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Dynamical chiral symmetry breaking in the discretized light-cone quantization method is investigated in
detail using a chiral Yukawa model closely related to the Nambu—Jona-Lasinio model. By classically solving
three constraints characteristic of the light-front formalism, we show that the chiral transformation defined on
the light front is equivalent to the usual one when the bare mass is absent. A quantum analysis demonstrates
that a nonperturbative mean-field solution to the “zero-mode constraint” for a scalar lbosan develop a
nonzero condensater)=—(A/N)(WW¥)#0 while a perturbative solution cannot. This description is due to
our identification of the “zero-mode constraint” with the gap equation. The mean-field calculation clarifies
unusual chiral transformation properties of the fermionic field, which resolves a seeming inconsistency be-
tween the triviality of the null-plane chiral char@g"|0)=0 and the nonzero condens&t¥)=0. We also
calculate masses of scalar and pseudoscalar bosons for both symmetric and broken phases, and eventually
derive the relation of partial conservation of axial vector current and nonconservati@k of the broken
phase.

PACS numbefs): 11.30.Rd, 11.15.Pg, 11.30.Qc, 12.4.

[. INTRODUCTION defined by a free theory is also the vacuum of the full theory.
Many technical advantages such as exact Fock state expan-
Chiral symmetry breaking is undoubtedly one of the mostsion arise from this fact. On the contrary, the conventional
important concepts for understanding hadron physics in théormulation says that the chiral symmetry breaking is essen-
low energy regiori1]. The smallness ofr andK masses is tially a physics of finding another vacuum that breaks the
beautifully explained if one identifies them with the Nambu- chiral symmetry but is energetically favored. Such “vacuum
Goldstone (NG) bosons associated with chiral symmetry physics” is thought to be very important for understanding
breaking. An important aspect of this phenomenon is thenonperturbative phenomena in low energy region. Therefore
dynamical formation of NG bosons as bound states of quarkto apply the LF formalism to QCD necessarily entails a prob-
and gluons in the strong coupling region. However, its comdem how to realize such “vacuum physics” within a frame-
plete demonstration in QCD is not reached yet because of th@ork with a trivial vacuum. For the purpose of understand-
difficulties in describing bound states in a nonperturbativeing this problem, there are considerable effoff to
and relativistic manner. Instead, many people have been irdescribe the spontaneous symmetry breaking in a simple sca-
vestigating much simpler effective models of QCD. Amonglar model ( ¢7, ;). They succeeded in obtaining the critical
them, the Nambu—Jona-LasinidJL) model[2] is the most  coupling which is consistent with the conventional results.
deeply and thoroughly understood. The NJL model i8a The key is to solve a constraint equation for the longitudinal
+1)-dimensional four-Fermi theory and reproduces variouszero mode(“zero-mode constraint) which appears in the
properties of hadrons concerning chiral symmetry breakingliscretized light-cone quantizatiofPbLCQ) method[6]. A
despite some undesirable features such as nonrenormalizalilenzero condensate is realized as a nonperturbative solution
ity and lack of confinemert3]. Nowadays the model plays of the zero-mode constraint. We will discuss this method in
the role of a laboratory in which we can test new ideas proimore detail later.
posed for nonperturbative study of low energy QCD. There- Compared with such extensive studies, only little is
fore the NJL model is the most appropriate model in whichknown about thelynamicalsymmetry breaking ifiermionic
we can check whether light-froritF) quantization can be systems. Especially there have been only few attempts about
applied to the dynamical chiral symmetry breaking. LF quanthe NJL model on the LIF7—10]. At first glance, it does not
tization is a newly revamped nonperturbative method forseem possible to follow the same route as in the scalar mod-
solving relativistic bound states in quantum field theptyy  els because we do not have bosonic fields as fundamental
Let us explain why the chiral symmetry breaking becomesdegrees of freedom in the NJL model. However, we can
a special issue in the LF formalism. The reason is twofold:apply the same idea to the dynamical symmetry breaking if
the first is apparent contradiction between a nontrivialone introduce$osonicauxiliary fields to the fermion bilin-
vacuum and a LF “trivial” vacuum, and the second is pecu-ears and raises them to dynamical variables by adding their
liarity of LF chiral transformation. To resolve these problemskinetic terms. Of course the original fermionic model is re-
is our primary purpose in the present paper. One of the reproduced as an infinitely heavy mass limit of the bosonic
markable merits of LF quantization is that the Fock vacuuntfields. According to this idea, we succeeded in describing the
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dynamical symmetry breakin@liscrete chiral symmetjyin ral symmetry breakindg?2]. In its original form there were
the (1+1)-dimensional four-Fermi theorfthe Gross-Neveu two flavors, but a one flavor model
mode) [11]. The present paper is a generalization of this
preliminary work which discussed onbjiscretechiral sym-
metry. We consider a kind of Yukawa model witlontinu-
ouschiral symmetry, which is obtained from the NJL model
using the above technique. We work within the DLCQ also breaks the chiral symmetry which exists in the massless
method so thaive can formulate the problem from the view- casem=0. We give an additional internal structure to the
point of the zero-mode constraints should be commented, fermion independently of the flavor, and treat an
however, that it is possible to discuss the dynamical symmenN-component spinot’2 in order to clarify the validity of
try breaking even without introducing auxiliary fields. In approximation we use. From now on, summation ower
Ref.[8], one of the authors insisted the importance of a “fer-=1, . .. N is always implied. Since this model is not renor-
mionic constraint” which is again unique to the LF formu- malizable, we must specify a regularization scheme such as a
lation and has very complicated structure due to the fourcutoff to uniquely determine the model and to obtain finite
Fermi interaction(Another merit of including scalar fields is results.
a quite simplification of the fermionic constrainMore de- In this paper, we discuss more general model with
tailed analysis in this direction will be reported in the nextyykawa interactions
paper[12].

One more point to be discussed is the unusual behavior of _ N
chiral transformation on the LF. In the LF formulation, a half L=V )—m)y¥a+ Z—Z(ﬁﬂoﬂ“awL d,mot )
degree of freedom of the fermion is a dependent variable to ®
be represented by other independent variables. Therefore, N — _
chiral transformation should be imposed only on the inde- - 5(02+ 7)) = (oWAW A+ 7 Wiy W), (2.1)
pendent component of the fermid@3]. It is not clear in

interacting models whether the LF chiral transformation is . .
. where o () is a scalar(pseudoscalarboson with mass
equivalent to the usual one or not.

The paper is organized as follows. In the next section, WéL/‘/X andu is a dimensionless parameter. If one takes infi-

define the chiral Yukawa model which is closely related tonitely heavy mass limit for scalarg—e, the d_ynamical
the NJL model and introduce our framework, the DLCQscalars become auxiliary fieldso=—(NN)¥W¥, =
method. The classical aspects of the model is discussed ia —(\/N)¥iys¥ and the model goes back to the NJL
Sec. lll. Here, we see that there are three constrdirds  model.

two zero-mode constraints and one fermionic constraitie In order to contrast with our LF calculation, let us briefly

also show peculiarity of the LF chiral transformation andcomment on the usual story of chiral symmetry breaking in
explicitly give the null-plane chiral charg®s". Quantum the NJL model[2]. When m=0, both of the Lagrangian
analysis, which is the main part of this paper, is developed ijensities are invariant under the chiral transformation
Secs. IV and V. In Sec. IV, we demonstrate that perturbative

and nonperturbative treatments of the solution to the con- pa_,eglrstya (2.2

straints give different description of the model. In Sec. V, we

discuss some physics consequences of the nonperturbative ( ) ( c0s20  sin 26) ( o
T

— N — —
Ly =Y3(id—m)ywa+ m[(\lfa‘lfa)z-i- (W3 y5W?)?]

analysis. Especially, we resolve a problem of contradiction
between the triviality of the null-plane charge and the non-
zero condensate. We further calculate the masses of scalars
in the symmetric and broken phases. Then we discuss thiéshould be reminded that this transformation is, of course,
PCAC (partial conservation of axial vector currgmélations ~ imposed on all the fields, which is, however, not the case in
and nonconservation of the LF chiral cha@gf in the bro- the LF formalism. This point will be discussed later in more

ken phase. The last section is devoted to conclusion andetail. The usual story is as follows: The chiral symmetry
discussions. breaks down spontaneously in a quantum level due to non-

zero fermion condensatelW)+#0. The most straightfor-

Il. THE MODEL ward demonstration will be the mean field approximation
. . with the concept of self-consistency. If one has an

Here we introduce the modéthiral Yukawa mode}land N-component fermion, we can justify the mean field approxi-
summarize the standard _knowledge on the chiral .Symmet%ation by the leading approximation ofNLexpansion. The
blreakén? in the convenft|or:1al eqtl)Jlal't'T?I fo_rmulzﬂon. Vveself—consistency condition is a crucial key to the description
also define our setup of the problem following the DLCQ of broken phase. This condition directly leads to the gap
method. equation which determines the value of condensate and,
equivalently, the physical fermion mass. As a result of sym-
metry breaking, there emerges a Nambu-Goldstdi®) bo-

The NJL model was first introduced as the simplést son. Since we do not have any fundamental scalar boson in
+1)-dimensional example which exhibits the dynamical chi-the NJL model, the NG bosofpion) should be supplied

o
)ER(ZG)(W). (2.3

— .
—sin20 cos20)\

A. Definition of the model
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dynamically as a bound state of a fermion and an antiferantiquark bound states. On the other hand, we treat the sca-
mion. Mass of the pionic state indeed vanishes in the chiralars as physically independent degrees of freedom in the chi-
limit. ral Yukawa model. So if we regard the fermions and scalars
It will be helpful to comment on the physics meaning of as quarks and mesons, there is the problem of double count-
treating the modei2.1). First of all, we should clearly dis- ing with which we are always confronted in treating chiral-
tinguish our model from the linear model of Gell-Mann ~ quark type model§17]. However, in the low energy region,
and Levy [14]. Structurally our model resembles the  OF equivalently for sufficiently large boson mags-«, the _
model in the sense that it consists of bosons and fermiongc@lars become “frozen” and do not behave as propagating

interacting with each other via Yukawa couplings and has &€drees of freedom.
continuous chiral symmetry. However, an important differ-
ence in our model is the absence of potential term for scalars.
In the linear o model, it is the wine-bottle potential that We analyze the chiral Yukawa mod@.1) in the DLCQ
induces the chiral symmetry breaking. Therefore the symmemethod and take special care of the longitudinal zero modes
try breaking occurs in théee level and the dynamical for- of scalars. In this method, we compactify the longitudinal
mation of NG boson cannot be seen. What we obtain is onlgpace into a circle<” e[ —L,L] with appropriate boundary
the sigma condensat@r)#0. This naturally leads us to conditions on fields. For scalars, we impose periodic bound-
identify the fermions with nucleorisOn the other hand, the ary conditions at each LF time,

fermions in our model should be regarded as quarks rather _ _

than nucleons. Indeed, as far as the leading order Nf 1/ o(x"=-L, x)=0(x =L, x,), (2.4
expansion is concerned, the model shows the same behavior . .
as the NJL model. For example, straightforward calculations m(x" ==L, x)=m(x"=L, x,), 29

such as effective potentifl6] or mean-field approximation gq that we can explicitly treat the longitudinal zero modes
show that the chiral symmetry breaking(o)= defined by

—(MN){W¥W¥)+0 occurs in the one-loop quantum leysée
Appendix A for more details Therefore we do not consider oo(X,) = if" dx" () (2.6)
our model as a special case of the lineamodel and in SR THY ’ ’
order to remind this, we call it the “chiral Yukawa model.”
It is also very important to view the NJL model as a 1
low-energy effective theory of the chiral Yukawa model. The mo(X, )= IJdeX m(X). (2.7)
relation between two models is very similar to that between
the Weinberg-Salam model and the Fermi theory of weakrhen the scalar fields are decomposed into the zero modes
interaction: The chiral Yukawa model is renormalizable andang the remaining oscillation modes
the fermions interact with each other by exchanging scalar or

B. Setup in the LF quantization

pseudoscalar bosons. If we take the infinitely heavy mass o(X)=0ap(X )+ @ (X), (2.8
limit for bosonsu/\A—, then the theory reduces to the
NJL model with nonrenormalizable four-Fermi interactions. m(X) = mo(X) + ¢ H(X). 2.9

In this sense, the NJL model can be considered as a low

energy effective theory of the chiral Yukawa model. Such

low energy approximation will be valid when the momentum

|32 mugh smallgr than the mass of the exchar)ged particles Wa(x~=—L, x,)=-P3(x =L, x,). (2.10

p <<uc/\. In this paper, we mainly treat the chiral Yukawa

model for technical reasons, but what we eventually want ttHere we must be careful about the boundary condition on the

know are results of the NJL model. Therefore even if we“bad component” of the fermion. As we discuss in the next

encounter divergences during calculation in the chiralsection, if we decompose the fermion as

Yukawa model, we only regularize them by some cutoff

scheme and do not renormalize them. Va=yS + 4%, JLA=A.V?, (2.11)
Finally, as we are discussing such a “low energy region,”

we do not have to worry about the problem of double countWe find thatys_ (“bad component’) is a dependent fieltsee

ing of physics degrees of freedom. In the NJL model, theAppendix for the definition ofA .). So the boundary condi-

scalar and pseudoscalar bosons are described as quafien on - should be imposed consistently with the dynam-
ics. For example, if we imposed the periodic boundary con-

dition on ¢_ and antiperiodic onj, , the mass termPW&

However, the fermions are sometimes treated as quarks. For e@1d the fermion’s kinetic term became antiperiodic. This is
ample in the LF formalism, Carlitet al.[15] investigated the linear NOt desirable as a term in the Lagrangian and even not con-
o model(i.e., with the wine-bottle potentiaregarding the fermions ~ Sistent with the scalar sector. Then how about the periodic
as quarks. But such treatment does not tell anything athpnami- ~ boundary conditions for both af, and¢_? In this case we
cal chiral symmetry breaking and therefore should be clearly dishave a dynamical zero mode ¢f. , which is, however, not
tinguished from our standpoint. important to our problem because the chiral condensate will

On the other hand, we impose an antiperiodic boundary
condition for the fermion field,
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be related to the zero modes @for ¥. Periodic fermion  the independent variables, ¢, andy? . Therefore in the
will give unnecessary intricacy to the problem. Therefore the-F formulation, we impose the chiral transformation only on

antiperiodic boundary conditiof2.10 is appropriate. the dynamical variables
¥i—e sy (3.3
IIl. CLASSICAL ASPECT
A classical analysis is necessary for specifying indepen- Po R(26 Po 3.4
dent degrees of freedom. In this section, we determine the ®, —R(20) e, 3.4

constraint structure of the model and define the LF chiral
transformation. Chiral current and charge are explicitlywhere R(26) represents a rotation matrix defined in Eq.
given. (2.3). These are the definition of the “LF chiral transforma-
tion.” If we find that _ and (o, my) also transform as
A. Constraints y_—e 7y _ and (‘;‘C’))—>R(26)(Zz) as a result of Eq43.3

The system has three important constraints characterist@nd(3.4), we can say that the “LF chiral transformation” is
of the LF formalism: a constraint fog_ (fermionic con-  substantially equivalent to the usual one, HGs2) and(2.3).
straind and two constraints for zero modes of bos¢érero-  However, what is surprising about the “LF chiral transfor-
mode constrainjs The Euler-Lagrange equation fer_ it- mation” is that the transformatiof8.3) is an exact symme-
self is the fermionic constraint try even formassivefermion as far as interaction is absent
[13]. So it will be interesting to check whether the “LF
chiral transformation” in our model is exact or not when a
mass term is present.

In order to see the transformation property of the depen-
Also the zero-mode constraints foiy(x, ) and mo(x,) are  dent variables, let us solve the constraiokassically This
easily obtained fronx~ integration of the Euler-Lagrange means that we completely ignore the ordering of the vari-
equations foro- and 7, respectively, ables which becomes a burdensome but important issue in a

quantum treatment. The fermionic constrdiitl) which was
-1
A o lars. The zero-mode constraints are also solved formally. Ex-
plicit form of the solutions is given in Appendix C. Now we

originally a complicated relation in the purely fermionic NJL
where[ ]o denotes integration over~ (see Appendix B find the transformation of the zero modes and subsequently

1
i&_z,/fi:E(iylai+m+0'—i7775)y+¢/fi. (3.1

2
"
J’__
N

1

=0, model? is now easily solved owing to introduction of sca-
0

More explicitly, that of y_ .
0:(,4;,_2_(72)<00) B ,u_zi 1. Massless fermion
N\ mg) N2 Let us first consider the massless fermion case. When

=0, it is easy to see that the transformati@:3) and (3.4

— -1 . L
v T(- )y¢a+¢/aT . )y*z,//i 32 induces the following:
1Ys Y5 0
R
These equations mean thag and 7 should be represented 0 —R o)’ '

by other independent variables. If we take fae> limit,
the zero-mode constraints are reduced to zero-mode pro- Yr—elfr5y2 (3.6)

jected equations of the familiar relations= — (AN/N)¥ ¥

and 7= —(N/N)WiysV¥. Eventually the independent de-
grees of freedom are nonzero modes of the scalgrse.,,

This is identical with the usual chiral transformation. There-
fore it is shown that whem=0 the fields do transform as

and the “good component” of the spinaf, . The above Egs.(2.2) and(2.3) even on the LF at the classical level.

constraints are, of course, derived from Dirac’s procedure NOW that we know all the transformation laws, it is
(see Appendix € It is easily found that they belong to the straightforward to construct the Noether current and charge.
second class The Lagrangian wittm=0 is invariant under the LF chiral
' transformations. Form of the LF chiral current is equivalent
to the usual one:
B. Chiral transformation on the LF

Definition of chiral transformation on the LF is different
from the usual one Eq$2.2) and(2.3). This is because the 2 js gjfficult but possible to solve the fermionic constraint in
identification of independent degrees of freedom is not thejassical treatment where we just treat the spinors as Grassmannian
same as usual. As we sawg, 7o, andy® are dependent numbers. The exact solution obtained is highly nonlocal and com-
variables and should change as a result of transformation gfiicated[12].
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. — 2N and D(x,) is the transverse differential operator defined in
Jo= =V, s+ 22 (M0 =00, m). (3.7 Appendix C. It is evident that the dependent fields do not
transform as Eqs(3.5 and (3.6). As a result, the Noether

However, o, o, and¢ _ in Eq. (3.7) should be understood current(3.7) also gets modified byAthe term proportional to

as solutions of the constraints. On the other hand, the LIn. The explicit form of the currenjf is very complicated
chiral chargeQs =", dx fd?x,j. does not include the butwe can see that the component is equivalent to that of
constrained variables (3.7). Therefore the LF chiral charge is given by E§.8)
even for massive case. However, contrary to the massive free
at a 2N fermion, the divergence of the LF curreat‘jf’ does not
—V20 s+ F((P”a*%_%&*%) ' vanish due to nontrivial interactions. .
(3.8 One of the lessons suggested by these observations is that
when we investigate physics related to massive fermions
which is consistent with the fact th@'g': is a generator of (e.g., PCAC relation we had better treat the curreﬁ} de-
the chiral rotation for independent variables. Transformatior}-

of other dependent fields should be obtained through theIned by the massless fermions rather th@n This s clear

Qs = | &

change of dynamical variables. for the free case: The true LF chiral curre}it (3.9 defined
for the massive fermion vanishes if we take the divergence
2. Massive fermion while that for massless fermiomz gives the usual relation.

This is true of the chiral Yukawa model. The divergence of

The massive fermion case is much more complicated. A ) S
e current(3.7) for the massive case is given as

mentioned before, an astonishing fact of the “LF chiral
transformation” is that it is an exact symmetry even for a
massive free fermiofl3]. When the mass term is present,
the “bad component” of free fermion does not transform as

~ while 94]® is very complicated. It will be very difficult to
Eqg. (3.6). Subsequently, the associated Noether curﬂént L y P y

has an extra term proportional to the bare mass discuss the PCAC relations, etAc., by usjrig Furthermore,

it is not quite clear if analysis qf; makes sense. Therefore,
"5 5 . T 1, even for the massive case, we decide to treat the cui@ent
Ju= I im(gs Y ) yuys =y ¥ (39 {5 discuss the physics such as PCAC. This point will be
discussed later again in Sec. V.
Nevertheless, the divergence of the current turns out to be

Zero a“3i=0 due to the cancellation between the first term

((;uJi:_ZimeYS\y) and the second term. This should be In the classical analysis, we formally solved the con-
compared with the usual current in the equal-time quantiza\sl\t/rslints inoor?her to fin_d thﬁ LF‘ItChi'ral _currs_nt Iand chatrge-
. 5_ O - S . enm=0, the resulting Hamiltonian is chiral symmetric
E(())?dsjf‘or in;Ierr);{Lcjt/iSng,thae(‘)Zilés ar?(lzlml;lr %i}lrfﬁaglryctr:]m?:lsec::teqa nd we do not have any symmetry t_)reaking term. Thergfore
- even if we go to quantum theory with such a Hamiltonian,
with PCAC relation. Note that the LF chiral charg@™  we will not be able to describe the chiral symmetry breaking.
:fd3x \];’ is equiva|ent to that in the massless case due t&ertainly it mlght be pOSSible that we could find a broken
phase Hamiltonian by adjusting the operator ordering, but
such procedure seems unnatural and tricky. Instead, we
quantize the model before solving the constraints. This
means that we perform the Dirac quantization for constrained
systems. After that, the constraints are solved quantum me-
chanically with a care of the operator ordering. The same
route has been traced by many people who tried to describe

% =—2mWiysV, (3.12

IV. QUANTUM ASPECTS

J. =J2 . This is natural because the LF chiral transforma-
tion is defined irrespective of the mass term.

Now, how about the chiral Yukawa model? Using the
solution form+#0 (see Appendix § the infinitesimal chiral
transformation ofoy, 7o, and¢_ are given as follows:

( 5‘70) :( 20 ) n 0 ) (3.10 the spontaneous symmetry breaking of simple scalar systems
5’770 _200'0 20m§ ' ' [5]
Calculation of the Dirac brackets in our system is a very
1 complicated task. However, the Dirac brackets between dy-
Sy =i0ysy? —2i 0ysm(1+¢) 279 Y ., namical variables turn out to be standard ones: Quantization

(3.10) conditions for the dynamical variables, ,,., and % are

where [@:(X), @p(Y)]xr=y+
2 — —
prIil o xT—y
1 wu? 1 == Sy 7l €EXT Y ) P(x,—y.),
(=== D) YA ==y el N4
? - 0 (4.2)
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{42 a(X)M/fTﬂ(Y)}v:w a desirable feature, but we will find its usefulness in describ-
ing the broken phase physics. Anyway, we must pay great
1 barum e S(2) attention to the fact that naive mode expansion of(tualar
= E(AJr)aﬁﬁa S(x =y )8 (x, —y,), and fermion fields is independent of the value of mass.
The Fock vacuuno) is defined by
(4.2
+ +
where¢ and 7 stand foro or 77, anda,8=1, ... 4 are the 3(Pn 1P.)10)=2+(py .p.)I0)
spinor indices. The sign functioe(x ™) is defined in Appen- ot ot
dix B. The other commutators between dynamical variables = P%(Pn .P.,h)[0)=d*(py ,p, ,h)|0)=0, (4.9

are zero. Note that these conditions &respective of the
phaseof the model because they are independent of the infor n>0. It is worth while emphasizing that the vacuum of

teraction. this system is really the Fock vacuum since we have no
Mode expansion of the fields at =0 reads dynamical zero modes. Because of fiie conservation, the
normal-ordered chiral charg®:™ always annihilates the
2 2 .
u 1 1 dop, . vacuum;
en0=\r3r [ ta o e
=12 2p; ) (2m) E
L §F0)=0. 4.6
+a,(py ,p)e™, (4.3
It has been known that any lightlike char@" automati-
A 1 d’p, cally leaves the vacuum invaria@-F|0)=0 whether or not
YL =51 > oA ¥ it generates a symmetfyL9].
13 \2m2 p . .
n=5.5"" n In a quantum theory, operator ordering becomes an issue.

Let us comment on the problem of operator ordering and

% {w(h)b3(p;,p, ,hye P cla_rify our stance towqrd it. Since tlieero modg and fermi_-
onic) constraint equations are generally nonlinear relations
among operators, their solutions depend on operator order-
+w(—h)d*(p}!,p, ,h)e}, (4.4)  Ing. We must select an appropriate operator ordering. Then,
what can be the criterion for this problem? In many papers
where px=p/x —p,x, and p==n/L. The spinors discussing the spontaneous symmetry breaking in DLCQ, the

h::%

w(=h) depend only on the helicity [13]. It follows that Weyl ordering is adopted on general grounds. However, it is

not clear whether the Weyl ordering in constraint equations

[a:(py ,PL), a;r](qr; 9] makes sense because they inclgde botr_] iqdependent anq de-
pendent variables. The most reliable criterion for determin-

=(2m)2(2L)2p, 8nmd P (py —d.) 3, ing the operator ordering will be as follows. Before solving

the constraint equations, we can calculate the Dirac brackets

{b3(p; ,p, .h), b°"(q; ,q, ,h")} between independent variables and dependent ¢ees
[og,.]=---), which are terribly complicated in our

model and we do not display them in this paper. Here we
already have to specify the operator ordering. On the other
hand, we can solve the constraint relations with the above
{d¥p, ,p, ,h), d®’(q,q, ,h")} ordering and obtain their solutions such asy
=oo(®s,¢4,¥+). Now we can calculate again the commu-
tators between the solutiorfse., dependent variablesand
independent variablege.g., [og(¢,¢~,¥+ ), ]) using
simple commutators Eq$4.1) and(4.2). The results should

It is important to note that both of the above mode expanbe identical with those of the Dirac bracket. In other words,
sions are independent of the ma€ghe spinorsw(*h) are  we must find out such operator ordering that will give a
independent of mass. This is clearly shown in the Appendixonsistent result in the above sense. This should be the cri-
of Ref. [9].) This means that if we calculatepoint Green terion for an appropriate operator ordering. However, as you
functions at fixed timex™ =0, they will become independent expect, to find such ordering in our model is an extremely
of the value of mass, which is not a correct result in generaldifficult task. So practically, we just work with several par-
This undesirable situation is known as one of the pathologiticular orderings and compare the results. In our actual cal-
cal properties of the LF formalism which needs great care foculations, we treat two specific orderings and check whether
obtaining correct resulfsl8]. Indeed, as we will see later, to the results depend on the ordering or not. To find a consistent
remedy this problem is indispensable to get a meaningful gapperator ordering should be examined in much simpler mod-
equation. In many cases, loss of mass information is curedls.

by a carefully chosen infrared regularization. It should also In the following, we will solve the zero-mode constraints
be commented that the mass-information loss is certainly ndh two different ways: perturbative and nonperturbative

2L
= 2prJ1r E 5ab6nm5(2)(pL —0.)Shn »

2L
= 2prT E 5ab5nm5(2)(pj_ —q,)Shn -
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methods. To solve the constraint is significant to describe the [Qs", Wa]=ys¥?, (4.14
symmetry breaking on the LF. To see this, let us decompose
the longitudinal zero modes inmnumber parts and normal- [QEF ol=—2in [QEF 7]=2ia. (4.15

ordered operator parts,

Of course the Hamiltoniafisee Eq.(C1)] is also invariant
[Q:F,H]=0 which is the same as the classical analysis in
©) 4 (oD the previous section. ' '
me=mo t Ty (4.9 What is most important is thahe vacuum expectation
L . .. values of the perturbative solutions vanish in all order of
If the c-number part of the solution is nonvanishing, it di- perturbation(0|o|0)= (0| |0y =0. This is easily verified

— (c)
rectly mea?g nonzero conden_sa(@|a|0)—aq #0 and by using(0|e, -/0)=0 and(0|#" d, 4. |0)=0. Therefore
(0]7|0)=my”+0. Therefore to find such nontrivial solution \ya are in a chiral symmetric phase:

is necessary to describe the symmetry breaking. We explic-
ity demonstrate that perturbative solutions cannot lead to (0|o|0)y=(0|7|0)=0. (4.16
chiral symmetry breaking while nonperturbative solutions
give nonzero vacuum expectation value éarln both cases,
the fermionic constraint is formally solvdas in Eq.(C2)]

0= U(()C)+ oéo"), (4.7)

B. Nonperturbative solutions to the zero-mode constraints

and inserted into the zero-mode constraints. We next solve the zero-mode constraints using the mean-
field approximation. In the following, we work with a par-
A. Perturbative solutions to the zero-mode constraints ticular operator ordering though the result is the same as

others as far as we discuss the leading order Nf éxpan-
Qion. The following ordering greatly reduces our calculation.
Substituting the solution of the fermionic constraint into the
zero-mode constraints and rearranging the ordering, we ob-

Let us solve the zero-mode constraints using perturbatio
in terms of the coupling constaint Since\ is a dimension-
ful parameter, we introduce some scalg which is much
larger thant (A o>\). We regard\, as a critical coupling

Iy
of the symmetry breaking which will be determined later. an
Now we expand the constrained variables as follows: u? L\ [ 70
e )\ n 0:<T_&L) 770)
=> |—]| oV, 4.9
70 nzo }\cr) 70 49 1 u?1 fL d 7fL g _e(x"—y7)
C TN )Y T
A
To= Z ()\—> W(On), (4.1@ -1
e X ia/ff(x)(%)wwi(y>—iaﬁ/fi*<y>
ee] )\ n
A= — | A", 4.1 -1 m+o(y)
=35 @ x w5> vt 0 i)
and the dynamical variables are treateddg$\/\)°]. In- —a(y)

serting the above expansions into the constraints Ej%) - zpff(y)lpi(x)]—
and (3.2) with the natural ordering and comparing the same
order of perturbation, we obtain the solution order by order.
For example, the lowest order solutions are + A1 (y)iysy2 ()]

at R a
m+0_(y))[¢+ (X)iysi(y)

+H.c., (4.17)

oV=7{=0, (4.12 B o
where ¢4 (y)= 4% (x",y~,x,) and similarly foro(y) and
1 (y). The operator ordering here is different from that in the
—(iyra, +mt+o,—ie,ys)y Yd. perturbative treatment. However, one can show that the pre-
1o 41 vious perturbative result does not change with the above or-
4.13 dering. That is, theerturbativesolution with the above or-

dering does not lead to chiral symmetry breaking.

The chiral transformation of the perturbative solution in Let us first determine thenumber part of the zero modes

the massless case can be inductively checked. First, it is ea f'”e‘.’ by Egs(4.7) and (4.8 .We saw in the classical
to see that the zeroth and first order solutions rotate syn@nlysis that ¢o,mo) rotates chirally in the massless case.
metrically under the LF chiral transformatid8.3) and(3.4). Therefore we choose
If we suppose thath order solutions rotate chirally, the (

¢3(0)=

N[ =

Higher order solutions are given in Appendix D.

(c)
+1)-th order solutions also behave the same. Eventually the oo #0, (4.19
perturbative solution transforms symmetrically under the LF ©
chiral rotation(3.3) and (3.4), my’=0. (4.19
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Taking a vacuum expectation value of the zero-mode con“mass-information loss” on the LF18] which must be re-

straint for o greatly simplifies the calculation, which is an
advantage of our specific choice of ordering:

1 wu?

u?
TO’E)C)Z——EW(m‘FO'gC))
at 1 a 1 at a
x{0 +F¢+_ ig U+ i) 10).
- - 0

(4.20
IntroducingM defined by
M=m+ 0'(()C) ,

(4.21

and evaluating the vacuum expectation value in(B®0 by
using the mode expansion, we have

1\ 1 1
M-m=--—=M(0 a*.—(/;a—(.—zpa*)zpa 0>
J2 N < ‘ B TS /A e R
2 Ap*
=AM d? —_— 4.2
(277)3f pin:12/2,--~ pr-:— ( 2

whereAp* =x/L. The operator form of the right-hand side
suggests that we identify as

M 1 1
—!o aT-_lpa_(-_ aT)wa 0>
\/§< ‘ + |&_ + Ia_ + + 0
=(0l[ ¥ Fy1ol0), (4.23
whereW$, is a fermion with mas#/,
Th=¢i+diy,
a 1 1 H + 4,8
l//fMEEI(WL&ﬁFM)V /. (4.24

(2, is the “bad” component of?'{, .) Therefore it is natu-
ral to consideM to be the physical fermion mass. In other
words, the identification in Eq(4.23 corresponds to the
self-consistency condition.

Equation(4.22 should be the gap equation by which we
can determineaEf) and equivalently, the physical fermion

massM. However, it is not evident to regard it as the gap

equation because E¢1.22 in the chiral limitm—0 cannot

give nonzeroM. The same situation was observed in our

previous work on the Gross-Neveu modi¢l]. As was dis-
cussed in Ref[11], if we want a meaningful gap equation,
we must supply mass information so that £4.22) pos-
sesses a nontrivial solutidvl # 0 in the chiral limit when we
regularize the divergent summation overThe need of the
mass dependence in E4.22) is readily understood from the
identification in Eq.(4.23. Indeed, one can easily check that

(0| ¥\, W |0)/M should explicity depend orM in the

paired properly for obtaining correct results.

It may be possible to regularize the divergent summation
in Eqg. (4.22 with, say, a heat-kernel damping factdr1],
but such calculation is complicated and not tractable. In-
stead, we introduce some cutoff that renders the divergent
summation into finite one. Such a cutoff should be intro-
duced so that the result correctly depends on the rivass
Here for simplicity, we adopt a cutoff which eventually re-
duces to the parity invariariPl) cutoff p* <A [8]. From the
dispersion relation and the PI cutoff, we find that the mo-
mentum region is restricted toM?+ pf)/2A< Py =mn/L
<A. Therefore we set

Nr<N<nyy, (4.295
whereng andny, are nearest half integers to
L M?+p?

oA and

L
—A,
a a
respectively. If we use the approximation for a large half-

integern, =)_;,...n"'=Inn+In4e?, the summation is ap-
proximated as

Apt "1 iy 2A%
—= 2 —=|n——=In ,
n=12,.. Py n=nm+1 N Nir M2+ p?

(4.2

for fixed A, M, and pf and sufficiently largd.. Of course
there is “finite volume effect” for finiteL, but we finally
take the infinite volume limit and the finite volume effect is
expected to be small as far s large enougfi.Eventually
Eq. (4.22 becomesdependenbn the massM and can be
considered to be a gap equation

2

M—m=\M—;
472

M2
2"z

2

2A

The form of this gap equation is different than those with
familiar cutoff schemes such as the three or four momentum
cutoff [3], but our gap equation behaves exactly the same as
usual. Indeed, even in the chiral linmt— 0, this equation is

a nonlinear equation fdvl and when the coupling constant

is larger than the critical valug.=27%/A2, there is a non-
trivial solutionM =M ,# 0 (see Fig. 1 This also means that

3Finite volume physics itself is intriguing. For example, similarly
to the equal-time calculatiof0], if we make the volume smaller
and smaller, we will meet a critical length,, beyond which the
chiral symmetry never breaks down. Moreover, if we could deter-
mine theL dependence of the physical madgL), it would serve
as a prediction for the limiting behavior of eigenvalues in the nu-
merical DLCQ calculation. Nevertheless, such finite volume phys-
ics is outside the scope of this paper and we do not discuss it
anymore. We always assunte sufficiently large and ignore the

equal-time formulation. This is a typical example of the finite volume effects.
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5t linear terms in Eq.(4.17) by using AB=~A(B)+(A)B
—(A)(B), where the expectation values are taken with re-
4 spect to the Fock vacuum. We further neglect contribution
from the oscillating modes of scalags,= ¢ ,=0. Then the
" 3 operator parts are given by
MO }LCI‘ 5 (op) 5
70 ro 2 | ey .
. (Trgop)):_ﬁ(mm_al) 1 .‘I’ﬁ,.(i%)‘l'ﬁ/l- )
(4.28
0% ! s z 23 ’ where ac-number quantitym2,, is defined as
7\. / 7\.c1'
. . . I u? u? 1 1 1
FIG. 1. Fermion’s dynamical madg, in the chiral limitasthe 2 -2 = — [ ]| g2t — P _(-_'ﬁiT) y210).
solution of the gap equatiof@.27). There is a nonzero solution for MU N \/5 Toig- 19 0
A> N (4.29

the zero mode ofr has been determined ag”=M —m. The numerical value of3, is calculated if we utilize the

. 2 _ .
Furthermore, one should note that the gap equdtice) is 9P equationmzy=u“m/AM. Inserting thec-number and
independent of the value @f. So we can regard the finife ~ OPerator parts of-y and, into the solution of the fermionic
result (¢)=M-m as the result for infinite u;  CONStraint, we have

—(MN)(PP)y=M—m. (Remember that the— < limit of

11 _
Eq.(3.2) is o= — (\/N)[¥W],.) Therefore the chiral sym- yo=dmt 5 (P —im{Pye)y Yt (430
metry breaking occurs for arbitrary value afin the mean- B
field approximation. This is consistent with the result of the

X . o . wherey_, is given in Eq.(4.24.
conventional equal-time quantizatigsee Appendix A Vomis a.(4.24

he other hand. there i vial solutivhe h To understand what we did above, let us consider the
_Ont e ot ;ar and, t erde !? a tnwa: SO ug!m_? (\_N enh relation between our operator ordering and thd &kpan-
m=0) even forA>\, and if we select this solution the ;5 \ye have obtained an equation for thieumber part of

resulting thet())lry berc]_orrr]]es | chlral hsyrrlldmgtrlch Ther|1| therleao (the gap equationust by taking the vacuum expectation
comes a problem which solution should be physically realy g),e of the zero-mode constraint even without recourse to

ibze(r:i]. Uhnfortur(ljately, compl)larisonh.of thi VaCL#T'm ent()alrgy fSrthe 1N expansion. This simplicity in obtaining the gap equa-
oth phases does not tell anything about this problem be;q, g mainly due to our specific choice of the operator or-
cause the vacuum energies turn out to be the same. If

. . h W&ering. As has been commented before, if we take other or-
found the consistent operator ordering as discussed befor erings, our calculation becomes terrible because of

we could estimate difference of the vacuum energies anfl,niicated structure of the Dirac brackets between con-

) d 4 th tem b table if | tcommutatov[ao,zp+] turns out to be of the order @ (1/N)
onic modes and the system becomes unstable 1t we Select g,y \ye can ignore the effect of orderifi@urthermore, the
trivial solution for A\>\.,. This will be again discussed in

i L X approximation neglecting the scalar oscillating modes is also
Sec. VB. So we deal \.N'th only the noqtnwal SOIUt'On for justified by the 1N expansion. From the quantization condi-
N>\ and do not consider the symmetric spluﬂon. _tion (4.1), we find ¢, is O(N~Y?) whereaso, is O(NO).
Com_m_ents on c_;ther cutoff schemes are in order. We fin hese considerations justify that our mean-field calculation
a no_ntrlvu_il equation foM by using the Pl cutoff. It Was \ith the specific operator ordering is correct up to the lead-
crucial to include the mass information as the regularization

H h 0 b ful i tting th toff. A ing contribution of the M expansion.
owever, we have 1o be careiul In setling the cutoll. ANy~ “gefqre ending this section, it will be better to point out the
cutoff scheme which holds mass does not necessarily lead o,

a physically sensible resulf21]. For example. a two erit” of the mass-information loss. Certainly it was a
. : : . ’ " demerit in deriving the gap equation, but this property gives
dimensional Pl cutof2/2A <p* <A with a transverse cut- 9 gap €q property g

. . . avery important benefit to our framework. The fact that the
off |p,| <A gives a wrong result. The resulting gap equation

. ) _ mode expansion is independent of the value of mass in turn
erroneously predicts that there is no symmetric phase. 15

ing the three dimensional rotatig@] and the PI cutoff8] in
our case predict the existence of the critical coupling con—
stant.

Now let us determine the operator parts of the zero modesif one takes u—o, one will be convinced tha{o, i} ]
by the mean-field approximation. We approximate the non=[— (A/N)[¥ W], 42 ]=0(N"1).
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depending on the change of mass. Therefore the LF vacuuformation. Using this result, the chiral transformation of
is invariant even after the fermion acquires dynamical mass™, #{° in Eq. (4.28 and y_ in Eq. (4.30 are given as
M #0. follows:
LF (op)y— _ o; (op) (op)
V. PHYSICS IN NONPERTURBATIVE REGION [Qs oy ]=—2imy " +Aay", (5.9

In this section, we discuss some physics consequences of [QLF, 7P =2i PP+ A (P, (5.6
our method. First, we explicitly demonstrate how the trivial-
ity of the null-plane _chira_l charg®g" and the nonzero chiral [QF 2 = yeu? +
condensate reconcile with each other. Secondly, masses of 5 Y- 1= 7Vs¥-
the scalar and pseudoscalar bosons are calculated from the
Lagrangian for both phases. Finally, we derive the PCACwhere
relation for the chiral currenit [Eq. (3.7)] and discuss the

i
1+ mmg’m)mﬁﬂ, (5.7)

) (op) 2 i
nonconservation oQ:" . Aog™| a7 pa
on| =N 2 21|90 ¥m W 0
Amg N mZy—a? -1

A. Null-plane chiral charge vs chiral condensate )
. o [

In the equal-time quantization, the broken vacuum does — ff( IS .il/li'f'H.C. _

not possess the chiral symmet@E’|0)+#0. The Nambu- V2 1 /19~ 0

Goldstone phase is characterized by a nonzero condensate of

the order parametgf#¥) and the strict expression of the ON€ can easily show thaoG® is zero due to
nonconservation of the chiral char@'|0)#0 is a relation (0| ¥ yiys¥y|0)=0 and antisymmetry of the sign fUI’(l(%iOI"I

ET ay: _ 3y 1i0/y\ i — o e(X~ —y"). Therefore the terms involving V', andA 7
<o|[—QS WivsW][0)=(0lfd [,Js(x)'_q” ’)/5\1.’]|0> 2l are the extra compared with the usual chiral transfofmation.
(0] w¥[0)#0. Therefore there is no inconsistency betweenthey do not vanish even in the chiral limit. These extra
these two relations. On the other hand, remember that th@yms are direct consequences of being dependent variables
lightlike charge always annihilates the vacuum. This impliesyng the dynamical generation of the fermion misls&Jnlike

_ ? — . . . .
that if a similar re|ation[Q(5LF),\Iiifysllf]:Zi\If\P held on thﬁ equjJaI—tlmglcalgulatlon, th(tj-z Icgral trgnsformatlonI tc))f the
. . - . full field variables becomemodel dependenih general be-

}rr:]emlle%?;tZ?nEgnn;?g \t/)vr|(t)r|1( ?Eepzifgi';l} gffl ?21: 2h|;ta\?/v(?r$£ o cause a part of the variables are constrained and the infor-
= y : y . ) 9€ mation of interaction inevitably enters the transformation law

Qs |Q>_O' I_n th_e following we resolve this seemingly in- of constrained variables through the solutions.

consistent situation. - Due to the modification of the transformation law, we can
The chiral charg®s™ defined by Eq(3.8) annihilates the  5\ig the inconsistency. The transformation of the full

vacuum and generates the chiral transformation for the indg;o 4 is given by[QLF, 7]=2i (¢ + ) + AmloP £ i &

pendent variables irrespective of the symmetry. Indeed, we 5/ 0 7 0 '

find he vacuum expectation value of this equation gives a con-

sistent result
[Qs . ¢,1=—2i¢,, [Qs ¢, ]=2i¢,, (5.1 (O][QF,7]|0Y=2i(0| P+ | 0) + (O] A P 0) = 0.
5.8
[Qs" 1=yt . (5.2 59

i . Now it is easy to obtain the transformation Wf ysW. Our
These are the fundamental laws of the chiral transformat|or\=1-na| result is

Any transformation of the dependent fieldg, 7y, andy_
should be derived from them. — _ v~

In the broken phask >\, the gap equation has a non- [Qs, Wi 75\If]=2i\lf\lf+{ A A7+ 2M)
trivial solution M #0 and the fermion behaves as a massive V2

fermion with the dynamical madd. First of all, let us view 11

the chiral transformation of the massive fermion operator Z = JtUR+H 9
. . . X s Yy ¢ tHc. (5.9

¥\ defined by Eq(4.24). The result is already unfamiliar to 210

us:

In addition to the first term that is equivalent to the usual
[Q5F, ¥d =y P2+ AW (5.3  result, we have nonvanishir_lg extra terms. However, if one
takes the vacuum expectation value of this equation, such

a 11, . extra terms should exactly cancel the first terﬁr{\i‘lf}
AVy=-2M Ys5 5 Y V- (54 20. Itis indeed the case and the explicit evaluation of the
right-hand side gives a consistent result

The second term W%, does not exist in the equal-time quan- F =
tization. Only if M #0, this is equivalent to the usual trans- (0|[Qs", WiysP]|0)=0. (5.10
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Here we neglect the terfid 7{°”,4® ]~ O(1/N). Thus we propagators\ ; ,(k?) up to one loop of the fermion. Finally,
checked the consistency between the null-plane ch@ije the pole masses are obtained from the equal!i&g‘r,JgT(k2

and the chiral condensafer)=— (A/N)(W¥W¥)+#0 up to the =m; ,)=0.
mean-field level.
As the result of these unusual chiral transformations, even
the Hamiltonian loses the chiral symmetry in the broken Let us first consider the broken phase-\.,. Inserting
phase: The commutatdiQs",H]+#0 is directly evaluated the broken solutions into the Lagrangian, we have
exactly in the same way as above. This means that the LF
chiral charge is not conserved in the broken phase. It should N ~ A “~ N A n
be emphasized that the violation is proportional to the fermi-£= 52 (d,00 0+, md"m) = ﬂ{(ogcu o)?+m?}
on’s dynamical masM and thus does not vanish even in the
chiral limit. It is very interesting that the chiral symmetry at- a
breaking in the LF formulation is expressed as an explicit ~ + 2y, ¢ +12
breaking. The important difference, however, is that usual
explicit breaking does not accompany the gap equation, a A A +oa
while in our case the gap equation plays a very important <] ¥“m™T EE(‘T_”TVS)?’ U
role in many aspects. The nonconservatio®4f on the LF N N
in the broken phase has been discussed by several people in_ s Nt 0, N2, "o
relation to PCAC[15,22,23. Particularly, a similar situation 2_M2('9#U(9M0+‘9#773#77)_ ﬁ{(ag "+ o)
to our conclusiorfi.e. the nonconservation of the null-plane _ .
charge in the DLCQ methodvas found in the broken phase Ui d—M)TS =W (o+imys) Wy
of the scalar mode[23]. The problem of nonconserving 1 1
charge should be intimately connected with the divergence ‘52,7 .~ + ~C a
of the chiral current. In Sec. VC, we will again meet the 2¥ulotimys)y i(?_,{(0+|7775) Mt (513
nonconservation o’ as a result of the PCAC relation and
peculiar behavior of the pion zero mode in the chiral Iimit._Where we used the notatioa(x)=cr§)°)+(}(x) and 7(x)
Let us turn to the symmetric phase where the coupling is  « ) ]
large but slightly less than the critical valdes\g,. Inthis ~ =m(X), and ¥y, is defined by Eq(4.24. Instead of the
region, we use the symmetric solution of the gap equation. Ifermion  propagator ~ for +  component S. . (p)
we restrict ourselves to the chiral limit=0, the solutionis = v2A.p_/(p?~M?+ie), it is convenient for practical
just a trivial oneM =0. Transformation law in this phase is calculation to define the propagator f#, :
obtained by simply substitutinig!l =0 into the above results.
Therefore in the leading order ofNl/expansion, all the de- _ p+M
pendent fields transform in a chiral symmetric way S(p)=

1. Broken phase

; at _Loap oo~ e
|(9—'/f—rv|_§ Ty (o+imys)

P MErie o
- €
[Qs7, o™= —2ing®, [Qs mE™]=2iag®, _
(5.1)  where p*=[p*,p =(p>+M?)/2p*,p,] is the on-shell
four momentun{24]. Note that this partially on-shell propa-

[Qs™ ¢ ]1=ysy? . (512 gator S(p) is different from the usual fermion propagator

. . S(p) by an instantaneous pas{p)=S(p)—y*/2p™, which
With these commu.tators, we flnd_aIB@'gF,H]zo. '!'hus the arises from the bad componerit. as the solution of the
LF chiral charge is conserved in the symmetric phase afrmionic constraint.

expected. Scalar and pseudoscalar propagatbys, (k) with fermi-
on’s one loop quantum correction are given by
B. Masses of the scalar and pseudoscalar bosons

Here we calculate the masses of scalars which are bound 1 A7_Tl(k) k> 1
states of fermion and antifermion. Unlike the NJL model, we N A-Y(k) - u? X+ Fvukawd K) + Finsi(K).,
have “dynamical” scalars in the Lagrangian. Therefore it is 7 (5.15
convenient to evaluate the “pole mass” of the scalars di-
rectly from their propagators without considering bound-Where
state equations. The procedure of calculating the pole masses
is as follows. First we insert the broken or unbroken solu- iy iy
tions o, 7, andy_ into the original Lagrangian. For sim- __ 4 S\ Slern_
plicity, we ignore the finiteL effect. This is because we are Fvucand K) f [d p]tr[( 1 )S(p)( 1 )S(p k)}
only interested in the effects of the condensa$@ and the (5.16
nonzero constituent massl. Next, reading the fermion
propagator from the Lagrangian, we calculate the scalatomes from the Yukawa interactigfig. 2) and
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where we have utilized the gap equati¢h22 and m%M
=u?m/\M. The physical masses are determined from the
equations A, 1(k*=mZ .)=0. Since the integral in
F(k?,M?) diverges, we must specify a cutoff. Here we use
— - —_ - the “extended PI cutoff’[10]

vl

4 4 > pV<A, (5.19

S wherei denotes the particles of the internal lines. This cutoff
is a natural generalization of the naive PI cutpff<A and
can be applied to multiple internal lines. In our case, the
extended PI cutoff becomes

FIG. 2. Fermion’s one loop contribution coming from the
Yukawa interaction. The solid line is for the fermioh,, the
dashed line forr or o.

pi+M? p?+M?
1 — [lys| y" [iys T
Finst(k):_if [d4|0]tr[S(P)( 1) +_k+( . ) X 1=x
P The explicit form of F(k?,M?) with this cutoff is given in
.y iys iYs
+S(p)( 1 )

Appendix E. Then we obtain highly complicated nonlinear
1 (5.17  equations form2 _ which are also shown in Appendix E.

from the instantaneous interactigRig. 3). The integration

measure is given by

2A2.

,y+
p+ + k+

First of all, it is almost trivial that the equation fon,. has a
solutionm_=0 in the chiral limit. For small bare masa
=0, we find
-1
2 + - m2 = i+f (k2>=0M2)| +0O(m?)
f [d4p]=f dp, foc dp* (= dp " AM, 2 EPI My ,
i(2m)2) — 2 ) 0 27 (5.20

where M, is a fermion condensate in the chiral limand
Fep(KP—0M32) is independent ofm (see Appendix E
Therefore we have checked that the mass of the pion goes to
zero in the chiral limit and now we can identify it with the

Summation over the longitudinal discrete momepfa is
approximated by integration.

For simplicity, we putk, =0. Using a parametex
=p*/k*, the propagatora , (k) are expressed as

NG boson.
. The mass ofo is determined in the same way. For ex-
1[A7(K)) k& m3y, - k? ample, in the chiral and heavy mass limit-0,u—x, one
N ALk :;_7+ﬂk M%) K2—am2 ]’ can easily find a solutiom?=(2M)? which is known to

exist in the NJL model in the chiral limit.
) Our result of the pion mas$5.20 satisfies the Gell-
1 d 1 _ _ : .
}'(kZ,MZ)Ef dxf P. Mann-Oakes—RennéGOR) relation whenu— o:
0

(2m)% P2+ M2—k?x(1-x)

(5.18 m2f2= —4m(V ), (5.21
T wheref . is the pion decay constant. To see this, let us cal-
— —— — — culatef . explicitly. Rewriting the pion’s propagator in the
chiral and heavy scalar limit as
S I~
A(k)= k2—:n2 : (5.22
Z,=[NFep(k*—0M§)] ™%, (5.23
SFor small but finitem, the condensate is evaluated from Eq.
T (4.27 as
FIG. 3. Fermion’s one loop contribution coming from the in- Ner 1
stantaneous interaction which is represented by the vertical solid M=Mg,+ YT S 5o m+ o(m?).
line. (Mg/A%)In(2A%/Mp)
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FIG. 4. Squared massenf,vv for m—0 and u— scaled by
Ayt Solid line is fore and dashed line fofr. For\>\, we used
the broken solution, whereas far< A, symmetric solution.

we find the effective pion-quark coupling,= \Z,. Then, in
the leading order of N expansionf  is given by a fermion
one-loop integral with appropriate Lorentz structure

ik“f ,=—(0|j£(0)|m(k))

- Nf 9P S K)yeSp)]
9 (2m)° Y ysP Y52l P

=2ig ,NMok* Fep(k?*—0,M3), (5.24

therefore

2M
F=2Mo[NFep(k2— 0 M) V2= ===

N

Using this result andnZ=(m/AMg)NZ,, we finally con-
firm the GOR relation5.21).

(5.29

2. Symmetric phase

PHYSICAL REVIEW D 61 045009

broken phaseN>\.), m>=0 andm?=(2M)?, while in
the symmetric phase\&\.,), m2=m2 is given as a solu-
tion to Eq.(5.27). The pion massn? goes to zero in the limit
A— N 0.

It is important to recognize that Eq5.27) implies the
existence of tachyonic modes far>\. as we mentioned
before. Indeed, if we assume>\., we find a negative
solutionm2<0. Therefore, if we choose the symmetric so-
lution to the zero-mode constraint, then the resulting theory
becomes unstable for>\.. So we must select the broken
solution above the critical coupling.

C. Derivation of the PCAC relation and the nonconservation
of Q5"

As we discussed in Sec. llIB2, it is almost hopeless to

treat the LF chiral currenjtg‘ for the massive case. Instead,
we adopt the currentt (3.7) which is much more tractable

than }g and gives the same null-plane charge. Then it is
straightforward to derive the PCAC relation. Consider the
divergence of £ in the u—o limit [see Eq(3.12]

J,j=—2mWiys¥

=2m—a

N
=2mo\Z,m,, (5.289

where the normalized pion field, was introduced so that its
propagator beA (k)= 1/(k?*—m?) [see Eq.(5.22)]. If we
use the pion decay constaf.25 and the pion mas&b.20

Next let us consider the symmetric case. Using the symFor equivalentlym?=(m/AMy)NZ_], we obtain the PCAC
metric solution to the zero-mode constraint, we can evaluateglation

the masses of and 7 in the symmetric phase. In the chiral

limit, we have

1 k2  m3
A mo(k) 1= = =4 AR MZ=0)K?, (5.26
w

where the zero-mode massz,, in the symmetric phase is
expressed differently from that in the broken pham%M
=u?IN— u? N g+0O(m). Since A (k)=A_(k), o and
have the same physical masg =m?. The physical mass
m? is obtained as a solution of

T 2A2—mi‘

|- 627

m

2
m n
"(2m)?

.

)\cr A m

In the region A=<\, there is a nonzero solutiomi
<2AZ

In Fig. 4, we show the square massessaind 7w around
A~\¢ in the chiral and NJL limit (n—0, w—o). In the

(5.29

: 2
d,j5=mf m,.

This is also consistent with E@5.24) [our normalization is
(O] m(K))=1].

The important consequences of Sec. V A were {hathe
null-plane chiral charg@gF is not conserved in the broken
phase[Qs",H ]#0 and that(ii) the violation is propor-
tional to the dynamical fermion mas4 and does not disap-
pear even in the chiral limit. Since we did not show explic-
itly the quantity because of its complexity, we here discuss it
in a more elegant way in the context of the PCAC relation.
First of all, let us remember that the chiral chafge8) de-

fined byj£ is equivalent to the one defined frofff due to

je =ja . This means that the time derivative @™ should
be the same even if we use the currght Therefore, we can
calculate the quantity, Qg from the PCAC relatior(5.29
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e 1o r Indeed,m%Mz,uzm/)\M in the broken phase. Therefore in
9+Qs"= T[QS Hir] the u—oo limit, we find the singular behavior of the zero
mode:

=f7mef dx~d?x, m, 1 . )
Wosz‘_de_M f(X_,XJ_)
:fwmif dx d?x, 7?2, (5.30
AM (L

. _ H—J dx™ f(x7,x,). (5.33
wherer is the zero mode ofr,. If the current mass is not mJ-.
zero, the right-hand side does not vanish in general and the ) ) 5
chiral chargeQL" does not conserve. Since the right-hand©n the other hand, in the symmetric phasgy = u?(1A

side is proportional tan?, it seems to vanish in the chiral —1/\ ) +0O(m) survives finite in the chiral limit. We called

! o " . .
limit m2ecm—0. However, it does survive finite even in the Mzm hzer_o—rlnoc_ie mass, bUtB't f‘hh%wd not be confusgd W;th
chiral limit because the pion zero mode shows the singula?he physical pion mase,. bo ecome nonzero due ,O
behavior in the chiral limit nonzero bare masa+ 0, but we have to calculate fermion’s

one loop to obtain the physical pion mass .

1
-d2 0
j dx™dx, Wn“ﬁ- (5.3 VI. CONCLUSION AND DISCUSSIONS

We have studied a method of describing the dynamical
chiral symmetry breaking on the LF. Our description is
' based on the idea in DLCQ that the symmetry breaking is
. . 2 . , achieved by solving the “zero-mode constraints,” which al-
#0 even in th_e Ch"‘f’" limit. The S|_ngular behaw_or of Eq. ready succeeded to some extent in describing the spontane-
(5.3 in the chiral limit has been pointed out by Kim, Tsuji- ous symmetry breaking in simple scalar models. The point is

maru and Yamawaki for spontaneously broken scalar thégy ¢ e can utilize this idea even for the dynamical symme-
ries[23]. They showed the necessity of introducing the non-,

) try breaking in fermionic systems if we introduce bosonic
zero massnyg# 0 for the NG boson in the broken phase and y d — yS

found the singular behavior of the NG-boson zero mpd§ ~ auxiliary fields for¥¥ andWiysW, and treat them as dy-
as namical variables by adding their kinetic terms. Then the

problem can be formulated such that we find a nontrivial
1 solution to the “zero-mode constraint.” We exemplified this
f dx*dzxi ¢§G~ —5. idea in the NJL model. The model we studied is the chiral
MG Yukawa model, which reproduces the NJL model in the in-
] ] ] finitely heavy mass limit of the scalars. Within this model,
We have confirmed their result for triynamicallybroken e showed in the massless case the equivalence between
theory. _ ] ] i “light-front” chiral transformation and the usual one by
Now let us verify the singular behavi¢b.31). Itis gen-  ¢jassically solving the threé.e., two zero-mode and one
erally known that the zero-mode constraint for the NG bosonRermionig) constraints. This allowed us to construct the chiral
becomes inconsistent in the broken phase unless we '”t“&‘urrenth and chargég'gF. Even if we solve the constraints
duce fin_ite mass of the NG boson by hand as regularizatio&assicaﬁy, the resulting theory cannot have a symmetry
[23]. Using the zero-mode mag4.29), the zero-mode con- breaking term. Quantum analysis showed that the zero-mode
straint form, is simply written as constraint for a scalar bosan became the gap equation in
L nonperturbative treatment, which led to nonzero condensate
(mgM_af)TrO:J dx™ w?f(X7,x,). (5.32  (o)#0 and equivalently to the chiral symmetry breakdown.
-L We found the critical coupling ., beyond which the fermion
acquires nonzero dynamical mass. On the other hand, a per-
turbative solution could not give a fermion condensate even
% the quantum theory.

Sincef . is proportional to the fermion’s dynamical mads,
[Eq. (5.25], we can confirm the result in Sec. VA. That is
the null-plane chiral charg®z" does not conserve, Qs

Supposemy,, =0 and introduce the periodic boundary con-
dition on g in the transverse directions, then the transvers

integral [d?x, of ”2‘9 zLero-rPOdze constraint leads 10 15 mogt important key of our description was the iden-
|nconS|stenc§{ 0=Jd, J= dx"p*f(x7,x,)#0, which ification of the zero-mode constraint afwith the gap equa-
suggests to introduce “zero-mode massizy#0. In our - tjon This was suffered from a severe problem that the cor-
calculation, the origin of the finite mass of the NG boson is;gct mass dependence disappears from the mode expansion.
the fermion's bare massn [not the scalar masg/VA].  Of course this is a demerit of the LF formalism and we have

to carefully incorporate mass dependence into, Q}Eﬁlf}
when we regularize its infrared divergence. It is suggestive
5The mean-field result happens to avoid this inconsistency due t¢hat cutoff schemes with symmetry consideration such as
Jd3x ¥ iys¥=0. However, higher order calculation requires parity or rotational invariance lead to physically acceptable
nonzero bare mass. results. Contrary to such negative aspects, the mass informa-
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tion loss has a useful and important aspect. It follows that theense. If we want to go beyond the leading order, we have to
Fock vacuum keeps invariant even if we change the value adletermine the consistent operator ordering according to the
mass. Therefore the vacuum does not change even thoughiterion discussed in the text. Since this is a very difficult
symmetry breaking occurs and the fermion acquires dynamitask in our model, it should be examined in much simpler
cal mass. models such agl+1)-dimensional Yukawa theory.

In our formalismthe vacuum is exactly the Fock vacuum It will be challenging to use other nonperturbative meth-
The inclusion ofdynamicalscalar fields was necessary to ods to solve the zero-mode constraint. For example, Tamm-
clarify the structure of the Hilbert space and the triviality of Dancoff approximation which truncates the Fock space into
the vacuum. The way of realizing the broken phase is thaa few particle states will give some nontrivial results. Notice
the vacuum is still trivial but the operator structure of thethat our leading M approximation corresponds to the two
dependent/ariables changes. In other words, the “vacuumbody truncation since multiquark states give higher order
physics” in the conventional formulation is converted into contribution.
the Hamiltonian through the dependent variables. The zero Our method here heavily relies on the introduction of aux-
modes of scalars and the bad compongntare constrained iliary fields. So it seems natural to ask the question, Can we
variables and differently expressed by physical variables dedescribe the chiral symmetry breaking without introducing
pending on the phases. Related to this, the LF chiral tranghe auxiliary fields? The answer is of course yes. Even
formation of the dependent variables also becomes unusug{ough we do not have zero-mode constraints, it is possible
in the broken phase. Consequently, a seeming contradictiog gescribe the chiral symmetry breaking on the LF. Its ex-
between the triviality of the null-plane charg®s"|0)=0  pjicit demonstration in the purely fermionic NJL model will
and the chiral condensat& V) +0 is resolved. be given in our next papégd2]. As far as the NJL model is

We further calculated masses afand o for both sym-  concerned, to solve the fermionic constraint becomes of
metric and broken phases. In the broken phase, the mass ofgreat importance.
goes to zero in the chiral limit, which is consistent with the = There still remains many problems which cannot be dis-
NG theorem. Our result is consistent with the GOR relationcussed in our model. One of them is the issue of renormal-
If we substitute symmetric solution into the Lagrangian,ization. In a renormalizable theory, if one introduces an in-
there appear tachyon modes for-\,. Therefore we can frared cutoff and excludes the zero mode degrees of freedom
say that whem >\, physically realized phase is the bro- from the beginning, then the “vacuum physics” should be
ken phase. Certainly we have massless pion in the model, bd{scussed as the problem of renormalization with nonpertur-
it is very difficult to verify the NG theorem in general on the paiive infrared counterterms. Relation between such counter-
LF. This is b_ecause we hav_e nonlocal interaction an_d_ bererm approach25] and the zero-mode approach presented
cause the chiral transformation of the full fields explicitly here is not clear. We need further investigation for under-

erends on the.model. Both of these arise ffo"f‘ the fact thasttanding how to describe the chiral symmetry breaking in
in the LF formalism the bad component of fermion and zeroI_FQCD

modes of scalars are constrained variables. However, we
have succeeded in deriving the PCAC relation. This was en-
abled by utilizing the currents’ which was the Noether cur-
rent defined for the massless fermion. The “massive” cur-

rent j£ becomes complicated and it is almost hopeless to The authors acknowledge W. Bentz for discussions on the
deal with it. The physics meaning of this discrepancy be-cutoff scheme. One of theri.1.) is thankful to K. Yazaki
is still not clear but it seems that the usual @"d K. Yamawaki for useful discussions and to members of
current j£ is favorable for discussing the “usual” chiral Yukawa Institute for Theoretical Physic; where most of the
symmetry(not the “LF” chiral symmetry. work was done. The other auth@®.M.) is grateful to the

One of the most important conclusions of our analysis ighembers of Saturday Meetin@oyo-ka) for stimulating
the nonconservation of the LF chiral char@y”. This can ~ JISCUSSions.
be shown both by direct calculation pRs",H (] using the
unusual chiral transformation law and by utilizing the PCAC
relation. In the broken phase, the chiral cha@g does not
conserved, Qs #0 even in the chiral limit. The singular  Effective potential for scalars in the chiral Yukawa model
behavior 1 of the pion zero mode is essential to give a(2.1) is easily calculated in the leading order oN1éxpan-
finite violation of 9, QL™ #0. sion [16]. Exactly in the same way as in the Gross-Neveu

In our calculation, “nonperturbative” implied the mean- model[26], we find that the leading contribution comes from
field approximation. This mean-field calculation is justified the fermion one-loop diagrams. Note that the inclusion of
as the leading order approximation in th&lléxpansion. In  kinetic terms for scalars has no effect on the leading effective
principle, we can develop a systematidN1¢xpansion to go potential. Since the scalar propagatoirQ§1/N), effects of
beyond the mean-field result. Nevertheless, the higher ordehe kinetic term(i.e., u dependengeemerges from the next
will severely depend on the operator ordering and it is noleading order. The effective potent( o, ) in the leading
clear whether the result with our specific ordering makesorder is independent gf and is given by
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APPENDIX A: THE CHIRAL YUKAWA MODEL
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we find that for any fermion on the LR;_ component is a
dependent degree of freedont, and ¢_ are called the
““good component” and the “bad component,” respectively.
In DLCQ, we setx™ finite x~ e[—L,L] with some
boundary conditions on fields. Taking the periodic boundary
condition, we can clearly separate a longitudinal zero mode

which is the same result as that of the NJL model. Thereforérom oscillating modes. The zero mode of some local func-

evaluating the integral and differentiating o,77=0) with

respect too, we obtain the gap equation which determines

the vacuum expectation value of

Now let us turn to the mean-field approximation. Using
AB~(A)B+A(B)—(A){(B), the Yukawa interaction be-
comes

— EYukawa%<0'>‘?‘I’ + 0'<\I_NI/> + (W)\I_’i vsW+ w(ll7i vs¥)
+ const,

where (a)=0(N%, o—(o)=0O(N"Y?) and similarly for

others. The leading order Euler-Lagrange equations for

are  (o)=—(\/N)Y¥V¥) and (m)=

—(MN){(WiysW). Therefore, in the mean-field approxima-
tion (=leading order of M expansion, the chiral Yukawa

o and =

model allows both fermion and scalar condensates. However,
in higher order, fermion bilinears and scalars can mdepen
dently take their VEVs and the same relations do not neces-

sarily hold. The Euler-Lagrange equation for fermion in the
mean-field  approximation becomes idtm—{o)
—(m)iys)¥=0. Evaluating the fermion condensate in a
self-consistent way, we obtain the gap equation.

APPENDIX B: CONVENTIONS

We summarize our convention. We follow the Kogut-
Soper conventiof4]. First of all, the light-front coordinates
are defined as

1 S
xtz—z(xotx?’), x| =X

(i=1,2), (B1)

where we treak™ as “time.” The spatial coordinatez™
andx, are called the longitudinal and transverse directions,
respectively. Derivatives in terms af* are defined by

d

de=—". (B2)
X~
For the y matrices, we also define
* _ 1 0 3
4 —E(?’ =y9). (B3)

It is useful to introduce projection operatoks. defined by
(B4)

Indeed A . satisfy the projection propertiezs?::Ai, Ay
+A _=1, etc. Splitting the fermion by the projectors

Va=yi R, PLi=ALVE B5)

tion f(x) is defined by

1
fox )= 5 | dx 100 0. (86)

The rest is the oscillating part

ei(X)=f(X) = fo(x,). (B7)
For some composite fields, we use the notafiofy, for their
zero modes

1
[10000lo=5r | ax fog. @9

The inverse of the differential operatér is defined as

—f(x J dy” —e(x =y fly), (B9)
wheree(x™) is a sign function
1 (x™>0),
e(x )=y 0 (x7=0), (B10)
-1 (x™<0).

APPENDIX C: CONSTRAINTS AND THEIR CLASSICAL
SOLUTIONS

Since systems on the LF always have several constraints,
the LF quantization must be performed using Dirac’s Hamil-
tonian formalism for constrained systems.

The chiral Yukawa model has six primary constraints.
Among them, consistency conditions f@ﬁ=H00~0 and

6,=11, ~0 (Il is a conjugate momenta @P) generate

the zero -mode constraint8.2), while 6;=I1,, ~0 gener-

ates the fermionic constraifi3.1). The consistency is calcu-
lated byei—{ei \Hie+\;0;}pg=0 with the canonical light-
front HamiltonianH =P~

P =P;+Pg+Py, (C1)

= f d3x{— Wiy~ g_WA—Waj L g Va4 mPagay,

zfd?’x

(9" md, ot I @0, 0,)}

N
- ﬁ{(&lUOaLUOJ’_&LQD(r&L(PU)

N
+ 5l (o5+ @0+ (mo+ e},

= f d*{(oo+ @a)‘l_’a‘l'a"‘ (7ot <Pw)q_’ai ysWa,
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Wherefd3x=fEde*fd2xL. As a result, we find that no Similarly, if we know the solution up tath order, we easily
more constraints are generated from consistency conditiorsbtain the (+1)-th order solution because the constraint
and that this system belongs to the second class. equation is written as follows:

If we ignore ordering of the variables, it is not difficult to

solve the constraints. First, the fermionic constraii) is 2 [ gt ol 2l 1
solved as I —2| C |- £ gao paM L H.c
Ner| g ) N iys ' .o
a_ 1 (D4)
Y= (If&ﬁmﬂf—IMs)y vi|, (C2
whereWa™ for n#0 is
whered~! is defined so thai_(x) also satisfies the antipe- 1
riodic boundary conditiorisee Appendix B Note, however, pam = —(a(”)— i 77 )y g2 (D5)

that this solution still contains the zero modesandm and 2id
thus is not a complete solution. Substituting EG2) into
Eq. (3.2, we have equations only far, and 7. Then the and we have used/®T2y{V=0 for k,1#0, etc. In this

formal solution is given by way, we can determine the solution order by order.
2 _
(O’O(XL)> __ 1 B op-1x,) aT( _ 1)i APPENDIX E: NONLINEAR EQUATIONS
mo(XL) V2 N iys /10— FOR POLE MASSES
X(iyta, —m)yy? With the extended parity invariatEPI) cutoff, the inte-
) N gral F(k?,M?) Eq. (5.18 is given as
eotlyse
TF[ @U—iy <Pw (ﬁ] tee] @ X [2AB(-x-M2
ST e 0 fEPI(kZaMZ)Ef dxfo dp?

where the transverse differential operaf?(x, ) is o 1

X
(27)% p? +M2—k?x(1—x)

) . (€D

2
[
D)=+

1 1 1
2 Tglﬁi—(g T)lﬁi
0 where integration limit x..,=(1*p)/2 with 2
The final expression fors_ is reached after we insert Eq. = V1—2M?/A? comes from 2 °x(1—x)—M?>0. The in-

(C3) into Eq. (C2). Though we have completely ignored the tegral is easily performed and the result is
“ordering” in the classical treatment, the operator ordering

becomes an issue in a quantum theory, which makes the 1+
analysi i Fep(k?,M?)=—lo
ysis very complicated. EPILK™, 8 9 iy
APPENDIX D: PERTURBATIVE SOLUTION TO THE 1 AM2—K? k2
ZERO-MODE CONSTRAINTS IN QUANTUM ANALYSIS - —Zarctan,B —
A k 4M“—k

Let us solve the zero-mode constraints in perturbation

theory with the natural ordering in Egé3.1) and (3.2). In (E2)
addition to the expansion@.9—(4.11), it is convenient to For k?~0, we can approximate this as
define the expansion oF : ’
1+ B, 1
S N" Fepi(K —>0M2)—_| 91 g - — B, (E3
pa= z q,a(n) (Dl) 0 4ar
n=0 cr

whereWwa(© = y2 + 42 gndpak = y2W for k=1 where Bo=1/1-2M2/A? and we used lip ,x larctarx

. . . =1.
Knowing the lowest order solutior(@.13, we obtain the Using above, the nonlinear equations for the scalar
next order solution masses are '
(1)
o ANor| — 1
( (()1)) =- ﬁf{xpaw)(i )qfa((’)} , (D2) m 1(m; m? Fep(m?, M?) €
- = )
° & 0 AM 2 m;, (M2 —4M?) Fep(mZ ,M?)
11 . -
aM) = _— (1) (D) R D3 Note that when the chiral and heavy mass limit-0, w
v 275 (70 0 sy VL (b3 —o, we have solutionsn_=0 andm,=2M.
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