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Infrared asymptotic dynamics of gauge invariant charged fields: QED versus QCD
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The freedom one has in constructing locally gauge invariant charged fields in gauge theories is analyzed in
full detail and exploited to construct, in QED, an electron field whose two-point functionW(p), up to the
fourth order in the coupling constant, is normalized with on-shell normalization conditions and is, nonetheless,
infrared finite; as a consequence the radiative corrections vanish on the mass shellp25m2 and the free field
singularity is dominant, although, in contrast with quantum field theories with mass gap, the eigenvaluem2 of
the mass operator is not isolated. The same construction, carried out for the quark in QCD, is not sufficient for
cancellation of infrared divergences to take place in the fourth order. The latter divergences, however, satisfy
a simple factorization equation. We speculate on the scenario that could be drawn about infrared asymptotic
dynamics of QCD, should this factorization equation be true in any order of perturbation theory.

PACS number~s!: 11.15.Bt, 12.38.Bx
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I. INTRODUCTION AND MAIN RESULTS

In ordinary quantum field theory~QFT! with a mass gap
the notion of a particle is recovered from that of an intera
ing local field as a consequence of infrared~IR! asymptotic
dynamics: a near-mass-shell pole singularity in each of
momenta incoming any Green function~guaranteed in La-
grangian QFT’s by the possibility of imposing on-shell no
malization conditions on both mass and wave function ren
malizations! ensures the existence of the Lehman
Symanzik-Zimmermann~LSZ! asymptotic limit of the field
@1#. One is thus provided with an ordinary free Fock field,
means of which an irreducible Wigner-type representation
the Poincare´ group, sitting on an isolated mass hyperbolo
is in turn constructed. In this context the fact that the field
particle may or may not carry quantum numbers associa
with some unbroken global internal symmetry is irrelevan

In gauge theories~we will always have in mind QED and
QCD in continuum Minkowski four-dimensional space-tim
with unbroken electric and color charges! things go in a dif-
ferent way. Indeed, the issue is one about which, as yet, t
is no general consensus.

On the one side QED—with the exception of its ze
charge sector—still is only a theory of inclusive cross s
tions, in which all the theoretical setup of quantum mech
ics ~states, observables, representation of symmetries,
the like! has no satisfactoryexplicit representation, in spite
of the general model-independent investigations@2,3# that
have delimitated, so to speak, a possible battlefield: the b
is not yet won and one could, in a provocative way, summ
rize the situation by saying that the question: ‘‘what is
electron in QED’’ is still open.

On the other side there is, in QCD, the problem of co
finement of colored gluons and quarks, about which ther
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even less to say. Many mechanisms and criteria have b
proposed over the years: some~as, e.g., the Wilson loop are
behavior@4#, or the fundamental role of topology leading
the dual Meissner effect@5#! are so suggestive that have b
come common language; others@the 1/(k2)2 IR behavior of
the full gluon propagator@6–9#, the quartet mechanism@10#
and the metric confinement@11# both based on the existenc
of LSZ asymptotic limits for color fields, violation o
asymptotic completeness@12#, the obstruction in the IR
dressing due to Gribov ambiguities@13#, and so many others
that it would be impossible—and nonsensical—to qu
them all here# do not share the same popularity, but time a
again are reconsidered and revived. However, so far non
these criteria has led to a systematic and generally acce
description of what confinement is.

Prudentially we regard confinement as a delicate, mu
faceted subject one can look at from different standpoin
We try here just to offer a further standpoint, not necessa
in conflict with others, but endowed with the possibility of
sound mathematical verification based on the only input
implementing in QCD the symmetries that we believe r
evant: local gauge invariance and Poincare´.

It is convenient to state the terms of the problem of t
particle content of charged sectors in gauge theories wi
the framework of the Lagrangian approach. We shall a
assume that all the fields entering the Lagrangian are lo
fields. These will be referred to as the basic fields of
model. Reference@14# gives in detail the local covariant for
mulation of the theory we shall rely on in the sequel.
particular the adjective ‘‘physical’’ will be referred to th
fields that commute with—or to states that are annihila
by—the Becchi-Rouet-Stora-Tyutin generator~the choice of
the local covariant formulation deserves a further comme
the fact that manifest covariance is necessary to implem
the renormalization procedure may be regarded upon a
technical complication; to our knowledge, however, a pro
of renormalizability is given only in this context@15#: that is
why we stick to it!.
©2000 The American Physical Society10-1
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In this framework it is convenient to distinguish fou
steps, all relevant in designing the relationship between fi
and particle. We will try to keep these steps as nonover
ping as possible:

~i! form of physical~composite! charged fields,
~ii ! IR asymptotic dynamics,
~iii ! existence of asymptotic limits and on-shell partic

states,
~iv!1 S matrix.
In this paper we will be mainly concerned with only~i!

and ~ii !. It should be clear, however, that the study of the
points is relevant notper se, but only in the perspective o
either going through the entire program~as possible for
QED! or spotting where the chain breaks down, as one
pects to happen in the case of QCD. The following disc
sion should help clarifying why only~i! and ~ii ! need to be
considered.

In the case of QFT with mass gap~i! is simply non-
necessary: the LSZ program, consisting of~ii !, ~iii !, and
~iv!1, is fully exhaustive. In particular~iii ! provides free
fields whose two-point function is the usual one with
isolated pole atp25m2. A Hilbert space is reconstructe
from this two-point function via the well known Fock pro
cedure and the scattering matrixSLSZ , provided by step~iv!1,
is regarded upon as a unitary operator that maps the F
space onto itself. The historical alternative to this program
provided by the use of the interaction picture: this skips po
~ii !, assumes the existence of on-shell states, i.e.~iii !, and the
outcome is Dyson’s scattering matrixSD . In comparing the
two strategies one ends up withSLSZ5SD , but, from a con-
ceptual point of view, there is, in our opinion, no point abo
the superiority of the LSZ scheme: deriving the scatter
matrix from a set of off-shellT-ordered correlations func
tions brings the model closer to the rails provided by Wig
man reconstruction theorem, and, in turn, helps to have
explicit representation of all the theoretical set up of qu
tum mechanics.

In the case of QED, barring the problem of deriving t
scattering matrix from a set of gauge invariant correlat
functions@this is precisely one of the problems~i! aims at#, it
has been clear from the very outset thatSD is plagued with
IR divergences and efforts have been made to overcome
drawback: the Block-Nordsieck prescription for inclusi
cross sections@16#, culminated in the Yennie-Frautsch
Suura paper@17# is well known.

It is important to mention that Zwanziger@18# has shown
the possibility of replacing the logarithms of the ‘‘vanishin
photon mass’’ with the logarithms of an arbitrary finite ma
~thus averting the infrared catastrophe! and that the depen
dence on this unphysical parameter drops out in the com
tation of the Block-Nordsieck cross sections. So, by t
way, one is left with a technically defendable~i.e., IR finite!
S matrix, although the impossibility of comparing the ass
ciated probability transitions with experimental data mak
its utility rather doubtful.

There has been instead another direction pioneered
Chung’ work @19#: this has been the first attempt to impl
ment the Block-Nordsiek prescription by re-defining t
asymptotic on-shell states in such a way to get rid of
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divergences at the level of the scattering matrix: i.e., it h
been the first attempt to propose an alternative to the las
the above steps:

(iv) 2 improvedS matrix.
The work of Kulish and Faddeev@20# represents, to our

knowledge, the most refined version of how to effect th
step. But, for it too, the assumption of a Fock space of o
shell particle states is the starting point and it must, the
fore, be regarded as a refinement of the Dyson interac
picture approach. The main points of this work can be su
marized as follows. First the origin of IR divergences is ide
tified in the splitting of the total Hamiltonian in the free an
interaction part,H5H01V, showing that the time evolution
factor associated toV is not well defined in perturbation
theory; it is then argued that a different splittingH5H0
1Vas1(V2Vas)5Has1(V2Vas), operated on the basis o
physical intuition, gives rise to a consistent asymptotic w
defined time evolution operatorWas(t) associated toHas. It
is then shown that the asymptotic states obtained eithe
Has5W†(t)HFock for t→2`, or equivalently as Has
5W(t)HFock for t→1`, are suitable in and out states giv
ing rise to a IR finiteS matrix and that the associated tran
sition probabilities exactly concide with those of Block an
Nordsiek. It is correctly emphasized that the price for th
achievement is to realize that the operatorsW†(2`) and
W(1`) must be thought as defined on a space larger t
HFock and that the space of generalized coherent asympt
statesHas is not included inHFock. In connection with this,
the authors also explicitly mention that, from the point
view of representing Poincare´ group, the physical subspac
of Has does not contain discrete irreducible terms with no
vanishing mass.

So the reason why we investigate~i! in QED is to provide
a set of gauge invariant and Poincare` covariant correlation
functions whose IR asymptotic dynamics should provi
positive evidence in favor of point~iii !. There remains the
fact that, even succeeding in giving such evidence, the p
sible outcomes are either Zwanziger’s (S matrix perfectly
defined, but depending on an unphysical mass paramete! or
Kulish-Faddeev’s~the ‘‘softness’’ of undetected photons as
sociated to Block-Nordsieck inclusive cross sections ent
the definition of charged particle states, thus compromis
the representability of Lorentz boosts!.

For QCD there exists no analogue to our knowledge,
the Kulish-Faddeev work. We like to think that one reas
for this is the implausibility of assuming on-shell quark an
gluon states, even in the sense of~iii !. We will indeed shortly
offer evidence that the above chain breaks down exactly
going from ~ii ! to ~iii ! and the problem of defining the sca
tering matrix on color states, according to either~iv!1 or
~iv!2, becomes ill posed. This concludes the discussion ab
the possibility of restricting our investigations to only~i! and
~ii !.

Going into more detail for~i!, it is well known that physi-
cal fields that are localized functions of the basic fields tra
form trivially ~i.e., have zero charge! under any charge op-
erator associated to a current obeying a Gauss law:j n
5]mFmn . Indeed, in intuitive terms, thanks to the latter, th
action of the charge on any fieldF takes the form

dF5 lim
R→`

F E
SR

dSiF0i ,FG , ~1.1!
0-2
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INFRARED ASYMPTOTIC DYNAMICS OF GAUGE . . . PHYSICAL REVIEW D 61 045010
whereSR is the surface of the sphere of radiusR in three-
space. Therefore, ifF is ~or the fields in terms of which it is
constructed are! smeared with functions of compact suppo
thanks to locality,dF vanishes forR large enough. To avoid
this the field F must have at least a ‘‘tail’’ through the
sphere at infinity in Minkowski space~whether only in
spacelike or even in timelike directions is a subject to
taken up in the next section!. In this sense, as long as one
interested in physical nontrivially charged fields, only non
calized functions of the basic fields ought to be consider
Since the above statement has been given the status
theorem@21#, there is little to add and there is general agre
ment about it.

The theorem gives no hint, however, about the expl
form of such fields. According to the terminology also r
cently used in Ref.@13#, such nonlocalized functions will be
shortly referred to as ‘‘dressed’’ fields: a physical,interact-
ing ~i.e., Heisenberg! electron field should be dressed with
cloud of photons, as well as with its own Coulomb field.

Dirac @22# was the first to show, in an explicit way, ho
the dressing could be done in order to endow an elec
with its own Coulomb field. His aim was a quantization
QED that would involve only those degrees of freedom t
actually contribute to the dynamic evolution of the syste
In retrospective, it does not sound as a surprise that he g
up the manifest covariance properties of the physical fie
under Lorentz transformations: it was well known, after t
Gupta-Bleuler formulation, that, even when restricting to
zero charge sector, such manifestly covariant formulati
do involve indefinite metric, i.e., extra degrees of freed
irrelevant to the dynamic evolution.

After Dirac other authors have investigated different wa
of dressing the basic fields, with different motivations a
with different aims. The list given by Refs.@23–32# only
gives some references that are closer in spirit to the pre
article and, in any event, has no pretension to completen
Reference@13# provides a much more comprehensive bib
ography, whereas Ref.@32# provides its updating.

On the same footing as Dirac, covariance is given up a
in the model investigations of Steinmann@26#, who has the
same aim as Dirac, and of Ref.@13# and other works by the
same group, who instead think of the dressed fields as c
posite operators within the usual formulation of the gau
theory.

The nonimplementability of Lorentz boosts in the charg
sectors of QED is indeed, after the model independent inv
tigations of Refs.@2,3#, taken for granted to the point tha
once the symmetry is broken by hand from the very beg
ning of the construction, no attempt is made to restore it

We understand that this breaking of Lorentz symme
put in by hand in model investigations is different from t
breaking claimed in Refs.@2,3#. The latter refers to the im
possibility of having a unitary representation of Loren
boosts onHas, the space of asymptotic generalized coher
states, i.e., it is a statement that finds its collocation wit
~iv!2. In this context it is far from being clear whether Lo
entz symmetry must be given up right away from step~i!.
One of us and his coworkers@25,28# have endorsed the state
ment that it should be possible to go from~i! to ~iii ! without
04501
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the need of breaking Lorentz symmetry. It has also be
argued in Ref.@25# that, for QED, one expects to recover th
usual IR divergent~or alternatively, Zwanziger’s@18#! Sma-
trix, so that the undertaking of the Kulish-Faddeev progr
remains, if attractive, necessary. In the present paper,
stead, we will continue in making the effort of enforcin
Lorentz symmetry from~i! down to~iii !, because in this way
the comparison between QED and QCD turns out to be m
more suggestive. We admit, our results only concern so
two-point functions and are, for now, incomplete. It is tru
on the other hand, that the results of the present and
following papers@33# open the possibility of performing sys
tematic model calculations that could help putting this co
parison on a sounder basis: this is one of the several q
tions to be discussed in the conclusions.

Among the references we have cited, the work by Ste
mann deserves a special mention, for not only it has b
close in spirit to ours along the years, but it has been c
stantly inspiring. We feel it is not by chance that another p
of Steinmann’s and collaborator’s work, not immediate
connected with the problems specific to gauge theories
invaluable to the approach presented here. Indeed, it t
out that the usual Dyson expansion formula for the calcu
tions of vacuum expectation values~VEV! of the type
^T(•••)& is not sufficient for our purposes. The compos
fields we will introduce, will themselves beT6-ordered for-
mal power series. So the calculation of their correlation fu
tions will demand the ability at computing—in perturbatio
theory~PT!—both Wightman functions and, more in gener
multi-time-ordered VEV’s of the typêT6(•••)•••T6(••
•)&. References@34–36# exactly provide the algorithm for
doing all this.

Our attitude in the present paper is that we do not wan
make anya priori assumption about IR asymptotic dynam
ics, with the exception of enforcing symmetries: local gau
translations and Lorentz in particular. IR asymptotic dyna
ics should, hopefully, emerge by itself, i.e., only by our ab
ity at calculating the near-mass-shell behavior of correlat
functions, once a particular gauge invariant charged field
been selected within the framework of step~i! above. In
other words the main point is that~i! leaves a remarkable
freedom and evidently any choice made in selecting the fo
of physical charged fields may, and indeed does, affect
outcomes of~ii !. Our work will, as a consequence, consist
exploiting all the freedom~i! leaves to see whether ther
exists a field with a near-mass-shell behavior mild enough
enable one to face point~iii ! and eventually~iv!. In the case
the motivations about the necessity of having fields with
mild near-mass-shell behavior should be recapitulated
more intuitive and physical terms, we have found the disc
sion given in Ref.@30# about QED particularly sound.

So, in order to directly compare QED and QCD, we w
construct ‘‘dressed electron’’e(x) and ‘‘quark’’ q(x) fields
~we could also construct the ‘‘gluon’’@28#, but the investi-
gation of its behavior in higher orders is better postponed
future work, for a comparison with its QED analogue wou
be less stringent: the photon has no charge! whose two-point
functions up the fourth order in the coupling constant—t
simplest place where a difference between QED and Q
0-3
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E. d’EMILIO AND S. MICCICHÈ PHYSICAL REVIEW D 61 045010
may emerge—have the following properties:~1! they are in-
dependent of the gauge-fixing parameter,~2! ultraviolet di-
vergences brought about by the compositeness of the d
ing are cured by a single renormalization constant introdu
in the definition, and~3! on-shell normalization condition
can be imposed, in the IR regularized theory, on the sin
IR divergent graphs with two different outcomes.

~3a! In QED a complete cancellation of IR divergenc
takes place, and the two-point function is given by

W~p!5E d4xeip•(x2y)^e~x!ē~y!&, ~1.2!

W~p!5W0~p!1
a

p
W11S a

p D 2

W21•••, ~1.3!

where

W0~p!5~p”1m!~2p!u~p0!d~p22m2! ~1.4!

is the Wightman function of the free spinor field, whereas
higher order terms, described by the two invariant functio
ai(p2/m2) andbi(p2/m2), i>1:

Wi~p!5u~p0!u~p22m2!
1

m2 ~aip”1bim! ~1.5!

are given, to the first order, by

a15
m2

2p2 S 12
m2

p2 D , b150, ~1.6!

and, to the second order~whose full form is given in Sec. V!
have the near-mass-shell asymptotic form

a2.
5

9
r1

1

6
r2 ln r2

7

4
r21•••,

~1.7!

b2.2
7

36
r2

1

6
r2 ln r1

5

24
r21•••,

with r5p2/m221→0.
~3b! In QCD, assuming dimensional regularization for

divergences—i.e.,D54→412e @37,38#—the latter do not
cancel, but obey the factorization equation

e
]

]e
w2~p,e!51S 1

2e D 11

6
CAw1~p,e!, ~1.8!

wherew5((a/p)nwn is defined by the amputation of th
interacting part

Wi j ~p,e!5E d4xeip•(x2y)^qi~x!q̄ j~y!&, ~1.9!

Wi j ~p,e!5d i j W0~p!1
i

p”2m1 i0
d i j w~p,e!

2 i

p”2m2 i0
.

~1.10!
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The first evident comment about the above results is that
game, played twice with the same rules, gives two qual
tively different results. It is sufficient,per se, to state that the
IR asymptotic dynamics of the two models is different~this
was expected!, even in perturbation theory~possibly, this is a
less widespread belief!.

Concerning Eq.~1.3!, although the result is that the sin
gularity of the free field theory is not altered by the radiati
corrections that vanish on the mass shell, it is true that
mass hyperboloidp25m2 is not isolated as in the mass ga
case. This result, expected on the basis of simple phys
intuition, does not seem, on the one hand, to invalidate
possibility of effecting the Fock construction. On the oth
hand a careful comparison with the observations made
Ref. @39# ~where it has been pointed out that, in the case
gauge theories, the particle content might be recovered a
cost of abandoning Wigner notion of an irreducible repres
tation of Poincare´ group sitting on an isolated mass hype
boloid! would certainly be instructive. The investigation o
this point pertains however the step~iii ! above, so we will
not pursue it in this article.

Concerning the second result~1.8!, we find it intriguing
for two reasons. The first is that it is simple—we mean t
factorization. The second is the occurrence of the celebra
11
6 CA factor,with the plus sign.

We cannot therefore resist the temptation of comment
on the consequences~1.8! would have, were it true in any
order of PT. In the latter case its integration would yield

w~p,e!5e2(a/p)D(e)w~p! →
e→01

0, ~1.11!

D~e!5
11

6
CA

1

2e
, ~1.12!

with w(p) IR finite. This hints at a different scenario, i
which the Heisenberg ‘‘quark’’ field,as a result of IR
asymptotic dynamics, is a free field not asymptotically, but a
any momentump.

It may be useful to recall the example of the Fadde
Popov ~FP! ghost in QED: in that case the field is free b
construction and there is a factorization of correlation fun
tions involving the ghost into a bunch of free ghost tw
point-functions times a connected correlation function o
involving fields with zero ghost number. Could one say th
the ghost number is confined?

In QCD, even if Eq.~1.11! were true, one could not im
mediately conclude, as in the case of local fields@40# ~we
remind that dressed fields do not share the locality proper!,
that theqi(x) is a free field. Nonetheless a working hypot
esis could be to check whether, as a consequence o
asymptotic dynamics, the factorization of quark and glu
free two-point functions, out of connected correlation fun
tions only involving color singlets, does indeed take place
all this happens the quark field may exist only as a free fie
the problem of theS matrix would regard~as has long since
been the case in practice! only color singlets.

Of course, it is not necessary for the above scenario
take really place that the functionD(e) preserves, on possi
bly going from Eq.~1.8! to an exact result, the specific form
0-4
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INFRARED ASYMPTOTIC DYNAMICS OF GAUGE . . . PHYSICAL REVIEW D 61 045010
given by Eq.~1.12! suggested by our fourth order calcul
tion. It might dress up even as a full series ina, provided
that D→1` for e→01 carried on holding.

We are aware that, on extrapolating our result~1.8! to Eq.
~1.11!, we have raised more questions~all orders, gluon, IR
asymptotics of many-point functions! than we will answer in
this article. But, in the framework we will set up, these que
tions do not seem to us prohibitively out of the range
traditional and well established tools of QFT.

The paper is organized as follows. In Sec. II the freed
one has in dressing the basic fields is analyzed in detai
the level of classical fields. Section III sets the stage for
calculation of quantum correlation functions: it is argued t
an algorithm for computing VEV with several time orde
ings, i.e., of the typêT6(•••)•••T6(•••)&, is needed and
the exhaustive work of Ostendorff and Steinmann@34–36#,
giving such an algorithm, is summarized. Section IV syste
atically explores in PT the lowest order of the two-po
functions relative to the fields constructed in Sec. II, and
full form of W1, Eq. ~1.6!, is established. Section V gives
concise outlook of the fourth order calculations: the full for
of W2, Eq. ~1.7!, is given together with a description of th
way we follow to calculate it and to obtain Eq.~1.8!. The full
derivation of the latter results, as well as the proofs of th
properties~1!-~3! above, are left for forthcoming papers.
Sec. VI we give a retrospective of the construction we ha
done and pinpoint the open problems that, in our opini
most urgently should be faced in order to give the furth
necessary support to such a construction.

II. CLASSICAL FIELDS

Let c(x) denote a multiplet of Dirac fields transformin
as the fundamental representationR of the color group
SU(N) ~the extension to whatever compact semisimple
group being trivial!. We shall denote byAm(x)5taAm

a (x) the
Yang-Mills potentials. Hereta, a51, . . . ,N221, are the
Hermitian generators inR, satisfying the commutation rela
tions @ ta,tb#5 i f abctc, t i l

a t l j
a 5CFd i j , CF5(N221)/(2N);

whereas the structure constantsf abc are real, completely an
tisymmetric and obeyf acdf bcd5CAdab, CA5N. The scalar
and wedge products inR are accordingly defined byA•B
52 Tr(AB), A`B52 i @A, B].

It will be understood that the dynamics of the above fie
is defined by the LagrangianL given, e.g., in Ref.@14#, in
which the gauge-fixing term2j/2(]A)•(]A) as well as the
Faddeev-Popov ghosts have been introduced and the Be
Rouet-Stora-Tyutin symmetry is at work. All the fields inL
are assumed to be local fields.

Let C(x)5taCa(x)PR be the FP ghost field, satisfying

C~ t,x!→0, for uxu→`. ~2.1!

We shall call local gauge transformations ofc, c̄ andAm the
following:

dAm5]mC1gAm`C,

dc51 igCc, dc̄52 igc̄C. ~2.2!
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Consider now the formal power series@27#

V~y; f !5(
N50

1`

~1 ig !NE d4h1•••E d4hN

3 f N
n1•••nN~y2h1 ,•••,y2hN!

3An1
~h1!•••AnN

~hN!, ~2.3!

V†~x; f !5 (
M50

1`

~2 ig !ME d4j1•••E d4jM

3 f M
m1•••mM~x2j1 ,•••,x2jM !

3AmM
~jM !•••Am1

~j1!, ~2.4!

where the termsM ,N50 are by definition 1.
We claim that one can choosereal kernel functionsf ’s

such thatV andV† transform under Eq.~2.2! according to

dV51 igCV, dV†52 igV†C. ~2.5!

Before we proceed to enforce the transformation proper
~2.5!, two comments are in order about the multiple conv
lutions displayed in Eqs.~2.3! and ~2.4!. ~i! The first is that
they are mandatory if one is interested, as we are, in obt
ing translation covariant solutions to Eq.~2.5!. ~ii ! The sec-
ond is that the convolutions extending to the who
Minkowski space explicitly expose the fact thatV and V†

may be nonlocalized functions of the basic local fieldsA,
provided the support of thef ’s is suitably chosen. In view of
the discussion about Eq.~1.1!, this is quite welcome becaus
we are aiming at constructing locally gauge invariant fie
that carry nontrivial global color numbers: indeed, conce
ing local gauge transformations, once Eq.~2.5! are satisfied,
the spinor fields

C f~x!5V†~x; f !c~x!, C̄ f~y!5c̄~y!V~y; f ! ~2.6!

are obviously invariant under Eq.~2.2! while they transform
asR andR̄ whenC is not chosen according to Eq.~2.1!, but
is constant with respect tox.

Let us go back to enforcing Eq.~2.5!. Steinmann has
faced this problem in Ref.@27#. He assumes that, on intro
ducing Eq.~2.2! into Eqs.~2.3! and~2.4!, the derivatives can
be reversed by parts. While this can be justified for sp
derivatives, thanks to the boundary conditions~2.1! on the
ghost, the thing is less justifiable for the time derivatives,
one has noa priori control on asymptotic behavior in time
In electrodynamics there is a way out: since the ghost is f
one can choose suitable solutions of the d’Alambert equa
@25# that justify the neglect of boundary terms. In the no
abelian case the problem is there: we shall, as in Ref.@27#,
just ignore it, recalling however the statement~1! of the in-
troduction that, in the case of quantum fields, we will be a
to prove thej independence of correlation functions.
0-5
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With this proviso, Steinmann has shown that the requir
ment that Eq.~2.5! be satisfied by Eqs.~2.3! and~2.4! order
by order ing leads to a linear inhomogeneous recursive s
tem for the f ’s. The Fourier transforms of the first of th
equations he gives is
n

04501
-

-

kn f̂ 1
n~k!5 i , ~2.7!

whereas thef with N.1 arguments is determined in terms
the f with N21 arguments by
~k1!n1
f̂ N

n1•••nN~k1 ,•••,kN!5 i @ f̂ N21
n2•••nN~k2 ,•••,kN!2 f̂

N21

n2•••n
N~k11k2 ,k3 ,•••,kN!#,

~ka!na
f̂ N

n1•••na•••nN~k1 ,•••,ka ,•••,kN!51 i @ f̂ N21
n1•••na21na11•••nN~k1 ,•••,ka22 ,ka211ka ,ka11 ,•••,kN!

2 f̂ N21
n1•••na21na11•••nN~k1 ,•••,ka21 ,ka1ka11 ,ka12 ,•••,kN!#, ~2.8!

~kN!nN
f̂

N

n1•••n
N~k1 ,•••,kN!5 i f̂

N21

n1•••n
N21~k1 ,•••,kN22,kN211kN!,
to
ing

of

rs
,
-

t

with 2<a<N21. We also take from Ref.@27# that the so-
lutions of Eqs.~2.7! and ~2.8!, that for any integerN satisfy

(
J50

N

~21!J f̂ J
n1•••nJ~k1 ,•••,kJ! f̂

N2J

nN•••nJ11~kN ,•••,kJ11!50,

~2.9!

(
J50

N

~21!N2J f̂ J
nJ•••n1~kJ ,•••,k1! f̂

N2J

nJ11•••nN~k
J11

,•••,kN!

50, ~2.10!

give rise to unitary seriesV(x; f )V†(x; f )5V†(x; f )V(x; f )
51.

Let us first focus on Eq.~2.7!. A family of solutions to
this equation that also satisfies Eqs.~2.9! and ~2.10! is

f̂ 1
n~k;c!5 inn

1

2 S 11c

n•k2 i0
1

12c

n•k1 i0D , ~2.11!

where c is a real parameter andnn is a 4-vector that we
leave, for the moment, unspecified. Two particular solutio
from Eq. ~2.11! are

f̂ 11
n ~k;n!5

inn

n•k2 i0
, ~2.12!

f̂ 21
n ~k;n!5

inn

n•k1 i0
. ~2.13!

It can be verified that the two following sets of functionsf̂ 1N

and f̂ 2N
, given by

f̂
6N
n1•••nN~k1 ,•••,kN ;n!

5
inn1

n•~k11•••1kN!7 i0
•••

innN

n•kN7 i0

~2.14!
s

separately satisfy all Eqs.~2.8!–~2.10!. These solutions also
fulfil the factorization property

(
perm

f̂
6N
n1•••nN~k1 ,•••,kN ;n!5

1

N!
f̂

61
n1 ~k1 ;n!••• f̂

61
nN ~kN ;n!

~2.15!

well known as eikonal identity, as well as then-reflection
exchange relation

f̂
6N
n1•••nN~k1 , . . . ,kN ;n!5 f̂

7N
n1•••nN~k1 , . . . ,kN ;2n!.

~2.16!

We will also need a third set of solutions, that extend
higher orders the lowest order solution obtained by sett
c50 in Eq. ~2.11!:

f̂ 01
n ~k;n!5

inn

2 S 1

n•k2 i0
1

1

n•k1 i0D ~2.17!

with the principal value~PV! prescription for then•k de-
nominator. This is evidently connected with the problem
exposing a family of solutions that interpolates betweenf̂ 1N

and f̂ 2N. We have found that, withnn kept fixed and even
after imposing the unitarity constraints~2.9! and ~2.10!, the
higher theN the higher the number of complex paramete
due to the occurrence of Poincare´-Bertrand terms. However
if also the eikonal identity~2.15! is enforced, the interpolat
ing family only depends on the real parameterc appearing in
Eq. ~2.11!. Just to give a flavor of the thing, it is found tha

f̂ 2
n1n2~k1 ,k2 ;c!5 f̂ 1

n1~k11k2 ;c! f̂ 1
n2~k2 ;c!

1
p2

2
~12c2!nn1nn2d~n•k1!d~n•k2!.

~2.18!

We have explicitly found up tof 4(k1 , . . . ,k4 ;c) and we
also have a guess aboutf N(k1 , . . . ,kN ;c) for generic N.
0-6



a
de
c
s

.

-

th

ra

n

o
of
ca

th

th

her

lds
ive

s—
the
p

the
ce

ng,
ase

we

INFRARED ASYMPTOTIC DYNAMICS OF GAUGE . . . PHYSICAL REVIEW D 61 045010
But, for the sake of conciseness we will no longer elabor
on this topic, also because higher orders will not be nee
in the perturbative calculations we will perform in later se
tions. The important for the sequel is that there exists a
lution, denoted byf̂ 0N

n1•••nN(k1 , . . . ,kN ;n), that extends Eq

~2.17! to any orderN. In connection with Eq.~2.16!, note
that the solutionf̂ 0, in addition to satisfying the eikonal iden
tity, is also invariant undern reflection

f̂ 0N

n1•••nN~k1 , . . . ,kN ;n!5 f̂ 0N

n1•••nN~k1 , . . . ,kN ;2n!.

~2.19!

The relationship between the present approach and o
ones@13,23,26,27#, can now be clarified.

Consider, to this purpose,V2(y;n), i.e., theV obtained by
inserting the solutionf̂ 2N

@i.e., Eqs.~2.13! and ~2.14! with
the minus sign# into Eq.~2.3!. It is useful to represent all the
denominators inf̂ 2N

by means of the one-parameter integ

representation (b1 i0)2152 i *0
1`dv exp@ iv(b1 i0)#. In

this way it is possible to explicitly perform thed4kj integra-
tions in the anti-Fourier transform of thef̂ ’s. These integra-
tions give rise tod4(x2h j1( iv i) that allow, in turn, for the
elimination of thed4h j integrations in Eq.~2.3!. Some fur-
ther obvious manipulations convert Eq.~2.3! into

V2~y;n!5(
N50

`

~ ig !NE
0

1`

dv1•••E
vN21

1`

dvN

3n•A~y2nv1!•••n•A~y2nvN!

5P 1 expF igE
0

1`

dv n•A~y2nv!G .
~2.20!

The right-hand side of the above formula is the usual defi
tion of the path-ordering symbolP 1. If n is chosen to be a
spacelike vector, the above representation clarifies thatV2 is
nothing but a rectilinear string operator in the manner
Mandelstam@23# extending to spacelike infinity. The case
n spacelike may serve also to accommodate Buchholz
@41#. For this reason we will generically refer to all theV and
V† operators as to the string operators, regardless of whe
n is spacelike or timelike.

In the same way one finds that

V1
† ~x;n!5P 1 expF2 igE

0

1`

dv n•A~x1nv!G
~2.21!

~again aP 1 for the order of then•A factors in V† is re-
versed with respect toV). It is now convenient to introduce
the decomposition of the Minkowski four-spaceM4 into the
future and past light cones, and their complement:

M45C1øC0øC2 ~2.22!

and in the sequel, referring to the above decomposition,
indicess andt will always take the values6,0.
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Suppose now that, we choosenPC6 , i.e., in the future or
past light cone. Then the statement that, respectively,n0
:0 is Lorentz invariant, and alsox02v in

05t i"t i 21
"•••"t05x0. In view of this, Eq.~2.20! can be written
using theT6 chronological ordering symbols: fornPC6

V2~x;n!5T6 expF1 igE
0

1`

dv n•A~x2nv!G ,
~2.23!

and likewise for Eq.~2.21!: for nPC6

V1
† ~x;n!5T6 expF2 igE

0

1`

dv n•A~x1nv!G .
~2.24!

So far this is no big difference: the ordering operators, eit
P 6 or T6, only order the color matricesta1, . . . ,taN in the
Nth term of the above series, whereas the fie
An1

a1, . . . ,AnN

aN, inasmuch as classical fields, are not sensit

to this ordering. In the case of classical electrodynamic
ta→1—such operators are simply useless. The role of
T6 ordering will instead become crucial when we will kee
it in the definition of the quantum Heisenberg operators.

We have also to consider string operators in which
string vectorn is chosen spacelike. In this case the differen
between the arguments of two neighboringA’s is spacelike,
so only the color matrices are sensitive to the orderi
whereas even the Heisenberg fields of the quantum c
commute with one another, due to locality. The solution
will consider for nPC0 are V0(x;n) and V0

†(x;n), i.e., the

ones corresponding to the solutionf̂ 0N
that extends Eq.

~2.17! and fulfils then-reflection invariance property~2.19!.
Let us now introduce the characteristic functions

xs~n!5H 1 if nPCs , s561,0,

0 otherwise,
~2.25!

and correspondingly the fields

C6~x;n!5x6~n! T6@V6
† ~x;n!c~x!#,

~2.26!
C0~x;n!5x0~n! V0

†~x;n!c~x!,

C̄6~x;n!5x6~n! T6@c̄~x!V6~x;n!#,
~2.27!

C̄0~x;n!5x0~n! c̄~x!V0~x;n!.

These fields fulfil the Dirac conjugation properties

C6~̄x;n!5C̄7~x;2n!,
~2.28!

C0~̄x;n!5C̄0~x,2n!,

that follow from then-reflection properties~2.16! and~2.19!.
As a consequence the composite fields

C~x;n!5z1C11z2C21z0C0 , ~2.29!
0-7
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C̄~x;n!5z2C̄11z1C̄21z0C̄0

~with the complex constantsz’s satisfying z̄65z7 , z̄05z0,
and to be specified later, for the quantum fields, when eff
ing renormalization! satisfy the Dirac conjugation relation

C̄~x;n!5C~x;2n!†g0 ~2.30!

which, in Fourier transform, takes the form

Ĉ
¯

~p;n!5CR ~2p;2n!. ~2.31!

All the constructions done so far, to go fromc to C, can
be crudely summarized in this way: one has traded the ga
variance ofc for the dependence ofC on the string vectorn.
We will refer to this fact as a breaking, put in by hand, of t
original Lorentz symmetry—an unpleasant feature o
would like to get rid of. We dedicate the rest of this secti
to give an heuristic description of how we will try to accom
plish this task.

The Dirac equation for the ordinaryc in linear covariant
gauges is first converted into the equation of motion
C(x;n). We write it in momentum representation

~p”2m!Ĉ~p;n!

5ggataE d4k

~2p!4(
s

zsTs
ab~k;n!Ab

a~k!Ĉs~p2k;n!

5ggataQaa~p;n!, ~2.32!

where the indexs refers to the decomposition ofC with
respect to the light cone ofn, Eq. ~2.26!. Accordingly, the
projectorsT are given by

T7
ab~k;n!5gab2

kanb

n•k6 i0
,

~2.33!

T0
ab~k;n!5gab2PV

kanb

n•k
,

and satisfy

naTs
ab~k;n!50, Ts

ab~k;n!kb50. ~2.34!

Thanks to the second of Eqs.~2.34!, the longitudinal degrees
of freedom ofAb

a are expected to decouple. Thanks to t
first of Eqs.~2.34!, the vector field to whichC is coupled is
A aa5TabAb

a that satisfiesn•A a50.
Were it not for the subtleties due to the6 i0 prescriptions

~i.e., to the light-cone decomposition of the field with resp
to n), this formally is the equation satisfied by the Dirac fie
in the axial gauge. One could try to take this as a substi
of the ordinary Dirac equation in linear covariant gauges a
C(x;n) ~with n, as in a gauge fixing, chosen once for all! as
the variable substitutingc and in terms of which to attemp
a gauge-invariant formulation of the theory—much in t
spirit of Refs.@22,23,26#.
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We will not take this attitude. We will continue to think o
C(x;n) as a composite field in a theory wherec and Aa

a

play the role of basic dynamic variables.
This point of view leaves open the possibility of choosi

different n’s for different C ’s. More clearly, we want to
leave open the possibility of computing quantum correlat

functions of the typê C(x;m)C̄(y;n)&, in which any field
has its own string and with no restriction on whether bothm
andn are taken either timelike or spacelike.

This also is the point where we can explain how we w
recover the lost Lorentz symmetry. We will discuss about
possibility of taking the limit

n→p ~2.35!

in Eq. ~2.32!.
A serious warning about this limit is that its very exi

tence is far from being trivial: we will give some positiv
evidence in favor of it only in the case of quantum fields
Sec. IV. For now we will just forget about any mathematic
rigor and assume its existence: this enables us to draw s
conclusions and formulate some expectations about quan
fields.

The first consideration about the limit~2.35! is that it does
not mess up the Dirac conjugation properties ofC, as evi-
dent from Eq.~2.31!. Let us then call

q̂~p!5Ĉ~p;p!. ~2.36!

Then, by settingn5p in Eq. ~2.32!, one obtains

~p”2m!q̂~p!5ggataE d4k

~2p!4

3(
s

zsTs
ab~k;p!Âb

a~k!Ĉs~p2k;p! ~2.37!

that makes evident why we have kept our point of vie

differently from Ĉ(p;n), the field q̂ may exist only as a
composite field: in the right-hand side~RHS! of the above

equation theĈ appears with two different values of its a
guments, so the fieldq̂ does not satisfy a closed equatio

For q̂, as already forĈ(p;n), it is expected that the unphys
cal degrees of freedom ofAa

a decouple: the second of Eqs
~2.34! still applies.

But this is not the end of the story. If, according to a w
known argument, the near-mass-shell behavior of the fiel
driven by the classical currents responsible for the interac
with soft gluons or photons, we can make a guess about i
operating the replacementga→mpa/p•k within the integra-
tion in the RHS of Eq.~2.37!. It is then seen that, thanks no
to the first of Eqs.~2.34! with n5p, also the classical cur
rents decouple and no longer drive the asymptotic IR dyna
ics of q. As a result, the near-mass-shell behavior of the fi
q we have defined should be at least milder than that of b
the gauge-variantc and then-dependentC.

The observation above, finally, clarifies why we have co
structed strings allowing for the choice of a timelike vecto
0-8
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in the classical currents the momentum is close to the m
shell p2.m2.0. All these expectations for the quantu
fields will find confirmation in the following sections. Thi
means that we will give meaning, to some extent, to
heuristic formula

q~x!5E d4p

~2p!4 e2 ip•xF E d4yeip•yC~y;n!G
n5p

~2.38!

with C(y;n) given by Eq.~2.29!. The utility of this formula
is to clarify that the kind of delocalization involved inq(x)
is by far more complicated than that, recalled in connect
with Eq. ~1.1!, of a field with a ‘‘tail’’ going to infinity along
a string that is rectilinear in coordinate representation, a
e

e
ibl

i
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la

n

g,

to
en

o

or

o
a
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s
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ss
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the case forC(y;n). In pictorial terms the strings contribut
ing to q(x) are spread out all overx space: this happen
when a string, rectilinear inp space, is integrated upon wit
exp(2ip•x) as weighting factor. The fieldq(x) thus rather
resembles a kind of space-time candy-sugar cloud centere
x.

III. PERTURBATION THEORY FOR QUANTUM FIELDS

The present section is devoted to set up diagramm
rules for the calculation, in perturbation theory, of the cor
lation functions of the quantum gauge invariant charg
fields we have sketched in Sec. II.

We define the quantum field corresponding to Eq.~2.29!
in the following way:
C~x;m!5E d4p

~2p!4 e2 ip•xH (
M50

`

~2 ig !MtaM
•••ta1)

j 51

M E d4kj

~2p!4

3 (
s56,0

xs~m!zs
1/2^Vs

†&21 f̂ sM

m1 . . . mM~k1 ,•••,kM ;m!TsF ÂmM

aM ~kM !•••Âm1

a1 ~k1!ĉS p2(
j 51

M

kj D G J . ~3.1!
e

n-
x-
x-
ing
ay
ing

m
ing
In the above formula the time-ordering operatorsT6 and the
identity operatorT051 act on the Heisenberg fields in th
square bracket. Moreoverz15z2 andz0 will play the role
of real renormalization constants, introduced to take care
the compositeness ofC. In addition, also the factorŝVs

†&21

are constants whose values will be fixed later, when th
necessity to avert some ill-defined one particle reduc
graphs will be realized. For now, what is needed to know
that thezs and the^Vs

†&21 have the right conjugation prop
erties such thatzs^Vs

†&21 can be identified with thezs of Eq.

~2.29!: in this wayC̄(x;m) is, in turn, obtained by taking the
straightforward Dirac conjugate of Eq.~3.1!.

It should be finally noted that the structure of formu
~3.1! is slightly different from Eq.~2.29!. In fact, in the latter
case one can recognize the time-ordering of the fields o
after performing, as we have done in Sec. II, thed4j j inte-
grations of Eq.~2.4!. Here, instead, thed4kj integration in-
volving the f ’s, that are in turn responsible for this orderin
are indicated but not yet performed: theT6,0 are there simply
by definition.

The light-cone decomposition of the field with respect
m—the second line of the above formula—makes it evid
that, depending on the choice of the string vectorm relative
to any single field, one must be able to compute VEV’s
the type^Tsn(•••)•••Ts1(•••)&, with s i56,0. This obser-
vation entails that the usual Dyson perturbation theory f
mula for the development of one singleT-ordered product is
not sufficient to our purposes. An extension of the Dys
algorithm is therefore needed and, fortunately for us, such
extension is already available, thanks to the work of Ost
dorff @34# and Steinmann@35#. We recapitulate their result
of

ir
e
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f
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n
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for the reader’s convenience~reporting more or lessverbatim
the content of the appendix of Ref.@36#!.

Let us denote byX5$x1 , . . . ,xr% a set of four-vectors
andF stand for any basic field (Aa

a ,c etc.! of interest for us.
Let also Ts(X) denote the corresponding product of th
fields F(x1)•••F(xr). In the multi-time-ordered vacuum
expectation value

W~Xn ,snu•••uX2 ,s2uX1 ,s1!5^T
sn~Xn!•••T

s1~X1!&
~3.2!

any s i may take the value6 only ~the caseT051 of no
ordering will be included later!. The perturbative contribu-
tion to ordergN to W is obtained as follows.

Graphs. All the graphs with(r i external points and a
number of internal points suitable to match the orderN in PT
are drawn.

Partitions. Each of the above graphs is partitioned in no
overlapping subgraphs—the ‘‘sectors’’—such that all the e
ternal points ofXi belong to the same sector, called an e
ternal sector. In general, there exist sectors not contain
external points, called internal sectors. Internal points m
belong to external as well as to internal sectors, depend
on the partition considered.

Sector numbers. To any sectorS, a numbers(S) is as-
signed according to the following rules:~i! For the sector
containing the external pointsXi : s5 i , ~ii ! for an internal
sectorS, s(S) is a noninteger number between the maximu
and the minimum sector numbers relative to the neighbor
sectors~i.e., the sectors connected toSby at least by one line
of the graph!, ~iii ! if s iÞs i 11 there is no internal sector with
i ,s(S), i 11.
0-9
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Equivalence. If two partitions only differ in the number-
ing of the sectors—not in their topology—they are inequiv
lent if, for at least one pair of neighbouring sectorsS8, S9,
one hass(S8).s(S9) in the first partition,s(S8),s(S9) in
the second.

Type. The sectors are eitherT1 or T2 sectors in the fol-
lowing way: the external sector with numberi is aTs i sector;
the internal sector withi ,s(S), i 11 ands i5s i 11 is aTs i

sector as well.
Diagrammatic rules. Any partition is converted into an

analytical expression according to the following:~i! Inside a
T1 sector ordinary Feynman rules for propagator and ve
ces apply,~ii ! inside aT2 sector the complex conjugate o
Feynman rules hold,~iii ! any internal sector contributes a
(21) factor,~iv! finally, a line connecting two different sec
tors S8 andS9 corresponds, in momentum space, to a fac

d i j ~p”1m!2pu~6p0!d~p22m2! quarks, ~3.3!

dab@2gmn2pu~6k0!d~k2!1kmkn•••# gluons,
~3.4!

where the dots in the second stand for gauge terms tha
couple in all theW functions we will calculate and the6
applies according to whether the number sectors sa
s(S8)"s(S9).

Sum. The contribution of ordergN to W is obtained by
summing the contribution of all inequivalent partitions
obtained and multiplying the result for the appropriate co
binatorial factor.

The inclusion of the caseT051 of no ordering is taken
into account by the following observation. Single fiel
F(x) are included in the above scheme by allowing exter
sectors with only one field as argument:F(x)5T6@F(x)#.
In this way the single partitions of a graph do depend on
choice of the sign, but the sum, expectedly, does not. This
particular, provides the algorithm for computing Wightm
functions in PT.
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Some comments about the above Steinmann rules ar
order. The iterative derivation of the above rules is based
the following inputs: ~i! the equations of motion of the
model, ~ii ! Wightman axioms for the Wightman function
~including locality, but excluding positivity!, ~iii ! on-shell
normalization conditions.

Within these assumptions the solution provided by
above rules is shown to be unique. Concerning the last p
we emphasize that, whenever needed, an IR regulator m
be at work~which one is suitable for the models consider
here will be discussed later!.

Moreover Steinmann himself emphasizes that no use
the asymptotic condition is ever made. This is quite welco
for us for, in the contrary case, this would imply some a
sumption on the IR asymptotic dynamics: this is exac
what we do not want to do.

The above rules provide the tool necessary for compu
in PT, at least in principle, all the correlation functions of t
gauge invariant charged fields, as the ‘‘quark’’~3.1!: this
algorithm provides us immediately with the ‘‘quantum par
of the calculation, i.e., that part that only involves the qua
tum fields in the RHS of~3.1!. About this part one should
also observe that all the degrees of freedom, physical as
as unphysical, are associated to local fields that propaga
causal way.

However, there remains the ‘‘classical part’’ of the calc
lation, consisting in checking whether thed4kj integrations
involving both the VEV’s and thef̂ ’s we have chosen~that
should provide the decoupling of the unphysical degrees
freedom! are well defined. We face this problem in the ne
section where we only consider two-point functions, beca
the rules we have reported above are somewhat unusua
more complicated than the Feynman rules everybody is u
to: we better start learning the new game in the simplest c

IV. TWO-POINT FUNCTIONS

Our aim is to see how the algorithm given in the prece
ing section works in the case of the two-point function
E d4xeip•xE d4yeiq•y^C~x;m!C̄~y;n!&

5~2p!4d4~p1q!W~p,m;q,n!

5 (
M ,N50

`

(
s,t56,0

~2 ig !M~ ig !N)
i 51

M E d4ki

~2p!4)
j 51

N E d4l j

~2p!4

3zs
1/2^Vs

†&21xs~m! f̂ sM
m1•••kM~k1 , . . . ,kM ;m!zt

1/2^Vt&
21xt~n! f̂ tN

n1•••nN~ l 1, . . . ,l N ;n!

3 K TsF ÂmM
~kM !•••Âm1

~k1!ĉS p2( ki D GTtF ĉ̄S q2( l j D Ân1
~ l 1!•••ÂnN

~ l N!G L . ~4.1!
0-10
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Due to the presence of the string vectorsm andn, this two-
point function extends Eq.~1.9! that will be recovered in the
end of this section. In analogy to Eq.~1.10! we will denote
the amputation of Eq.~4.1! by

~2p!4d4~p1q!w~p,m;q,n!

5gata^Qaa~p,m!Q̄bb~q,n!&gbtb, ~4.2!

where theQ’s are the currents defined in Eq.~2.32!.
Consistently with Steinmann assumptions, we assume

the QCD Lagrangian@14# has been IR regulated and reno
malized with on-shell normalization conditions. Up to ord
g2 the calculation is essentially abelian: the color matrices
the two vertices contract toCF(→1 for QED! and there is no
three-gluon vertex. To this order, therefore, one can think
regularizing IR divergences by giving a massl to the photon
or gluon and UV divergences by dimensional regularizat
4→422«, «.0.

As a matter of fact, on going to orderg4 it will be seen in
@33# that the mass regularization is not adequate and we s
use dimensional regularization 4→412e,e.0 for the IR
@37,38# ~this IR e should not be confused with the UV«,
anyway they will never be simultaneously used! and non-
Lagrangian Pauli-Villars regularization@43# for UV. Details
about the problems connected with the choice of the regu
izations are given in Sec. V.

It is convenient to group the graphs contributing to t
VEV in Eq. ~4.1! in the following way.~1! Usual or local
graphs: those with theM5N50 in the above double series
i.e., the graphs contributing to the Wightman functi

^c(x)c̄(y)&. ~2L! Left graphs: M.0, N50. ~2R! Right
graphs:M50, N.0, specular to the left graphs.~3! Left and
right graphs: bothM.0 andN.0. This is exemplified by
the six graphs in Fig. 1, that gives the graphs contributing
orderg2.

The sector partitions of the above graphs depend
whether eitherm or n are chosen inC6 or in the complement
C0 of the light cone. To cover all the nine possibilities,

FIG. 2. The sector partitions of the ‘‘local’’ graph A.

FIG. 1. The graphs associated to the VEV’s of~4.1! contributing
to theO(g2) of W(p,m;q,n).
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would be sufficient to consider only five cases, thanks to
Dirac conjugation properties of the fermion field, Eq.~2.30!.
However, we will furtherly restrict ourselves only to th
three cases that are more interesting for our purposes:~A!
mPC1 , nPC2 , ~B! mPC1 , nPC0, ~C! m, nPC0.

The discussion of the remaining cases is, after thes
simple exercise. In any event, the lowest order graph, co
mon to all cases, contributes the free two-point Wightm
function of the spinor field, Eq.~1.4!.

A. m«C¿ , n«CÀ

Only the term of Eq.~4.1! with s51, t52 contributes,
there are only two external sectors: sector 1, in the right,
is a T2 sector, and sector 2 in the left, that is aT1 sector.
Since the two sectors are of different type, there can be
internal sectors. The partitions of the above six graphs
thus obtained by drawing a cutting vertical line in all po
sible positions. In the cut lines we convene that moment
always flows from right to left, i.e., from sector 1 to sector
so that the replacement rules~3.3! and~3.4! are always taken
with the plus sign.

All this resembles, and is nothing else but, the famil
Cutkosky-Veltman cutting rules. It should be noted that t
regards only the VEV in the last line of Eq.~4.1!. The f̂
vertices contributed by the string operators, not even dra
in Fig. 1, are not touched upon by Steinmann rules: th
denominators are instead prescribed by our definition~3.1!.

In addition, this identification of Steinmann rules wit
Cutkosky-Veltman rules happens only thanks to the cho
made form andn. Different choices, as well as VEV’s with
more than two external sectors, are covered only by St
mann rules.

The partitions drawn in Fig. 2–4 refer to Eq.~4.1!, i.e., to

the whole^CC̄&, not only to the VEV in it: the vertical lines
represent the string denominators of thef̂ ’s, whereas each
vertex on a vertical line—an empty circle—contributes a fa
tor proportional to eithergmm or gnn ; there also is a four-
dimensional integration for the loop.

FIG. 3. The contributions toW(p,m;q,n) originated by the sec-
tor partitions of graph BL.

FIG. 4. The contribution toW(p,m;q,n) originated by the only
sector partition of graph C.
0-11
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Concerning graph A, its partitions are given in Fig.
Only the one marked~a! is nonzero, the other two vanis
thanks to both mass and wave function on-shell normal
tion conditions.

Graph BL has the two partitions given in Fig. 3 an
named~bL! and ~zL!. There are the two specular and com
plex conjugate partitions~bR! and (zR) from BR. Graph C
has the only partition~c! given in Fig. 4. Graph TL too has
only the partition ~tL! given in Fig. 5. There also is th
partition ~tR! complex conjugate of the above.

We start with discussing the last graph. It is ill defin
because its contribution toW1(p,m;q,n) is proportional to
the integral

Ed4k
gmm

m•k2 i0

gmn

m•~k2k!2 i0

2 igmn1•••

k22l21 i0
~4.3!

that is not defined. Even in QED, where, due to absenc
color matrices, one could take forf̂ 2 the symmetrized form

f̂ 12
mn ~k1 ,k2 ;m!5

1

2!

imm

m•k12 i0

imn

m•k22 i0
,

the momentum conservationk152k2 from the photon
propagator would yield the integral

Ed4k
1

k22l21 i0

1

m•k2 i0

1

m•k1 i0

plagued with a pinch singularity. So one has to get rid of
This is exactly the task of the factors^Vs

†&21 in Eq. ~4.1!, as
we now explain.

The initial observation is that, thanks to translation inva
ance, the VEV ofV(x;m) cannot depend onx. So it may
only be a~ill defined! constant times the identity matrix i
color space. Imagine now that the theory has been provis
ally regularized by defining it on a space-time of finite vo
umeV: translation invariance is temporarily broken and m
mentum conservation does not hold, so that Eq.~4.3! is now
well defined: all the graphs depend onV and tend to the
expression that the above rules provide for them in the li
V→`. However, before the limit is taken and up to ord
g2, the factor̂ V1

† &21 timesW0(p) provides exactly the par
tition ~tL!, but with opposite sign.

Independently of any heuristic explanation, the fact
^Vs

†&21 are the instruction for the neglect of all the grap
including self interaction of the strings, as that given in F

FIG. 5. The contribution toW(p,m;q,n) originated by the only
sector partition of graph TL.
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6, i.e. of the graphs that can be disconnected with one o
cut in the string associated with the fieldC(x;m)—one
could call them one string reducible graphs.

Likewise, ^Vs&21 operates on the one string reducib

graphs associated with the string of the fieldC̄(y;n). We
thus arrive to the conclusion that to orderg2 only the six
partitions ~a!, ~bL!, ~bR!, ~c!, and (zL), (zR) survive, as
well as the counterterms coming from the expansion ofz1

5z2.11a/pz1. For example the partition (zL) can be
parametrized in the form

~zL!5
a

p
CFFg~b~m,p!;UV,IR!1d„b~m,p!…

m” m

m•pGW0~p!,

~4.4!

where, in terms of the ultraviolet and infrared cutoffs

UV5
1

«
2gE1 ln

4pk2

m2 , ~4.5!

IR5 ln
l

m
~4.6!

~dimensional regularization and mass term for the vector m
son, respectively! and of the functions

b~m,p!5A12
m2p2

~m•p!2
~4.7!

~in which m,pPC6⇒0,b,1 andm→p⇒b→0)

B~b!5
1

2b
lnU11b

12bU, ~4.8!

J~b!5F 1

b
Li2~b!1

1

2b
Li2S 2

11b

12b D G1@b→2b#

~4.9!

the calculation of the invariant functionsg and d gives the
result

FIG. 6. An example of One String Reducible graph.
0-12
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g~b;UV,IR!5
1

2H 1

2
UV112J~b!

1B~b!F2IR1 ln
12b2

4
11G

1S 1

j
21D F1

4
UV1IR1

7

4

2
1

2

ln j

12jG J W0~p!, ~4.10!

d~b!52
1

2
B~b!. ~4.11!

In Eq. ~4.10! the contribution of thegmn and of the lon-
gitudinal terms of the vector meson propagator are the
and the second couple of lines, respectively. Likewise,
calculation of~zR! is obtained by Eq.~4.4! with the replace-
ment

~zR!5
a

p
CFW0~p!@m→n#. ~4.12!

Obviously, the choice ofz1 can only modify the invariant
function g.

The first thing to note about the above graphs is that
coefficient of UV ing does not depend either onp or on m,
n. Therefore, this dependence~as well as the dependence o
j) can be renormalized away.

The second thing to note is that the coefficient of IR
proportional toB@b(m,p)#1B@b(n,p)#—does depend on
p: the infrared divergence cannot be eliminated by renorm
ization.

We choose

a

p
z15

a

p
CFH 2

1

2
UV22IR112S 1

j
21D

3S 1

4
UV1IR1

7

4
2

1

2

ln j

12j D J , ~4.13!

in which the finite part ofz1 has been chosen in such a w
that when both the limitsm→p, n→2p are taken in Eqs.
~4.4! and ~4.12!, respectively, one obtains

~zL!1~zR!1
a

p
z1W0~p! →

m,2n→p

0. ~4.14!

We have now to discuss the sector partitions~a!, ~bL!,
~bR!, ~c!. They have in common the two-body phase spa

G2~p!5E dG2

5E d4ku~k0!d~k2!u~p02k0!d„~p2k!22m2
…

5
p

2
u~p0!u~p22m2!S 12

m2

p2 D ~4.15!
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and their contribution to the amputated two-point functi
~1.10! is

w1~p,m;2p,n!5
g2

~2p!2 CFE dG2 N~p;m,n!,

~4.16!

where from

N~p;m,n!5~2gmn!Fgm2~p”2m!
mm

m•kG~p”2k”1m!

3Fgn2~p”2m!
nn

n•kG , ~4.17!

the contribution of each sector partition is clearly identi
able.

The following comments should help.~a! The factors (p”
2m) in the square brackets of Eq.~4.17! are due to the
amputation.~b! The contribution of the spurious degrees
freedom in the gluon propagator is obtained by the repla
ments

d~k2!→d~k22l2!2d~k22l2/j!

in the two-body phase-space~4.15! and

2gmn→kmkn /l2

in Eq. ~4.17!. The latter converts each of the square brack
into (p”2k”2m) that in turn, on multiplying the factor (p”
2k”1m), gives zero—thanks to the fermion delta function
the two-body phase-space.~c! The prescriptions6 i0 in the
string vertex denominators have been omitted inasmuch
irrelevant to Eq.~4.17!: indeed,m, 2n, and alsok, thanks to
Eq. ~4.15!, belong toC1 , so that bothm•k and 2n•k are
strictly positive on the two-body phase space.~d! For the
same reason there is no need of IR regularization in
~4.16!.

Use of covariance shows thatw1(p,m;2p,n) can be ex-
pressed in terms of three integrals: one isG2(p), Eq. ~4.15!.
As for the others, it is convenient for later use to define

I ~p;m!5E dG2

P~m!

~m•k!
, ~4.18!

whereP(m) is a prescription:

P~m!5H 61 if mPC6 ,

PV if mPC0 ,
~4.19!

and likewise

J~p;m,n!5E dG2

P~m!

~m•k!

P~n!

~n•k!
. ~4.20!

The results of the calculations, for anym andn, are

I ~p,m!5G2~p!
2

p22m2

p2

up•mu
B„b~m,p!…, ~4.21!
0-13
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J~p;m,n!5G2~p!
4

~p22m2!2

p2

um•nu
B„b~m,n!…

~4.22!

with B given by Eq.~4.8!.
Only one observation is relevant about the above in

grals, namely that the limitsm→2n, m→p, n→2p exist,
commute with one another and commute with the pha
space integration to give

I ~p;p!5G2~p!
2

p22m2 , ~4.23!

J~p;m,2m!5J~p;p,2p!5G2~p!
4

~p22m2!2 .

~4.24!

As long as the contribution of sector partitions~a!, ~bL!,
~bR! and ~c! is infrared finite, the lesson to be learned fro
adding this to the contribution of partitions (zL) and (zR)
@given by Eqs.~4.4!, ~4.12!# is that the perturbative theor
for the field C(x;m), mPC1 , and its Dirac conjugate is
plagued with the same IR pathology as for the gauge dep
dent c(x). Should one stop here, nothing would have be
gained.

The only way to get rid of the IR divergence given b
sector partitions (zL) and (zR) is to take both the limitsm
→p andn→2p. In this case, due to the last two formula
the contribution of sector partitions~a!, ~bL!, ~bR!, ~c! sim-
plifies to

w1~p!5CFu~p0!u~12% !~12% !S p”
11%

2
2m D ,

~4.25!

where

%5m2/p2, ~4.26!

whence, on reinserting the external propagators omitted
the amputation, taking into account Eq.~4.14! and setting
CF51, one obtains theW1(p) appearing in Eq.~1.3! and
given by Eqs.~1.5!, ~1.6!. This is the piece of evidence tha
we can give in this paper, working to orderg2, about the
existence—and, to some extent, the necessity—of taking
limit ~2.35!, discussed in Sec. II. The extension of Eq.~4.25!
to the region 0,p2,m2 is legitimate and trivial.

Also the extension of Eq.~4.25! to the regionp2,0 is
trivial—it also gives zero. But in this case there is a proble
of consistency between this extension, on the one side,
the Steinmann rules and the limitsm, 2n→p on the other
side. In this region infact the taking of the limits requires th
m and/or n be spacelike from the outset and this, in tu
changes the sector partitions contributing tow1. It is how-
ever plausible to expect that the naive extrapolation of
~4.25! to p2,0 is correct: indeed all the sector partition
even when calculated with the Steinmann rules suited fom
and/orn spacelike, should display either aG2(p) or aW0(p)
factor, as encountered in the present section. If really
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setting p2,0 gives zero, due to the support properties
these factors, and the limitsm, 2n→p are quite safe.

We feel, however, that in order to check the abovem
tioned consistency, the exposing of the results of the exp
calculation is more convincing. Also because, should one
interested in the perturbative theory of the fields withmÞp,
there arise some difficulties connected with renormalizabi
that are better explicitly inspected. This is dealt with in t
next subsections.

B. m«C0 , n«CÀ

There is again the contribution of local graphs, name
those contributing to the ordinary Wightman functio

^c(x)c̄(y)&, i.e., graph A of Fig. 1. This is expected to b
the same as in the previous section, as independent o
string vectorsm andn. Indeed, as commented after the la
Steinmann rule in Sec. III, we have the freedom to assig
time-ordering label to each field, being sure that the fi
result does not depend on the assignment. We choos
write ^c(x)c̄(y)&5^T1@c(x)#T2@c̄(y)#&, that takes us
back to the case discussed in the previous section: only
tor partition ~a! of Fig. 2 gives a nonvanishing contribution

Let us now discuss the sector partitions of graph BL
Fig. 1. Now the three external vertices must be given se
numbers as in Fig. 7 and the numbers can be given values
1<s<3. So in principle there are five inequivalent par
tions. The two partitions in whichs is noninteger have three
on-shell lines joining in the same vertex, so their contrib
tion is zero. There remain the three sector partition labe
by s51,2,3.

The first—s51—is again~bL! in Fig. 3, so its contribu-
tion is easily recovered from Eqs.~4.16! and~4.17!, provided
the integral ~4.18! is taken, according to Eqs.~4.1! and
~2.17!, with the PV prescription. In fact, in this case th
denominatorm•k is no longer positive on the two-bod
phase space. The result is still given by~4.21!.

It is now convenient to consider the sector partitions
graph C in Fig. 1, postponing to later the sector partitions
Fig. 7 labeled bys52, 3. The sector numbers can only b
assigned as in Fig. 8. Therefore this is again partition~c! of
Fig. 4, easily recovered from Eqs.~4.16! and ~4.17!, pro-
vided that in the integral~4.20! the m•k denominator is PV

FIG. 7. The sector partitions~labeled by s! of graph BL that
occurs whenm is spacelike.

FIG. 8. The sector partition of graph C that occurs whenm is
spacelike.
0-14
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prescribed. Again the result is provided by Eq.~4.22!. Fi-
nally, the only sector partition of the one string reducib
graph TL in Fig. 1~sector numbers 1 to 4 clockwise from
right vertex! is again disposed of, thanks to^V0

†&21 instruc-
tion in Eq. ~4.1!.

Going back to the other two sector partitionss52,3 of
Fig. 7, they both have aW0(p) factor~the fermion line in the
right! and so take the place of (zL) of the previous section

The contribution of these partitions is parametrized,
analogy with Eq.~4.4!, by

~zL!5
a

p
CFFc„b~m,p!;UV,IR…

1d„b~m,p!;UV…

m” m

m•pGW0~p!, ~4.27!

where, the invariant functionsc and d depend onm and p
through the variableb(m,p) @defined in Eq.~4.7! and now,
with mPC0, satisfyingb.1] and on the cutoffs~4.5!, ~4.6!:
the result of the calculation gives

c~b;UV,IR!5UVS 1

2
1

3

8
b221

1

8
~12b22!B~b! D

1IR B~b!1
52b22

16
Y~b!1

2b2221

4
B~b!

2
3

4
b222

1

4 S 1

j
21D ~UV22IR11!

1
1

4j
ln j, ~4.28!

d~b;UV!5UVS 2
3

8
b222

1

8
,~12b22!B~b! D

1
1

4
b222

1

4
B~b!2

12b22

16
Y~b!,

~4.29!

in which, we remind the reader,B(b) is given by Eq.~4.8!
and

Y~b!5F 1

2b
ln2

11b

2b
1

1

b
Li2S 11b

2b D G1@b→2b#.

~4.30!

Comparison of the above formulas with the correspond
Eqs.~4.10!, ~4.11! shows that—contrary tod—the invariant
functiond does depend on UV: this means that no choice
the renormalization constantz0 introduced in Eq.~3.1! @and
giving rise to counterterms proportional toW0(p), not to
m” W0(p)] can cure the divergence. In addition there also
the coefficients of UV and IR inc that both depend onp
throughb. As for the IR divergence associated with a spa
like string, the result is not new@26#.

There is a way out of this problem: choosingm050 in the
rest frame, in which onlyp05mÞ0. In this case in fact
04501
g

f

e

-

(zL)→aCF /pW0(p)3@UV/21 last two terms of Eq.
~4.28!#, so that a suitable choice ofz0 to orderg2 removes
the divergence. Unfortunately, the choicem050 spoils Lor-
entz invariance and we will not stick to it.

To summarize: the perturbative theory involving
charged field, dressed with a string in spacelike direction
nonrenormalizable—at least at finite orders—due to them
string. There survive, in addition, IR divergences carried
both them andn strings.

C. m«C0 , n«C0

The discussion of local graphs as well as of the sec
partitions with only one string vertex@Figs. 2, 7 and its ana
logue giving rise to a partition~bR! and to a contribution
~zR! obtained by Eq.~4.27!, with a replacement analogue t
Eq. ~4.12!# presents no novelty with respect to the preced
subsection. The only novel feature is given by graph C
Fig. 1, where the only partition is given by assigning sec
numbers from 1 to 4 with clockwise movement, starti
from the top right vertex. This is again recovered from E
~4.16! and ~4.17!, provided the integral~4.20! is now taken
with both m and n spacelike, i.e., with both denominato
prescribed by PV. The result is once more Eq.~4.22!. In this
case also, thanks to the~zL! and~zR! contributions, there are
UV as well IR divergences due to each string. Choosing b
m05n050 in the rest frame would eliminate the two pro
lems.

However, once more we refrain from breaking Loren
symmetry, also because there is another way out of this
passe. This is provided exactly by the double limitm52n
→p. The latter has to be effected first by draggingp in C0:
this makes the whole two-point function vanish, due to t
support of thed(p22m2) in the ~zL! and~zR! contributions,
and to the support of theG2(p) two-body phase space in a
the other ones. At this point taking the limit is safe and giv
zero, in agreement with the naive extrapolation of Eq.~4.25!
discussed in the end of Sec. IV A.

V. OUTLOOK OF FOURTH ORDER CALCULATIONS

The calculations of Sec. IV should make it evident th
the only two-point function free from both UV and IR prob
lems is that relative to the field~2.36!: they provide evidence
for the necessity, rather than the possibility, of taking t
limit n→p, whose meaning and implications we have d
cussed in the final part of Sec. II.

It is also clear that, in order to obtain the result~4.25!,
commuting the limitn→p with the loop integration makes
the calculation by far simpler and that, consistently, only
diagrammatic rules of Sec. IV A have to be used in order
get a nonvanishing two-point function. Exactly in this wa
we have performed the two-loop calculation ofW2, Eq.
~1.3!, in QED. This receives contribution from 12 graphs f
a total of 19 nonvanishing partitions, 10 of which involv
two-body phase-space, the other 9 involve three-body ph
space. The graphs with only one external fermion line
shell—as the partitions (zL) or (zR) of Sec. IV A—have not
been included in the counting, because, much as in the
0-15
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of Eq. ~4.14!, they can be renormalized away with a suitab
choice of the fourth order contributionz2 to the renormaliza-
tion constantz6 .

Several graphs exhibit an IR divergences proportiona
ln l. In this QED calculation, the photon mass regularizat
has been adopted, for it is well known not to interfere w
either BRST symmetry or unitarity. Indeed, we have a d
grammatic~i.e., without the need of analytic calculation!
proof of the decoupling of unphysical degrees of freedom
the form of gauge-fixing parameter independence

j
]

]j
W250. ~5.1!
.
on
f
s

ng
ha

a

he
is
e-
n
l

rs

04501
o
n

-

n

Furthermore, we have found that the Grammer-Yen
@44# method of control of IR divergences can be extended
a straightforward way, to the graphs that include the eiko
string vertices. This results in a diagrammatic proof~an ana-
logue to that of Ref.@45#! of a complete cancellation be
tween the IR divergences coming from the three-body
graphs and the two-body cut graphs.

What is left is the explicit result of the calculation that w
report below to give concreteness to what we have said
though in its full form it is not illuminating. Forp2,9m2

~i.e., omitting graphs involving closed fermion loops, that a
irrelevant for the near-mass-shell asymptotics! the two struc-
ture functions, defined by Eq.~1.5! with i 52, are given by
a25
%~239282%137%2!

16~12% !
1

%3

2~12% !
ln~12A12% !ln~11A12% !1

%2

2A12%
ln

11A12%

12A12%

1
%~3231%12%222%312%4!

8~12% !2
ln %1

%„2215%25%213%32%41~2722%2%212%3!ln %…

4~12% !2
ln~12% !

1
%2~2112% !

8~12% !
ln2%1

%~2526%13%2!

4~12% !2
@Li2~% !2Li2~1!#, ~5.2!

b25
%~51% !~2912% !

8~12% !
2

%2

2~12% !
ln~12A12% !ln~11A12% !2

%

2A12%
ln

11A12%

12A12%

1
%~22213%16%225%31%4!

4~12% !2
ln %2

%2

8~12% !
ln2%1

%~3%27%215%32%41~21314%1%2!ln % !

4~12% !2

3 ln~12% !1
%~21312%13%2!

4~12% !2
@Li2~% !2Li2~1!# ~5.3!
rt
-
IR

tails,
e-

re-

rgy

/
he
of

m-
ers
whose asymptotic form for%5m2/p2→1 is Eq. ~1.7!. It
should be also noted that in the ultraviolet regimep2→1`,
i.e., for %→0, a2 and b2 vanish respectively as (lnp2)/p2

and 1/p2. So, when dispersed inp2, they need no subtraction
Concerning the QCD counterpart of the above calculati

stated in Eq.~1.8! of Sec. I, apart from the contribution o
the non-planar QED graphs~those where the color matrice
occur in the sequencetatbtatb5CF

22 1
2 CACF), there are 15

more graphs giving rise to 23 partitions, 8 of them involvi
two-body phase-space, the other 15 the three-body p
space.

A due remark concerns the IR regularization: giving
mass to the gluon, even according to Ref.@42#, preserves
BRST symmetry, but only formally preserves unitarity in t
limit l→0. As a matter of fact we have verified that, in th
limit, the RHS of Eq.~5.1! does not vanish. We have ther
fore abandoned this regularization adopting dimensio
regularization for the IR@37,38# and changed dimensiona
regularization for the UV with non-Lagrangian Pauli-Villa
@43#. With these regularizations, Eq.~5.1! indeed holds also
in the non-Abelian case.
,

se

al

In writing Eq. ~1.8!, we have recalculated the Abelian pa
~proportional toCF

2) with the new IR and UV regulariza
tions, with the expected result that the cancellation of
divergences holds also in the new scheme. These de
however, will be part of a forthcoming paper giving the d
tails of the above described two-loop calculation@33#.

Concerning instead the non-Abelian part, we can say,
ferring to the factor11

6 appearing in Eq.~1.8!, that 5
6 comes

from the sum of all the graphs that include gluon self-ene
corrections; a further 1 comes from theCACF part of the
non-planar Abelian graphs. For the other graphs~whose sec-
tor partitions are, in some cases, IR divergent even as 1e2,
not just as 1/e) there is a complete cancellation between t
two-body cut and the three-body cut contributions to each
them.

VI. CONCLUSIONS

We have shown how to construct BRST invariant co
posite fermion fields that carry the global quantum numb
0-16
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of the electron and of the quark in QED and QCD. T
construction consists in dressing the ordinary Dirac fi
with a rectilinear string whose space-time direction is ch
acterized by a four-vector that, provisionally, breaks the L
entz covariance properties of the field. In perturbation the
the string generates new graphs characterized by the oc
rence of eikonal vertices. These new vertices require p
scriptions~either6 i0 or PV! whose choice is uniquely dic
tated by the Dirac conjugation properties of the fie
Furthermore, after going in momentum representation,
four-vector characterizing the string must be chosen prop
tional to the four-momentum of the field. This choice:~i!
restores Lorentz,~ii ! averts some IR as well as some no
renormalizable UV divergences. The second point indica
that, as a matter of fact, there is little choice. The wh
construction survives the check of a fourth order calculat
of the two-point function in PT, performed both in QED an
QCD.

If these fields are to survive further and more string
verifications, one can conclude that global charges assoc
to a Gauss law imply, for the fields carrying such charg
delocalization properties considerably more involved th
the single one-dimensional string in three-space, somew
popular in the literature: since the string is rectilinear in fo
momentum space, in coordinate representation the fi
rather appear spread out all over Minkowski space, exhi
ing a kind of candy-sugar structure.

The construction gives—as an extra bonus—different
sults for the IR asymptotic dynamics of QED and QCD
spectively. In particular, it hints at a mechanism of confin
ment according to which the quark so constructed seem
behave as a free field at any momentum scale.

The construction presented raises several problems;
the algorithm we have given in this paper also provides
possibility to face them. Among others, a few of them s
involve two-point functions: Extending to any order in P
the above results about:~i! IR cancellation in QED and~ii !
IR noncancellation and factorization in QCD and the ver
cation that any gauge invariant colored field, first of all t
gluon, has the same behavior as the quark.
ov
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Other problems pertain instead a study of correlat
functions with more than two points: The verification th
such fields do indeed carry the expected global charges,
that they satisfy in PT at least the weak commutation re
tions

^e~x!@Q,ē~y!#&5^e~x!ē~y!&,

etc., whereQ5*d3x:c̄g0c:(x) is the electric charge~and
the analogue in QCD!.

A comparison of the present approach with the well
tablished results of QED such as those about inclusive c
section or the electrong22 and, in general, the impact o
this construction on theS matrix @although we expect to
recover no more than the usual IR divergentS matrix of
point ~iv!1 in the Introduction, because also the Steinma
scheme for perturbation theory relies on splitting the Ham
tonian according toH5H01V].

For QCD, the proof of the scenario we have hinted at
Sec. I, namely, that amplitudes involving gauge invaria
colored fields either vanish or disconnect into the produc
free two-point functions relative to colored fields times
amplitude that only involves color singlet fields. These pro
lems are already under our investigation and we will rep
about them in the near future.
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