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Dynamical chiral symmetry breaking on the light front: DLCQ approach
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Dynamical chiral symmetry breaking in the discretized light-cone quantization method is investigated in
detail using a chiral Yukawa model closely related to the Nambu–Jona-Lasinio model. By classically solving
three constraints characteristic of the light-front formalism, we show that the chiral transformation defined on
the light front is equivalent to the usual one when the bare mass is absent. A quantum analysis demonstrates
that a nonperturbative mean-field solution to the ‘‘zero-mode constraint’’ for a scalar bosons can develop a

nonzero condensatês&52(l/N)^C̄C&Þ0 while a perturbative solution cannot. This description is due to
our identification of the ‘‘zero-mode constraint’’ with the gap equation. The mean-field calculation clarifies
unusual chiral transformation properties of the fermionic field, which resolves a seeming inconsistency be-

tween the triviality of the null-plane chiral chargeQ5
LFu0&50 and the nonzero condensate^C̄C&Þ0. We also

calculate masses of scalar and pseudoscalar bosons for both symmetric and broken phases, and eventually
derive the relation of partial conservation of axial vector current and nonconservation ofQ5

LF in the broken
phase.

PACS number~s!: 11.30.Rd, 11.15.Pg, 11.30.Qc, 12.40.2y
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I. INTRODUCTION

Chiral symmetry breaking is undoubtedly one of the m
important concepts for understanding hadron physics in
low energy region@1#. The smallness ofp andK masses is
beautifully explained if one identifies them with the Namb
Goldstone ~NG! bosons associated with chiral symmet
breaking. An important aspect of this phenomenon is
dynamical formation of NG bosons as bound states of qua
and gluons in the strong coupling region. However, its co
plete demonstration in QCD is not reached yet because o
difficulties in describing bound states in a nonperturbat
and relativistic manner. Instead, many people have been
vestigating much simpler effective models of QCD. Amo
them, the Nambu–Jona-Lasinio~NJL! model@2# is the most
deeply and thoroughly understood. The NJL model is a~3
11!-dimensional four-Fermi theory and reproduces vario
properties of hadrons concerning chiral symmetry break
despite some undesirable features such as nonrenormaliz
ity and lack of confinement@3#. Nowadays the model play
the role of a laboratory in which we can test new ideas p
posed for nonperturbative study of low energy QCD. The
fore the NJL model is the most appropriate model in wh
we can check whether light-front~LF! quantization can be
applied to the dynamical chiral symmetry breaking. LF qua
tization is a newly revamped nonperturbative method
solving relativistic bound states in quantum field theory@4#.

Let us explain why the chiral symmetry breaking becom
a special issue in the LF formalism. The reason is twofo
the first is apparent contradiction between a nontriv
vacuum and a LF ‘‘trivial’’ vacuum, and the second is pec
liarity of LF chiral transformation. To resolve these problem
is our primary purpose in the present paper. One of the
markable merits of LF quantization is that the Fock vacu
0556-2821/2000/61~4!/045009~18!/$15.00 61 0450
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defined by a free theory is also the vacuum of the full theo
Many technical advantages such as exact Fock state ex
sion arise from this fact. On the contrary, the conventio
formulation says that the chiral symmetry breaking is ess
tially a physics of finding another vacuum that breaks
chiral symmetry but is energetically favored. Such ‘‘vacuu
physics’’ is thought to be very important for understandi
nonperturbative phenomena in low energy region. Theref
to apply the LF formalism to QCD necessarily entails a pro
lem how to realize such ‘‘vacuum physics’’ within a frame
work with a trivial vacuum. For the purpose of understan
ing this problem, there are considerable efforts@5# to
describe the spontaneous symmetry breaking in a simple
lar model (lf111

4 ). They succeeded in obtaining the critic
coupling which is consistent with the conventional resu
The key is to solve a constraint equation for the longitudi
zero mode~‘‘zero-mode constraint’’! which appears in the
discretized light-cone quantization~DLCQ! method @6#. A
nonzero condensate is realized as a nonperturbative solu
of the zero-mode constraint. We will discuss this method
more detail later.

Compared with such extensive studies, only little
known about thedynamicalsymmetry breaking infermionic
systems. Especially there have been only few attempts a
the NJL model on the LF@7–10#. At first glance, it does not
seem possible to follow the same route as in the scalar m
els because we do not have bosonic fields as fundame
degrees of freedom in the NJL model. However, we c
apply the same idea to the dynamical symmetry breakin
one introducesbosonicauxiliary fields to the fermion bilin-
ears and raises them to dynamical variables by adding t
kinetic terms. Of course the original fermionic model is r
produced as an infinitely heavy mass limit of the boso
fields. According to this idea, we succeeded in describing
©2000 The American Physical Society09-1
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K. ITAKURA AND S. MAEDAN PHYSICAL REVIEW D 61 045009
dynamical symmetry breaking~discrete chiral symmetry! in
the ~111!-dimensional four-Fermi theory~the Gross-Neveu
model! @11#. The present paper is a generalization of t
preliminary work which discussed onlydiscretechiral sym-
metry. We consider a kind of Yukawa model withcontinu-
ouschiral symmetry, which is obtained from the NJL mod
using the above technique. We work within the DLC
method so thatwe can formulate the problem from the view
point of the zero-mode constraints. It should be commented
however, that it is possible to discuss the dynamical sym
try breaking even without introducing auxiliary fields. I
Ref. @8#, one of the authors insisted the importance of a ‘‘fe
mionic constraint’’ which is again unique to the LF formu
lation and has very complicated structure due to the fo
Fermi interaction.~Another merit of including scalar fields i
a quite simplification of the fermionic constraint.! More de-
tailed analysis in this direction will be reported in the ne
paper@12#.

One more point to be discussed is the unusual behavio
chiral transformation on the LF. In the LF formulation, a ha
degree of freedom of the fermion is a dependent variabl
be represented by other independent variables. There
chiral transformation should be imposed only on the in
pendent component of the fermion@13#. It is not clear in
interacting models whether the LF chiral transformation
equivalent to the usual one or not.

The paper is organized as follows. In the next section,
define the chiral Yukawa model which is closely related
the NJL model and introduce our framework, the DLC
method. The classical aspects of the model is discusse
Sec. III. Here, we see that there are three constraints~i.e.,
two zero-mode constraints and one fermionic constraint!. We
also show peculiarity of the LF chiral transformation a
explicitly give the null-plane chiral chargeQ5

LF . Quantum
analysis, which is the main part of this paper, is develope
Secs. IV and V. In Sec. IV, we demonstrate that perturba
and nonperturbative treatments of the solution to the c
straints give different description of the model. In Sec. V,
discuss some physics consequences of the nonperturb
analysis. Especially, we resolve a problem of contradict
between the triviality of the null-plane charge and the no
zero condensate. We further calculate the masses of sc
in the symmetric and broken phases. Then we discuss
PCAC ~partial conservation of axial vector current! relations
and nonconservation of the LF chiral chargeQ5

LF in the bro-
ken phase. The last section is devoted to conclusion
discussions.

II. THE MODEL

Here we introduce the model~chiral Yukawa model! and
summarize the standard knowledge on the chiral symm
breaking in the conventional equal-time formulation. W
also define our setup of the problem following the DLC
method.

A. Definition of the model

The NJL model was first introduced as the simplest~3
11!-dimensional example which exhibits the dynamical c
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ral symmetry breaking@2#. In its original form there were
two flavors, but a one flavor model

LNJL5C̄a~ i ]”2m!Ca1
l

2N
@~C̄aCa!21~C̄aig5Ca!2#

also breaks the chiral symmetry which exists in the mass
casem50. We give an additional internal structure to th
fermion independently of the flavor, and treat a
N-component spinorCa in order to clarify the validity of
approximation we use. From now on, summation overa
51, . . . ,N is always implied. Since this model is not reno
malizable, we must specify a regularization scheme such
cutoff to uniquely determine the model and to obtain fin
results.

In this paper, we discuss more general model w
Yukawa interactions

L5C̄a~ i ]”2m!Ca1
N

2m2 ~]ms]ms1]mp]mp!

2
N

2l
~s21p2!2~sC̄aCa1pC̄aig5Ca!, ~2.1!

where s (p) is a scalar~pseudoscalar! boson with mass
m/Al andm is a dimensionless parameter. If one takes in
nitely heavy mass limit for scalarsm→`, the dynamical

scalars become auxiliary fieldss52(l/N)C̄C, p

52(l/N)C̄ ig5C and the model goes back to the NJ
model.

In order to contrast with our LF calculation, let us briefl
comment on the usual story of chiral symmetry breaking
the NJL model@2#. When m50, both of the Lagrangian
densities are invariant under the chiral transformation

Ca→eig5uCa, ~2.2!

S s

p
D→S cos 2u sin 2u

2sin 2u cos 2u D S s

p
D[R~2u!S s

p
D . ~2.3!

It should be reminded that this transformation is, of cour
imposed on all the fields, which is, however, not the case
the LF formalism. This point will be discussed later in mo
detail. The usual story is as follows: The chiral symme
breaks down spontaneously in a quantum level due to n

zero fermion condensatêC̄C&Þ0. The most straightfor-
ward demonstration will be the mean field approximati
with the concept of self-consistency. If one has
N-component fermion, we can justify the mean field appro
mation by the leading approximation of 1/N expansion. The
self-consistency condition is a crucial key to the descript
of broken phase. This condition directly leads to the g
equation which determines the value of condensate a
equivalently, the physical fermion mass. As a result of sy
metry breaking, there emerges a Nambu-Goldstone~NG! bo-
son. Since we do not have any fundamental scalar boso
the NJL model, the NG boson~pion! should be supplied
9-2
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DYNAMICAL CHIRAL SYMMETRY BREAKING ON THE . . . PHYSICAL REVIEW D 61 045009
dynamically as a bound state of a fermion and an anti
mion. Mass of the pionic state indeed vanishes in the ch
limit.

It will be helpful to comment on the physics meaning
treating the model~2.1!. First of all, we should clearly dis
tinguish our model from the linears model of Gell-Mann
and Lévy @14#. Structurally our model resembles thes
model in the sense that it consists of bosons and ferm
interacting with each other via Yukawa couplings and ha
continuous chiral symmetry. However, an important diffe
ence in our model is the absence of potential term for sca
In the linear s model, it is the wine-bottle potential tha
induces the chiral symmetry breaking. Therefore the sym
try breaking occurs in thetree level and the dynamical for
mation of NG boson cannot be seen. What we obtain is o
the sigma condensatês&Þ0. This naturally leads us to
identify the fermions with nucleons.1 On the other hand, the
fermions in our model should be regarded as quarks ra
than nucleons. Indeed, as far as the leading order ofN
expansion is concerned, the model shows the same beh
as the NJL model. For example, straightforward calculati
such as effective potential@16# or mean-field approximation
show that the chiral symmetry breakinĝ s&5

2(l/N)^C̄C&Þ0 occurs in the one-loop quantum level~see
Appendix A for more details!. Therefore we do not conside
our model as a special case of the linears model and in
order to remind this, we call it the ‘‘chiral Yukawa model.

It is also very important to view the NJL model as
low-energy effective theory of the chiral Yukawa model. T
relation between two models is very similar to that betwe
the Weinberg-Salam model and the Fermi theory of we
interaction: The chiral Yukawa model is renormalizable a
the fermions interact with each other by exchanging scala
pseudoscalar bosons. If we take the infinitely heavy m
limit for bosonsm/Al→`, then the theory reduces to th
NJL model with nonrenormalizable four-Fermi interaction
In this sense, the NJL model can be considered as a
energy effective theory of the chiral Yukawa model. Su
low energy approximation will be valid when the momentu
is much smaller than the mass of the exchanged parti
p2!m2/l. In this paper, we mainly treat the chiral Yukaw
model for technical reasons, but what we eventually wan
know are results of the NJL model. Therefore even if
encounter divergences during calculation in the ch
Yukawa model, we only regularize them by some cut
scheme and do not renormalize them.

Finally, as we are discussing such a ‘‘low energy region
we do not have to worry about the problem of double cou
ing of physics degrees of freedom. In the NJL model,
scalar and pseudoscalar bosons are described as q

1However, the fermions are sometimes treated as quarks. Fo
ample in the LF formalism, Carlitzet al. @15# investigated the linear
s model~i.e.,with the wine-bottle potential! regarding the fermions
as quarks. But such treatment does not tell anything aboutdynami-
cal chiral symmetry breaking and therefore should be clearly d
tinguished from our standpoint.
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antiquark bound states. On the other hand, we treat the
lars as physically independent degrees of freedom in the
ral Yukawa model. So if we regard the fermions and scal
as quarks and mesons, there is the problem of double co
ing with which we are always confronted in treating chira
quark type models@17#. However, in the low energy region
or equivalently for sufficiently large boson massm→`, the
scalars become ‘‘frozen’’ and do not behave as propaga
degrees of freedom.

B. Setup in the LF quantization

We analyze the chiral Yukawa model~2.1! in the DLCQ
method and take special care of the longitudinal zero mo
of scalars. In this method, we compactify the longitudin
space into a circlex2P@2L,L# with appropriate boundary
conditions on fields. For scalars, we impose periodic bou
ary conditions at each LF time,

s~x252L, x'!5s~x25L, x'!, ~2.4!

p~x252L, x'!5p~x25L, x'!, ~2.5!

so that we can explicitly treat the longitudinal zero mod
defined by

s0~x'!5
1

2LE2L

L

dx2s~x!, ~2.6!

p0~x'!5
1

2LE2L

L

dx2p~x!. ~2.7!

Then the scalar fields are decomposed into the zero mo
and the remaining oscillation modes

s~x!5s0~x'!1ws~x!, ~2.8!

p~x!5p0~x'!1wp~x!. ~2.9!

On the other hand, we impose an antiperiodic bound
condition for the fermion field,

Ca~x252L, x'!52Ca~x25L, x'!. ~2.10!

Here we must be careful about the boundary condition on
‘‘bad component’’ of the fermion. As we discuss in the ne
section, if we decompose the fermion as

Ca5c1
a 1c2

a , c6
a [L6Ca, ~2.11!

we find thatc2 ~‘‘bad component’’! is a dependent field~see
Appendix for the definition ofL6). So the boundary condi
tion on c2 should be imposed consistently with the dyna
ics. For example, if we imposed the periodic boundary c

dition on c2 and antiperiodic onc1 , the mass termC̄C
and the fermion’s kinetic term became antiperiodic. This
not desirable as a term in the Lagrangian and even not c
sistent with the scalar sector. Then how about the perio
boundary conditions for both ofc1 andc2? In this case we
have a dynamical zero mode ofc1 , which is, however, not
important to our problem because the chiral condensate

x-

-
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be related to the zero modes ofs or C̄C. Periodic fermion
will give unnecessary intricacy to the problem. Therefore
antiperiodic boundary condition~2.10! is appropriate.

III. CLASSICAL ASPECT

A classical analysis is necessary for specifying indep
dent degrees of freedom. In this section, we determine
constraint structure of the model and define the LF ch
transformation. Chiral current and charge are explic
given.

A. Constraints

The system has three important constraints character
of the LF formalism: a constraint forc2 ~fermionic con-
straint! and two constraints for zero modes of bosons~zero-
mode constraints!. The Euler-Lagrange equation forc2 it-
self is the fermionic constraint

i ]2c2
a 5

1

2
~ ig']'1m1s2 ipg5!g1c1

a . ~3.1!

Also the zero-mode constraints fors0(x') and p0(x') are
easily obtained fromx2 integration of the Euler-Lagrang
equations fors andp, respectively,

S m2

l
2]'

2 D S s0

p0
D 1

m2

N F C̄a~x!S 1

ig5
DCa~x!G

0

50,

where @ #0 denotes integration overx2 ~see Appendix B!.
More explicitly,

05S m2

l
2]'

2 D S s0

p0
D 2

m2

N

1

A2

3Fc1
a†S 21

ig5
D g2c2

a 1c2
a†S 21

ig5
D g1c1

a G
0

. ~3.2!

These equations mean thats0 andp0 should be represente
by other independent variables. If we take them→` limit,
the zero-mode constraints are reduced to zero-mode

jected equations of the familiar relationss52(l/N)C̄C

and p52(l/N)C̄ ig5C. Eventually the independent de
grees of freedom are nonzero modes of the scalarsws , wp ,
and the ‘‘good component’’ of the spinorc1 . The above
constraints are, of course, derived from Dirac’s proced
~see Appendix C!. It is easily found that they belong to th
second class.

B. Chiral transformation on the LF

Definition of chiral transformation on the LF is differen
from the usual one Eqs.~2.2! and ~2.3!. This is because the
identification of independent degrees of freedom is not
same as usual. As we saw,s0 ,p0, and c2

a are dependen
variables and should change as a result of transformatio
04500
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the independent variablesws ,wp , andc1
a . Therefore in the

LF formulation, we impose the chiral transformation only o
the dynamical variables

c1
a →eiug5c1

a , ~3.3!

S ws

wp
D→R~2u!S ws

wp
D , ~3.4!

where R(2u) represents a rotation matrix defined in E
~2.3!. These are the definition of the ‘‘LF chiral transform
tion.’’ If we find that c2 and (s0 ,p0) also transform as
c2→eiug5c2 and (p0

s0)→R(2u)(p0

s0) as a result of Eqs.~3.3!

and~3.4!, we can say that the ‘‘LF chiral transformation’’ i
substantially equivalent to the usual one, Eqs.~2.2! and~2.3!.
However, what is surprising about the ‘‘LF chiral transfo
mation’’ is that the transformation~3.3! is an exact symme-
try even formassivefermion as far as interaction is abse
@13#. So it will be interesting to check whether the ‘‘LF
chiral transformation’’ in our model is exact or not when
mass term is present.

In order to see the transformation property of the dep
dent variables, let us solve the constraintsclassically. This
means that we completely ignore the ordering of the va
ables which becomes a burdensome but important issue
quantum treatment. The fermionic constraint~3.1! which was
originally a complicated relation in the purely fermionic NJ
model,2 is now easily solved owing to introduction of sca
lars. The zero-mode constraints are also solved formally.
plicit form of the solutions is given in Appendix C. Now w
find the transformation of the zero modes and subseque
that of c2 .

1. Massless fermion

Let us first consider the massless fermion case. Whem
50, it is easy to see that the transformation~3.3! and ~3.4!
induces the following:

S s0

p0
D→R~2u!S s0

p0
D , ~3.5!

c2
a →eiug5c2

a . ~3.6!

This is identical with the usual chiral transformation. Ther
fore it is shown that whenm50 the fields do transform a
Eqs.~2.2! and ~2.3! even on the LF at the classical level.

Now that we know all the transformation laws, it
straightforward to construct the Noether current and cha
The Lagrangian withm50 is invariant under the LF chira
transformations. Form of the LF chiral current is equivale
to the usual one:

2It is difficult but possible to solve the fermionic constraint
classical treatment where we just treat the spinors as Grassma
numbers. The exact solution obtained is highly nonlocal and co
plicated@12#.
9-4
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j m
5 52C̄agmg5Ca1

2N

m2 ~p]ms2s]mp!. ~3.7!

However,s0 , p0, andc2 in Eq. ~3.7! should be understood
as solutions of the constraints. On the other hand, the
chiral chargeQ5

LF5*2L
L dx2*d2x' j 5

1 does not include the
constrained variables

Q5
LF5E d3xF2A2c1

a†g5c1
a 1

2N

m2 ~wp]2ws2ws]2wp!G ,
~3.8!

which is consistent with the fact thatQ5
LF is a generator of

the chiral rotation for independent variables. Transformat
of other dependent fields should be obtained through
change of dynamical variables.

2. Massive fermion

The massive fermion case is much more complicated.
mentioned before, an astonishing fact of the ‘‘LF chir
transformation’’ is that it is an exact symmetry even for
massive free fermion@13#. When the mass term is presen
the ‘‘bad component’’ of free fermion does not transform

Eq. ~3.6!. Subsequently, the associated Noether currentĴm
5

has an extra term proportional to the bare mass

Ĵm
5 5Jm

5 2 im~ c̄11c̄2!gmg5

1

]2
g1c1 . ~3.9!

Nevertheless, the divergence of the current turns out to

zero]mĴm
5 50 due to the cancellation between the first te

(]mJm
5 522imC̄g5C) and the second term. This should b

compared with the usual current in the equal-time quant

tion J m
5 52C̄gmg5C, ]mJ m

5 522imC̄g5C, which also
holds for interacting theories and is intimately connec

with PCAC relation. Note that the LF chiral chargeQ̂5
LF

5*d3x Ĵ5
1 is equivalent to that in the massless case due

Ĵ5
15J5

1 . This is natural because the LF chiral transform
tion is defined irrespective of the mass term.

Now, how about the chiral Yukawa model? Using t
solution formÞ0 ~see Appendix C!, the infinitesimal chiral
transformation ofs0 , p0, andc2 are given as follows:

S ds0

dp0
D 5S 2up0

22us0
D 1S 0

2umz
D , ~3.10!

dc2
a 5 iug5c2

a 22iug5m~11z!
1

2

1

i ]2
g1c1 ,

~3.11!

where

z[2
1

A2

m2

N
D 21~x'!Fc1

a† 1

i ]2
c1

a 1c.c.G
0

,

04500
F
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and D(x') is the transverse differential operator defined
Appendix C. It is evident that the dependent fields do n
transform as Eqs.~3.5! and ~3.6!. As a result, the Noethe
current~3.7! also gets modified by the term proportional

m. The explicit form of the currentĵ 5
m is very complicated

but we can see that the1 component is equivalent to that o
~3.7!. Therefore the LF chiral charge is given by Eq.~3.8!
even for massive case. However, contrary to the massive

fermion, the divergence of the LF current]m ĵ m
5 does not

vanish due to nontrivial interactions.
One of the lessons suggested by these observations is

when we investigate physics related to massive fermi
~e.g., PCAC relation!, we had better treat the currentj m

5 de-

fined by the massless fermions rather thanĵ m
5 . This is clear

for the free case: The true LF chiral currentĴm
5 ~3.9! defined

for the massive fermion vanishes if we take the diverge
while that for massless fermionJm

5 gives the usual relation
This is true of the chiral Yukawa model. The divergence
the current~3.7! for the massive case is given as

]m j m
5 522mC̄ ig5C, ~3.12!

while ]m ĵ m
5 is very complicated. It will be very difficult to

discuss the PCAC relations, etc., by usingĵ m
5 . Furthermore,

it is not quite clear if analysis ofĵ m
5 makes sense. Therefore

even for the massive case, we decide to treat the current~3.7!
to discuss the physics such as PCAC. This point will
discussed later again in Sec. V.

IV. QUANTUM ASPECTS

In the classical analysis, we formally solved the co
straints in order to find the LF chiral current and charg
When m50, the resulting Hamiltonian is chiral symmetr
and we do not have any symmetry breaking term. Theref
even if we go to quantum theory with such a Hamiltonia
we will not be able to describe the chiral symmetry breakin
Certainly it might be possible that we could find a brok
phase Hamiltonian by adjusting the operator ordering,
such procedure seems unnatural and tricky. Instead,
quantize the model before solving the constraints. T
means that we perform the Dirac quantization for constrai
systems. After that, the constraints are solved quantum
chanically with a care of the operator ordering. The sa
route has been traced by many people who tried to desc
the spontaneous symmetry breaking of simple scalar syst
@5#.

Calculation of the Dirac brackets in our system is a ve
complicated task. However, the Dirac brackets between
namical variables turn out to be standard ones: Quantiza
conditions for the dynamical variablesws ,wp , andc1

a are

@wj~x!, wh~y!#x15y1

52djh

m2

N

i

4 S e~x22y2!2
x22y2

L D d (2)~x'2y'!,

~4.1!
9-5
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$c1a
a ~x!,c1b

b† ~y!%x15y1

5
1

A2
~L1!abdabd~x22y2!d (2)~x'2y'!,

~4.2!

wherej andh stand fors or p, anda,b51, . . . ,4 are the
spinor indices. The sign functione(x2) is defined in Appen-
dix B. The other commutators between dynamical variab
are zero. Note that these conditions areirrespective of the
phaseof the model because they are independent of the
teraction.

Mode expansion of the fields atx150 reads

wh~x!5Am2

N

1

2L (
n51,2•••

1

2pn
1E d2p'

~2p!2
$ah~pn

1 ,p'!e2 ipx

1ah
†~pn

1 ,p'!eipx%, ~4.3!

c1
a ~x!5

1

2L (
n5

1
2 ,

3
2 •••

E d2p'

A2p23/4Apn
1

3 (
h56

1
2

$w~h!ba~pn
1 ,p' ,h!e2 ipx

1w~2h!da†~pn
1 ,p' ,h!eipx%, ~4.4!

where px5pn
1x22p'x' and pn

15pn/L. The spinors
w(6h) depend only on the helicityh @13#. It follows that

@aj~pn
1 ,p'!, ah

†~qm
1 ,q'!#

5~2p!2~2L !2pn
1dnmd~2!~p'2q'!djh ,

$ba~pn
1 ,p' ,h!, bb†~qm

1 ,q' ,h8!%

52pn
1

2L

2p
dabdnmd~2!~p'2q'!dhh8 ,

$da~pn
1 ,p' ,h!, db†~qm

1 ,q' ,h8!%

52pn
1

2L

2p
dabdnmd~2!~p'2q'!dhh8 .

It is important to note that both of the above mode exp
sions are independent of the mass.~The spinorsw(6h) are
independent of mass. This is clearly shown in the Appen
of Ref. @9#.! This means that if we calculaten-point Green
functions at fixed timex150, they will become independen
of the value of mass, which is not a correct result in gene
This undesirable situation is known as one of the patholo
cal properties of the LF formalism which needs great care
obtaining correct results@18#. Indeed, as we will see later, t
remedy this problem is indispensable to get a meaningful
equation. In many cases, loss of mass information is cu
by a carefully chosen infrared regularization. It should a
be commented that the mass-information loss is certainly
04500
s
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-
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r

p
d

o
ot

a desirable feature, but we will find its usefulness in desc
ing the broken phase physics. Anyway, we must pay gr
attention to the fact that naive mode expansion of the~scalar
and fermion! fields is independent of the value of mass.

The Fock vacuumu0& is defined by

as~pn
1 ,p'!u0&5ap~pn

1 ,p'!u0&

5ba~pn
1 ,p' ,h!u0&5da~pn

1 ,p' ,h!u0&50, ~4.5!

for n.0. It is worth while emphasizing that the vacuum
this system is really the Fock vacuum since we have
dynamical zero modes. Because of thep1 conservation, the
normal-ordered chiral chargeQ5

LF always annihilates the
vacuum:

Q5
LFu0&50. ~4.6!

It has been known that any lightlike chargeQLF automati-
cally leaves the vacuum invariantQLFu0&50 whether or not
it generates a symmetry@19#.

In a quantum theory, operator ordering becomes an is
Let us comment on the problem of operator ordering a
clarify our stance toward it. Since the~zero mode and fermi-
onic! constraint equations are generally nonlinear relatio
among operators, their solutions depend on operator or
ing. We must select an appropriate operator ordering. Th
what can be the criterion for this problem? In many pap
discussing the spontaneous symmetry breaking in DLCQ,
Weyl ordering is adopted on general grounds. However, i
not clear whether the Weyl ordering in constraint equatio
makes sense because they include both independent an
pendent variables. The most reliable criterion for determ
ing the operator ordering will be as follows. Before solvin
the constraint equations, we can calculate the Dirac brac
between independent variables and dependent ones~e.g.
@s0 ,c1#5•••), which are terribly complicated in ou
model and we do not display them in this paper. Here
already have to specify the operator ordering. On the ot
hand, we can solve the constraint relations with the ab
ordering and obtain their solutions such ass0
5s0(ws ,wp ,c1). Now we can calculate again the comm
tators between the solutions~i.e., dependent variables! and
independent variables„e.g., @s0(ws ,wp ,c1),c1#… using
simple commutators Eqs.~4.1! and ~4.2!. The results should
be identical with those of the Dirac bracket. In other word
we must find out such operator ordering that will give
consistent result in the above sense. This should be the
terion for an appropriate operator ordering. However, as
expect, to find such ordering in our model is an extrem
difficult task. So practically, we just work with several pa
ticular orderings and compare the results. In our actual
culations, we treat two specific orderings and check whet
the results depend on the ordering or not. To find a consis
operator ordering should be examined in much simpler m
els.

In the following, we will solve the zero-mode constrain
in two different ways: perturbative and nonperturbati
9-6
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methods. To solve the constraint is significant to describe
symmetry breaking on the LF. To see this, let us decomp
the longitudinal zero modes intoc-number parts and norma
ordered operator parts,

s05s0
(c)1s0

(op), ~4.7!

p05p0
(c)1p0

(op). ~4.8!

If the c-number part of the solution is nonvanishing, it d
rectly means nonzero condensate:^0usu0&5s0

(c)Þ0 and
^0upu0&5p0

(c)Þ0. Therefore to find such nontrivial solutio
is necessary to describe the symmetry breaking. We exp
itly demonstrate that perturbative solutions cannot lead
chiral symmetry breaking while nonperturbative solutio
give nonzero vacuum expectation value fors. In both cases,
the fermionic constraint is formally solved@as in Eq.~C2!#
and inserted into the zero-mode constraints.

A. Perturbative solutions to the zero-mode constraints

Let us solve the zero-mode constraints using perturba
in terms of the coupling constantl. Sincel is a dimension-
ful parameter, we introduce some scalelcr which is much
larger thanl (lcr@l). We regardlcr as a critical coupling
of the symmetry breaking which will be determined late
Now we expand the constrained variables as follows:

s05 (
n50

` S l

lcr
D n

s0
(n) , ~4.9!

p05 (
n50

` S l

lcr
D n

p0
(n) , ~4.10!

c2
a 5 (

n50

` S l

lcr
D n

c2
a(n) , ~4.11!

and the dynamical variables are treated asO@(l/lcr)
0#. In-

serting the above expansions into the constraints Eqs.~3.1!
and ~3.2! with the natural ordering and comparing the sa
order of perturbation, we obtain the solution order by ord
For example, the lowest order solutions are

s0
(0)5p0

(0)50, ~4.12!

c2
a(0)5

1

2

1

i ]2
~ ig']'1m1ws2 iwpg5!g1c1

a .

~4.13!

Higher order solutions are given in Appendix D.
The chiral transformation of the perturbative solution

the massless case can be inductively checked. First, it is
to see that the zeroth and first order solutions rotate s
metrically under the LF chiral transformation~3.3! and~3.4!.
If we suppose thenth order solutions rotate chirally, the (n
11)-th order solutions also behave the same. Eventually
perturbative solution transforms symmetrically under the
chiral rotation~3.3! and ~3.4!,
04500
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@Q5
LF,Ca#5g5Ca, ~4.14!

@Q5
LF,s#522ip, @Q5

LF,p#52is. ~4.15!

Of course the Hamiltonian@see Eq.~C1!# is also invariant
@Q5

LF,H#50 which is the same as the classical analysis
the previous section.

What is most important is thatthe vacuum expectation
values of the perturbative solutions vanish in all order
perturbation^0us0u0&5^0up0u0&50. This is easily verified
by using^0uws,pu0&50 and^0uc1

† ]'c1u0&50. Therefore
we are in a chiral symmetric phase:

^0usu0&5^0upu0&50. ~4.16!

B. Nonperturbative solutions to the zero-mode constraints

We next solve the zero-mode constraints using the me
field approximation. In the following, we work with a par
ticular operator ordering though the result is the same
others as far as we discuss the leading order of 1/N expan-
sion. The following ordering greatly reduces our calculatio
Substituting the solution of the fermionic constraint into t
zero-mode constraints and rearranging the ordering, we
tain

05S m2

l
2]'

2 D S s0

p0
D

1
1

23/2

m2

N

1

2LE2L

L

dx2E
2L

L

dy2
e~x22y2!

2i

3H ic1
a†~x!S 21

ig5
D g']'c1

a ~y!2 i ]'c1
a†~y!

3S 21

ig5
D g'c1

a ~x!1S m1s~y!

p~y!
D @c1

a†~x!c1
a ~y!

2c1
a†~y!c1

a ~x!#2S 2p~y!

m1s~y!
D @c1

a†~x!ig5c1
a ~y!

1c1
a†~y!ig5c1

a ~x!#J 1H.c., ~4.17!

where c1
a (y)5c1

a (x1,y2,x') and similarly for s(y) and
p(y). The operator ordering here is different from that in t
perturbative treatment. However, one can show that the
vious perturbative result does not change with the above
dering. That is, theperturbativesolution with the above or-
dering does not lead to chiral symmetry breaking.

Let us first determine thec-number part of the zero mode
defined by Eqs.~4.7! and ~4.8!. We saw in the classica
analysis that (s0 ,p0) rotates chirally in the massless cas
Therefore we choose

s0
(c)Þ0, ~4.18!

p0
(c)50. ~4.19!
9-7
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Taking a vacuum expectation value of the zero-mode c
straint for s greatly simplifies the calculation, which is a
advantage of our specific choice of ordering:

m2

l
s0

(c)52
1

A2

m2

N
~m1s0

(c)!

3K 0UFc1
a† 1

i ]2
c1

a 2S 1

i ]2
c1

a†Dc1
a G

0
U0L .

~4.20!

IntroducingM defined by

M[m1s0
(c) , ~4.21!

and evaluating the vacuum expectation value in Eq.~4.20! by
using the mode expansion, we have

M2m52
1

A2

l

N
M K 0UFc1

a† 1

i ]2
c1

a 2S 1

i ]2
c1

a†Dc1
a G

0
U0L

5lM
2

~2p!3E d2p' (
n51/2,•••

Dp1

pn
1 , ~4.22!

whereDp15p/L. The operator form of the right-hand sid
suggests that we identify as

M

A2 K 0UFc1
a† 1

i ]2
c1

a 2S 1

i ]2
c1

a†Dc1
a G

0
U0L

5^0u@C̄M
a CM

a #0u0&, ~4.23!

whereCM
a is a fermion with massM,

CM
a 5c1

a 1c2M
a ,

c2M
a [

1

2

1

i ]2
~ ig']'1M !g1c1

a . ~4.24!

(c2M
a is the ‘‘bad’’ component ofCM

a .) Therefore it is natu-
ral to considerM to be the physical fermion mass. In oth
words, the identification in Eq.~4.23! corresponds to the
self-consistency condition.

Equation~4.22! should be the gap equation by which w
can determines0

(c) and equivalently, the physical fermio
massM. However, it is not evident to regard it as the g
equation because Eq.~4.22! in the chiral limit m→0 cannot
give nonzeroM. The same situation was observed in o
previous work on the Gross-Neveu model@11#. As was dis-
cussed in Ref.@11#, if we want a meaningful gap equation
we must supply mass information so that Eq.~4.22! pos-
sesses a nontrivial solutionMÞ0 in the chiral limit when we
regularize the divergent summation overn. The need of the
mass dependence in Eq.~4.22! is readily understood from the
identification in Eq.~4.23!. Indeed, one can easily check th

^0uC̄MCMu0&/M should explicitly depend onM in the
equal-time formulation. This is a typical example of th
04500
-

r

‘‘mass-information loss’’ on the LF@18# which must be re-
paired properly for obtaining correct results.

It may be possible to regularize the divergent summat
in Eq. ~4.22! with, say, a heat-kernel damping factor@11#,
but such calculation is complicated and not tractable.
stead, we introduce some cutoff that renders the diverg
summation into finite one. Such a cutoff should be intr
duced so that the result correctly depends on the massM.
Here for simplicity, we adopt a cutoff which eventually re
duces to the parity invariant~PI! cutoff p6,L @8#. From the
dispersion relation and the PI cutoff, we find that the m
mentum region is restricted to (M21p'

2 )/2L,pn
15pn/L

,L. Therefore we set

nIR,n,nUV , ~4.25!

wherenIR andnUV are nearest half integers to

L

p

M21p'
2

2L
and

L

p
L,

respectively. If we use the approximation for a large ha

integerñ, (n51/2,•••
ñ n21. ln ñ1 ln 4eg, the summation is ap-

proximated as

(
n51/2,•••

Dp1

pn
1 5 (

n5nIR11

nUV21
1

n
. ln

nUV

nIR
. ln

2L2

M21p'
2

,

~4.26!

for fixed L, M, andp'
2 and sufficiently largeL. Of course

there is ‘‘finite volume effect’’ for finiteL, but we finally
take the infinite volume limit and the finite volume effect
expected to be small as far asL is large enough.3 Eventually
Eq. ~4.22! becomesdependenton the massM and can be
considered to be a gap equation

M2m5lM
L2

4p2 H 22
M2

L2 S 11 ln
2L2

M2 D J . ~4.27!

The form of this gap equation is different than those w
familiar cutoff schemes such as the three or four momen
cutoff @3#, but our gap equation behaves exactly the same
usual. Indeed, even in the chiral limitm→0, this equation is
a nonlinear equation forM and when the coupling constantl
is larger than the critical valuelcr52p2/L2, there is a non-
trivial solutionM5M0Þ0 ~see Fig. 1!. This also means tha

3Finite volume physics itself is intriguing. For example, similar
to the equal-time calculation@20#, if we make the volume smalle
and smaller, we will meet a critical lengthLcr beyond which the
chiral symmetry never breaks down. Moreover, if we could det
mine theL dependence of the physical massM (L), it would serve
as a prediction for the limiting behavior of eigenvalues in the n
merical DLCQ calculation. Nevertheless, such finite volume ph
ics is outside the scope of this paper and we do not discus
anymore. We always assumeL sufficiently large and ignore the
finite volume effects.
9-8
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the zero mode ofs has been determined ass0
(c)5M2m.

Furthermore, one should note that the gap equation~4.27! is
independent of the value ofm. So we can regard the finitem
result ^s&5M2m as the result for infinite m;

2(l/N)^C̄C&5M2m. „Remember that them→` limit of

Eq. ~3.2! is s052(l/N)@C̄C#0 .… Therefore the chiral sym
metry breaking occurs for arbitrary value ofm in the mean-
field approximation. This is consistent with the result of t
conventional equal-time quantization~see Appendix A!.

On the other hand, there is a trivial solutionM50 ~when
m50) even forl.lcr and if we select this solution th
resulting theory becomes chiral symmetric. Then th
comes a problem which solution should be physically re
ized. Unfortunately, comparison of the vacuum energy
both phases does not tell anything about this problem
cause the vacuum energies turn out to be the same. I
found the consistent operator ordering as discussed be
we could estimate difference of the vacuum energies
determine the physically realized phase. Even without s
calculation, however, we can say that the symmetric solu
is excluded forl.lcr . This is because there emerge tach
onic modes and the system becomes unstable if we sel
trivial solution for l.lcr . This will be again discussed in
Sec. V B. So we deal with only the nontrivial solution fo
l.lcr and do not consider the symmetric solution.

Comments on other cutoff schemes are in order. We
a nontrivial equation forM by using the PI cutoff. It was
crucial to include the mass information as the regularizati
However, we have to be careful in setting the cutoff. A
cutoff scheme which holds mass does not necessarily lea
a physically sensible result@21#. For example, a two-
dimensional PI cutoffM2/2L,p1,L with a transverse cut
off up'u,L gives a wrong result. The resulting gap equati
erroneously predicts that there is no symmetric phase
seems important to introduce a cutoff with some symme
considerations. Indeed, the three momentum cutoff resp
ing the three dimensional rotation@7# and the PI cutoff@8# in
our case predict the existence of the critical coupling c
stant.

Now let us determine the operator parts of the zero mo
by the mean-field approximation. We approximate the n

FIG. 1. Fermion’s dynamical massM0 in the chiral limit as the
solution of the gap equation~4.27!. There is a nonzero solution fo
l.lcr .
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linear terms in Eq.~4.17! by using AB'A^B&1^A&B
2^A&^B&, where the expectation values are taken with
spect to the Fock vacuum. We further neglect contribut
from the oscillating modes of scalarsws5wp50. Then the
operator parts are given by

S s0
(op)

p0
(op)D 52

m2

N
~mZM

2 2]'
2 !21F :C̄M

a S 1

ig5
DCM

a :G
0

,

~4.28!

where ac-number quantitymZM
2 is defined as

mZM
2 5

m2

l
1

m2

N

1

A2 K 0UFc1
a† 1

i ]2
c1

a 2S 1

i ]2
c1

a†Dc1
a G

0
U0L .

~4.29!

The numerical value ofmZM
2 is calculated if we utilize the

gap equation:mZM
2 5m2m/lM . Inserting thec-number and

operator parts ofs0 andp0 into the solution of the fermionic
constraint, we have

c25c2M1
1

i ]2

1

2
~s0

(op)2 ip0
(op)g5!g1c1

a , ~4.30!

wherec2M is given in Eq.~4.24!.
To understand what we did above, let us consider

relation between our operator ordering and the 1/N expan-
sion. We have obtained an equation for thec-number part of
s0 ~the gap equation! just by taking the vacuum expectatio
value of the zero-mode constraint even without recourse
the 1/N expansion. This simplicity in obtaining the gap equ
tion is mainly due to our specific choice of the operator
dering. As has been commented before, if we take other
derings, our calculation becomes terrible because
complicated structure of the Dirac brackets between c
strained zero modes and physical variables. However, as
as the leading term of the 1/N expansion is concerned, th
commutator@s0 ,c1# turns out to be of the order ofO(1/N)
and we can ignore the effect of ordering.4 Furthermore, the
approximation neglecting the scalar oscillating modes is a
justified by the 1/N expansion. From the quantization cond
tion ~4.1!, we find ws is O(N21/2) whereass0 is O(N0).
These considerations justify that our mean-field calculat
with the specific operator ordering is correct up to the le
ing contribution of the 1/N expansion.

Before ending this section, it will be better to point out th
‘‘merit’’ of the mass-information loss. Certainly it was
demerit in deriving the gap equation, but this property giv
a very important benefit to our framework. The fact that t
mode expansion is independent of the value of mass in
means that the Fock vacuum defined by Eq.~4.5! keeps in-
variant even if we change the value of mass. We do not h
to perform the Bogoliubov transformation on the vacuu

4If one takes m→`, one will be convinced that@s0 ,c1
a #

5@2(l/N)@C̄C#0 ,c1
a #5O(N21).
9-9



uu
as

s
al-
l
s

AC

oe

te

e

e
t

ie

e
-

d
w

io

-
iv

to

n-
s-

of

n

ion.
tra
bles

he

for-
aw

an

on-

al
ne
uch

the

K. ITAKURA AND S. MAEDAN PHYSICAL REVIEW D 61 045009
depending on the change of mass. Therefore the LF vac
is invariant even after the fermion acquires dynamical m
MÞ0.

V. PHYSICS IN NONPERTURBATIVE REGION

In this section, we discuss some physics consequence
our method. First, we explicitly demonstrate how the trivi
ity of the null-plane chiral chargeQ5

LF and the nonzero chira
condensate reconcile with each other. Secondly, masse
the scalar and pseudoscalar bosons are calculated from
Lagrangian for both phases. Finally, we derive the PC
relation for the chiral currentj 5

m @Eq. ~3.7!# and discuss the
nonconservation ofQ5

LF .

A. Null-plane chiral charge vs chiral condensate

In the equal-time quantization, the broken vacuum d
not possess the chiral symmetryQ5

ETu0&Þ0. The Nambu-
Goldstone phase is characterized by a nonzero condensa

the order parameter̂C̄C& and the strict expression of th
nonconservation of the chiral chargeQ5

ETu0&Þ0 is a relation

^0u@Q5
ET,C̄ ig5C#u0&5^0u*d3x @ j 5

0(x),C̄ ig5C#u0& 5 2i

^0uC̄Cu0&Þ0. Therefore there is no inconsistency betwe
these two relations. On the other hand, remember that
lightlike charge always annihilates the vacuum. This impl

that if a similar relation@Q5
(LF) ,C̄ ig5C#5

?
2i C̄C held on

the light front in the broken phasê0uC̄Cu0&Þ0, it would
immediately conflict with the triviality of the chiral charg
Q5

LFu0&50. In the following we resolve this seemingly in
consistent situation.

The chiral chargeQ5
LF defined by Eq.~3.8! annihilates the

vacuum and generates the chiral transformation for the in
pendent variables irrespective of the symmetry. Indeed,
find

@Q5
LF,ws#522iwp , @Q5

LF,wp#52iws , ~5.1!

@Q5
LF,c1#5g5c1 . ~5.2!

These are the fundamental laws of the chiral transformat
Any transformation of the dependent fieldss0 , p0, andc2

should be derived from them.
In the broken phasel.lcr , the gap equation has a non

trivial solution MÞ0 and the fermion behaves as a mass
fermion with the dynamical massM. First of all, let us view
the chiral transformation of the massive fermion opera
CM defined by Eq.~4.24!. The result is already unfamiliar to
us:

@Q5
LF,CM

a #5g5CM
a 1DCM

a , ~5.3!

DCM
a [22Mg5

1

2

1

i ]2
g1c1

a . ~5.4!

The second termDCM
a does not exist in the equal-time qua

tization. Only if MÞ0, this is equivalent to the usual tran
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formation. Using this result, the chiral transformation
s0

(op) , p0
(op) in Eq. ~4.28! andc2 in Eq. ~4.30! are given as

follows:

@Q5
LF,s0

(op)#522ip0
(op)1Ds0

(op), ~5.5!

@Q5
LF,p0

(op)#52is0
(op)1Dp0

(op), ~5.6!

@Q5
LF,c2

a #5g5c2
a 1S 11

i

2M
Dp0

(op)DDCM
a , ~5.7!

where

S Ds0
(op)

Dp0
(op)D 52i

m2

N

1

mZM
2 2]'

2 H K 0UC̄M
a S ig5

21DCM
a U0L

1F M

A2
c1

a†S ig5

1 D 1

i ]2
c1

a 1H.c.G
0
J .

One can easily show thatDs0
(op) is zero due to

^0uC̄Mig5CMu0&50 and antisymmetry of the sign functio
e(x22y2). Therefore the terms involvingDCM andDp0

(op)

are the extra compared with the usual chiral transformat
They do not vanish even in the chiral limit. These ex
terms are direct consequences of being dependent varia
and the dynamical generation of the fermion massM. Unlike
the equal-time calculation, the chiral transformation of t
full field variables becomesmodel dependentin general be-
cause a part of the variables are constrained and the in
mation of interaction inevitably enters the transformation l
of constrained variables through the solutions.

Due to the modification of the transformation law, we c
avoid the inconsistency. The transformation of the fullp
field is given by @Q5

LF,p#52i (s0
(op)1ws)1Dp0

(op)Þ2is.
The vacuum expectation value of this equation gives a c
sistent result

^0u@Q5
LF,p#u0&52i ^0us0

(op)1wsu0&1^0uDp0
(op)u0&50.

~5.8!

Now it is easy to obtain the transformation ofC̄ ig5C. Our
final result is

@Q5
LF,C̄ ig5C#52i C̄C1H c1

a† g2

A2
~ iDp0

(op)12M !

3
1

2

1

i ]2
g1c1

a 1H.c.J . ~5.9!

In addition to the first term that is equivalent to the usu
result, we have nonvanishing extra terms. However, if o
takes the vacuum expectation value of this equation, s

extra terms should exactly cancel the first term 2i ^C̄C&
Þ0. It is indeed the case and the explicit evaluation of
right-hand side gives a consistent result

^0u@Q5
LF,C̄ ig5C#u0&50. ~5.10!
9-10
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Here we neglect the term@Dp0
(op),c1

a #;O(1/N). Thus we
checked the consistency between the null-plane chargeQ5

LF

and the chiral condensate^s&52(l/N)^C̄C&Þ0 up to the
mean-field level.

As the result of these unusual chiral transformations, e
the Hamiltonian loses the chiral symmetry in the brok
phase: The commutator@Q5

LF,H#Þ0 is directly evaluated
exactly in the same way as above. This means that the
chiral charge is not conserved in the broken phase. It sho
be emphasized that the violation is proportional to the fer
on’s dynamical massM and thus does not vanish even in t
chiral limit. It is very interesting that the chiral symmetr
breaking in the LF formulation is expressed as an expl
breaking. The important difference, however, is that us
explicit breaking does not accompany the gap equat
while in our case the gap equation plays a very import
role in many aspects. The nonconservation ofQ5

LF on the LF
in the broken phase has been discussed by several peop
relation to PCAC@15,22,23#. Particularly, a similar situation
to our conclusion~i.e. the nonconservation of the null-plan
charge in the DLCQ method! was found in the broken phas
of the scalar model@23#. The problem of nonconservin
charge should be intimately connected with the diverge
of the chiral current. In Sec. V C, we will again meet th
nonconservation ofQ5

LF as a result of the PCAC relation an
peculiar behavior of the pion zero mode in the chiral limi

Let us turn to the symmetric phase where the coupling
large but slightly less than the critical valuel&lcr . In this
region, we use the symmetric solution of the gap equation
we restrict ourselves to the chiral limitm50, the solution is
just a trivial oneM50. Transformation law in this phase
obtained by simply substitutingM50 into the above results
Therefore in the leading order of 1/N expansion, all the de
pendent fields transform in a chiral symmetric way

@Q5
LF,s0

(op)#522ip0
(op), @Q5

LF,p0
(op)#52is0

(op),
~5.11!

@Q5
LF,c2

a #5g5c2
a . ~5.12!

With these commutators, we find also@Q5
LF,H#50. Thus the

LF chiral charge is conserved in the symmetric phase
expected.

B. Masses of the scalar and pseudoscalar bosons

Here we calculate the masses of scalars which are bo
states of fermion and antifermion. Unlike the NJL model,
have ‘‘dynamical’’ scalars in the Lagrangian. Therefore it
convenient to evaluate the ‘‘pole mass’’ of the scalars
rectly from their propagators without considering boun
state equations. The procedure of calculating the pole ma
is as follows. First we insert the broken or unbroken so
tionss0 , p0, andc2 into the original Lagrangian. For sim
plicity, we ignore the finiteL effect. This is because we ar
only interested in the effects of the condensates0

(c) and the
nonzero constituent massM. Next, reading the fermion
propagator from the Lagrangian, we calculate the sc
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propagatorsDp,s(k2) up to one loop of the fermion. Finally
the pole masses are obtained from the equationDs,p

21 (k2

5ms,p
2 )50.

1. Broken phase

Let us first consider the broken phasel.lcr . Inserting
the broken solutions into the Lagrangian, we have

L5
N

2m2 ~]mŝ]mŝ1]mp̂]mp̂!2
N

2l
$~s0

(c)1ŝ !21p̂2%

1A2c1
a†i ]1c1

a 1A2H i ]2c2M
a† 2

1

2
c1

a†g2~ ŝ1 i p̂g5!J
3H c2M

a 1
1

2

1

i ]2
~ ŝ2 i p̂g5!g1c1

a J
5

N

2m2 ~]mŝ]mŝ1]mp̂]mp̂!2
N

2l
$~s0

(c)1ŝ !21p̂2%

1C̄M
a ~ i ]”2M !CM

a 2C̄M
a ~ ŝ1 i p̂g5!CM

a

2
1

2
C̄M

a ~ ŝ1 i p̂g5!g1
1

i ]2
$~ ŝ1 i p̂g5!CM

a %, ~5.13!

where we used the notations(x)5s0
(c)1ŝ(x) and p(x)

5p̂(x), and CM is defined by Eq.~4.24!. Instead of the
fermion propagator for 1 component S11(p)
5A2L1p2 /(p22M21 i e), it is convenient for practical
calculation to define the propagator forCM

a :

S̄~p![
p”̄1M

p22M21 i e
, ~5.14!

where p̄m5@p1,p25(p'
2 1M2)/2p1,p'# is the on-shell

four momentum@24#. Note that this partially on-shell propa

gator S̄(p) is different from the usual fermion propagato

S(p) by an instantaneous partS̄(p)5S(p)2g1/2p1, which
arises from the bad componentc2 as the solution of the
fermionic constraint.

Scalar and pseudoscalar propagatorsDs,p(k) with fermi-
on’s one loop quantum correction are given by

1

N S Dp
21~k!

Ds
21~k!

D 5
k2

m2 2
1

l
1FYukawa~k!1F inst~k!,

~5.15!

where

FYukawa~k!52E @d4p#trF S ig5

1 D S̄~p!S ig5

1 D S̄~p2k!G
~5.16!

comes from the Yukawa interaction~Fig. 2! and
9-11
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F inst~k!52
1

2E @d4p#trF S̄~p!S ig5

1 D g1

p12k1 S ig5

1 D
1S̄~p!S ig5

1 D g1

p11k1 S ig5

1 D G ~5.17!

from the instantaneous interaction~Fig. 3!. The integration
measure is given by

E @d4p#5E d2p'

i ~2p!2E2`

` dp1

2p E
2`

` dp2

2p
.

Summation over the longitudinal discrete momentapn
1 is

approximated by integration.
For simplicity, we put k'50. Using a parameterx

[p1/k1, the propagatorsDp,s(k) are expressed as

1

N S Dp
21~k!

Ds
21~k!

D 5
k2

m2
2

mZM
2

m2
1F~k2,M2!S k2

k224M2D ,

F~k2,M2![E
0

1

dxE d2p'

~2p!3

1

p'
2 1M22k2x~12x!

,

~5.18!

FIG. 2. Fermion’s one loop contribution coming from th
Yukawa interaction. The solid line is for the fermionCM , the
dashed line forp or s.

FIG. 3. Fermion’s one loop contribution coming from the i
stantaneous interaction which is represented by the vertical s
line.
04500
where we have utilized the gap equation~4.22! and mZM
2

5m2m/lM . The physical masses are determined from
equations Ds,p

21 (k25ms,p
2 )50. Since the integral in

F(k2,M2) diverges, we must specify a cutoff. Here we u
the ‘‘extended PI cutoff’’@10#

(
i

p6
( i ),L, ~5.19!

wherei denotes the particles of the internal lines. This cut
is a natural generalization of the naive PI cutoffp6,L and
can be applied to multiple internal lines. In our case,
extended PI cutoff becomes

p'
2 1M2

x
1

p'
2 1M2

12x
,2L2.

The explicit form ofF(k2,M2) with this cutoff is given in
Appendix E. Then we obtain highly complicated nonline
equations formp,s

2 which are also shown in Appendix E
First of all, it is almost trivial that the equation formp has a
solution mp50 in the chiral limit. For small bare massm
.0, we find

mp
2 5

m

lM0
F 1

m2
1FEPI~k2→0,M0

2!G21

1O~m2!,

~5.20!

where M0 is a fermion condensate in the chiral limit5 and
FEPI(k

2→0,M0
2) is independent ofm ~see Appendix E!.

Therefore we have checked that the mass of the pion goe
zero in the chiral limit and now we can identify it with th
NG boson.

The mass ofs is determined in the same way. For e
ample, in the chiral and heavy mass limitm→0,m→`, one
can easily find a solutionms

25(2M )2 which is known to
exist in the NJL model in the chiral limit.

Our result of the pion mass~5.20! satisfies the Gell-
Mann–Oakes–Renner~GOR! relation whenm→`:

mp
2 f p

2 524m^C̄C&, ~5.21!

where f p is the pion decay constant. To see this, let us c
culate f p explicitly. Rewriting the pion’s propagator in th
chiral and heavy scalar limit as

Dp~k!5
Zp

k22mp
2

, ~5.22!

Zp[@NFEPI~k2→0,M0
2!#21, ~5.23!

5For small but finitem, the condensate is evaluated from E
~4.27! as

M5M01
lcr

l

1

~M0
2/L2!ln~2L2/M0

2!
m1O~m2!.lid
9-12
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we find the effective pion-quark couplinggp5AZp. Then, in
the leading order of 1/N expansion,f p is given by a fermion
one-loop integral with appropriate Lorentz structure

ikm f p[2^0u j 5
m~0!up~k!&

5gpNE d4p

~2p!4
tr@gmg5S̄~p2k!g5S̄~p!#

52igpNM0kmFEPI~k2→0,M0
2!, ~5.24!

therefore

f p52M0@NFEPI~k2→0,M0
2!#1/25

2M0

AZp

. ~5.25!

Using this result andmp
2 5(m/lM0)NZp , we finally con-

firm the GOR relation~5.21!.

2. Symmetric phase

Next let us consider the symmetric case. Using the sy
metric solution to the zero-mode constraint, we can evalu
the masses ofs andp in the symmetric phase. In the chira
limit, we have

1

N
Dp,s~k!215

k2

m2
2

mZM
2

m2
1F~k2,M250!k2, ~5.26!

where the zero-mode massmZM
2 in the symmetric phase i

expressed differently from that in the broken phase:mZM
2

5m2/l2m2/lcr1O(m). Since Ds(k)5Dp(k), s and p
have the same physical massmp

2 5ms
2 . The physical mass

mp
2 is obtained as a solution of

mp
2

m2
1S 1

lcr
2

1

l D52mp
2 p

~2p!3
lnU2L22mp

2

mp
2 U . ~5.27!

In the region l&lcr , there is a nonzero solutionmp
2

,2L2.
In Fig. 4, we show the square masses ofs andp around

l;lcr in the chiral and NJL limit (m→0, m→`). In the

FIG. 4. Squared massesms,p
2 for m→0 andm→` scaled by

lcr
21 . Solid line is fors and dashed line forp. For l.lcr we used

the broken solution, whereas forl,lcr symmetric solution.
04500
-
te

broken phase (l.lcr), mp
2 50 and ms

25(2M )2, while in
the symmetric phase (l,lcr), ms

25mp
2 is given as a solu-

tion to Eq.~5.27!. The pion massmp
2 goes to zero in the limit

l→lcr20.
It is important to recognize that Eq.~5.27! implies the

existence of tachyonic modes forl.lcr as we mentioned
before. Indeed, if we assumel.lcr , we find a negative
solutionmp

2 ,0. Therefore, if we choose the symmetric s
lution to the zero-mode constraint, then the resulting the
becomes unstable forl.lcr . So we must select the broke
solution above the critical coupling.

C. Derivation of the PCAC relation and the nonconservation
of Q5

LF

As we discussed in Sec. III B 2, it is almost hopeless

treat the LF chiral currentĵ 5
m for the massive case. Instea

we adopt the currentj 5
m ~3.7! which is much more tractable

than ĵ 5
m and gives the same null-plane charge. Then it

straightforward to derive the PCAC relation. Consider t
divergence ofj 5

m in the m→` limit @see Eq.~3.12!#

]m j 5
m522mC̄ ig5C

52m
N

l
p

52m
N

l
AZppn , ~5.28!

where the normalized pion fieldpn was introduced so that its
propagator beDp

(n)(k)51/(k22mp
2 ) @see Eq.~5.22!#. If we

use the pion decay constant~5.25! and the pion mass~5.20!
@or equivalentlymp

2 5(m/lM0)NZp], we obtain the PCAC
relation

]m j 5
m5mp

2 f ppn . ~5.29!

This is also consistent with Eq.~5.24! @our normalization is
^0upnup(k)&51].

The important consequences of Sec. V A were that~i! the
null-plane chiral chargeQ5

LF is not conserved in the broke
phase@Q5

LF,HLF#Þ0 and that~ii ! the violation is propor-
tional to the dynamical fermion massM and does not disap
pear even in the chiral limit. Since we did not show expl
itly the quantity because of its complexity, we here discus
in a more elegant way in the context of the PCAC relatio
First of all, let us remember that the chiral charge~3.8! de-

fined by j 5
m is equivalent to the one defined fromĵ 5

m due to

ĵ 5
15 j 5

1 . This means that the time derivative ofQ5
LF should

be the same even if we use the currentj 5
m . Therefore, we can

calculate the quantity]1Q5
LF from the PCAC relation~5.29!
9-13



t
t

nd
l
e

ula

s,

q.
i-
e
n

nd

o
tr

tio
-

n-
rs
to

i

n
o

th
o
s

ical
is
is

l-
ane-
t is
e-
ic

-
he
ial
is
ral
in-
l,
een

y
e
ral
s
try
ode
n
sate
n.

per-
ven

n-

or-
sion.
ve

ive
as

ble
rma-

e

s
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]1Q5
LF5

1

i
@Q5

LF,HLF#

5 f pmp
2 E dx2d2x'pn

5 f pmp
2 E dx2d2x'pn

0 , ~5.30!

wherepn
0 is the zero mode ofpn . If the current mass is no

zero, the right-hand side does not vanish in general and
chiral chargeQ5

LF does not conserve. Since the right-ha
side is proportional tomp

2 , it seems to vanish in the chira
limit mp

2 }m→0. However, it does survive finite even in th
chiral limit because the pion zero mode shows the sing
behavior in the chiral limit

E dx2d2x'pn
0}

1

m
. ~5.31!

Sincef p is proportional to the fermion’s dynamical massM0
@Eq. ~5.25!#, we can confirm the result in Sec. V A. That i
the null-plane chiral chargeQ5

LF does not conserve]1Q5
LF

Þ0 even in the chiral limit. The singular behavior of E
~5.31! in the chiral limit has been pointed out by Kim, Tsuj
maru and Yamawaki for spontaneously broken scalar th
ries @23#. They showed the necessity of introducing the no
zero massmNGÞ0 for the NG boson in the broken phase a
found the singular behavior of the NG-boson zero modef0

NG

as

E dx2d2x'f0
NG;

1

mNG
2

.

We have confirmed their result for thedynamicallybroken
theory.

Now let us verify the singular behavior~5.31!. It is gen-
erally known that the zero-mode constraint for the NG bos
becomes inconsistent in the broken phase unless we in
duce finite mass of the NG boson by hand as regulariza
@23#. Using the zero-mode mass~4.29!, the zero-mode con
straint forp0 is simply written as

~mZM
2 2]'

2 !p05E
2L

L

dx2m2f ~x2,x'!. ~5.32!

SupposemZM50 and introduce the periodic boundary co
dition on p0 in the transverse directions, then the transve
integral *d2x' of the zero-mode constraint leads
inconsistency6 05*d2x'*2L

L dx2m2f (x2,x')Þ0, which
suggests to introduce ‘‘zero-mode mass’’mZMÞ0. In our
calculation, the origin of the finite mass of the NG boson
the fermion’s bare massm @not the scalar massm/Al].

6The mean-field result happens to avoid this inconsistency du

*d3x C̄Mig5CM50. However, higher order calculation require
nonzero bare mass.
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Indeed,mZM
2 5m2m/lM in the broken phase. Therefore i

the m→` limit, we find the singular behavior of the zer
mode:

p05
1

mZM
2 2]'

2 E
2L

L

dx2m2f ~x2,x'!

→ lM

m E
2L

L

dx2 f ~x2,x'!. ~5.33!

On the other hand, in the symmetric phasemZM
2 5m2(1/l

21/lcr)1O(m) survives finite in the chiral limit. We called
mZM ‘‘zero-mode mass,’’ but it should not be confused wi
the physical pion massmp . Both become nonzero due t
nonzero bare massmÞ0, but we have to calculate fermion’
one loop to obtain the physical pion massmp .

VI. CONCLUSION AND DISCUSSIONS

We have studied a method of describing the dynam
chiral symmetry breaking on the LF. Our description
based on the idea in DLCQ that the symmetry breaking
achieved by solving the ‘‘zero-mode constraints,’’ which a
ready succeeded to some extent in describing the spont
ous symmetry breaking in simple scalar models. The poin
that we can utilize this idea even for the dynamical symm
try breaking in fermionic systems if we introduce boson

auxiliary fields forC̄C and C̄ ig5C, and treat them as dy
namical variables by adding their kinetic terms. Then t
problem can be formulated such that we find a nontriv
solution to the ‘‘zero-mode constraint.’’ We exemplified th
idea in the NJL model. The model we studied is the chi
Yukawa model, which reproduces the NJL model in the
finitely heavy mass limit of the scalars. Within this mode
we showed in the massless case the equivalence betw
‘‘light-front’’ chiral transformation and the usual one b
classically solving the three~i.e., two zero-mode and on
fermionic! constraints. This allowed us to construct the chi
current j m

5 and chargeQ5
LF . Even if we solve the constraint

classically, the resulting theory cannot have a symme
breaking term. Quantum analysis showed that the zero-m
constraint for a scalar bosons became the gap equation i
nonperturbative treatment, which led to nonzero conden
^s&Þ0 and equivalently to the chiral symmetry breakdow
We found the critical couplinglcr beyond which the fermion
acquires nonzero dynamical mass. On the other hand, a
turbative solution could not give a fermion condensate e
in the quantum theory.

The most important key of our description was the ide
tification of the zero-mode constraint ofs with the gap equa-
tion. This was suffered from a severe problem that the c
rect mass dependence disappears from the mode expan
Of course this is a demerit of the LF formalism and we ha

to carefully incorporate mass dependence into, e.g.,^C̄C&
when we regularize its infrared divergence. It is suggest
that cutoff schemes with symmetry consideration such
parity or rotational invariance lead to physically accepta
results. Contrary to such negative aspects, the mass info

to
9-14
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tion loss has a useful and important aspect. It follows that
Fock vacuum keeps invariant even if we change the valu
mass. Therefore the vacuum does not change even th
symmetry breaking occurs and the fermion acquires dyna
cal mass.

In our formalism,the vacuum is exactly the Fock vacuu.
The inclusion ofdynamicalscalar fields was necessary
clarify the structure of the Hilbert space and the triviality
the vacuum. The way of realizing the broken phase is t
the vacuum is still trivial but the operator structure of t
dependentvariables changes. In other words, the ‘‘vacuu
physics’’ in the conventional formulation is converted in
the Hamiltonian through the dependent variables. The z
modes of scalars and the bad componentc2 are constrained
variables and differently expressed by physical variables
pending on the phases. Related to this, the LF chiral tra
formation of the dependent variables also becomes unu
in the broken phase. Consequently, a seeming contradic
between the triviality of the null-plane chargeQ5

LFu0&50

and the chiral condensate^C̄C&Þ0 is resolved.
We further calculated masses ofp and s for both sym-

metric and broken phases. In the broken phase, the massp
goes to zero in the chiral limit, which is consistent with t
NG theorem. Our result is consistent with the GOR relati
If we substitute symmetric solution into the Lagrangia
there appear tachyon modes forl.lcr . Therefore we can
say that whenl.lcr , physically realized phase is the bro
ken phase. Certainly we have massless pion in the model
it is very difficult to verify the NG theorem in general on th
LF. This is because we have nonlocal interaction and
cause the chiral transformation of the full fields explicit
depends on the model. Both of these arise from the fact
in the LF formalism the bad component of fermion and ze
modes of scalars are constrained variables. However,
have succeeded in deriving the PCAC relation. This was
abled by utilizing the currentj 5

m which was the Noether cur
rent defined for the massless fermion. The ‘‘massive’’ c

rent ĵ 5
m becomes complicated and it is almost hopeless

deal with it. The physics meaning of this discrepancy b

tween j 5
m and ĵ 5

m is still not clear but it seems that the usu
current j 5

m is favorable for discussing the ‘‘usual’’ chira
symmetry~not the ‘‘LF’’ chiral symmetry!.

One of the most important conclusions of our analysis
the nonconservation of the LF chiral chargeQ5

LF . This can
be shown both by direct calculation of@Q5

LF,HLF# using the
unusual chiral transformation law and by utilizing the PCA
relation. In the broken phase, the chiral chargeQ5

LF does not
conserve]1Q5

LFÞ0 even in the chiral limit. The singula
behavior 1/m of the pion zero mode is essential to give
finite violation of ]1Q5

LFÞ0.
In our calculation, ‘‘nonperturbative’’ implied the mean

field approximation. This mean-field calculation is justifie
as the leading order approximation in the 1/N expansion. In
principle, we can develop a systematic 1/N expansion to go
beyond the mean-field result. Nevertheless, the higher o
will severely depend on the operator ordering and it is
clear whether the result with our specific ordering mak
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sense. If we want to go beyond the leading order, we hav
determine the consistent operator ordering according to
criterion discussed in the text. Since this is a very diffic
task in our model, it should be examined in much simp
models such as~111!-dimensional Yukawa theory.

It will be challenging to use other nonperturbative me
ods to solve the zero-mode constraint. For example, Tam
Dancoff approximation which truncates the Fock space i
a few particle states will give some nontrivial results. Noti
that our leading 1/N approximation corresponds to the tw
body truncation since multiquark states give higher or
contribution.

Our method here heavily relies on the introduction of au
iliary fields. So it seems natural to ask the question, Can
describe the chiral symmetry breaking without introduci
the auxiliary fields? The answer is of course yes. Ev
though we do not have zero-mode constraints, it is poss
to describe the chiral symmetry breaking on the LF. Its e
plicit demonstration in the purely fermionic NJL model wi
be given in our next paper@12#. As far as the NJL model is
concerned, to solve the fermionic constraint becomes
great importance.

There still remains many problems which cannot be d
cussed in our model. One of them is the issue of renorm
ization. In a renormalizable theory, if one introduces an
frared cutoff and excludes the zero mode degrees of free
from the beginning, then the ‘‘vacuum physics’’ should b
discussed as the problem of renormalization with nonper
bative infrared counterterms. Relation between such coun
term approach@25# and the zero-mode approach presen
here is not clear. We need further investigation for und
standing how to describe the chiral symmetry breaking
LFQCD.
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APPENDIX A: THE CHIRAL YUKAWA MODEL

Effective potential for scalars in the chiral Yukawa mod
~2.1! is easily calculated in the leading order of 1/N expan-
sion @16#. Exactly in the same way as in the Gross-Nev
model@26#, we find that the leading contribution comes fro
the fermion one-loop diagrams. Note that the inclusion
kinetic terms for scalars has no effect on the leading effec
potential. Since the scalar propagator isO(1/N), effects of
the kinetic term~i.e., m dependence! emerges from the nex
leading order. The effective potentialV(s,p) in the leading
order is independent ofm and is given by
9-15
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V~s,p!/N5
1

2l
~s21p2!

1 i E d4k

~2p!4
ln det@k”2~s1 ig5p!#, ~A1!

which is the same result as that of the NJL model. Theref
evaluating the integral and differentiatingV(s,p50) with
respect tos, we obtain the gap equation which determin
the vacuum expectation value ofs.

Now let us turn to the mean-field approximation. Usi
AB'^A&B1A^B&2^A&^B&, the Yukawa interaction be
comes

2LYukawa'^s&C̄C1s^C̄C&1^p&C̄ ig5C1p^C̄ ig5C&

1const,

where ^s&5O(N0), s2^s&5O(N21/2) and similarly for
others. The leading order Euler-Lagrange equations

s and p are ^s&52(l/N)^C̄C& and ^p&5

2(l/N)^C̄ ig5C&. Therefore, in the mean-field approxim
tion ~5leading order of 1/N expansion!, the chiral Yukawa
model allows both fermion and scalar condensates. Howe
in higher order, fermion bilinears and scalars can indep
dently take their VEVs and the same relations do not nec
sarily hold. The Euler-Lagrange equation for fermion in t
mean-field approximation becomes (i ]”2m2^s&
2^p& ig5)C50. Evaluating the fermion condensate in
self-consistent way, we obtain the gap equation.

APPENDIX B: CONVENTIONS

We summarize our convention. We follow the Kogu
Soper convention@4#. First of all, the light-front coordinates
are defined as

x65
1

A2
~x06x3!, x'

i 5xi ~ i 51,2!, ~B1!

where we treatx1 as ‘‘time.’’ The spatial coordinatesx2

andx' are called the longitudinal and transverse directio
respectively. Derivatives in terms ofx6 are defined by

]6[
]

]x6
. ~B2!

For theg matrices, we also define

g65
1

A2
~g06g3!. ~B3!

It is useful to introduce projection operatorsL6 defined by

L65
1

2
g7g65

1

A2
g0g6. ~B4!

IndeedL6 satisfy the projection propertiesL6
2 5L6 , L1

1L251, etc. Splitting the fermion by the projectors

Ca5c1
a 1c2

a , c6
a [L6Ca, ~B5!
04500
re

s

r

r,
n-
s-

,

we find that for any fermion on the LF,c2 component is a
dependent degree of freedom.c1 and c2 are called the
‘‘good component’’ and the ‘‘bad component,’’ respectivel

In DLCQ, we set x2 finite x2P@2L,L# with some
boundary conditions on fields. Taking the periodic bound
condition, we can clearly separate a longitudinal zero mo
from oscillating modes. The zero mode of some local fun
tion f (x) is defined by

f 0~x'!5
1

2LE2L

L

dx2 f ~x2,x'!. ~B6!

The rest is the oscillating part

w f~x!5 f ~x!2 f 0~x'!. ~B7!

For some composite fields, we use the notation@ #0 for their
zero modes

@ f ~x!g~x!#05
1

2LE2L

L

dx2 f ~x!g~x!. ~B8!

The inverse of the differential operator]2 is defined as

1

]2
f ~x2![E

2L

L

dy2
1

2
e~x22y2! f ~y2!, ~B9!

wheree(x2) is a sign function

e~x2!5H 1 ~x2.0!,

0 ~x250!,

21 ~x2,0!.

~B10!

APPENDIX C: CONSTRAINTS AND THEIR CLASSICAL
SOLUTIONS

Since systems on the LF always have several constra
the LF quantization must be performed using Dirac’s Ham
tonian formalism for constrained systems.

The chiral Yukawa model has six primary constrain
Among them, consistency conditions foru15Ps0

'0 and

u25Pp0
'0 (PF is a conjugate momenta ofF) generate

the zero-mode constraints~3.2!, while u35Pc2
'0 gener-

ates the fermionic constraint~3.1!. The consistency is calcu

lated byu̇ i5$u i ,HLF1l ju j%PB'0 with the canonical light-
front HamiltonianHLF5P2

P25PF
21PB

21PY
2 , ~C1!

PF
25E d3x$2C̄aig2]2Ca2C̄aig']'Ca1mC̄aCa%,

PB
25E d3xF2

N

2m2$~]'s0]'s01]'ws]'ws!

1~]'p0]'p01]'wp]'wp!%

1
N

2l
$~s0

21ws
2 !1~p0

21wp
2 !%G ,

PY
25E d3x$~s01ws!C̄aCa1~p01wp!C̄aig5Ca%,
9-16
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where *d3x5*2L
L dx2*d2x' . As a result, we find that no

more constraints are generated from consistency condit
and that this system belongs to the second class.

If we ignore ordering of the variables, it is not difficult t
solve the constraints. First, the fermionic constraint~3.1! is
solved as

c2
a 5

1

i ]2
F1

2
~ ig']'1m1s2 ipg5!g1c1

a G , ~C2!

where]2
21 is defined so thatc2(x) also satisfies the antipe

riodic boundary condition~see Appendix B!. Note, however,
that this solution still contains the zero modess0 andp0 and
thus is not a complete solution. Substituting Eq.~C2! into
Eq. ~3.2!, we have equations only fors0 andp0. Then the
formal solution is given by

S s0~x'!

p0~x'!
D 52

1

A2

m2

N
D 21~x'!Fc1

a†S 21

ig5
D 1

i ]2

3~ ig']'2m!c1
a

1c1
a† 1

i ]2
H S ws1 ig5wp

wp2 ig5ws
Dc1

a J 1c.c.G
0

, ~C3!

where the transverse differential operatorD(x') is

D~x'!5
m2

l
1

m2

N

1

A2
Fc1

a† 1

i ]2
c1

a 2S 1

i ]2
c1

a†Dc1
a G

0

2]'
2 .

The final expression forc2 is reached after we insert Eq
~C3! into Eq. ~C2!. Though we have completely ignored th
‘‘ordering’’ in the classical treatment, the operator orderi
becomes an issue in a quantum theory, which makes
analysis very complicated.

APPENDIX D: PERTURBATIVE SOLUTION TO THE
ZERO-MODE CONSTRAINTS IN QUANTUM ANALYSIS

Let us solve the zero-mode constraints in perturbat
theory with the natural ordering in Eqs.~3.1! and ~3.2!. In
addition to the expansions~4.9!–~4.11!, it is convenient to
define the expansion ofC:

Ca5 (
n50

` S l

lcr
D n

Ca(n), ~D1!

whereCa(0)5c1
a 1c2

a(0) andCa(k)5c2
a(k) for k>1.

Knowing the lowest order solutions~4.13!, we obtain the
next order solution

S s0
(1)

p0
(1)D 52

lcr

N F C̄a(0)S 1

ig5
DCa(0)G

0

, ~D2!

c2
a(1)5

1

2

1

i ]2
~s0

(1)2 ip0
(1)g5!g1c1

a . ~D3!
04500
ns

he

n

Similarly, if we know the solution up tonth order, we easily
obtain the (n11)-th order solution because the constra
equation is written as follows:

m2

lcr
S s0

(n11)

p0
(n11)D 5]'

2 S s0
(n)

p0
(n)D 2

m2

N F C̄a(0)S 1

ig5
DCa(n)1H.c.G

0

,

~D4!

whereCa(n) for nÞ0 is

Ca(n)5
1

2

1

i ]2
~s0

(n)2 ip0
(n)g5!g1c1

a , ~D5!

and we have usedc2
(k)†g0c2

( l )50 for k,lÞ0, etc. In this
way, we can determine the solution order by order.

APPENDIX E: NONLINEAR EQUATIONS
FOR POLE MASSES

With the extended parity invariant~EPI! cutoff, the inte-
gral F(k2,M2) Eq. ~5.18! is given as

FEPI~k2,M2![E
x(2)

x(1)
dxE

0

2L2x(12x)2M2

dp'
2

3
p

~2p!3

1

p'
2 1M22k2x~12x!

, ~E1!

where integration limit x(6)5(16b)/2 with b
5A122M2/L2 comes from 2L2x(12x)2M2.0. The in-
tegral is easily performed and the result is

FEPI~k2,M2!5
1

8p2
logS 11b

12b D
2

1

4p2
A4M22k2

k2
arctanbA k2

4M22k2
.

~E2!

For k2;0, we can approximate this as

FEPI~k2→0,M2!5
1

8p2
logS 11b0

12b0
D2

1

4p2
b0 , ~E3!

where b05A122M0
2/L2 and we used limx→0x21arctanx

51.
Using above, the nonlinear equations for the sca

masses are

m

lM
5

1

m2 S mp
2

ms
2 D 1S mp

2 FEPI~mp
2 ,M2!

~ms
224M2!FEPI~ms

2 ,M2!
D . ~E4!

Note that when the chiral and heavy mass limitm→0, m
→`, we have solutionsmp50 andms52M .
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