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QCD fishnets revisited

Klaus Bering,* Joel S. Rozowsky,† and Charles B. Thorn‡

Institute for Fundamental Theory, Department of Physics, University of Florida, Gainesville, Florida 32611
~Received 27 September 1999; published 25 January 2000!

We look back at early efforts to approximate the largeNc Feynman diagrams of QCD as very large fishnet
diagrams. We consider more carefully the uniqueness of rules for discretizingP1 andix1 which fix the fishnet
model in the strong ’t Hooft coupling limit, and we offer some refinements that allow more of the crucial QCD
interactions to be retained in the fishnet approximation. This new discretization has a better chance to lead to
a physically sensible ‘‘bare QCD string’’ model. Not surprisingly the resulting fishnet diagrams are both richer
in structure and harder to evaluate than those considered in older work. As warm-ups we analyze arbitrarily
large fishnets of a paradigm scalar cubic theory and very small fishnets of QCD.

PACS number~s!: 12.38.Aw, 11.15.Me, 11.15.Pg, 12.38.Cy
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I. INTRODUCTION

With all the recent effort devoted to the search for a
lution of largeNc QCD @1# as a classical string theory@2#, it
is appropriate to reassess earlier efforts to accomplish
goal. In this article we wish to refine and extend the form
lation and calculational methods developed in the effort
the late 1970s to systematize a fishnet@3# approximation to
largeNc QCD @4,5#.

The larger goal here is to set up a discrete model of i
nite Nc QCD which, when analyzed in a weak coupling e
pansion (Ncg

2!1), reproduces perturbative QCD and, wh
analyzed in a strong coupling limit (Ncg

2→`), describes
what we choose to call a ‘‘bare QCD string.’’ Since QCD
supposed to confine at all values of the ’t Hooft coupling,
infinite Nc glueball should actually be noninteracting ov
the whole range of couplings. However, its composite int
nal structure is generally expected to be quite complica
and it is only in the strong ’t Hooft coupling limit that th
internal structure of an infiniteNc glueball can be as simpl
as that of the ‘‘fundamental string’’ of string theory. W
regard it as an open question whether the bare QCD st
can be identified with one of the known fundamental strin
or is an entirely novel object. We hope that our efforts w
eventually settle this issue. We tentatively identify the b
QCD string with the object whose propagation is describ
by the so-called fishnet diagrams.

As shown in@4# the fishnet diagrams by no means exha
the planar diagrams of ’t Hooft’sNc→` limit. Fishnets are
certainly planar, but they are also very large in both dir
tions: there are many lines and many interaction vertices
is natural to try to associate such diagrams with strong
Hooft coupling Ncg

2→`, but as with all strong coupling
expansions one must first define a cutoff theory which c
trols the size of the kinetic energy of the system. In@4# the
choice was to evaluate all graphs on a light front and sim
taneously discretize P15(P01P3)/A2 and x15(x0
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1x3)/A2. In this model the large ’t Hooft coupling limi
singled out large fishnet diagrams whose continuum li
was a seamless world sheet. As usual with strong coup
limits this conclusion is highly sensitive to the cutoff mode

What one hopes when resorting to strong coupling me
ods is that although the limit strongly distorts the quantitat
details of the continuum theory, the qualitative physics
shared between the continuum and lattice models for all c
plings. In standard lattice gauge theories this hope is usu
expressed as requiring that the lattice model exhibit no ph
transition as the coupling constant is varied from strong
weak coupling. Probably the most familiar case in whi
there is a phase transition is ‘‘compact QED’’ whose stro
coupling limit shows confinement, but whose continuu
limit is a theory of free photons.

Although the existence of a phase transition at finite c
pling is usually extremely difficult to detect, it is the cas
that in some situations our lattice fishnets can be seen t
completely irrelevant to the physics of large but finite co
pling. In @4# this possibility was noted in the context of scal
lf4 theory. The qualitative physics of the seamless fish
diagrams is that the quanta of the field theory are bound
a linear polymeric chain. However, one can examine at n
order in the strong coupling expansion the nature of the
teraction that should be responsible for this binding. Fol
.0 this interaction isrepulsive, and the seamless worl
sheet given by the strong coupling limit is a purely form
artifact. In contrast, forl,0 the interaction is attractive, an
it is qualitatively correct to imagine that the nearest neigh
quanta form very tight bonds in the strong coupling limit.

A serious shortcoming of the QCD fishnet model a
tempted in@5# is that the basic gluon-gluon quartic intera
tion retained in the strong coupling limit favored the alig
ment of the gluon spins. This defect was not appare
however, because the leading fishnet structure was expli
an even function of this interaction and in fact described
antiferromagnetic spin arrangement. The inherent instab
of the system would only be seen at non-leading order.
aim to improve this situation in the present work by propo
ing a discretized model whose fishnet approximation reta
both the ‘‘contact’’ interactions, with their ferromagnet
tendency, and the one gluon exchange interactions with t
antiferromagnetic tendency.
©2000 The American Physical Society07-1
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The rest of the article is organized as follows. In Sec
we give a self-contained review of the Feynman rules
light-cone gauge as well as the discretization rules larg
following @4,5#. However, we treat the longitudinal mode
differently. We represent the ‘‘induced quartic interaction
of light-cone gauge by the exchange of a short-lived fic
tious spin 0 quantum: its propagation is limited to a sm
number of discrete time steps. This idea motivated ano
departure from@5#. Namely, we also choose to represent t
basic quartic gluon interaction by the exchange of anot
short-lived fictitious spin 0 quantum. In this wayall vertices
of the discretized Feynman rules are cubic, and are acc
ingly all treated on the same footing in the strong coupl
limit. In Sec. III we show our discretization in action b
computing the gluon self-energy at one loop order. We
how the ambiguities inherent in spreading out the qua
vertices begin to be resolved by requiring Lorentz inva
ance. The propagators of the fictitious scalars are multip
by f k , hk , wherek is the number of time steps, and(kf k
5(khk51. Lorentz invariance of the self-energy constra
the moments(kf k /k and(khk /k. In Sec. IV we describe the
fishnet approximation. As a warm-up, we give a compl
analysis of the leading fishnet diagrams of a paradigm ma
scalar field theoryg Tr f3. Then we describe the more com
plicated situation of QCD. We do not attempt to analyze
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arbitrary QCD fishnets here. Instead in Sec. V we study
sum of planar diagrams for small values ofM, the number of
units ofP1 carried by the evolved system. Finally in Sec. V
we collect some concluding remarks and sketch future dir
tions for this program of research.

II. LIGHT-CONE FEYNMAN RULES
AND DISCRETIZATION

A. Propagators

The gluon propagator in light-cone gaugeA250 is given
in momentum space by

D̃mn~p!52 i
hmn2hm1pn/p12h1npm/p1

p22 i e
. ~1!

The signature of our metric tensorhmn is taken to be (2,
1,1,1). In this paper we shall make extensive use of t
x1 representation

Dmn~p,p1,x1![E dp2

2p
D̃mn~p!e2 ix1p2

. ~2!

Evaluating thep2 integral leads to the following expression
for the individual components ofDmn:
Dkl~p,p1,x1!5u~x1!
hkl

2p1
e2 ix1p2/2p1→u~t!

hkl

2p1
e2tp2/2p1

Dk2~p,p1,x1!5u~x1!
pk

2p12
e2 ix1p2/2p1→u~t!

pk

2p12
e2tp2/2p1

D22~p,p1,x1!5 i
]

]x1u~x1!
1

p12
e2 ix1p2/2p1→2

]

]t
u~t!

1

p12
e2tp2/2p1

5Fu~x1!
p2

2p13
1 id~x1!

1

p12Ge2 ix1p2/2p1→Fu~t!
p2

2p13
2d~t!

1

p12Ge2tp2/2p1
, ~3!
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where the arrows indicate the imaginary time versionst
5 ix1). In this paper latin indices will always refer to th
transverse components. We shall also find it convenien
use a complex basis for transverse indices, definingV`

[(V11 iV2)/A2 andV~[(V12 iV2)/A2. In this basis the
metric has valuesh~~5h``50 andh~`5h`~51.

Here we are assuming thatA252A1 has not been elimi-
nated from the formalism. Since Gauss’ law relatesA1 to the
transverse components through a constraint not involv
time derivatives, it is possible to explicitly integrateA1 out
~see for example@6#!, leaving the transverse components
the only independent variables. In that case the Feynm
rules would only employ the transverse propagatorDkl.
Graphically, one achieves the same result by showing
to

g

s
an

at

the contributions ofDk2 and D22 lead to modified cubic
vertices and a new induced quartic vertex which arises fr
the d(x1) term in D22.

B. Vertices

We shall present the primitive cubic and quartic vertic
as ’t Hooft did in his presentation of the 1/Nc expansion@1#.
Since the vertex assignments lack permutation symmetr
is understood that all permutations of them must be includ
The double line notation makes clear what powers ofNc
must be included with each topology. However, since
shall be dealing exclusively with the planar diagrams of
Nc→` limit, we shall dispense with this refinement in ord
to reduce clutter. To correctly use these rules at finiteNc , the
7-2
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FIG. 1. Cubic and quartic gauge vertices f
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double line notation should be restored. With this und
standing, the primitive cubic vertices are given by

G3
~~~5G3

```50

G3
``~52 ig~Q22Q1!`→2g~Q22Q1!`

G3
~~`52 ig~Q22Q1!~→2g~Q22Q1!~

G3
~`15G3

`~151 ig~Q22Q1!1→1g~Q22Q1!1, ~4!

and the primitive quartic vertices by

G4
``~~51 ig2→1g2

G4
`~`~522ig2→22g2, ~5!

where the arrows indicate the appropriate vertices to use
imaginary time. In light-cone gauge, only transverse gluo
participate in the quartic vertices. Our convention will
that all momenta flow into the vertex. Also, the index~
(`) will be represented graphically by attaching an outgo
~incoming! arrow to a line~see Fig. 1!. The ordering of in-
dices will be counterclockwise around the vertex. As usu
each vertex is associated with an integration overx1 and
conserves the transverse and1 components of momentum
Then each unconstrained momentum is integrated with m
sured2pdp1/(2p)3.

C. Discretization

To give a nonperturbative model for the summation o
planar diagrams, it was proposed in Ref.@4# to simulta-
neously discretizep15 lm and imaginary timet[ ix15ka,
with k,l running over all positive integers. The use of imag
nary time converts all oscillating exponentials to damp
ones, and removes alli ’s from the Feynman rules. Thus th
i occurring in each vertex is combined with thedx1 to form
dt. ~Because of time translational invariance, the time in
gral for one vertex in each connected diagram should
omitted, leaving one factor ofi unabsorbed. Conventionally
we shall omit this lasti in the quantities we calculate.!

It can be easily seen that the lattice constantsa,m only
enter the sum of graphs in the ratioT0[m/a. First notice
that only this ratio appears in the exponents. Since e
propagator is nominally integrated over itsp1, *dp1
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→m( provides a factor ofm to cancel one from a 1/p1

prefactor in each propagator. Further*dt→a( at each ver-
tex which also has a nominalp1 conserving delta function
that supplies a 1/m, so each vertex supplies a factor 1/T0.
Finally, every2 index of a propagator will be matched wit
a 1 index of a vertex, which will involve a factor ofp1 and
hence supply a factor ofm to cancel the extra factor of 1/m
in Dk2 and to convert the extra factor of 1/ma in D22 to T0.

The discretization ofD22 involves some ambiguity in
the interpretation of the term involvingd(x1). With x1 con-
tinuous, this term collapses the two cubic vertices it conne
into an instantaneous quartic interaction local inx but p1

dependent and hence nonlocal inx2. Indeed this is precisely
the well-known quartic vertex induced by elimination ofA1

in the Hamiltonian formulation of light-cone gauge. In th
approach the remaining part ofD22 combines nicely with
the contributions ofDk2 to yield a modified cubic vertex for
transverse gluons only:

Ĝ3
``~522gS Q1

11Q2
1

Q1
1Q2

1 D ~Q1
1Q2

`2Q2
1Q1

`!

Ĝ3
~~`522gS Q1

11Q2
1

Q1
1Q2

1 D ~Q1
1Q2

~2Q2
1Q1

~!,

~6!

which are the vertices appropriate to imaginary time. W
longitudinal gauge fields completely eliminated in this wa
discretization could then proceed as usual by discretizing
x1 andp1 parameters of the transverse gluon propagator
addition, one has to exclude, in somead hoc manner, the
p150 exchange part of the induced quartic vertex which
infinite as it stands. Moreover, the set of ‘‘tadpole diagram
necessarily excluded in our discretization~see Sec. II D be-
low! is enlarged by the induced quartic interaction and, sin
the new quartic interactions depend non-trivially onp1, the
p1 dependence of the necessary counter-terms will be m
complicated. Nevertheless, an attractive feature of suc
treatment is that the modified cubic vertex is manifestly
variant under the light-cone Galilei group:Q→Q1Q1V.

We shall follow a different path, more in the spirit of th
sum over histories. The idea is to exploit our discretization
x1 to give a more flexible interpretation ofd(x1), which
retains a Gaussian damping factor and maintains Galilei
variance throughout. This can be done by the replaceme
7-3
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KLAUS BERING, JOEL S. ROZOWSKY, AND CHARLES B. THORN PHYSICAL REVIEW D61 045007
D22~Q,Q15Mm,x152 ika!

→ Q2

2M3
e2kQ2/2MT02 f k

T0

M2
e2kQ2/2MT0

3 (
k.0

f k51. ~7!

The last term on the right-hand side~RHS! of Eq. ~7! is a
satisfactory discretization of the delta function provided
f k’s fall off sufficiently rapidly with k. The exclusion off 0
ensures damping of transverse momentum integrals. In
approach, instead of a new induced quartic vertex we h
introduced a short lived scalar, whose exchange simul
that vertex in a way that maintains Galilei invariance. F
ther, by leaving the choice of thef k’s open we might be able
to tune their values to cancel unwanted symmetry violati
induced by ultraviolet divergences in the continuum lim
The first term on the RHS of Eq.~7! is exactly what is
needed to complete the modified cubic vertex~6! when com-
bining all of the contributions of the longitudinal gluons.

Perhaps a more intuitive discretization would be to
place the derivative inD22 by a discrete difference:

D22~Q,Mm,2 ika!

→2
T0

M2 H e2kQ2/2MT02e2(k21)Q2/2MT0, k.1,

e2Q2/2MT0, k51,
~8!

where the special treatment of the casek51 simulates the
d(x1) contribution we know must be there in the continuu
Unfortunately, this definition violates Galilei invariance b
cause of the term that propagates onlyk21 steps in time:
Newtonian mass conservation is temporarily violated. T
causes considerable complications in calculations, but no
theless displays interesting features. We will not pursue
option in the main text, but in an appendix we shall see t
with a suitable counter-term Galilei invariance of the o
loop self-energy can be restored in the continuum limit.

D. Tadpoles

The exclusion of the propagators with zerot and zerop1

renders every Feynman integral finite, making our discr

FIG. 2. Tadpole Feynman diagrams coming from cubic a
quartic vertices.
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zation an effective regulator of divergences.1 But it also
means that certain ‘‘tadpole’’ Feynman diagrams, which
volve one or more propagators originating and terminating
the same vertex, are excluded. In a theory with at most q
tic vertices, these diagrams are limited to self-energy pa
which generally require counter-terms to enforce Lorentz
variance in the continuum limit. Thus errors induced by e
cluding these diagrams could simply be absorbed in the
timate value of the counter-terms.

Tadpoles arising from the cubic interaction@see Fig. 2~a!#
represent the vacuum expectation value of the color cur
density. The transverse components of these would va
anyway because they are linear in transverse momentum
we can make sure all these tadpoles vanish by simply nor
ordering the current density. However, tadpoles arising fr
the quartic interaction@see Fig. 2~b!# would give a divergent
non-vanishing result if the zero time propagator were
serted. As mentioned above one possibility is to absorb th
in the self-energy counter-term.

Another possibility is to note that, from the point of vie
of the continuum, one can just as well spread the qua
interaction over several time steps, in which case a candi
for the tadpole diagrams would emerge. We have alre
exploited this idea in our discretization ofD22; see Eq.~7!.
A natural way to do this is to imagine that the quartic inte
action is actually the concatenation of two cubic interactio
mediated by a fictitious scalar field which is only allowed
propagate a few time steps.2 We thus redraw the variou
quartic vertices as in Fig. 3. The fictitious scalars must

1The discrete light-cone quantization~DLCQ! industry which bur-
geoned in the mid-1980s~for a review see@7#! only exploitedP1

discretization, leaving ultraviolet divergences unregulated. Discr

zation of ix1 has the effect of introducing factors ofe2ap2/2P1

~which is a popular way to regulate UV divergences! into loop
integrals.

2Note that in higher dimensions, the fictitious field would be
transverse two-form instead of a scalar. Such an additional de
of freedom is presaged by the first order formulation of gau
theory in whichFmn is treated as independent ofAm and the La-
grangian density is2Tr F2/41 i Tr Fmn(]mAn2 igAmAn). Going to
light-cone gauge in this formalism leaves, in addition toAk, the
~nondynamical! fields F12 andFkl . Our prescription simply gives
these extra fields a short-lived dynamics.

d

FIG. 3. Quartic vertices get replaced by two cubic vertices an
fictitious scalar field.
7-4



ir
a
o

ke
ze
ik
d

he
’’
e

u
re
ig

e
n
rm
fi
o

-

u
t

ll
n

to

he

uan-

a-

th

tic

out

QCD FISHNETS REVISITED PHYSICAL REVIEW D61 045007
‘‘ghosts’’: to reproduce the quartic couplings, either the
coupling to two transverse gluons must be taken imagin
or their propagator must be negative. We choose the sec
alternative for which the vertices are given in Fig. 4.

Note that the quartic vertex which involves adjacentli
direction spins in one channel can be viewed as a spin
exchange in only one way, whereas the vertex with unl
adjacent spins in both channels becomes two exchange
grams, giving a natural interpretation of the factor of 2 in t
effective quartic vertex. If we now consider the ‘‘tadpoles
arising from connecting any pair of external lines, we s
that there are 3 diagrams~see Fig. 5!, but the two with the
topology of a cubic tadpole, which cannot be drawn in o
discretized light-cone formalism, cancel. Thus the only
maining tadpole is the bubble diagram on the far right of F
5, which poses no problem for our formalism.

The fictitious scalar propagator can be taken to be

D~Q,M ,k!52hkT0e2kQ2/2MT0

(
k.0

hk51, ~9!

where thehk’s, like the f k’s, vanish rapidly withk. The nor-
malization condition guarantees that the correct quartic v
tex will be reproduced in the continuum limit. The expone
tial factor damps ultraviolet divergences, and with the fo
we have specified, maintains Galilei invariance even for
nite lattice constants. Furthermore, by leaving the choice
the hk’s open, we gain additional flexibility to cancel un
wanted symmetry violations. The hope is that tuning thef k’s
andhk’s will remove the need for explicit counter-terms.

III. GLUON SELF-ENERGY AND COUNTER-TERMS
AT ONE LOOP

In this section we illustrate the way discretization reg
lates divergences by computing the one-loop contribution
the gluon self-energy part,iPmn, defined as the sum of a
one particle irreducible diagrams for the two-point functio
For this purpose it is convenient to pass fromx1 represen-
tation to energy (E5p2) representation. With discretizedt,
this is accomplished by defining

D̃mn~Q,M ,E!5 (
k51

`

eakEDmn~Q,M ,k! ~10!

FIG. 4. The couplings of the transverse components of
gauge field to the fictitous scalar field. The subscriptm indicates
that this is amagneticghost vertex. These replace the two quar
vertices at the bottom of Fig. 1.
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P̃mn~Q,M ,E!5 (
k51

`

eakEPmn~Q,M ,k!. ~11!

The exact gluon propagator is then algebraically related
the the bare one andP̃. We define u[e2Q2/2MT0

5eaE2Q2/2MT0, in terms of which bare propagators have t
values

D̃0
i j ~Q,M ,E!5

h i j

2M

u

12u
~12!

D̃0
i 2~Q,M ,E!5

Qi

2M2

u

12u
.

For D22 we have, for the discretization of Eq.~7!,

D̃0
22~Q,M ,E!5

Q2

2M3

u

12u
2

T0

M2 (
k.0

f ku
k. ~13!

Because of the light-cone gauge, onlyP i j ,P i 1 andP11

are required. By transverse rotational invariance, these q
tities can be decomposed as

P̃ i j 5QiQjP11h i j P2

P̃ i 15MQiP18

P̃115M2P19 . ~14!

We shall find that at the one-loop approximation,P195P18
5P1, and if that were to hold generally, the exact propag
tors would be given by

D̃ i j 5
h i j

2M

u

12u2uP2/2M
~15!

D̃ i 25
Qi

2M2

u

12u2uP2/2M

e FIG. 5. Three tadpole diagrams resulting from the spreading
of the quartic gauge vertex.

FIG. 6. The two bubble diagrams that contribute toP11.
7-5
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D̃225
T0

M2F 2(
k

f ku
k

11T0P1(
k

f ku
k

1
Q2

2MT0

u

12u2uP2/2MG .

A. Calculation of P1

After these preliminaries, let us now turn to the compu
tion of P1 at one loop. The simplest term isP11, which is
given in x1 representation by@note that there are 2 equa
diagrams that contribute~see Fig. 6!#

P1152
g2Nc

T0
2 E d2p

~2p!3 (
l 51

M21
~M22l !2

4l ~M2 l !

3e2k[p2/2l 1(Q2p)2/2(M2 l )]/T0

5
2g2Nc

16p2T0
(
l 51

M21

~M22l !2
1

Mk
e2kQ2/2MT0

5
Ncg

2~M21!~M22!

24p2T0k
e2kQ2/2MT0 ~16!

P̃115
g2Nc

24p2T0
~M21!~M22!@2 ln~12u!#.

~17!

The evaluation ofP j 1 is not much harder. Here there a
four diagrams that differ only in the prefactor of the tran
verse momentum~see Fig. 7!. Since the prefactor is linear in
momentum, we need only to remember that the Gaus
integral over transverse momentum involves the shiftp→p
1 lQ/M . After this shift the term linear inp integrates to
zero, so the net effect is to setp5 lQ/M . Thus the net pref-
actor is

Qj

M
~2l 2M !@~11 l /M !1~221 l /M !1h12~212 l /M !

1h12~22 l /M !#5
2Qj

M2 ~2l 2M !2, ~18!

which involves the identical sum overl as P11. Thus we
end up with

P̃ j 15
g2Nc

24p2T0

Qj

M
~M21!~M22!@2 ln~12u!#. ~19!

The coefficient ofQiQj in P i j may be singled out by
computingP``. This leads to a similar calculation to th
above because, after the shift in integration variable,p` and

FIG. 7. The four bubble diagrams that contribute toP`1.
04500
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an

p`p` both integrate to zero. Thus, again, prefactors ofp`

may simply be set tolQ`/M . Eight diagrams contribute to
this quantity, equal in pairs~see Fig. 8!. The prefactors of
these diagrams combine as follows:

2Q`Q`

M2 @~M1 l !21~2M2 l !22~M1 l !~2M2 l !2~M1 l !

3~2M2 l !#5
2Q`Q`

M2 ~2l 2M !2. ~20!

So again we have the same sum overl, leading to

P``5
g2Nc

24p2T0

Q`Q`

M2 ~M21!~M22!@2 ln~12u!#.

~21!

The upshot of the calculations so far is that

P15P185P195
g2Nc

24p2T0
S 12

3

M
1

2

M2D @2 ln~12u!#.

~22!

The equality of the variousP ’s holds even at finitem,a.
This can be understood because the diagrams we have e
ated show no violation of Galilei invariance. Our result f
P1 can be compared with the result from the study
asymptotic freedom in the infinite momentum frame@8#:

P1~Q2!5
g2Nc

24p2 S ln
L2

Q2 112D , ~23!

in which a simple cutoffk2,L2 was employed. To make th
comparison, note that in the continuum limit,a→0, M
→`, 12u'(Q222Q1E)/2MT05Q2/2MT0. Thus, for us,
the role of L2 is played by the quantity 2MT052Q1/a.
Note that if we choose to keepT0 fixed, the ultraviolet cutoff
is removed by simply takingM→`.

B. Calculation of P2

Finally we turn to the real core of the self energy calc
lation, the determination ofP2, which can be inferred from
P`~5Q`Q~P11P25P21Q2P1/2. Seventeen diagram

FIG. 8. The eight bubble diagrams that contribute toP``.
7-6
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contribute to this quantity, 15 of which do not involveD22

and are relatively simple to analyze.
First consider the three diagrams that only involve tra

verse internal propagators~see Fig. 9!. The prefactors of
transverse momentum combine as follows:

~2p2Q!`~2p2Q!~1~p1Q!`~p1Q!~1~2Q2p!`~2Q

2p!~53~p21Q22p•Q!

→3$p21@12 l /M1~ l /M !2#Q2%, ~24!

where in the last line we have indicated the result of shift
p by lQ/M and dropping the term linear inp. The transverse
integral of the term inQ2 is the same as before, but the ter
in p2 gives an extra factor 2T0l (M2 l )/kM. These terms
require the sums

(
l 51

M21

~M22 lM 1 l 2!5
M ~M21!~5M21!

6
, ~25!

FIG. 9. The three bubble diagrams that contribute toPA
`~ in-

volving only transverse components.
fa
in
ing
s

04500
-

g

(
l 51

M21

l ~M2 l !5
M ~M21!~M11!

6

respectively. The contribution of these three diagram
PA

`~ , is given by

PA
`~5

g2Nc

16p2 FM221

k2M
1

5M226M11

2kM2T0
Q2Ge2kQ2/2MT0.

~26!

The next class of diagrams consists of the eight gra
with one D j 1 propagator, shown in Fig. 10. Rememberin
the single factorh12 , we find that the prefactors combin
as follows:

FIG. 10. The eight bubble diagrams that contribute toPB
`~ .
2~2M2 l !Fp`

l
~Q22p1Q1p!~1

p~

l
~Q22p1Q1p!`G

2~M1 l !F ~Q2p!`

M2 l
~2Q12p12Q2p!~1

~Q2p!~

M2 l
~2Q12p12Q2p!`G

52
2M2 l

l
p•~2Q2p!2

M1 l

M2 l
~Q2p!•~Q1p!→2

5M222lM 12l 2

M2 Q21
2M222lM 12l 2

l ~M2 l !
p2 ~27!
for
where as before the arrow indicates the effect on the pre
tors after the usual shift of integration variables. Perform
the by now familiar integrals and sums leads to the follow
result for the contribution of this class of eight diagram
labeled byPB

`~ :

PB
`~5

g2Nc

24p2F5M226M11

k2M

2
14M2215M11

2kM2T0
Q2Ge2kQ2/2MT0. ~28!
c-
g

,

Combining this with the previous three diagrams yields,
the 11 diagrams considered thus far

PA
`~1PB

`~5
g2Nc

48p2

13M2212M21

M

3F 1

k2 2
Q2

2kMT0
Ge2kQ2/2MT0. ~29!

The prefactors in the pair of diagrams~shown in Fig. 11!
involving two D j 1 propagators combine to form
7-7
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~M1 l !~ l 22M !

l ~M2 l !
p•~Q2p!→ ~M1 l !~2M2 l !

l ~M2 l !
p2

2
~M1 l !~2M2 l !

M2 Q2.

~30!

This time the required sum is just

(
l 51

M21

~2M21 lM 2 l 2!5M ~M21!~13M11!/6, ~31!

so that these two diagrams simply double the result of
first eleven. So, in summary, the total contributions of the
diagrams that do not involveD22 to P`~ andP̃`~ are

PA
`~1PB

`~1PC
`~5

g2Nc

24p2

13M2212M21

M

3F 1

k2 2
Q2

2kMT0
Ge2kQ2/2MT0

~32!

P̃A
`~1P̃B

`~1P̃C
`~5

g2Nc

24p2

13M2212M21

M

3F (
k51

`
uk

k21
Q2

2MT0
ln~12u!G .

~33!

The two diagrams in Fig. 12 have aD22 propagator as
one of the internal lines and lead to a qualitatively differe

FIG. 11. The two bubble diagrams that contribute toPC
`~ .
04500
e
3

t

evaluation than the first 13. Using Eq.~7! the Gaussian ex-
ponents are the same as with the first 13 diagrams. One fi

PD
`~5

g2Nc

8p2 (
l 51

M21 H ~2M2 l !2

l
e2kQ2/2MT0F M2 l

k2M2 2
f k

Mk

1
lQ2

2kM3T0
G1~ l→M2 l !J

5
g2Nc

4p2 e2kQ2/2MT0F12k fk

k2 $4M @c~M !1g#

27~M21!/2%2
~M21!~14M21!

6k2M

1
~M21!~14M21!Q2

12kM2T0
G , ~34!

where we have made use of the identity

1

M (
l 51

M21
~2M2 l !2

l
54M @c~M !1g#2

7

2
@M21#, ~35!

wherec(z)5G8(z)/G(z) is the digamma function andg is
Euler’s constant. At largeM, we have

c~M !; ln M2
1

2M
2 (

n>1

B2n

2nM2n
, ~36!

whereB2n are the Bernoulli numbers.
With the quartic vertices realized as the exchange o

magnetic scalar, we have a definite proposal for the tadp
contribution to the self-energy, namely the two diagrams
Fig. 13, which each give equal contributions. Calling t
tadpole contributionPE

`~ , we find

FIG. 12. The two bubble diagrams that contribute toPD
`~

which involve aD22 propagator.
PE
`~522

g2Nc

~2p!3T0
E d2p (

l 51

M21
hk

2~M2 l !
e2k[ Mp2/ l (M2 l )1Q2/M ]/2T0

52
g2Nc

4p2 (
l 51

M21
lhk

Mk
e2kQ2/2MT052

g2Nc

8p2 ~M21!
hk

k
e2kQ2/2MT0. ~37!

Adding PD
`~1PE

`~ to the first 13 diagrams gives~in energy representation!
7-8
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P̃`~5P̃A
`~1P̃B

`~1P̃C
`~1P̃D

`~1P̃E
`~

5
g2Nc

4p2 F (
k51

`
uk

k2S 4M @c~M !1g#

2
~M21!~11M21!

3M D2 (
k51

`

hk

uk

k

M21

2

2 (
k51

`

f k

uk

k S 4M @c~M !1g#2
7~M21!

2 D
1 (

k51

`
uk

k

~M21!~M22!Q2

12M2T0
G . ~38!

To getP2 we must subtractQ2P1/2, which exactly cancels
the last term, leaving

P25
g2Nc

4p2 F (
k51

`
uk

k2S 4M @c~M !1g#2
~M21!~11M21!

3M D
2 (

k51

`

hk

uk

k

M21

2
2 (

k51

`

f k

uk

k S 4M @c~M !1g#

2
7~M21!

2 D G . ~39!

The first term inside the large square brackets is exactly
contribution one would obtain using the modified cubic v
tex ~6! in the three diagrams of Fig. 9. The terms withf k
represent the tadpole diagram that would have been
structed from the induced quartic vertex hadA1 been elimi-
nated from the formalism. This is as it should be beca
summing over all the diagrams involvingD2k and D22 is
the graphical equivalent of the elimination of theA1 degree
of freedom. The formalism withA1 eliminated gives an ex
tremely efficient calculation of the three bubble diagrams
shown in the next subsection, but no candidate for the
poles. But by treatingA1 graphically we are led to a usefu
proposal for the tadpole diagram.

In order to compare our results to the continuum calcu
tion of Ref. @8#, we must examine the limitsu→1 and M
→`. The behavior of the first term of Eq.~39! in this limit is
transparent once we use the identity

(
k51

`
uk

k2 5
p2

6
2 ln u ln~12u!2 (

k51

`
~12u!k

k2

'
p2

6
1~12u!@ ln~12u!21#, ~40!

for u'1. The last two terms can be expanded aboutu51:

(
k51

`

hk

uk

k
5 (

k51

`
hk

k
1~u21!(

k51

`

hk1O„~u21!2
…

5 (
k51

`
hk

k
1~u21!1O„~u21!2

…, ~41!
04500
e
-

n-

e

s
d-

-

and a similar expansion for(kf ku
k/k. The coefficient of the

linear term is completely determined by the normalizati
conditions on thef ’s andh’s. Momentum independent term
in P2 imply a ~divergent and noncovariant! tachyonic gluon
mass squared in perturbation theory. Since the gluon
only helicity 61, such a mass is inconsistent with Poinca´
invariance of the continuum limit. Clearly these symme
violating terms would be cancelled if we could impose t
constraints

(
k51

`
f k

k
5

p2

6
~42!

(
k51

`
hk

k
52

p2

18 S 12
2

M D , ~43!

but clearly the second of these is impossible withhk inde-
pendent ofM @implicitly assumed in Eq.~9!#. The best we
can do is to set the RHS of Eq.~43! to 2p2/18, which would
cancel the linear divergence ofP2. However, there remains
finite gluon mass which is still inconsistent with the Poinca´
invariance of the continuum theory. One option would be
cancel this with a mass counter-term, whose coeffici
would have to be determined order by order.

Another approach is to allowhk to be dependent onM.
We have the freedom to make this replacement as long a
recover the correct continuum limit (M→` and a→0) of
the theory.3 With this modification, Eq.~37! is replaced by

PE
`~52

g2Nc

4p2 (
l 51

M21
lhk~ l !

Mk
e2kQ2/2MT0, ~44!

where the sum overl is not performed. Similarly Eqs.~38!
and~39! should now include the correctedPE

`~ . ThusP2 is
given by

P25
g2Nc

4p2 F (
k51

`
uk

k2S 4M @c~M !1g#2
~M21!~11M21!

3M D
2 (

k51

`

uk (
l 51

M21
lhk~ l !

Mk
2 (

k51

`

f k

uk

k S 4M @c~M !1g#

2
7~M21!

2 D G , ~45!

and the expansion of Eq.~41! aboutu51 should now be

3We have the same flexibility for thef ’s in Eq. ~7! but as we will
see this is not necessary at least at one loop order.
7-9
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2 (
k51

`

uk (
l 51

M21
lhk~ l !

Mk
52 (

k51

`

(
l 51

M21
lhk~ l !

Mk
2~u21!

3 (
k51

`

(
l 51

M21
lhk~ l !

M
1O„~u21!2

…

52 (
k51

`

(
l 51

M21
lhk~ l !

Mk
2~u21!

M21

2

1O„~u21!2
…. ~46!

The constraint equation that replaces Eq.~43! is

(
l 51

M21
l

M (
k51

`
hk~ l !

k
52

~M21!~M22!

6M

p2

6
, ~47!

which can be satisfied if we require

(
k51

`
hk~ l !

k
52

p2

18 S 12
1

l D . ~48!

We prefer this approach to that of a mass counter-term, s
it is possible that this is a uniform description that wor
order by order~at each order the cancellation places co
straints on higher moments ofh). The hope is that this can
be used non-perturbatively.

In the continuum limit M (12u)→Q2/2T0 stays finite
and we find thatP2 tends to

P2→
g2Nc

16p2

Q2

T0
H F8~ ln M1g!2

22

3 G ln Q2

2MT0
1

4

3J .

~49!

Remembering that ourP2 is a factor of2Q2/T0 times that
defined in Ref.@8#, we find agreement for the coefficient o
Q2ln Q2, provided we identifyMeg with Q1/e and 2MT0
with L2. We do not get, nor should we expect, the sa
~finite! coefficient ofQ2.

C. Brief calculation of P

In the work just completed, we deliberately kept theA1

degree of freedom in the graphical rules in order to keep
calculation as close as possible to one in other gauges. H
ever, having seen how all of the graphs with longitudin
gluons combine so nicely, it is appropriate to note that
calculation withA1 explicitly eliminated, so that the Feyn
man rules refer only to the transverse gluons, is much m
compact and efficient. With our prescription we can expl

FIG. 13. The two bubble diagrams that contribute toPE
`~

which correspond to the tadpole contributions induced by
spread out quartic vertices.
04500
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e
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l
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this simplification by using the modified cubic vertices, E
~6!, for the transverse gluons. At the same time we retain
replacement of both the bare and induced quartic vertice
the exchange of two short-lived scalars. The self-energy
grams involving those scalars will be exactly as describ
previously ~i.e. the terms involvingf ’s and h’s!. However,
all of the remaining contributions toPkl are reduced to the
two or three diagrams involving only transverse gluons a
the modified cubic vertices.

Only two diagrams contribute toP``, the last two dia-
grams in Fig. 8, and they each involve a prefactor

~Mp2 lQ !`~Mp2 lQ !`→M2p`p`, ~50!

after the shift in momentum. Clearly this integrates to zero
P``50. Finally there are only three non-tadpole graphs
consider forP`~, namely those in Fig. 9. In this case th
relevant prefactors from the three diagrams contributing
P`~ combine as

2F M2

l 2~M2 l !2 1
l 2

~M2 l !2M2 1
~M2 l !2

M2l 2 G~Mp2 lQ!2

→2F M2

l 2~M2 l !2 1
l 2

~M2 l !2M2 1
~M2 l !2

M2l 2 GM2p2

~51!

after the usual shift in momentum. Note that because th
vertices are manifestly Galilei invariant, there is no term p
portional toQ2 in the prefactor. Thus after integration ove
loop momentum we are left with the contribution toP`~:

Pnon-tadpole
`~ 5

g2Nc

4p2

1

k2 (
l 51

M21 F M2

l ~M2 l !
1

l 3

~M2 l !M2

1
~M2 l !3

M2l G
5

g2Nc

4p2

1

k2 (
l 51

M21 F4M

l
12

23M213Ml 2 l 2

M2 G
5

g2Nc

4p2

1

k2M F4~c~M !1g!2
11

3
1

4

M
2

1

3M2G .
~52!

In this way of organizing the calculation, the longitudin
components ofPmn play no role and the new diagrams co
tributing to P`~ give P2 directly. For the non-tadpole par
we find

P2
non-tadpole5

g2Nc

4p2 (
k51

`
uk

k2M F4@c~M !1g#

2
11

3
1

4

M
2

1

3M2G , ~53!

which is clearly a much simpler and more compact calcu
tion. To this result must be added the contribution of t
fictitious scalar diagrams, which represent the tadpo

e
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Needless to say, the calculation of more complicated p
cesses should make use of these new Feynman rules, w
we have summarized in Fig. 14.

IV. SUMMING PLANAR DIAGRAMS: FISHNETS

The discretized Feynman rules given at the end of Sec
provide a tool to sum classes of diagrams. As describe
@4# summing diagrams on a light front has a direct interp
tation as the path history quantum evolution of a system
particles moving in the transverse space under Newton
dynamics. By fixing the total discretizedP15Mm, the
maximum number of particles present at any time isM. Be-
cause the vertices allow particles to fuse and fission, par
number is not conserved and there is quantum mechan
mixing between states with any number of particles betw
1 andM.

We are particularly interested in the class of planar d
grams singled out by ’t Hooft’sNc→` limit of QCD. It is
actually more precise to think of this class of diagrams
drawn on a cylinder rather than a plane: At any time
system of particles is ordered around a ring, and interact
only exist between neighbors on this ring. Thus the stag
set for the particles to bind into a closed polymer chain. T
was previously investigated in@4# where scalar matrix field
theory with quartic couplings,l Tr f4/4, was considered
These interactions are attractive~repulsive! if l,0 (l.0).
Thus bound chains can form only ifl,0, the unstable sign
In the interpretation of the sum of diagrams as a sum o
histories of a system of particles, this sign assures tha
histories contribute with a positive weight. Using the d
cretization ofP1 and ix1, as reviewed here in Sec. II,
strong ’t Hooft coupling limitlNc→` was formulated and
analyzed. This was achieved by focusing attention on
cylinder diagrams that evolve a system of particles w
P15Mm a fixed large numberN steps forward in time. The
limit singles out those diagrams in which every particle h

FIG. 14. Summary of discretized Feynman rules using only
bic vertices. We have explicitly inserted a factor of 1/T0 for each
vertex arising from the discretization.
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the minimumP15m ~so the number of particles is maxima
5M ), and each propagator evolves only one time step.
even M these diagrams include the large fishnet diagra
that form a seamless web of quartic vertices and propaga
and the resulting Gaussian integrals could be identified a
discretized path integral for a relativistic bosonic stri
quantized on the light-cone.

This work on scalar field theory was immediately fo
lowed by a first attempt to apply these ideas to largeNc QCD
@5#. In that work QCD was formulated on a light front, wit
P1 and ix1 discretized. The ordinary bare vertices of QC
both cubic and quartic, were used. Because the quartic
pling in QCD is of orderg2, the literal strong coupling limit,
as formulated in@4#, favored fishnet diagrams withonly the
primitive ~i.e. non-induced! quartic couplings. Actually this
conclusion required thead hocexclusion of theP150 ex-
change part of the induced quartic interactions arising fr
fixing the light-cone gauge. Nonetheless, the resulting fish
was very interesting: the spin of the gluons played the role
the arrows of a certain six vertex model, known as the
model @9#. In fact the four gluon vertices of the field theor
were exactly the vertices of the F model. The fact that so
of the vertex weights were negative did not cause proble
for the leading strong coupling fishnets because those
grams always had anevennumber of negative weight verti
ces. However, the problem with them reappears at next o
because the deletion of a single negative vertex revea
repulsivenearest neighbor interaction in that spin channe4

Thus that channel could not have formed a bond in the fi
place. In some spin channels there were also posi
weights, so that the bondscould form. However, unfortu-
nately for these fishnets, the attractive channels are fe
magnetic: the only long polymers that could be formed
these interactions would have enormous spin.

The problem is that at strong coupling only the quar
interactions survived with the discretization of@5#. The spin-
spin interaction from gluon exchange has anti-ferromagn
behavior, and it is possible that a discretization that allow
the exchange interaction to compete with the quartic inter
tion could cure this problem. To explore this possibility, o
of us examined the relative strengths of quartic and cu
exchange interactions for neighbors on a gluonic chain
putting the two gluons in a spherical MIT bag@10#. In that
context one can see explicitly, not only that the cubic e
change of a transverse gluon is anti-ferromagnetic, but
its strength~at least in weak coupling perturbation theory! is
more than sufficient to reverse the ferromagnetic characte
the quartic interaction. A major shortcoming of the discre
zation of@5# is that at strong coupling the cubic interactio
have no opportunity to compete with the quartic interactio

The discretization developed in Sec. II of this paper
more promising. In fact, we do away with quartic intera
tions completely: All interactions are cubic. The quartic i
teractions have been replaced by the exchange of fictit

4Contrast this with the cubic scalar theory where the sign of
coupling is indeed irrelevant because the deletion of asinglecubic
coupling is not allowed by the Feynman rules.

-
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KLAUS BERING, JOEL S. ROZOWSKY, AND CHARLES B. THORN PHYSICAL REVIEW D61 045007
scalars, and these exchanges are not enhanced by strong
pling over the exchanges of the ordinary transverse gluo
Without quartic vertices the basic cells of the densest d
grams are no longer square but hexagonal: the fishnet lo
like a honeycomb~see Fig. 15!.

These fishnet diagrams require particles with both 1 an
units of P1. Thus the leading fishnet structure is somew
looser than in the quartic coupling case. The inclusion of t
different values ofP1 in the leading approximation also se
the stage for the emergence of a string degree of free
~provided string states do form! corresponding to fluctuation
in P1. Such a degree of freedom is expected to be descr
at long worldsheet wavelength by Polyakov’s Liouville fie
@11#.

Because all of our vertices are cubic, the paradigm sc
field theory is nowg Tr f3/3 ~see@12# for a discussion of
this model in 111 dimensions!. Of course, the presence o
factors of transverse momentum in the QCD cubic verti
will cause a profound qualitative difference between gau
and scalar theory. For one thing, the scalar theory is su
renormalizable with the cubic coupling carrying dimensio
of mass. This means that weak or strong coupling is de
mined by the size of the ratiog2Nc /m2, wherem is a mass
scale relevant to the calculated physical quantity. For
ample, in our strong coupling considerations, we can sim
takem25T0. Also, sincef3 is unbounded at largef in one
direction, the theory is ultimately unstable, although this
stability is not evident in weak coupling perturbation theo
if the scalar field has a non-zero mass. But the topology
graphs and momentum flow is the same in both scalar fi
theory and our version of discretized QCD, so we shall
ploit the scalar paradigm to illustrate such common featu
The absence of spin degrees of freedom in the scalar th
is a helpful simplification for at least some issues.

Before turning to details, we comment on the ambiguit
in our setup contained in the values of thef ’s andh’s @see
Eqs. ~7! and ~9!#. As shown in our study of the gluon sel
energy in Sec. III, weak coupling perturbation theory co
strains moments of these quantities~for example, at one loop
we find constraints on( f k /k and(hk /k). Since strong cou-
pling emphasizes short times, we expect this limit to p
constraints on thef k and hk for low values ofk. Thus we
gain complementary or ‘‘dual’’ information about the theo
as we explore both limits. It should be stressed here

FIG. 15. Hexagonal cell fishnet made of only cubic vertic
The dashed lines indicate the closed cylindrical topology.
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there is no ‘‘unique’’ discretized theory to associate w
continuum QCD: all sorts of lattice details get washed ou
the continuum limit. Instead our goal is to find a single la
tice model that shows continuum QCD at weak coupling a
string theory at strong coupling. This dual requirement w
hopefully help to determine a unique theory.

As in @4# we shall consider the sum of cylinder diagram
that evolve a system withP15Mm forward in time by the
amountT5Na. For fixed initial and final states, according
our prescription, there are only a finite number of diagra
that contribute. This defines a definite model that can
studied as a function of the bare couplings. If the compl
sum could be done for arbitraryM and N, one could then
read off the exact spectrum of the continuum theory
studying the limitM ,N→`, with parameters tuned so tha
the limit is nontrivial. This is presumably too ambitious, b
in the next section we shall at least be able to deal non
turbatively with some small values ofM. One might also
envision studying moderate values ofM numerically on a
computer. In the rest of this section we shall discuss
fishnet diagrams that describe the infinite coupling limit
our model.

Let us first consider the scalar paradigm. It is sometim
helpful to define a transfer matrixT which evolves one step
forward in time. In order to do this, start with time continu
ous and express the exact time evolution by an amounta in
the interaction picture:

e2a(H01V)5e2aH0(
n50

`
~2a!n

n!

3E
0

a

dt1dt2•••dtnT@VI~ t1!•••VI~ tn!#. ~54!

This expression is exact, and of course it does not corresp
to any discretization. Our discretization is given by appro
mating eachVI(t i)'VI(0)5V and only retaining the term
T@VI(t1)•••VI(tn)# when eachVI acts on adifferent sub-
system of the particles present initially. We shall therefo
write the transfer matrix for our discretized theory as

T5e2aH0(
n50

`
~2a!n

n!
@Vn#, ~55!

where we understand@Vn#50 unless each of then V’s acts
on a different subsystem of the particles present. With t
understanding we implement our discretization rule that
ery line in a diagram propagateat least one step in time.
These approximations are strictly valid for sufficiently sm
a at fixed coupling parameters. But we use Eq.~55! to define
a discretized fishnet model at fixed finitea, which we intend
to study at all values of the coupling, includingg→`. Al-
though the strong coupling limit at fixeda ~as always! takes
one far from the original continuum theory quantitatively, w
hope that it will lead to a new continuum QCD string theo
bearing qualitative resemblance to real QCD. But there is
course, noa priori guarantee of this outcome.

An efficient way to implement theNc→` limit is via the
Fock space approach of@13#. One chooses a state of the for

.
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uc&5 (
l 51

M
1

Nc
l /2 (

$Mk%
E Tr@aM1

† ~p1!•••aM l

† ~pl !#u0&

3c l ~p1 ,M1 , . . . ,pl ,M l !, ~56!

and applies the transfer matrix keeping only terms that s
vive theNc→` limit. The second sum is over all partition
of M, such thatM11M21•••1M l 5M . All such terms
t
at
ls
i

th
e
de

04500
r-

retain the color trace structure and describe interactions
tween nearest neighbors as defined by the color trace. If
wish also to take the infinite ’t Hooft coupling described b
the densest fishnet, we chooseM even (M52n) and restrict
l in the sum to the two valuesl 52n with Mk51 for all k
and l 5n with Mk52 for all k, and we require that every
particle present participate in an interaction at each time s
This leads to the following coupled equations forcn andc2n
when uc& is an eigenstate of the transfer matrix:
e

tc2n~p1 , . . . ,p2n!5
gnNc

n/2e2(
j

(pj
2
1m0

2)/2T0

~4T0!n~2p!3n/2

1

2
@cn~p11p2 ,p31p4 , . . . ,p2n211p2n!1cn~p21p3 ,p41p5 , . . . ,p2n1p1!#

~57!

tcn~q1 , . . . ,qn!5
2gnNc

n/2e2(
j

(qj
2
1m0

2)/4T0

~4T0!n~2p!3n/2 E )
j

d2kjc2n~k1 ,q12k1 , . . . ,kn ,qn2kn!, ~58!

wheret is the eigenvalue of the transfer matrix, and we have included a bare massm0 for the scalar field. In the continuum
limit t[e2aE. We have suppressed theMk’s in the arguments ofcn andc2n due to their simplicity. Clearly, we can eliminat
c2n to obtain a single equation forcn :

t2cn~q1 , . . . ,qn!5S g2Nce
25m0

2/4T0

16T0~2p!3 D n

e2(
j

qj
2/4T0E )

j

d2kj

T0
@cn~q1 ,q2 , . . . ,qn!

1cn~q11k22k1 , . . . ,qn1k12kn!#e2(
i

[ki
2
1(qi2ki )

2]/2T0. ~59!

We see that them0 dependence is a trivial factor in this strong coupling equation, so we shall setm050 in the following. The

integral of the first term in square brackets is elementary yielding a factorpne2( iqi
2/4T0. Defining

l[
g2Nc

128p2T0
,

and rearranging the equation leads to

S t22lne2(
j

qj
2/2T0Dcn~qi !5lne2(

j
qj

2/4T0E )
j

d2kj

pT0
cn~qi1k i 112k i !e

2(
i

[ki
2
1(qi2ki )

2]/2T0

5lne2(
j

qj
2/2T0E )

j

d2kj

pT0
cn~qi /21qi 11/21k i 112k i !e

2(
i

ki
2/T0, ~60!
ld
eep
ds a

r-
ed
lar

7,
-

where in the last line we have shifted integration variables
complete the square in the Gaussian exponent. This equ
sums diagrams including not only the basic fishnet, but a
fishnet diagrams containing any number of time intervals
which n subsystems each withM52 propagate freely for
arbitrary lengths of time~see Fig. 16!.

This complication is described by the second term on
LHS. In considering the effect of this term, one should ke
in mind that no self-mass counter-terms have been inclu
in the derivation of Eq.~60!. For example, in weak coupling
o
ion
o
n

e
p
d

perturbation theory, the self-energy bubble by itself wou
lower the scalar mass squared by an infinite amount. To k
the scalar mass non-tachyonic at weak coupling one nee
mass counter-term. With discrete time, it is convenient~as in
our treatment of tadpoles! to spread such a mass counte
term over several time steps by introducing a short liv
fictitious scalar with a quadratic coupling to the real sca
field of orderg.

We would then have additional diagrams as in Fig. 1
and the upshot for Eq.~60! would be an adjustable coeffi
cient in front of the second term on the LHS:
7-13
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F t22ln~12d1!e2(
j

qj
2/2T0Gcn~qi !

5lne2(
j

qj
2/2T0E )

j

d2kj

pT0
cn~qi /21qi 11/2

1k i 112k i !e
2(

i
ki

2/T0. ~61!

We shall begin by dropping this term completely~i.e. by
choosingd151) to determine the contribution of the bas
fishnet for the scalar cubic theory. Later, we shall comm
on the effect ofd1,1.

In order to understand the dynamics inherent in the ba
fishnet, it is helpful to express the integral transform on
RHS of Eq.~60! as an operator in the state space of a fi
quantized system ofn particles. It is straightforward to show
that the appropriate operator is given by

Y[lne2(
j

p̂j
2/2T0Ve2T0(

i
( x̂i 212 x̂i )

2/4, ~62!

where thep̂’s and x̂’s are the momentum and coordina
operators for then particle system. HereV is an operator
defined in momentum and coordinate bases by

V[E )
j

d2pj upk&^Mklpl u[E )
j

d2xj uxlM lk&^xku,

~63!

andM is ann3n matrix defined by

Mklpl[
pk1pk11

2
. ~64!

It is easy to check thatM is invertible providedn is odd. For
n even there is a zero eigenvalue which must be separ
and handled before continuing the analysis. For simplic
we assumen is odd in the following discussion. One ca
readily verify thatV has the following action on the coord
nates and momenta:

FIG. 16. Fishnet with a section ofM52 subsystems propaga
ing freely. The dashed lines again indicate the closed cylindr
topology.

FIG. 17. Additional diagrams introduced by spreading ou
mass counter-term.
04500
t

ic
e
t

ed
,

V x̂k5 x̂l~M 21! lkV ~65!

Vp̂k5Mklp̂lV. ~66!

Because of the Gaussian structure ofY, it also has a lin-
ear action on the coordinates and momenta:

Y x̂k5@ x̂l1 i p̂l /T0#~M 21! lkY ~67!

Yp̂k5S Mklp̂l2 i
T0

2
@ x̂l1 i p̂l /T0#@2~M 21! lk

2~M 21! l ,k112~M 21! l ,k21# DY. ~68!

This linear action can be diagonalized by passing to nor
modes:

x̃l[
1

An
(

k
x̂ke

22p i lk /n ~69!

p̃l[
1

An
(

k
p̂ke

22p i lk /n. ~70!

One then finds that the modesl all decouple from one an
other under the action ofY:

Y x̃l5
2@ x̃l1 i p̃l /T0#

11e22p i l /n
Y5F11 i tan

lp

n G@ x̃l1 i p̃l /T0#Y

~71!

Yp̃l5F11e2p i l /n

2
p̃l2 i S 12cos

2p l

n D2T0@ x̃l1 i p̃l /T0#

11e22p i l /n GY

5F11 i tan
lp

n GF S 11sin2
lp

n D p̃l22iT0sin2
lp

n
x̃l GY.

~72!

We can now search for eigenoperators of the formx̃l

1j l p̃l . This leads to a quadratic equation forj l ,

j l
22

i

2T0
j l1

1

2T0
2sin2~ lp/n!

50,

with solutions

j l
65

i

4T0
S 16A11

8

sin2~ lp/n!
D . ~73!

These eigenoperators change the eigenvalue ofY by a factor

l
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L65F11 i tan
lp

n GF122i j l
6T0sin2

lp

n G
5F11 i tan

lp

n GF11
1

2
sin2

lp

n

6
1

2
sin

lp

n
A81sin2

lp

n G . ~74!

Note that these eigenvalues are not real becauseY is not a
Hermitian operator. However, also note that the second
tor is positive for both branches and for 0, l ,n. The eigen-
value is therefore always in the right half complex plane. W
also have thatuL1L2u51 which implies that uL1u.1
.uL2u. Moreover, the first factor which contains the com
plex phase can be rewritten in two ways

11 i tan
lp

n
5

1

cos~ lp/n!
eil p/n5

1

cos@~n2 l !p/n#
e2 i (n2 l )p/n,

~75!

which shows that the phase is proportional to the fish
momentum created by the eigenoperator:l /n for l ,n/2 and
2(n2 l )/n for l .n/2. Cyclic symmetry of the initial wave
function implies that the total fishnet momentum must be

The ground state~belonging to the largest eigenvalueY)
is determined by the condition that it be annihilated by all
eigenoperators which increaset2, x̃l1j l

1p̃l . Its wave func-
tion is therefore proportional to the Gaussian~with normal-
ization N)

CG5NexpH 2 (
l 51

n21
2T0sin~ lp/n!

sin~ lp/n!1A81sin2~ lp/n!
x̃l• x̃n2 lJ ,

~76!

which is always damped becausex̃l* 5 x̃n2 l . The eigenvalue
corresponding to this state can be obtained in the follow
way. First, we observe that

V15E d2pk d~Mklpl !5
1

~detM !2 522(n21). ~77!

Then together with Eq.~67! we get that

YCG5N22(n21)expH 2 (
l 51

(n2 l )/2 p̃l p̃n2 l

T0
J

3expH 2 (
l 51

(n2 l )/2 x̃l x̃n2 l

cos2~ lp/n!

3F i

j l
1 12T0sin2

lp

n G J . ~78!

Thus with the use of the identities

e2ap̃l p̃n2 le2b x̃l x̃n2 l5
1

~11ab!2 expH 2
b x̃l x̃n2 l

11ab J , ~79!
04500
c-

e

t

.

e

g

and

)
l 51

(n21)

cos2~ lp/n!5
1

22(n21)
, ~80!

we find that the eigenvalue for the ground state is given

tG
2 5ln )

l 51

(n21)/2 F11
1

2
sin2~ lp/n!

1
1

2
sin~ lp/n!A81sin2~ lp/n!G22

. ~81!

Since it is positive, all cyclically symmetric states genera
by applying suitable monomials of the eigenoperators to
ground state will have positive eigenvalues ofY.

Clearly the long fishnet wavelength excitations show b
havior identical to those of the continuous light-cone qua
tized bosonic string. The excited states are obtained by
plying appropriate zero momentum monomials of t
eigenoperatorsx̃l1j l

2p̃l to CG . From the interpretationt
5e2aE, we see that

EG52
1

a
ln tG5

n

2aE0

1

dv lnF1

l S 11
1

2
sin2pv

1
1

2
sinpvA81sin2pv D G2

pT0

6A2nm
1OS 1

n2D ,

~82!

where we have used the Euler-Maclaurin summation form
for largen

1

n (
l 51

n21

FS l

nD5E
0

1

dvF~v !2
1

2n
@F~0!1F~1!#

1 (
k>1

B2k

~2k!!n2k
@F (2k21)~1!2F (2k21)~0!#.

~83!

In lattice string theory the bulk term proportional ton con-
tains no physics and can be dropped~see@14#!. The ground
state string mass squared is predicted to be~recall thatP1

52nm)

MG
2 52P1EG52pT0A2

3
. ~84!

We also see that the basic energy splittings are given fl
!n by

DE5DP2'p lA 2

2an
5p lT0A 2

P1 ~85!

or splittings in mass squared of

DM 252P1DP252p lT0A2. ~86!
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This result shows that the string arising from our basic cu
fishnet has an effective rest tension ofT0 /A2, corresponding
to a Regge slope parametera851/A2pT0. Noting that here
the transverse dimensionality is 2 and not 24, Eq.~84! gives
the usual result of bosonic string theory,2d/6a8.

This is all for the basic cubic scalar fishnet, in which t
second term on the LHS of Eq.~60! is tuned to zero. Includ-
ing that term, we find a solution for generaln intractable.
However, qualitatively, we can say that it introduces a c
tinuum threshold att5ln/2(12d1)n/2, corresponding to a
threshold energyEth52(n/2a)ln@l(12d1)#. As long as the
basic fishnet described above produces a ground state en
EG,Eth , we can expect qualitatively similar physics fo
largen. However, forEG5Eth we can expect that the seam
less fishnet structure begins to be disrupted with a dram
qualitative change in the physics. We shall explore this eff
for small values ofM in the next section.

Finally, let us turn to QCD. The first major difference
that each line can exist in four different internal states, c
responding to the two polarizations of the transverse gl
~with spinSz561) and the two fictitious scalars introduce
to simulate the quartic interactions~see Fig. 18 for an ex-
ample of a generic dense QCD fishnet lattice!. In Fock space
language this can be described by affixing a 4-valued in
to the creation operators. The basic fishnet diagrams wil
the same as in the cubic scalar theory, but with the com
cation that the vertex value depends on the states of the
entering it. In particular, some of the vertices are linear in
transverse momenta of the incoming lines, leading to an
teresting spin-orbit coupling on the fishnet world sheet. Th
the QCD fishnet dynamics requires the solution of a tw
dimensional lattice spin system with a nontrivial interpl
between the internal ‘‘spin’’ variables and the structure
the lattice itself. Contrast this with the fishnet contempla
in @5# and based solely on the quartic coupling. In the lat
situation the spin degrees of freedom decoupled from
transverse coordinate degrees of freedom and correspo
to the soluble F model, one of the 6-vertex models. T
fishnet model we are proposing here has a consider
richer structure, which we shall begin to explore for sm
values ofM in the next section.

V. BABY FISHNETS

In Sec. IV we discussed how our discretized Feynm
rules can be used to determine the dense QCD fishnet

FIG. 18. Typical example of a strong coupling QCD fishne
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strong coupling. This was also discussed in the context of
paradigm cubic scalar theory. In this section we are int
ested in the dynamics of the discretized theory away fr
strong coupling. Potentially the strong coupling limit will no
be described only by the dense fishnet lattice. While the
timate goal is to do this forM→` ~rememberP15Mm),
we will begin by analyzing systems with small values ofM
~i.e. baby fishnets!.

The simplest non-trivial QCD fishnet hasM52. We al-
ways understand our fishnets to propagate color singlet
tems so that they have cylindrical topology. Then theM
52 fishnet has no interesting dynamics due to the fact
color-singlet gluons decouple from gluon bubbles. Howev
the color adjointM52 gluon propagator, which plays a
important role as a subsystem of larger diagrams, can
solved to all orders in perturbation theory due its simplici
We leave investigation ofM>3 to the future. Another pos
sible avenue of investigation is systems involving sour
rather than pure glue,~such configurations are discussed
@15#!. We also defer exploration of such systems.

In Sec. IV we were only able to solve the strong coupli
cubic scalar fishnet for generaln with the term on the LHS of
Eq. ~61! cancelled via a mass counter-term~we will define
k2512d1). But for special cases ofM52n we can solve
Eq. ~61! including thek2 term. The simplest of these is th
M52 scalar fishnet; however, in this case the only effect
the k2 term is to rescale the solution presented in Sec.
For the more interesting cases ofM54,6 we will see that
they too can be solved. ForM56 we restrict attention to the
s-wave sector.

A. MÄ2 states of QCD

TheM52 color singlet glueball states display no dynam
ics, because our discretization with exclusively cubic ve
ces only allows interactions via mixing between one glu
and two gluon states, and there is no interacting color sin
gluon.@Even if the gauge group isU(Nc), the Abelian gluon
completely decouples in the pure gauge theory.# To under-
stand this decoupling in terms of our Feynman rules, n
that on a cylinder the gluon self-energy bubble can close
two ways as in Fig. 19. It is then easy to see from our ru
that the two diagrams are equal in magnitude and opposit
sign. The conclusion is that theM52 color singlet channe
consists of two freeM51 gluons or, in theU(Nc) case, a
single freeM52 gluon. This trivial situation is due to the

FIG. 19. Here we see how bubbles of a genericM52 fishnet
lattice can close in 2 ways due to the cylindrical topology. T
wraparound diagram~a! has the opposite sign to the bubble diagra
~b!, so that they cancel.
7-16
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manner in which the quartic vertices of the initial gau
theory have been replaced by scalar exchange. Only the
rect channel’’ scalar exchange is allowed atM52, and the
part of the quartic vertex that is described by the ‘‘crosse
channel exchange only makes its appearance forM>3.

Thus the only nontrivialM52 channels are color non
singlets. Moreover, fixingM52 limits the allowed diagrams
so drastically that the nonvanishing ones can be explic
summed to all orders in perturbation theory. We first look
the M52 gluon propagator, which can be simply read o
from Sec. III. For simplicity we work in the center of mas
frame.

The diagrams that contribute to the gluon propagator
depicted in Fig. 20. The shaded bubble corresponds to al
one-loop bubble diagrams that contribute to the transve
gluon self-energy,P`~, which is obtained by puttingM
52 in Eq. ~45!:

P`~5
g2Nc

8p2 F9(
k51

`
uk

k229(
k51

`

f k

uk

k
2 (

k51

`

hk~1!
uk

k G ,

~87!

whereu5eaE in the center of mass and with

(
k51

`

f k51, (
k51

`
f k

k
5

p2

6
, (

k51

`

hk~1!51,

(
k51

`
hk~1!

k
50. ~88!

These constraints on thef ’s and h(1)’s have been deter
mined in Sec. III at largeM @see Eqs.~42! and~48!# in order
to cancel divergences inP2. We tentatively impose the sam
constraints at all finiteM in order to have a uniform descrip
tion for all M. The exact transverse gluon propagator forM
52 is @see Eq.~15!#

D̃`~5
u

4~12u!2uP`~
5

u

12uF42
9g2Nc

8p2

u

~12u!

3S (
k51

`
uk

k22 (
k51

`

f k

uk

k
2

1

9 (
k51

`

hk~1!
uk

k D G21

.

~89!

This propagator evolves a spin 1 color adjoint system, wh
by itself would not correspond to a glueball, which must b
color singlet. Because of its importance for larger diagra
it is worth understanding the energy eigenstates implied
the propagator’s pole structure. The (12u)21 factor out
front is just the massless gluon pole (E50 impliesu51).

Zeros of the quantity in square brackets in Eq.~89! deter-
mine any additional eigenvalues:

8p2

g2Nc
5

9

4

u

~12u! S (
k51

`
uk

k22 (
k51

`

f k

uk

k
2

1

9 (
k51

`

hk~1!
uk

k D .

~90!
04500
i-

’’

y
t
f

re
he
se

h
a
s,
y

Even with thef ’s andh(1)’s general, one can note that th
RHS tends to2` asu→1, with behavior completely fixed
by the constraints. Also foru→0 the RHS vanishes quadrat
cally as @929 f 12h1(1)#u2/4. Therefore, if 929 f 1
2h1(1).0, there would be at least two solutions for suf
ciently largeg, the lowest of which would tend tou50 as
g→`. If, however, the inequality were reversed, the RH
might never be positive, in which case there would be
solution. Alternatively, if it did cross the axis, there would b
at least two solutions, the lowest of which would tend
some nonzerou5u0.0 asg→`. It is amusing to see which
of these behaviors is suggested by a minimal solution of
constraints so far imposed@see Eq.~88!#. For M52 we can
meet the constraints with only the first two elements of ea
series nonzero, which are then fully determined by the c
straints:

f 15211
p2

3
, f 2522

p2

3
, h1~1!521, h2~1!52.

~91!

The eigenvalue equation then reduces to

8p2

g2Nc
5

9

4

u

~12u! FLi2~u!2S f 1u1 f 2

u2

2 D
2

1

9 S h1~1!u1h2~1!
u2

2 D G , ~92!

where Li2(u) is the dilogarithm~Spence! function @16#.
As we can see in Fig. 21 this minimal choice shows

physical eigenvalue, since there is no positive solution
8p2/g2Nc for any value ofuP@0,1#.

Finally, theM52 color adjoint magnetic scalar propag
tor also receives self-energy corrections which can
summed exactly~see Fig. 22!. @Note that the fictitious elec-
tric scalar~solid line propagator! does not play a role in the
M52 channel, since its coupling to twoM51 transverse
gluons is zero.# Although the magnetic scalar’s contributio
to the dynamics of a color singletM52 glueball cancels, its
propagator describes a spin 0M52 color adjoint subsystem
in larger fishnets, and so it is also useful to analyze it he

In these diagrams the bubbles correspond to the one-
self-energy diagrams of the fictitious magnetic scalar~the
dashed scalar!. The magnetic scalar self-energy~see Fig. 23!
is given by

Pm5
g2Nc

2T0
2 (

k51

`

ukE d2p

~2p!3
e2kp2/T05

g2Nc

16p2

1

T0
(
k51

`
uk

k

52
g2Nc

16p2

1

T0
ln~12u!. ~93!

The bare magnetic scalar propagator forM52 is then

Dm52T0(
k51

`

hk~2! uk, ~94!

where thehk(2) have to obey the constraints
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(
k51

`

hk~2!51, (
k51

`
hk~2!

k
52

p2

36
. ~95!

The exact propagator is then given by the geometric se

D̃m5Dm(
l 50

`

~PmDm! l5
Dm

12PmDm
. ~96!

We again investigate possible energy eigenstates by loo
at the pole structure of this amplitude. Focusing on the
nominator we see

D̃m}F 8p2

g2Nc
2

1

2 S (
k51

`

hk~2!ukD ln~12u!G21

. ~97!

Again we see the same possible behaviors as in the ca
the gluon propagator~except, of course, there is no massle
pole at u51). In this case we also present the results
choosing a minimal set of thehk(2) to satisfy the constraints
Doing this yields

h1~2!5212
p2

18
, h2~2!521

p2

18
. ~98!

With this set of parameters the denominator factor in E
~97! will have a pole if there is a solution to the followin
equation:

8p2

g2Nc
5

1

2
@h1~2!u1h2~2!u2# ln~12u!

52
1

2
uh1~2!uu~12uauu!ln~12u!, ~99!

wherea[h2(2)/h1(2)'21.646.
As we can see in Fig. 24, this minimal choice shows

physical bound state~actually two! with 0,u,1 for the
coupling greater than some critical value,g2Nc/8p2*18.28.
Such a bound state would be significant because it wo
mean that the short-lived magnetic scalar, which we h
introduced as a device, can gain longevity at strong coupl
so that it can play the role of a spin 0 gluon in larger d
grams.

There is also a solution for negativeu for all couplings.
From the interpretationu5eaE we see that these solution
would correspond to complex energies with imaginary p
6p i /a. In fact the relation betweenu and E is fundamen-
tally ambiguous by the imaginary amount 2p in/a simply
due to the discretization oft. We presume that this ambigu
ity is simply a lattice artifact, and it seems likely that th
solutions with negativeu are also artifacts. However, th
ultimate proof of their artifactual nature must await a mo
complete understanding of the continuum limit, which w
involve takingM→` as well asa→0.
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B. Strong coupling MÄ4 scalar fishnet

Clearly we need to be able to deal with large values ofM
if we are to understand QCD. In this section, to better und
stand what this will involve, we look more closely at th
M54 sector of the simpler paradigm scalar theory. In p
ticular we would like to explore the effect of thek2 term on
the LHS of the strong coupling, Eq.~61!. Recall that we have
set 12d15k2. We dropped this term in the analysis of Se
IV because it made the equation intractable for generan.
However, for the special case ofM54 (n[M /252) it is
possible to solve this equation. We also note that this c
was not covered in Sec. IV~even with thek2 term removed!
because of the limitation to oddn. The additional specia
case ofM56 will be investigated in the following subsec
tion.

For M54 the strong coupling eigenvalue equation rea

~ t22k2l2e2(q1
2
1q2

2)/2T0!c2~q1 ,q2!

5l2e2(q1
2
1q2

2)/2T0E d2k1

pT0

d2k2

pT0
c2~qT/21k22k1 ,qT/2

1k12k2!e2(k1
2
1k2

2)/T0, ~100!

where qT5q11q2. After the change of variables (kT[k1
1k2 andk[k22k1) we can integrate with respect tokT on
the RHS. What remains is

~ t22k2l2e2(q1
2
1q2

2)/2T0!c2~q1 ,q2!

5
l2

2
e2(q1

2
1q2

2)/2T0E d2k

pT0
c2~qT/21k,qT/22k!e2k2/2T0.

~101!

If we now perform a variable transformation on theq’s
@qT[q11q2 andq[(q12q2)/2], then the equation become

FIG. 21. A plot of Eq.~92! with 8p2/g2Nc ~along the vertical
axis! againstu.
FIG. 20. Gluon propagator forM52.
7-18
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~ t22k2l2e2(qT
2

14q2)/4T0!c2~qT/21q,qT/22q!

5
l2

2
e2(qT

2
14q2)/4T0E d2k

pT0
c2~qT/21k,qT/22k!e2k2/2T0.

~102!

We can absorb theqT dependence by scalingt
5t0exp(2qT

2/8T0), in effect going to the center of mas
frame.

For the case oft0
2.k2l2, we can eliminate thec2 depen-

dence by manipulating this equation and integrating with
spect tod2q. The result

15
l2

2 E d2q

pT0

e23q2/2T0

t0
22k2l2e2q2/T0

~103!

is a transcendental equation for the eigenvalue, as is rea
seen by direct evaluation of the integral:

k25
t̂

2k
ln

t̂1k

t̂2k
21, ~104!

where t̂[t0 /l and we have assumedk2.0. If k2,0, we
write k[ ia and the equation becomes

12a25
t̂

a
tan21S a

t̂
D . ~105!

It is immediately clear that a solution exists in this case o
for a252k2,1.

If we analyze Eq.~104! we see that by varyingt̂ between
k and ` the RHS takes on values between 0 and`, thus
there is a solution to this equation for any value ofk. For the
special case ofk50, a more careful analysis of this equatio
also yields a solution. For a given eigenvalue solution to
~104! the eigenfunction is given by

c2~q!5
e2q2/T0

2~ t̂22k2e2q2/T0!
E d2k

pT0
c2~k!e2k2/2T0,

~106!

where the integral on the RHS represents a number that
be fixed by normalization.

FIG. 22. Magnetic scalar propagator forM52. In each bubble
the transverse gluon index may circulate in either direction.

FIG. 23. The two bubble diagrams that contribute to the m
netic scalar self-energy,Pm .
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If we refer back to Eq.~102!, we see that ift̂2,k2, then
a delta function term restricting momentum to energy sh
may be added. Fors waves~non s waves are free!, we then
have

c2~q!5AdS q22T0ln
k2

t̂2 D
1

e2q2/T0

2~ t̂22k2e2q2/T01 i e!
E d2k

pT0
c2~k!e2k2/2T0,

~107!

where the coefficient of the delta function can be fixed
the following equation which relatesA to the normalization
of the wave function:

E d2q

pT0
c2~q!e2q2/2T0

5
A

T0
U t̂

k
U1E d2q

pT0

e23q2/2T0

2~ t̂22k2e2q2/T01 i e!

3E d2k

pT0
c2~k!e2k2/2T0. ~108!

In this case,t̂2,k2, there is no restriction on the value oft̂ ;
thus this solution corresponds to the continuum. To summ
rize the spectrum oft0

2 includes a discretes-wave bound state
and a continuum fort0

2,k2l2. Clearly the discrete state wil
not change drastically in the limitk→0, but the continuum
would be dramatically squeezed to a set of measure zer
this limit.

C. Strong coupling MÄ6 scalar fishnet

The starting point for evaluating the strong couplingM
56 bit scalar fishnet diagrams is Eq.~61!. For n5M /253
the equation to solve is
-

FIG. 24. A plot of Eq.~99! with 8p2/g2Nc ~along the vertical
axis! againstu.
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~ t22k2l3e2(q1
2
1q2

2
1q3

2)/2T0!c3~q1 ,q2 ,q3!

5l3e2(q1
2
1q2

2
1q3

2)/2T0E d2k1

pT0

d2k2

pT0

d2k3

pT0
c3@~q11q2!/2

1k21,~q21q3!/21k32,~q31q1!/2

1k13#e
2(k1

2
1k2

2
1k3

2)/T0, ~109!

where we have usedk i j 5k i2k j . By working in the center
of mass frame, we can replaceq3→2q12q2 and the equa-
tion becomes

~ t22k2l3e2(q1
2
1q2

2
1q1•q2)/T0!c3~q1 ,q2 ,2q12q2!

5l3e2(q1
2
1q2

2
1q1•q2)/T0E d2k1

pT0

d2k2

pT0

d2k3

pT0
c3~q1/2

1q2/21k21,2q1/21k32,2q2/21k13!e
2(k1

2
1k2

2
1k3

2)/T0.

~110!

If we change the integration variablesk2 andk3 on the RHS
to

p15q1/21q2/21k21, p252q1/21k32, ~111!

then we see thatc3 in the integrand on the RHS is indepe
dent ofk1, so the Gaussian integral overk1 may be trivially
performed by completing the square.

Once this has been done the result is

~ t22k2l3e2(q1
2
1q2

2
1q1•q2)/T0!c3~q1 ,q2!

5
l3

3
e2(q1

2
1q2

2
1q1•q2)/T0E d2p1

pT0

d2p2

pT0
c3~p1 ,p2!

3expF2
2

3T0
~p1

21p2
21p1•p2!2

1

6T0
~q1

21q2
21q1•q2!

1
1

3T0
~p1•q112p1•q22p2•q11p2•q2!G . ~112!

In this equation we see that except for the last term in
exponential on the RHS this integral equation only depe
on the scalar quantity,q1

21q2
21q1•q2. This is not surprising

since this scalar quantity is proportional toq1
21q2

21q3
2 and is

the only cyclically invariant (qi→qi 11) scalar of orderq2.
We next perform another change of variables,

q1

AT0

5u11u2 ,
q2

AT0

5u12u2 ,
p1

AT0

5v11v2 ,

p2

AT0

5v12v2 , ~113!

remembering thatqi , pi and now ui , vi are Euclidean
2-vectors. With these substitutions our equation become
04500
e
s

~ t22k2l3e2(3u1
2
1u2

2)!c3~u1 ,u2!

5
4l3

3p2e2(3u1
2
1u2

2)E d2v1d2v2 c3~v1 ,v2!

3expF2
2

3
~3v1

21v2
2!2

1

6
~3u1

21u2
2!1u1•v11u1•v2

2u2•v11
1

3
u2•v2G . ~114!

If we rescaleu2 andv2 by a factor ofA3, then we can make
theO(4) symmetry manifest~up to the last four terms in the
exponential on the RHS! by combiningu1 and u2 (v1 and
v2) into a Euclidean 4-vectorU (V). Thus the equation may
be written as

~ t22k2l3e23U2
!c3~U!

5
4l3

p2 e27U2/2E d4V c3~V!e22V212VT RU,

5
4l3

p2 e27U2/2E d4V c3~RV!e22V212V•U,

~115!

whereR is the real orthogonalO(4) rotation:

R[
1

2 S 1 0 2A3 0

0 1 0 2A3

A3 0 1 0

0 A3 0 1

D . ~116!

We note thatR 3521. We can search for anO(4) invariant
solution to this equation which is a function only of th
length, iUi . Although this will not yield the most genera
eigenstate, it is expected to include the ground state. P
ging in this ansatz, the equation simplifies to

~ t22k2l3e23U2
!c3~U !

5
4l3

p2 e27U2/2E V3dV c3~V!e22V2E dVVe2V•U,

~117!

whereU[iUi andV[iVi . The angular integral on the RHS
may be evaluated with standard techniques,

E dVVe2V•U54pE
21

1

dzA12z2e2UVz5
2p2I 1~2UV!

UV
,

~118!

whereI 1(x) is the modified Bessel function regular atx50.
Thus the integral equation to solve is
7-20
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t2c3~U !5k2l3e23U2
c3~U !

18l3
e27U2/2

U E V2dV I1~2UV!c3~V!e22V2
.

~119!

The first thing to note is that fork250 the eigenfunction
solution is a Gaussian of the form

c3~U !5e2jU2
, where j531A105

4
. ~120!

For this solution the corresponding eigenvalue is

t25
64l3

~111A105!2
. ~121!

Both of these match the values predicted by Eqs.~76! and
~81! for n53. For k2 away from zero we can solve thi
integral equation by means of an iterative procedure. Star
with the solution fork250 we can iterate the RHS of Eq
~119! repeatedly. This is a convenient way of solving th
equation since the functions generated by the integral on
RHS are always Gaussian. Thus at each iteration step
solution will be of the form

c3~U !5(
n

cne2anU2
, ~122!

with the number of terms in the sum doubling after ea
iteration. For a solution of this form it can be shown that t
corresponding eigenvalue,t2, is given by

t25k21

4(
n

cn /~21an!2

(
n

cn

. ~123!

We have tested this iteration procedure numerically a
for values ofk2 small (k2,0.3) we see that the wave func
tion ~eigenvalue! converges to a well-defined functio
~value!. For k2 larger ~closer to 1! this becomes murkier a
one needs a lot more iterations for the convergence to a v
distinct fromk2 to be evident. Another interesting phenom
enon is that fork2&20.11, thent2 becomes negative, indi
cating that no physical solution exists.

VI. CONCLUSION

In this article, we have refined and extended an appro
proposed in the late 1970s, to obtain the largeNc limit of
QCD by directly summing the planar diagrams which s
vive. The basic tool is to define the planar diagrams us
light-front space-time coordinates for whichix1 and thep1

carried by each gluon are discretized. This effectively di
tizes the sum of diagrams, a first step toward a numer
evaluation. It also regulates the usual divergences of Fe
man diagrams. We identified several shortcomings of the
04500
g
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he

h

d

ue

h,

-
g

-
al
n-
s-

cretized model of QCD attempted in@5#, and we proposed an
improved formulation which at least mitigates, and mig
well overcome, these defects.

Discretization enables a formal strong ’t Hooft couplin
limit of the sum of diagrams. A major disadvantage of t
discretization of@5# was that this formal limit suppressed th
cubic gluonic interaction essential for the ‘‘ant
ferromagnetic’’ ordering of glueball mass levels: the dom
nant quartic interaction ordered levels ferromagnetically. O
new discretized model replaces the quartic interactions
the exchange of two kinds of fictitious ‘‘short-lived’’ scalar
so that all interactions can compete on an equal footing in
strong coupling limit. The ambiguities inherent in such
replacement can also be exploited to remove unwanted s
metry violations induced by the usual ultraviolet divergenc
present in the continuum limit.

Having defined our discretized model, we explored
physical properties in several ways. We first studied the
ture of weak coupling perturbation theory by calculating t
gluon self-energy to one loop order, regaining the kno
continuum answer. This calculation showed how the discr
zation regulates ultraviolet divergences and how the amb
ities in the model begin to be fixed by the restoration
Poincare´ invariance. Although we have not done a two loo
calculation, there is sufficient flexibility in these ambiguitie
to hope to achieve Poincare´ invariance to all orders in per
turbation theory. The discretized model can also be stud
in the strong coupling limit, but in this article we just bega
this study for QCD by looking only at states with very sma
total P15Mm for M52, where the dynamics is so drast
cally simplified that it can be solved exactly. We defer to
future publication studies of QCD atM53 and higher. The
continuum limit, of course, will requireM→`.

As a warmup for going to larger values ofM, we evalu-
ated the strong coupling limit in a paradigm matrix sca
field theory with only cubic interactions. Not surprisingl
the bosonic light-cone string was obtained. Although t
paradigm model yielded some useful insights into the nat
of large planar diagrams, we stressed that the correspon
QCD calculation will have profound differences: for on
thing the gluons carry spin, and for another their interactio
show both repulsion and attraction depending on the qu
tum numbers of the channel. In contrast, the interactions
the scalar theory are exclusively attractive. Because of t
the strong coupling limit forced thep1 carried by each scala
quantum to be minimal, i.e. one discretized unitm. This
circumstance prevented a ‘‘Liouville’’ degree of freedom
associated with collective fluctuations of theP1 distribution
among the scalar quanta, from arising. Thus the limit m
be interpreted as a critical string theory.

The diversity of interaction signs of QCD will obviousl
complicate this outcome. It is possible, and a major focus
future study, that cancellations deemphasize the contr
tions where all quanta carry the minimump1 to such a de-
gree that a collective Liouville field emerges. Then t
strong coupling limit might be a subcritical version of one
the existing string models. If so, the Liouville world-she
field could be thought of as a fifth dimension, and the d
7-21
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description of our model as a field theory at weak coupl
and a subcritical string theory at strong coupling would
semble the anti–de Sitter gravity~AdS!/conformal field
theory ~CFT! duality of @17,2,18#. Another logical possibil-
ity, though, is that the strong coupling limit of largeNc QCD
is actually a novel critical string theory with critical dimen
sion 4. Of course, it could also turn out that the attempt
reach a reasonable Poincare´ invariant strong coupling limit
of largeNc QCD simply fails. After all, continuum QCD is
strictly speaking,not an infinite coupling theory in any sens
of the word. The coupling is scale dependent and co
sponds to no tunable parameter at all. The strong coup
limit, as everyone knows, describes the discretized mo
and can vary wildly from one discretization to another.

Much has been said about the ‘‘holographic’’ nature
the duality mentioned above. We would like to conclu
with a few comments about this. The hologram metap
was invented by ’t Hooft@19# to describe a possible resolu
tion of the ‘‘information loss paradox’’ of quantum blac
holes. Since the horizon of a black hole is two dimension
it should be possible to describe all of three dimensio
physics by a two dimensional quantum theory. The d
cretized model we have presented here is not holograph
this sense. The transverse space of a light front is indeed
dimensional, but the third longitudinal dimension has n
been eliminated: it is present in the disguised form of a v
able Newtonian massMm for each gluon. However, the
model is holographic in the higher dimensional sense
scribed by Witten @18#. The ‘‘fundamental’’ discretized
model is 311 dimensional, 2 transverse dimensions, va
able p1 and x1. However, in the strong coupling limit we
expect 411 dimensions: thex2 of light-cone string should
emerge as a function of the transverse and Liouville deg
of freedom. Holography in ’t Hooft’s sense would require
more profound circumstance: there should be no Liouv
field and the variablep1 of each gluon must itself be a mer
collective effect. For example, the gluon withM units of p1

might be thought of as a bound system ofM minimal p1

‘‘bits’’ @20#. In that case, the model presented here wo
just be a stepping stone toward that more fundame
theory.
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APPENDIX: ALTERNATE DISCRETIZATION

In this appendix we explore the ramifications of the alt
nate discretization, Eq.~8!, of D22. The bare propagator in
energy representation is
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D̃0
22~Q,M ,E!5

T0~eaE21!

M2

u

12u
. ~A1!

The self-energy partsPkl, Pk1 and P11 will of course
have different values in this discretization, but the decom
sitions ~14! remain valid. Under the assumption thatP19
5P185P1, the relations of the exact propagators to theP ’s

are identical to Eqs.~15! except for D̃22, for which the
relation is

D̃225
T0

M2 F u~eaE212Q2/2MT0!

12u2T0uP1~eaE212Q2/2MT0!

1
Q2

2MT0

u

12u2uP2I /2M G . ~A2!

The only parts of the one loop self-energy calculati
affected by the different discretization are the two diagram
Fig. 12, which have aD22 propagator as one of the intern
lines. The evaluation is quite different for this discretizati
because the completion of squares in the second term of
~8! leads to different factors than the first term. The con
bution of the first term involves the exponent

k

2T0
S p2

l
1

~Q2p!2

M2 l D5
k

2T0
S M ~p2 lQ/M !2

l ~M2 l !
1

Q2

M D ,

~A3!

whereas the contribution of the second term involves

~k21!p2

2T0l
1

k~Q2p!2

2T0~M2 l !

5
1

2T0
FM ~k21!1 l

l ~M2 l ! S p2
lkQ

M ~k21!1 l D
2

1
k~k21!Q2

M ~k21!1 l G , ~A4!

for one of the two diagrams, and for the other a simi
expression withp→Q2p and l→M2 l . Thus the two con-
tribute equally toPDI

`~ :

PD
`~5

g2Nc

4p2 (
l 51

M21
~2M2 l !2

l
e2kQ2/2MT0

3FeklQ2/2MT0[ M (k21)1 l ]

M ~k21!1 l
2

1

Mk
G , ~A5!

for k.1, and by
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PD
`~52

g2Nc

4p2 (
l 51

M21
~2M2 l !2

l

e2Q2/2MT0

M
, ~A6!

for k51. Translating to energy representation gives the m
compact

P̃D
`~5

g2Nc

4p2 (
l 51

M21
~2M2 l !2

l (
k51

`

uk

3Fu
el (k11)Q2/2MT0(Mk1 l )

Mk1 l
2

1

Mk
G . ~A7!

Adding the result of the unchanged first 13 diagrams to
and subtractingQ2P1/2 givesP2 for this discretization:
04500
re

is

P25
g2Nc

24p2

13M2212M21

M (
k51

`
uk

k2 1
g2Nc

48p2S 142
15

M

1
1

M2D Q2

T0
ln~12u!1

g2Nc

4p2 (
l 51

M21
~2M2 l !2

l

3 (
k51

`

ukFu
el (k11)Q2/2MT0(Mk1 l )

Mk1 l
2

1

Mk
G . ~A8!

The violation of Galilei invariance caused by this alterna
discretization is apparent from the non-polynomial dep
dence onQ2. However, one can easily see that each powe
Q2 comes with an accompanying power of 1/M . At most one
power ofM is supplied by the prefactors, so all powers ofQ2

higher than the first are irrelevant in the continuum limit.
In order to compare our results to the continuum calcu

tion of Ref. @8#, we must examine the limitsu→1 and M
→`. The behavior of the first two terms of Eq.~A8! in this
limit is transparent once we use the identity~40!. The con-
tinuum limit of the last term requires a bit more analys
First, as mentioned in the previous paragraph, we only n
keep two terms in the expansion of the exponential:
dled

s

g2Nc

4p2 H (
l 51

M21
~2M2 l !2

l (
k51

`

ukF u

Mk1 l
2

1

MkG1
Q2

2T0
(
l 51

M21
~2M2 l !2
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The sums overl can be approximated using the Euler-Maclaurin summation formula@see Eq.~83!# as long asF is not singular
at the end points of integration. Clearly terms with 1/l in the summand must be treated separately, which is easily han
using Eq.~35!. Applying these formulas, we find~for largeM but arbitraryu)
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The continuum limit also requires 12u;Q2/2MT05(Q222mME)/2MT0, sou may be set to unity in all nonsingular term
without a prefactor ofM. Then the above terms simplify to
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where we have defined
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which can be numerical evaluated:

a'1.188, b'1.991, d'0.633. ~A15!

Putting all this together, we get, for the continuum limit,

P25M
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~A16!

Remembering that ourP2 is a factor of2Q2/T0 times that defined in Ref.@8#, we find agreement for the coefficient of lnQ2,
provided we identify 2MT0 with L2. The first two groups of terms on the RHS of Eq.~A16! violate important symmetries an
must be removed by explicit counter-terms. The term linear inQ2 violates Galilei invariance and the momentum independ
terms imply a finite gluon mass squared in perturbation theory, thus violating Poincare´ invariance. Note that the necessa
counter-terms are low order polynomials in both the transverse momentum and in the discretizedP1. Without the tadpole
contributions the discretization used in the text would have required counter-terms with logarithmicM dependence. But we
found ~at least at one loop! that the tadpoles could be designed to eliminate the need for counter-terms. Then the fac
preserves Galilei invariance makes it the superior choice.
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