, are Vy(x;n) and Vg(x;n), i.e., the
ones corresponding to the soluti&r@N that extends Eq.

(2.17 and fulfils then-reflection invariance propert§2.19.
Let us now introduce the characteristic functions

Xn-A(y—nNwq)---n-A(y—nNwy)

+ 0
=P+ex+gf don-A(y—nw)|.
0

(2.20
The right-hand side of the above formula is the usual defini- Yo(n)= 1 ifnel, o=x10, (2.25
tion of the path-ordering symb@ *. If n is chosen to be a 7 0 otherwise, '
spacelike vector, the above representation clarifiesvthait ) )
nothing but a rectilinear string operator in the manner ofand correspondingly the fields
Mandelstani23] extending to spacelike infinity. The case of _ R
n spacelike may serve also to accommodate Buchholz case W06 =x.(n)  TTVL(Xn)g(x)],
[41]. For this reason we will generically refer to all theand o - (2.29
V' operators as to the string operators, regardless of whether Wo(X;n)=xo(n)  Vo(X;n)#(x),
n is spacelike or timelike. _ _
In the same way one finds that Yo (x;n)=x«(n) T [g(x)VL(x;n)],
. . o (2.27
Vi(x;n)=P+eX[{—igJ’ don-A(X+now) Wo(x;n)=xo(n)  #(X)Vo(X;N).
0

(2.21) These fields fulfil the Dirac conjugation properties

(again aP* for the order of then-A factors inV' is re-

versed with respect t¥). It is now convenient to introduce Y- 06n)=W=(6=n),

the decomposition of the Minkowski four-spagé, into the — (2.28
future and past light cones, and their complement: Wo(x;n)=Wo(x,—n),
My=C, UCUC_ (2.22  that follow from then-reflection propertie$2.16) and(2.19.

As a consequence the composite fields
and in the sequel, referring to the above decomposition, the
indiceso and 7 will always take the values,0. V(x;n)=z, ¥V, +z ¥ _+2z4V¥,, (2.29
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We will not take this attitude. We will continue to think of
W(x;n) as a composite field in a theory whegeand A2

: P - lay the role of basic dynamic variables.
with the complex constantss satisfyingz. =z-, z,=2z,, P . . . - .
;nd to be spef:)ified later, for the quz%tugm?ields Wt(')len Oeffect- This point of view leaves open the possibility of choosing

ing renormalizatiop satisfy the Dirac conjugation relation different n's for d|ffe_r§r_1t v's. More_clearly, we want to
leave open the possibility of computing quantum correlation

\I_f(x;n)zz,l3++z+\l_f,+20\1_fo

W x:n) =W (x: —n) 23 functions of the typed W (x;m)W¥(y;n)), in which any field
(xn) ( ) %o (230 has its own string and with no restriction on whether hwoth

This also is the point where we can explain how we will
recover the lost Lorentz symmetry. We will discuss about the

Y(pin)=¥(=p;—n). (23D possibility of taking the limit
All the constructions done so far, to go frogto ¥, can n—p (2.35
be crudely summarized in this way: one has traded the gauge
variance ofys for the dependence &F on the string vecton. in Eq. (2.32.

We will refer to this fact as a breaking, put in by hand, of the A serious warning about this limit is that its very exis-
original Lorentz symmetry—an unpleasant feature oneence is far from being trivial: we will give some positive
would like to get rid of. We dedicate the rest of this sectionevidence in favor of it only in the case of quantum fields in
to give an heuristic description of how we will try to accom- Sec. IV. For now we will just forget about any mathematical
plish this task. rigor and assume its existence: this enables us to draw some

The Dirac equation for the ordinary in linear covariant  conclusions and formulate some expectations about quantum
gauges is first converted into the equation of motion forfields.

¥ (x;n). We write it in momentum representation The first consideration about the lingR.35 is that it does
. not mess up the Dirac conjugation propertieslof as evi-
(p—w)¥(p;n) dent from Eq.(2.31). Let us then call
d*k - S — (-
=gy.t° f a2 2T AT, (p—kin) A= (pip)- 239

Then, by settingh=p in Eg. (2.32, one obtains
=07.t°Q%(p;n), (2.32

- d*k
where the indexs refers to the decomposition oF with (Ib—M)Q(IO)=97ataJ 27
respect to the light cone af, Eq. (2.26). Accordingly, the

projectorsT are given by N . -
x 2 2, TP pAGO W ,(p—kip) (2.3

k*nA
T2 (k;n)=g*F— —, . . .
n-k*=io0 that makes evident why we have kept our point of view:
a8 (233 differently from W (p;n), the field g may exist only as a

composite field: in the right-hand sid®HS) of the above

equation theW appears with two different values of its ar-
guments, so the fiel& does not satisfy a closed equation.

Forfq, as already fot'(p;n), it is expected that the unphysi-
n.T3P(kn =0, T3P(kin)ks=0. (2.34  cal degrees of freedom @2 decouple: the second of Egs.
(2.34) still applies.
Thanks to the second of E¢®.34), the longitudinal degrees Byt this is not the end of the story. If, according to a well
of freedom of A} are expected to decouple. Thanks to theknown argument, the near-mass-shell behavior of the field is
first of Egs.(2.34), the vector field to whichP is coupled is  driven by the classical currents responsible for the interaction
Aa“=T“BA2 that satisfies1-. 42=0. with soft gluons or photons, we can make a guess about it by
Were it not for the subtleties due to thei O prescriptions operating the replacement'— wp®/p-k within the integra-
(i.e., to the light-cone decomposition of the field with respecttion in the RHS of Eq(2.37). It is then seen that, thanks now
ton), this formally is the equation satisfied by the Dirac field to the first of Eqs(2.34) with n=p, also the classical cur-
in the axial gauge. One could try to take this as a substituteents decouple and no longer drive the asymptotic IR dynam-
of the ordinary Dirac equation in linear covariant gauges andcs of g. As a result, the near-mass-shell behavior of the field
W(x;n) (with n, as in a gauge fixing, chosen once fopalé  q we have defined should be at least milder than that of both
the variable substitutings and in terms of which to attempt the gauge-variang and then-dependentV.
a gauge-invariant formulation of the theory—much in the The observation above, finally, clarifies why we have con-
spirit of Refs.[22,23,24. structed strings allowing for the choice of a timelike vector:

To(kin)=g** =PV _———,

and satisfy
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in the classical currents the momentum is close to the magte case fol'(y;n). In pictorial terms the strings contribut-

shell p?=pu2>0. All these expectations for the quantum ing to q(x) are spread out all ovex space: this happens

fields will find confirmation in the following sections. This when a string, rectilinear ip space, is integrated upon with

means that we will give meaning, to some extent, to theexp(—ip-x) as weighting factor. The field(x) thus rather

heuristic formula resembles a kind of space-time candy-sugar cloud centered at
X.

dp [ .
X) = e ipx Jd“ P Y (y:n
a(x) f (2m)* y (yin) lIl. PERTURBATION THEORY FOR QUANTUM FIELDS

n=p
2.3
(239 The present section is devoted to set up diagrammatic

with W (y;n) given by Eq.(2.29. The utility of this formula  rules for the calculation, in perturbation theory, of the corre-
is to clarify that the kind of delocalization involved o(x) lation functions of the quantum gauge invariant charged
is by far more complicated than that, recalled in connectiorfields we have sketched in Sec. Il.

with Eq. (1.1, of a field with a “tail” going to infinity along We define the quantum field corresponding to Ej29

a string that is rectilinear in coordinate representation, as i# the following way:

. d4p —ip-X . H a, a - d4kj
‘”X’m):f(zm“e ' |Mz=o("9)Mt R L e

X ; . X(T(m)gi.-/2<vl.>7l’fg;'”MM(kl1' Ky )T

M
AZTA(kM)--.Aill(kl)l?f(p—jzl kj)“_ (3.

In the above formula the time-ordering operatdrsand the  for the reader’'s convenien¢eeporting more or lesgerbatim
identity operatorT®=1 act on the Heisenberg fields in the the content of the appendix of R¢B6]).

square bracket. Moreover, =¢_ and , will play the role Let us denote byX={xy, ... X;} a set of four-vectors
of real renormalization constants, introduced to take care otnd® stand for any basic fieldA?, , s etc) of interest for us.
the compositeness & . In addition, also the factord/T)~*  Let also T?(X) denote the corresponding product of the
are constants whose values will be fixed later, when theifields ®(x,)---®(x;). In the multi-time-ordered vacuum
necessity to avert some ill-defined one particle reduciblé€Xpectation value

graphs will be realized. For now, what is needed to know is " .

that theZ,, and the(V!)~* have the right conjugation prop- W(Xp, 0| - - [Xp,0|X1,0) =(T "(Xp)- - - T *(Xp))
erties such that(V!)~* can be identified with the,, of Eq. @

(2.29: in this wayW (x;m) is, in turn, obtained by taking the  any ¢, may take the valuet only (the caseT®=1 of no
straightforward Dirac conjugate of E(B.1). ordering will be included lat¢r The perturbative contribu-

It should be finally noted that the structure of formula tion to orderg™ to W is obtained as follows.
(3.1) is slightly different from Eq(2.29. In fact, in the latter Graphs All the graphs with=r; external points and a
case one can recognize the time-ordering of the fields onlyiumber of internal points suitable to match the odén PT
after performing, as we have done in Sec. I, lﬁ‘fj inte-  are drawn.
grations of Eq.2.4). Here, instead, thd“k]- integration in- Partitions Each of the above graphs is partitioned in non-
volving thef’s, that are in turn responsible for this ordering, overlapping subgraphs—the “sectors”—such that all the ex-
are indicated but not yet performed: thé ° are there simply  ternal points ofX; belong to the same sector, called an ex-
by definition. ternal sector. In general, there exist sectors not containing

The light-cone decomposition of the field with respect toexternal points, called internal sectors. Internal points may
m—the second line of the above formula—makes it evidentelong to external as well as to internal sectors, depending
that, depending on the choice of the string vectorelative  on the partition considered.
to any single field, one must be able to compute VEV’'s of Sector numbersTo any sectorS, a numbers(S) is as-
the type(T7n(---)---T7(- - -)), with o;=*=,0. This obser-  signed according to the following rule¢i) For the sector
vation entails that the usual Dyson perturbation theory forcontaining the external points;: s=i, (ii) for an internal
mula for the development of one sindleordered product is  sectorS, s(S) is a noninteger number between the maximum
not sufficient to our purposes. An extension of the Dysonand the minimum sector numbers relative to the neighboring
algorithm is therefore needed and, fortunately for us, such asectordi.e., the sectors connected$dy at least by one line
extension is already available, thanks to the work of Ostenef the graph, (iii) if o;# o1 there is no internal sector with
dorff [34] and Steinmanf35]. We recapitulate their results i<s(S)<i+1.

2
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Equivalence If two partitions only differ in the number- Some comments about the above Steinmann rules are in
ing of the sectors—not in their topology—they are inequiva-order. The iterative derivation of the above rules is based on
lent if, for at least one pair of neighbouring sect&'s S’, the following inputs: (i) the equations of motion of the
one hass(S')>s(S") in the first partition,s(S')<s(S") in  model, (i) Wightman axioms for the Wightman functions
the second. (including locality, but excluding positivity (iii) on-shell

Type The sectors are eithd@* or T~ sectors in the fol- normalization conditions.
lowing way: the external sector with numbes aT! sector; Within these assumptions the solution provided by the

the internal sector with<s(S)<<i+1 andoi=0i,1isaT”  gpove rules is shown to be unique. Concerning the last point

sector as well. o , we emphasize that, whenever needed, an IR regulator must
Diagrammatic rules Any partition is converted into an e ot work(which one is suitable for the models considered

analytical expression according to the followin{@: Inside a here will be discussed later

T" sector ordinary Feynman rules for propagator and verti- Moreover Steinmann himself emphasizes that no use of

Ees nanp:plg/,iu)l mskl]dcledcfi:\i;l')’ iec;[r?tr ';rrl]elcom![oltrex cr?tr:{ggflte Of the asymptotic condition is ever made. This is quite welcome
eynman rules no any interai sector o UlesS & g0 us for, in the contrary case, this would imply some as-

(—1) factor,(iv) finally, a line connecting two different sec- . he IR i d oS this | |
tors S’ andS” corresponds, in momentum space, to a1‘act0rSumptlon on the asymptotic dynamics: this is exactly
what we do not want to do.
The above rules provide the tool necessary for computing
in PT, at least in principle, all the correlation functions of the
5ij(lb+ﬂ)2779(ipo)5(P2—M2) quarks, (3.3 gauge invariant charged fields, as the “quari3.1): this
algorithm provides us immediately with the “quantum part”
Sarl —0,,,2m0(+Ko) 8(k?) +k Kk, -] gluons, of the calculation, i.e., that part that only involves the quan-
(3.4  tum fields in the RHS of3.1). About this part one should
also observe that all the degrees of freedom, physical as well
as unphysical, are associated to local fields that propagate in
where the dots in the second stand for gauge terms that deausal way.

couple in all theW functions we will calculate and the However, there remains the “classical part” of the calcu-
applies according to whether the number sectors satisfiation, consisting in checking whether tlulékj integrations
s(S")=s(S"). involving both the VEV's and thd’s we have chosefthat

Sum The contribution of ordeg™ to W is obtained by  should provide the decoupling of the unphysical degrees of
summing the contribution of all inequivalent partitions so freedom are well defined. We face this problem in the next
obtained and multiplying the result for the appropriate com-section where we only consider two-point functions, because
binatorial factor. o the rules we have reported above are somewhat unusual and

The inclusion of the cas&’=1 of no ordering is taken more complicated than the Feynman rules everybody is used

into _account by the following observation. Single fields o: we better start learning the new game in the simplest case.
®(x) are included in the above scheme by allowing external

sectors with only one field as argumedt(x) =T*[D(x)].
In this way the single partitions of a graph do depend on the
choice of the sign, but the sum, expectedly, does not. This, in
particular, provides the algorithm for computing Wightman  Our aim is to see how the algorithm given in the preced-
functions in PT. ing section works in the case of the two-point function

IV. TWO-POINT FUNCTIONS

f dixePx J Ay YW ;M)W (y;n))

=(2m)*8,(p+q)W(p,m;q,n)

- Yoo dY oy [ dY;

N . M/: N i ]

—M%:O U,Zt,o( '9)"(ig) |1:[1 (ZW)Ajnlf(ZW)4
XAV Ex (my T M kg, ks m) PV ) (m B N,  n)

><<T” AMM<kM>-~-Aul<kl>&(p—2 kiHTﬁq—E I,-)AV1<|1>-~AVN(IN> > 4.
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£ Ty ‘f” L i

A
> ¢

C ”FL TR FIG. 3. The contributions t®V/(p,m;q,n) originated by the sec-
tor partitions of graph BL.

FIG. 1. The graphs associated to the VEV'44fl1) contributing

to the O(g) of W(p,m;q.n). would be sufficient to consider only five cases, thanks to the

Dirac conjugation properties of the fermion field, Ef.30.
However, we will furtherly restrict ourselves only to the
three cases that are more interesting for our purpdges:
meC,,neC_, (BymeC,., nely, (C) m nel,.

The discussion of the remaining cases is, after these, a

Due to the presence of the string vectarsandn, this two-
point function extends Ed1.9) that will be recovered in the
end of this section. In analogy to E@L.10 we will denote

the amputation of Eq4.1) by simple exercise. In any event, the lowest order graph, com-
o mon to all cases, contributes the free two-point Wightman
(2m)*8,(p+q)W(p,m:q,n) function of the spinor field, Eq.1.4).
= 7l Q¥(p,MQ"P(q, M) yt°, (4.2 A.meC, , neC_

Only the term of Eq(4.1) with o=+, 7= — contributes,
él?ere are only two external sectors: sector 1, in the right, that
IS aT~ sector, and sector 2 in the left, that iSTd sector.

where theQ’s are the currents defined in E®.32).
Consistently with Steinmann assumptions, we assume th

the QCD Lagrangian14] has been IR regulated and renor- 2. .
malized with on-shell normalization conditions. Up to orderi'tgiﬁz;lhgeggr:e_?ﬁés Ziitfnilfgefr?ﬁ; Zgg’;hsre Crzn hl?sear;g
g? the calculation is essentially abelian: the color matrices i ) ' partiti . DOVE SIX grap

hus obtained by drawing a cutting vertical line in all pos-

the two vertices contract (G (—1 for QED) and there is no ible positions. In the cut lines we convene that momentum
three-gluon vertex. To this order, therefore, one can think of P ' . .
always flows from right to left, i.e., from sector 1 to sector 2

regularizing IR divergences by giving a mas$o the photon
or gluon and UV divergences by dimensional regularizationSO that the replacement rulé&3) and(3.4) are always taken

4—4—2s >0 with the plus sign.
As a matter of fact. on going to ordgf it will be seen in All this resembles, and is nothing else but, the familiar

[33] that the mass regularization is not adequate and we Sha(ﬁutkosky-Veltman cuttlr_19 rules. It S_hOU|d be noted tha} this
use dimensional regularization44+2¢,e>0 for the IR régards only the VEV in the last line of E¢4.1). The f
[37,39 (this IR e should not be confused with the UV, yerupes contributed by the string operatqrs, not even dravyn
anyway they will never be simultaneously ugehd non- N F|g._1, are not .touched upon by Stemmann_ rgles: their
Lagrangian Pauli-Villars regularizatidd3] for UV. Details ~ denominators are instead prescribed by our definit®).

about the problems connected with the choice of the regular- !N addition, this identification of Steinmann rules with
izations are given in Sec. V. Cutkosky-Veltman rules happens only thanks to the choice

It is convenient to group the graphs contributing to theMade form andn. Different choices, as well as VEV’s W|th_
VEV in Eq. (4.1) in the following way. (1) Usual or local ~More than two external sectors, are covered only by Stein-
graphs: those with th®1 =N=0 in the above double series, Ma&nn rules. o ,
ie., the graphs contributing to the Wightman function 'n€ partitions drawn in Fig. 2—4 refer to E@.1), i.e., to
(p(X) ¥(y)). (2L) Left graphs:M>0, N=0. (2R) Right the whole(W¥), not only to the VEV in it: the vertical lines
graphsM =0, N>0, specular to the left graph@) Leftand  represent the string denominators of tHe, whereas each
right graphs: botiM>0 andN>0. This is exemplified by vertex on a vertical line—an empty circle—contributes a fac-
the six graphs in Fig. 1, that gives the graphs contributing tdor proportional to eithegm,, or gn,; there also is a four-

orderg?. dimensional integration for the loop.
The sector partitions of the above graphs depend on
whether eithem or n are chosen i€, or in the complement =

Cy of the light cone. To cover all the nine possibilities, it

+ - + |- + -
D D (©
(@
FIG. 4. The contribution t&(p,m;q,n) originated by the only
FIG. 2. The sector partitions of the “local” graph A. sector partition of graph C.
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(tL)

////////////////////7/

27
&

FIG. 5. The contribution t&W(p,m;q,n) originated by the only
sector partition of graph TL.

Concerning graph A, its partitions are given in Fig. 2.
Only the one markeda) is nonzero, the other two vanish
thanks to both mass and wave function on-shell normaliza- FIG. 6. An example of One String Reducible graph.
tion conditions.

Graph BL has the two partitions given in Fig. 3 and 6, i.e. of the graphs that can be disconnected with one only
named(bL) and ({L). There are the two specular and com- Cut in the string associated with the fietf(x;m)—one
plex conjugate partition¢bR) and ((R) from BR. Graph C  could call them one string reducible graphs.
has the only partitioric) given in Fig. 4. Graph TL too has ~ Likewise, (V,)~* operates on the one string reducible
only the partition(tL) given in Fig. 5. There also is the graphs associated with the string of the fisli{y;n). We
partition (tR) complex conjugate of the above. thus arrive to the conclusion that to ordg? only the six

We start with discussing the last graph. It is ill defined partitions (a), (bL), (bR), (c), and (L), (¢{R) survive, as
because its contribution t&/;(p,m;q,n) is proportional to  well as the counterterms coming from the expansior of

the integral ={_=~1+alw{,. For example the partitonZ() can be
’ . parametrized in the form
fd L am BLVUARAM
“m-k—i0 m-(k—k)—i0 k®=\2+i0 ' w th
that is not defined. Even in QED, where, due to absence of m m-p

color matrices, one could take fés the symmetrized form 4.4
where, in terms of the ultraviolet and infrared cutoffs

97 e Koo = 1 im, im,
va(kykg;m) =57 m-k;—i0 m-k,—i0’

4 i?

1
UV=——9ye+tIn—p, 4,
the momentum conservatiok;=—k, from the photon e JE M 45

propagator would yield the integral

A

fd ‘ 1 1 1 IR=In— (4.6)
KZTNZT70 m k=10 m-k+i0 "

(dimensional regularization and mass term for the vector me-

plagued with a pinch singularity. So one has to get rid of 't'son, respectivelyand of the functions

This is exactly the task of the factof¥")~* in Eq. (4.2), as
we now explain.

The initial observation is that, thanks to translation invari-
ance, the VEV ofV(x;m) cannot depend oRr. So it may
only be a(ill defined) constant times the identity matrix in
color space. Imagine now th_at the theory hgs been. p'rovisior*nn which m,p e C.=0<B<1 andm— p=B—0)
ally regularized by defining it on a space-time of finite vol-
ume(): translation invariance is temporarily broken and mo- 1 |1+8
mentum conservation does not hold, so that @) is now B(B)= —In‘— ,
well defined: all the graphs depend éh and tend to the 2p |1-p
expression that the above rules provide for them in the limit
Q) —o. However, before the limit is taken and up to order _ 1. ) 1+8
g2, the factor(V1 ) ~* timesWy(p) provides exactly the par- =(B)= E'—'z(ﬂH ﬁle 13 +[B8——8]
tition (tL), but with opposite sign. 4.9

Independently of any heuristic explanation, the factors
(VY=L are the instruction for the neglect of all the graphsthe calculation of the invariant functions and & gives the
including self interaction of the strings, as that given in Fig.result

m?p

 (m-p)?

2

B(m,p)=1/1 (4.7)

4.9
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1(1 and their contribution to the amputated two-point function
Y(B:UV,IR)=§ 5uv+1—E(ﬁ) (1.10 is
1-p? . _ ¢ .
+B(8)|2IR+In +1 Wa(p,m; =p,n) = 5757 Cr | dI2N(p;m,n),
(4.19
1 1 7
+(E_1) ZUV+IR+Z where from
_1n¢ W,y(p) (4.10 N(p;m,n)=(=g,,)| ¥~ (p—w) m (p—K+u)
21—¢|| Vo P . m-k
1 V—(p— ) —|, 4.1
5(8)=5B(). @10 TRk @1

the contribution of each sector partition is clearly identifi-
ble.

The following comments should helgg) The factors p

n) in the square brackets of E@4.17) are due to the
amputation.(b) The contribution of the spurious degrees of

In Eq. (4.10 the contribution of theg,,, and of the lon-
gitudinal terms of the vector meson propagator are the firsE
and the second couple of lines, respectively. Likewise, the
calculation of({R) is obtained by Eq(4.4) with the replace-

ment freedom in the gluon propagator is obtained by the replace-
o ments
({R)=—CgWy(p)[m—n]. (4.12
m 8(k?)— 8(k2—\2)— 8(k2— N2/ ¢)
Obviously, the choice of; can only modify the invariant in the two-body phase-spac¢é.15 and
function . '
The first thing to note about the above graphs is that the ~g,,— kﬂkv/)\z

coefficient of UV iny does not depend either gnor onm,
n. Therefore, this dependencas well as the dependence on in Eq. (4.17). The latter converts each of the square brackets
&) can be renormalized away. into (p—k—w) that in turn, on multiplying the factorg(

The second thing to note is that the coefficient of IR——Kk+ ), gives zero—thanks to the fermion delta function in
proportional toB[ 8(m,p)]+ B[ B(n,p)]—does depend on the two-body phase-spac&) The prescriptions+i0 in the
p: the infrared divergence cannot be eliminated by renormalstring vertex denominators have been omitted inasmuch as

ization. irrelevant to Eq(4.17): indeed,m, —n, and alsdk, thanks to
We choose Eq. (4.15), belong toC, , so that bothm-k and —n-k are
strictly positive on the two-body phase spacd) For the
z§1=gCF[—EUV—2IR+1—(E—1) same reason there is no need of IR regularization in Eg.
oo 2 € (4.10.
1 7 1 Ing Use of covariance shows that;(p,m; —p,n) can be ex-
¥| ZUV+IR4+—— = _) ] (4.13  Ppressed in terms o_f '_[hree integrals: ond’igp), Eq. (4.1_5).
4 4 21-¢ As for the others, it is convenient for later use to define
in which the finite part of; has been chosen in such a way I1(m)
that when both the limitsn—p, n— —p are taken in Egs. I(p;m)=f dfzm, (4.18

(4.4) and(4.12), respectively, one obtains
wherell(m) is a prescription:

m,—n—p

o
(LL)+((R+—Wo(p) — 0. (414 +1 if meC.
H(m)Z[ . - (4.19
We have now to discuss the sector partitigas (bL), PV it meC,
(bR), (c). They have in common the two-body phase space 4 likewise
I ):fdr II(m) I(n)
2(P 2 J(p;m,n)=f drzmm (42@
=J d*k8(ko) 8(k?) 8(po—ko) S((p—K)?— u?) The results of the calculations, for anyandn, are
7 0po)0(p? 2(1 Mz) (419 (P = Talp) = P B(a(mp), 423
_r - -2 . ,m)= o Sy e m,p)), (4.
2 (Po) (P~ — u%) P2 p 2(p p?— 2 [p-m| B(m,p
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2 3
IPim M) =T2(P) 7z o BB(MI)

p
(4.22 > e o |

with B given by Eq.(4.9). s

Only one observation is relevant about the above inte- FIG. 7. The sector partitiondabeled by ¥ of graph BL that
grals, namely that the limitea— —n, m—p, n— —p exist, occurs.wr;erm is spacelike.
commute with one another and commute with the phase-
space integration to give

setting p?<0 gives zero, due to the support properties of
5 these factors, and the limits, —n—p are quite safe.
I(p:D)=T (4.23 We feel, however, that in order to check the abovemen-
(p;pP) 2P) =, . ) . ; -
p tioned consistency, the exposing of the results of the explicit
calculation is more convincing. Also because, should one be
J0 M —m = (0D —0) =T interested in the perturbative theory of the fields witkt p,
(pim, =m)=J(p;p, = p)=T2(p) (p?—p?)? there arise some difficulties connected with renormalizability
(4.24  that are better explicitly inspected. This is dealt with in the
next subsections.

As long as the contribution of sector partitiote, (bL),
(bR) and(c) is infrared finite, the lesson to be learned from B. meCy, neC_
adding this to the contribution of partitiongl() and ({R) ) , o
[given by Eqs.(4.4), (4.12)] is that the perturbative theory _ 'N€re is again the contribution of local graphs, namely,
for the field ¥(x:m), meC, , and its Dirac conjugate is those_contnbutmg to the ordinary Wightman function
plagued with the same IR pathology as for the gauge deped#(X)#(y)). i-e., graph A of Fig. 1. This is expected to be
dent#(x). Should one stop here, nothing would have beerthe same as in the previous section, as independent of the
gained. string vectorsm andn. Indeed, as commented after the last
The 0n|y way to get rid of the IR di\/ergence gi\/en by Steinmann rule in Sec. lll, we have the freedom to assign a
sector partitions {L) and (¢R) is to take both the limitsn ~ time-ordering label to each field, being sure that the final
—p andn— —p. In this case, due to the last two formulas, result does not depend on the assignment. We choose to

the contribution of sector partition®), (bL), (bR), (c) sim-  write ((xX)(y))=(T [¢(X)]T [4(y)]), that takes us

plifies to back to the case discussed in the previous section: only sec-
tor partition (a) of Fig. 2 gives a nonvanishing contribution.
1+e Let us now discuss the sector partitions of graph BL of
w1 (P)=CrO(Po) 9(1_9)(1_9)( p 2 M) Fig. 1. Now the three external vertices must be given sector

(4.25 numbers as in Fig. 7 and the numisecan be given values
1=<s=<3. So in principle there are five inequivalent parti-
where tions. The two partitions in whick is noninteger have three
i on-shell lines joining in the same vertex, so their contribu-
o= Ips, (426 tion is zero. There remain the three sector partition labeled
by s=1,2,3.
whence, on reinserting the external propagators omitted fory-l—he first—s=1—is again(bL) in Fig. 3, so its contribu-
the amputation, taking into account E@.14 and setting iop, is easily recovered from Eqet.16 and(4.17), provided
Cr=1, one obtains th&\y(p) appearing in Eq(l.3 and ihe integral (4.18 is taken, according to Eqg4.1) and
given by Egs(1.5), (1.6). This is the piece of evidence that (5 17 with the PV prescription. In fact, in this case the
we can give in this paper, working to ordgf, about the  janominatorm.k is no longer positive on the two-body
existence—and, to some extent, the necessity—of taking thﬁhase space. The result is still given (@y21).
limit (2.39), d|scuszsed2|n_ Sec. Il. The extension of E4.29 It is now convenient to consider the sector partitions of
to the region &<p“< . is legitimate and trivial. , graph C in Fig. 1, postponing to later the sector partitions of
_Also the extension of Eq(4.29 to the regionp®<0 is  Fig 7 |apeled bys=2, 3. The sector numbers can only be
trivial—it also gives zero. But in this case there is a problemyggigned as in Fig. 8. Therefore this is again partitirof
of consistency between this extension, on the one side, anglg "4 easily recovered from Eq&.16 and (4.17), pro-

the Steinmann rules and the limits —n—p on the other \;qeq that in the integral4.20 the m-k denominator is PV
side. In this region infact the taking of the limits requires that

m and/orn be spacelike from the outset and this, in turn, 3 e |
changes the sector partitions contributingwtg. It is how-
ever plausible to expect that the naive extrapolation of Eq.
(4.25 to p?<0 is correct: indeed all the sector partitions, )’ @ - o 1
even when calculated with the Steinmann rules suitedrfor

and/orn spacelike, should display eitheda(p) or aWy(p) FIG. 8. The sector partition of graph C that occurs wineiis
factor, as encountered in the present section. If really scspacelike.
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prescribed. Again the result is provided by Bg.22. Fi-  (zL)— aCr/7Wy(p) X[UV/2+last two terms of Eq.

nally, the only sector partition of the one string reducible (4.28)], so that a suitable choice ¢f, to orderg? removes

graph TL in Fig. 1(sector numbers 1 to 4 clockwise from the divergence. Unfortunately, the choizg=0 spoils Lor-

right vertex is again disposed of, thanks Wg)‘l instruc-  entz invariance and we will not stick to it.

tion in Eq. (4.2). To summarize: the perturbative theory involving a
Going back to the other two sector partitioss 2,3 of  charged field, dressed with a string in spacelike direction, is

Fig. 7, they both have W, (p) factor(the fermion line in the  nonrenormalizable—at least at finite orders—due to rihe

right) and so take the place ofl() of the previous section. string. There survive, in addition, IR divergences carried by
The contribution of these partitions is parametrized, inboth them andn strings.

analogy with Eq.(4.4), by

C. me(y, nely

(2L)=—Cr c(B(M,P);UV,IR)

The discussion of local graphs as well as of the sector
thu partitions with only one string verte)Figs. 2, 7 and its ana-
+d(,8(m,p);UV)—}Wo(p), (4.27  logue giving rise to a partitiotbR) and to a contribution
m-p (zR) obtained by Eq(4.27), with a replacement analogue to
Eq. (4.12] presents no novelty with respect to the preceding
subsection. The only novel feature is given by graph C of
Fig. 1, where the only partition is given by assigning sector
numbers from 1 to 4 with clockwise movement, starting
from the top right vertex. This is again recovered from Eqgs.
1 3 1 (4.16 and(4.17), provided the integral4.20 is now taken
§+ gﬁ*2+ g(l_ﬂz)B(ﬁ)) with both m and n spacelike, i.e., with both denominators
prescribed by PV. The result is once more E522). In this
5— 2 2B872-1 case also, thanks to thieL) and(zR) contributions, there are
16 Y(B)+ TB(,B) UV as well IR divergences due to each string. Choosing both
my=ny=0 in the rest frame would eliminate the two prob-
lems.
—zP - Z(E_l>(UV_ZIR+ 1) However, once more we refrain from breaking Lorentz
symmetry, also because there is another way out of this em-
1 passe. This is provided exactly by the double limit —n
4—§In £, (4.28 . p. The latter has to be effected first by draggimin Cy:
this makes the whole two-point function vanish, due to the
3 1 support of thes(p?— x?) in the (zL) and(zR) contributions,
d(B;uUV)= UV( — g,B*Z— g,(l—BZ)B(,B)) and to the support of thE,(p) two-body phase space in all
the other ones. At this point taking the limit is safe and gives
1 1 1-872 zero, in agreement with the naive extrapolation of @25
ZB’Z— 7B(B) - —5—Y(B), discussed in the end of Sec. IV A.

where, the invariant functions and d depend orm and p
through the variablgg(m,p) [defined in Eq(4.7) and now,
with me Cy, satisfyingB>1] and on the cutoff¢4.5), (4.6):
the result of the calculation gives

c(B;UV,IR)=UV

+IRB(B)+

+

+

(4.29 V. OUTLOOK OF FOURTH ORDER CALCULATIONS

in which, we remind the readeB(8) is given by Eq.(4.9) The calculations of Sec. IV should make it evident that
and the only two-point function free from both UV and IR prob-
lems is that relative to the fiel@.36): they provide evidence
Y(8)= iln21+'8+ lLi2(1+B for the necessity, rather than the possibility, of taking the
28 2B B 2B

+[B——Al. limit n—p, whose meaning and implications we have dis-
(4.30 cussed in the final part of Sec. Il.
It is also clear that, in order to obtain the res#t25),
Comparison of the above formulas with the correspondinggommuting the limitn—p with the loop integration makes
Egs.(4.10, (4.11) shows that—contrary té—the invariant the calculation by far simpler and that, consistently, only the
functiond does depend on UV: this means that no choice ofdiagrammatic rules of Sec. IV A have to be used in order to
the renormalization constag introduced in Eq(3.1) [and  get a nonvanishing two-point function. Exactly in this way,
giving rise to counterterms proportional Wqy(p), not to  we have performed the two-loop calculation ¥f,, Eq.
hWy(p)] can cure the divergence. In addition there also arg1.3), in QED. This receives contribution from 12 graphs for
the coefficients of UV and IR irt that both depend op  a total of 19 nonvanishing partitions, 10 of which involve
throughp. As for the IR divergence associated with a spacetwo-body phase-space, the other 9 involve three-body phase-
like string, the result is not ne\26]. space. The graphs with only one external fermion line on
There is a way out of this problem: choosimg=0 inthe  shell—as the partitions{() or ({R) of Sec. IV A—have not
rest frame, in which onlypg=w#0. In this case in fact been included in the counting, because, much as in the case
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of Eq. (4.14), they can be renormalized away with a suitable Furthermore, we have found that the Grammer-Yennie
choice of the fourth order contributiafy to the renormaliza- [44] method of control of IR divergences can be extended, in
tion constant.. . a straightforward way, to the graphs that include the eikonal
Several graphs exhibit an IR divergences proportional testring vertices. This results in a diagrammatic pré@aof ana-

In\. In this QED calculation, the photon mass regularizationlogue to that of Ref[45]) of a complete cancellation be-
has been adopted, for it is well known not to interfere withtween the IR divergences coming from the three-body cut
either BRST symmetry or unitarity. Indeed, we have a dia-graphs and the two-body cut graphs.

grammatic(i.e., without the need of analytic calculations What is left is the explicit result of the calculation that we
proof of the decoupling of unphysical degrees of freedom, irreport below to give concreteness to what we have said, al-

the form of gauge-fixing parameter independence though in its full form it is not illuminating. Fop?<9u?
(i.e., omitting graphs involving closed fermion loops, that are
£ i Wo=0 (5.1) irrelevant for the near-mass-shell asymptotibe two struc-
9E 2 ' ture functions, defined by E@1.5) with i =2, are given by

—39-820 +3702 3 S S
azzg( 0+370) | ¢ IN(1—VI-@)n(1+1I-0)+ —o ¢

In
16(1-90) 2(1-p0) 2yl-¢ 1-V1-p
0(3—31p+20%2—203+20% 0(—2+50—-502+303— %+ (—7—-20—0%+20%Inp)
+ Ino+ In(1-0)
8(1-0)° 4(1-0)*
0%(—1+20) o(—5-60+30%)
——In? Lio(0)—Liy(1)], 5.2
e et sz LHa@) L) (52
e(5+0)(—-9+20) @7 0 1+yl-p
b,= - In(1—V1-9)In(1++1—-p)— In
2 8(1-0) 2(1-g) ™ e)in( e) 2y1-¢0 1-\1-¢
0(—2-130+60°~50°%+0*) e® ., e(80-70°+50%- 0"+ (-13+40+0?)Ing)
+ Inp— In“o+
4(1-0)? 8(1-0) 4(1-0)?
0(—13+2p+30%) _
XIn(1l—p)+ Li —Liy(1 5.3
(1-90) A(1—o) [Liz(@)—Lix(1)] (5.3
|
whose asymptotic form foo=pu?/p>—1 is Eq. (1.7). It In writing Eq. (1.8), we have recalculated the Abelian part

should be also noted that in the ultraviolet regipfe-+c,  (proportional toC2) with the new IR and UV regulariza-
i.e., for —0, a, and b, vanish respectively as (Iif)/p*>  tions, with the expected result that the cancellation of IR
and 1p?. So, when dispersed i, they need no subtraction. divergences holds also in the new scheme. These detalils,
Conceming the QCD COUnterpart of the above CalCUlationhowever, will be part of a forthcoming paper g|V|ng the de-
stated in Eq(1.8) of Sec. |, apart from the contribution of t4jls of the above described two-loop calculat[@3].
the non-planar QED graptithose where the color matrices  concerning instead the non-Abelian part, we can say, re-
occur in the sequencBt’t*t’=Cg—3CACE), there are 15 erring to the factord appearing in Eq(1.8), that2 comes
more graphs giving rise to 23 partitions, 8 of them involving from the sum of all the graphs that include gluon self-energy
two-body phase-space, the other 15 the three-body phasgrections; a further 1 comes from ti@,Cr part of the

space. non-planar Abelian graphs. For the other grapklose sec-

A due remark concerns the IR regularization: giving or partitions are, in some cases, IR divergent even && 1/

mass o the gluon, even according to Ref2], preserves not just as 1¢) there is a complete cancellation between the
BRST symmetry, but only formally preserves unitarity in the N
y y y yp y two-body cut and the three-body cut contributions to each of

limit A—0. As a matter of fact we have verified that, in this
limit, the RHS of Eq.(5.1) does not vanish. We have there- them.

fore abandoned this regularization adopting dimensional

regularization for the IF{37_,38] and changed dimensional VI. CONCLUSIONS

regularization for the UV with non-Lagrangian Pauli-Villars

[43]. With these regularizations, E¢p.1) indeed holds also We have shown how to construct BRST invariant com-
in the non-Abelian case. posite fermion fields that carry the global quantum numbers
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of the electron and of the quark in QED and QCD. The Other problems pertain instead a study of correlation
construction consists in dressing the ordinary Dirac fieldfunctions with more than two points: The verification that
with a rectilinear string whose space-time direction is charsuch fields do indeed carry the expected global charges, e.g.,
acterized by a four-vector that, provisionally, breaks the Lorthat they satisfy in PT at least the weak commutation rela-
entz covariance properties of the field. In perturbation theoryions

the string generates new graphs characterized by the occur-

rence of eikonal vertices. These new vertices require pre- Y _ ~

scriptions(either =i0 or PV) whose choice is uniquely dic- (e0ILQ.e(y)N)=(eM)ely)),

tated by the Dirac conjugation properties of the field.

Furthermore, after going in momentum representation, th&tc., whereQ=[d3x:yry,y:(x) is the electric chargéand
four-vector characterizing the string must be chosen proporthe analogue in QCD

tional to the four-momentum of the field. This choid@) A comparison of the present approach with the well es-
restores Lorentz(ii) averts some IR as well as some non- tablished results of QED such as those about inclusive cross
renormalizable UV divergences. The second point indicate§ection or the electrog—2 and, in general, the impact of
that, as a matter of fact, there is little choice. The wholethis construction on the matrix [although we expect to
construction survives the check of a fourth order calculatiofecover no more than the usual IR diverg&hmatrix of

of the two-point function in PT, performed both in QED and point (iv); in the Introduction, because also the Steinmann
QCD. scheme for perturbation theory relies on splitting the Hamil-

If these fields are to survive further and more stringenttonian according tad =Hg+V].
verifications, one can conclude that global charges associated For QCD, the proof of the scenario we have hinted at in
to a Gauss law imply, for the fields carrying such chargesSec. |, namely, that amplitudes involving gauge invariant
delocalization properties considerably more involved tharfolored fields either vanish or disconnect into the product of
the single one-dimensional string in three-space, somewhétee two-point functions relative to colored fields times an
popular in the literature: since the string is rectilinear in four-amplitude that only involves color singlet fields. These prob-
momentum space, in coordinate representation the fieldéms are already under our investigation and we will report
rather appear spread out all over Minkowski space, exhibitabout them in the near future.
ing a kind of candy-sugar structure.

The construction gives—as an extra bonus—different re-
sults for the IR asymptotic dynamics of QED and QCD re-
spectively. In particular, it hints at a mechanism of confine- The authors are greatly indebted to Dr. M. Mintchev, Dr.
ment according to which the quark so constructed seems t8. Morchio and Dr. D. McMullan for extensive discussions
behave as a free field at any momentum scale. on these topics. Dr. Mintchev is also acknowledged for hav-

The construction presented raises several problems; birng carefully and thoroughly read the manuscript. E.d’'E. is
the algorithm we have given in this paper also provides therateful to Dr. B.R. Webber and Professor J.B. Griffiths for
possibility to face them. Among others, a few of them still the warm hospitality at the Cavendish Laboratory, University
involve two-point functions: Extending to any order in PT of Cambridge(GB), and at the Department of Mathematical
the above results about;) IR cancellation in QED andii) Sciences, Loughborough UniversityGB) respectively,

IR noncancellation and factorization in QCD and the verifi-where a great part of this work was done. S.M. also wishes to
cation that any gauge invariant colored field, first of all thethank Professor J.B. Griffiths for the encouragement and pa-
gluon, has the same behavior as the quark. tient support during the preparation of this work.
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