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We look back at early efforts to approximate the laMieFeynman diagrams of QCD as very large fishnet
diagrams. We consider more carefully the uniqueness of rules for discreBZimmdix * which fix the fishnet
model in the strong 't Hooft coupling limit, and we offer some refinements that allow more of the crucial QCD
interactions to be retained in the fishnet approximation. This new discretization has a better chance to lead to
a physically sensible “bare QCD string” model. Not surprisingly the resulting fishnet diagrams are both richer
in structure and harder to evaluate than those considered in older work. As warm-ups we analyze arbitrarily
large fishnets of a paradigm scalar cubic theory and very small fishnets of QCD.

PACS numbgs): 12.38.Aw, 11.15.Me, 11.15.Pg, 12.38.Cy

. INTRODUCTION +x3)/y2. In this model the large 't Hooft coupling limit
singled out large fishnet diagrams whose continuum limit
With all the recent effort devoted to the search for a sowas a seamless world sheet. As usual with strong coupling
lution of largeN, QCD[1] as a classical string theofg], it limits this conclusion is highly sensitive to the cutoff model.
is appropriate to reassess earlier efforts to accomplish this What one hopes when resorting to strong coupling meth-
goal. In this article we wish to refine and extend the formu-ods is that although the limit strongly distorts the quantitative
lation and calculational methods developed in the effort ofdetails of the continuum theory, the qualitative physics is
the late 1970s to systematize a fishf@}tapproximation to shared between the continuum and lattice models for all cou-
largeN, QCD [4,5]. plings. In standard lattice gauge theories this hope is usually
The larger goal here is to set up a discrete model of infi€xpressed as requiring that the lattice model exhibit no phase
nite N, QCD which, when analyzed in a weak coupling ex- transition as the coupling constant is va}r.|ed from strong to
pansion N.g?<1), reproduces perturbative QCD and, whenweak .coupllng. Probaply the“most familiar ’f:ase in which
analyzed in a strong coupling limitNQg?— =), describes there is a phase transition is “compact QED” whose strong

what we choose to call a “bare QCD string.” Since QCD is QOL_Ip_Ilng limit shows confinement, but whose continuum
limit is a theory of free photons.

;upposed to confine at all values of the 't H(.)Oft coupling, the Although the existence of a phase transition at finite cou-
Itrr:gn\l/f/iol}lg grl:egac!lf zggu:idn asCtLILac:%e?/zrngglggiacgls?tge ?n\i: pling is usually extremely difficult to detect, it is the case
9 plings. , P that in some situations our lattice fishnets can be seen to be

nal structure is generally expected to be quite complicatedyompjetely irrelevant to the physics of large but finite cou-
and it is only in the strong 't Hooft coupling limit that the pjing. |n[4] this possibility was noted in the context of scalar
internal structure of an infinitél; glueball can be as simple \¢* theory. The qualitative physics of the seamless fishnet
as that of the “fundamental string” of string theory. We diagrams is that the quanta of the field theory are bound into
regard it as an open question whether the bare QCD string linear polymeric chain. However, one can examine at next
can be identified with one of the known fundamental stringsorder in the strong coupling expansion the nature of the in-
or is an entirely novel object. We hope that our efforts will teraction that should be responsible for this binding. For
eventually settle this issue. We tentatively identify the bare>0 this interaction isrepulsive and the seamless world
QCD string with the object whose propagation is describedsheet given by the strong coupling limit is a purely formal
by the so-called fishnet diagrams. artifact. In contrast, fok <0 the interaction is attractive, and
As shown in[4] the fishnet diagrams by no means exhausit is qualitatively correct to imagine that the nearest neighbor
the planar diagrams of 't Hooft'l.— limit. Fishnets are  quanta form very tight bonds in the strong coupling limit.
certainly planar, but they are also very large in both direc- A serious shortcoming of the QCD fishnet model at-
tions: there are many lines and many interaction vertices. fempted in[5] is that the basic gluon-gluon quartic interac-
is natural to try to associate such diagrams with strong tion retained in the strong coupling limit favored the align-
Hooft coupling N.g®—c, but as with all strong coupling ment of the gluon spins. This defect was not apparent,
expansions one must first define a cutoff theory which conhowever, because the leading fishnet structure was explicitly
trols the size of the kinetic energy of the system[4hthe  an even function of this interaction and in fact described an
choice was to evaluate all graphs on a light front and simulantiferromagnetic spin arrangement. The inherent instability
taneously discretize P =(P%+ P3)/\/§ and x"=(x° of the system would only be seen at non-leading order. We
aim to improve this situation in the present work by propos-
ing a discretized model whose fishnet approximation retains

*Email address: bering@phys.ufl.edu both the ‘“contact” interactions, with their ferromagnetic
"Email address: rozowsky@phys.ufl.edu tendency, and the one gluon exchange interactions with their
*Email address: thorn@phys.ufl.edu antiferromagnetic tendency.
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The rest of the article is organized as follows. In Sec. llarbitrary QCD fishnets here. Instead in Sec. V we study the
we give a self-contained review of the Feynman rules insum of planar diagrams for small valueshdf the number of
light-cone gauge as well as the discretization rules largelynits of P™ carried by the evolved system. Finally in Sec. VI
following [4,5]. However, we treat the longitudinal modes we collect some concluding remarks and sketch future direc-
differently. We represent the “induced quartic interaction” tions for this program of research.
of light-cone gauge by the exchange of a short-lived ficti-
tious spin 0 quantum: its propagation is limited to a small II. LIGHT-CONE EFEYNMAN RULES
number of discrete time steps. This idea motivated another AND DISCRETIZATION
departure froni5]. Namely, we also choose to represent the
basic quartic gluon interaction by the exchange of another
short-lived fictitious spin 0 quantum. In this wayl vertices The gluon propagator in light-cone gaugje =0 is given
of the discretized Feynman rules are cubic, and are accorgn momentum space by
ingly all treated on the same footing in the strong coupling
limit. In Sec. Ill we show our discretization in action by - .
computing the gluon self-energy at one loop order. We see D#"(p)=—i
how the ambiguities inherent in spreading out the quartic

vertices begin to be resolved by requiring Lorentz invari-tpe signature of our metric tensar,, is taken to be
nv 1

ance. The propagators of the fictitious scalars are multiplied, +). In this paper we shall make extensive use of the
by f, hy, wherek is the number of time steps, af, representation

=>h=1. Lorentz invariance of the self-energy constrains
the moment&, f /k and=h,/k. In Sec. IV we describe the , N ~ Cixtp

fishnet approximation. As a warm-up, we give a complete D#(p,p",x )zf >-D"(pe - @)
analysis of the leading fishnet diagrams of a paradigm matrix

scalar field theoryg Tr ¢*. Then we describe the more com- Evaluating thep ™ integral leads to the following expressions
plicated situation of QCD. We do not attempt to analyze thefor the individual components dd#":

A. Propagators

=t ptlpt = ptip”
p’—ie '

@

Kl ki
n i+ 2+ n — 220t
DM(p,p* x")=0(x")——e X PI _ g(7) ——e P
(PP XD)=00x)7 = Py

k k
p 020+ 200+
k— + vty — + - 12 —7p*/2
D* (p,p",x")=0(x )_2p+28 ix"pi2p He(r)zpﬂe pi2p
14 1 vt n2/ont 1% 1 2/on+
__ + oy + —ix*p?/2p _ _a—™/2p
D™ (p,p",x )—|—aX+0(x )p+2€ ix — me(r)p“e
2 2
9] i 1 N 2 1 _ 2pont
= 0(X+)F+I5(X+)F e ix"p /2p+—>{9(7')2p+3—5(7')'p+—2 e P 2p ) (3)

where the arrows indicate the imaginary time versions ( the contributions o DX~ and D™~ lead to modified cubic
=ix"*). In this paper latin indices will always refer to the vertices and a new induced quartic vertex which arises from
transverse components. We shall also find it convenient tthe 5(x*) term inD ™ ~.
use a complex basis for transverse indices, definiig )
=(V4iV3)/2 andVV=(Vi—iV?2)/y2. In this basis the B. Vertices
metric has valuesy, ., = 7AA=0 andn, A= 7, =1. We shall present the primitive cubic and quartic vertices
Here we are assuming that = — A, has not been elimi- as 't Hooft did in his presentation of theNl/ expansior{1].
nated from the formalism. Since Gauss' law reladiesto the  Since the vertex assignments lack permutation symmetry, it
transverse components through a constraint not involvings understood that all permutations of them must be included.
time derivatives, it is possible to explicitly integra#e. out  The double line notation makes clear what powersNgf
(see for examplé6]), leaving the transverse components asmust be included with each topology. However, since we
the only independent variables. In that case the Feynmashall be dealing exclusively with the planar diagrams of the
rules would only employ the transverse propagaidf. N.— <0 limit, we shall dispense with this refinement in order
Graphically, one achieves the same result by showing thab reduce clutter. To correctly use these rules at fiNjte the
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/X\ A MM =T =0 /& 3 = —g(Q2 — Q)"
1 2
4+ + FIG. 1. Cubic and quartic gauge vertices for
TV =T = g(Q2 — Q1) YA = —g(Q: — Q1)Y imaginary time.
] 2 1 2

>< DIAVY = g2 >< VA = —9g2

double line notation should be restored. With this under-—ms provides a factor ofn to cancel one from a f/

standing, the primitive cubic vertices are given by prefactor in each propagator. Furthair—aS at each ver-
FYWW oA tex which .also has a nomingl™ conservin.g delta function
8 3 that supplies a i, so each vertex supplies a factoimd/
AAY_ CAA CAA Finally, every— index of a propagator will be matched with
I3 =719(Q2=Qu)"—~09(Q2=Qu) a+ index of a vertex, which will involve a factor gf" and
. hence supply a factor ah to cancel the extra factor of iy
VVA_ — — — i
[y =-19(Q2-Q1)"—~9(Q;~Qy) in DX~ and to convert the extra factor ofdAin D™~ to T,

A+ _ Ay ) . . The discretization oD~ involves some ambiguity in
Iy =I5 =+ig(Q2= Q)" —+9(Q2— Q1) ", (4 the interpretation of the term involving(x ). With x* con-
tinuous, this term collapses the two cubic vertices it connects
into an instantaneous quartic interaction localxibut p*
dependent and hence nonlocakin. Indeed this is precisely
the well-known quartic vertex induced by elimination/Af
in the Hamiltonian formulation of light-cone gauge. In this
approach the remaining part & ~ combines nicely with
he contributions 0D¥~ to yield a modified cubic vertex for
ansverse gluons only:

and the primitive quartic vertices by
r,"W=+ig?-+g?
r,V"\WV=—2ig?——2g? (5)

where the arrows indicate the appropriate vertices to use wit
imaginary time. In light-cone gauge, only transverse gluons

participate in the quartic vertices. Our convention will be ~ Q; +QF

that all momenta flow into the vertex. Also, the index ry/\V= —ZQ(ﬁ)(QfQQ—Qng)

(/\) will be represented graphically by attaching an outgoing Q1 Q;

(incoming arrow to a line(see Fig. 1L The ordering of in- n n

dices will be counterclockwise around the vertex. As usual, ryvA= _29( Q1 Qo )(Q*QV—Q+QV)

each vertex is associated with an integration oxérand 8 Q;Qz L2 Ze
conserves the transverse afdcomponents of momentum. (6)
Then each unconstrained momentum is integrated with mea- i ) i ) i i
sured?pdp™/(27)2. which are the vertices appropriate to imaginary time. With

longitudinal gauge fields completely eliminated in this way,
discretization could then proceed as usual by discretizing the
x" andp™ parameters of the transverse gluon propagator. In
To give a nonperturbative model for the summation overaddition, one has to exclude, in sorad hoc manner, the
planar diagrams, it was proposed in Rg4] to simulta- p* =0 exchange part of the induced quartic vertex which is
neously discretizp™ =Im and imaginary timer=ix " =Ka, infinite as it stands. Moreover, the set of “tadpole diagrams”
with k,I running over all positive integers. The use of imagi- necessarily excluded in our discretizatisee Sec. Il D be-
nary time converts all oscillating exponentials to dampedow) is enlarged by the induced quartic interaction and, since
ones, and removes alls from the Feynman rules. Thus the the new quartic interactions depend non-trivially h, the
i occurring in each vertex is combined with tig* to form  p* dependence of the necessary counter-terms will be more
dr. (Because of time translational invariance, the time intecomplicated. Nevertheless, an attractive feature of such a
gral for one vertex in each connected diagram should béreatment is that the modified cubic vertex is manifestly in-
omitted, leaving one factor afunabsorbed. Conventionally, variant under the light-cone Galilei grou@—Q+Q™ V.
we shall omit this last in the quantities we calculaje. We shall follow a different path, more in the spirit of the
It can be easily seen that the lattice constamt® only  sum over histories. The idea is to exploit our discretization of
enter the sum of graphs in the rafig=m/a. First notice x* to give a more flexible interpretation af(x*), which
that only this ratio appears in the exponents. Since eactetains a Gaussian damping factor and maintains Galilei in-
propagator is nominally integrated over i, [dp* variance throughout. This can be done by the replacement

C. Discretization

045007-3



KLAUS BERING, JOEL S. ROZOWSKY, AND CHARLES B. THORN PHYSICAL REVIEW b1 045007

FIG. 3. Quartic vertices get replaced by two cubic vertices and a

() (O]

FIG. 2. Tadpole Feynman diagrams coming from cubic and
quartic vertices.

ﬁ
D™ (Q,Q"=Mm,x"=—ika)

2 T
Q —kQ2/2MT 0 —kQ%2MmT,
Q O_fk_ze Q 0

——F€ fictitious scalar field.
2m3
zation an effective regulator of divergence®ut it also
v 2 f—1 ) means that certain “tadpole” Feynman diagrams, which in-
o KT volve one or more propagators originating and terminating at

the same vertex, are excluded. In a theory with at most quar-
tic vertices, these diagrams are limited to self-energy parts,

. . . which generally require counter-terms to enforce Lorentz in-
The last term on the right-hand sidBHS) of Eq. (7) is a variance in the continuum limit. Thus errors induced by ex-

satisfactory discretization of the delta function provided the| ing these diaarams could simplv be absorbed in the ul-
f\’s fall off sufficiently rapidly with k. The exclusion off g d Py

' - timate value of the counter-terms.

ensures da}mplng of transver_se momentum integrals. In this Tadpoles arising from the cubic interactifsee Fig. 2a)]
approach, instead of a new induced quartic vertex we havgspresent the vacuum expectation value of the color current
introduced a short lived scalar, whose exchange simulategensity. The transverse components of these would vanish
that vertex in a way that maintains Galilei invariance. Fur-anyway because they are linear in transverse momentum but
ther, by leaving the choice of thg's open we might be able we can make sure all these tadpoles vanish by simply normal
to tune their values to cancel unwanted symmetry violationsrdering the current density. However, tadpoles arising from
induced by ultraviolet divergences in the continuum limit. the quartic interactiofsee Fig. 2b)] would give a divergent
The first term on the RHS of Eq7) is exactly what is non-vanishing result if the zero time propagator were in-
needed to complete the modified cubic vertgxwhen com-  serted. As mentioned above one possibility is to absorb them
bining all of the contributions of the longitudinal gluons.  in the self-energy counter-term.

Perhaps a more intuitive discretization would be to re- Another possibility is to note that, from the point of view
place the derivative ilD ™~ by a discrete difference: of the continuum, one can just as well spread the quartic
interaction over several time steps, in which case a candidate
for the tadpole diagrams would emerge. We have already

D~ (Q,Mm,—ika) exploited this idea in our discretization Bf” ~; see Eq(7).
A natural way to do this is to imagine that the quartic inter-
T (e %Q2MTo_ o= (k-1)Q%2MTy  k>1, action is actually the concatenation of two cubic interactions
-0 ) ' (8) mediated by a fictitious scalar field which is only allowed to
M2 | e~ Q72MTo, k=1, propagate a few time stepsWe thus redraw the various

quartic vertices as in Fig. 3. The fictitious scalars must be

where the special treatment of the cdsel simulates the
5(x™) contribution we know must be there in the continuum. 11he giscrete light-cone quantizatiéBLCQ) industry which bur-
Unfortunately, this definition violates Galilei invariance be- geoned in the mid-19808or a review sed7]) only exploitedP™
cause of the term that propagates okly 1 steps in time: discretization, leaving ultraviolet divergences unregulated. Discreti-
Newtonian mass conservation is temporarily violated. This,ation of ix* has the effect of introducing factors ef 2*/2°"
causes considerable complications in calculations, but nongyhich is a popular way to regulate UV divergencésto loop
theless displays interesting features. We will not pursue thigtegrals.
option in the main text, but in an appendix we shall see that ?Note that in higher dimensions, the fictitious field would be a
with a suitable counter-term Galilei invariance of the onetransverse two-form instead of a scalar. Such an additional degree
loop self-energy can be restored in the continuum limit.  of freedom is presaged by the first order formulation of gauge
theory in whichF ,, is treated as independent Af, and the La-
grangian density is- Tr F2/4+i Tr F#r(d,A,—igA,A,). Going to
light-cone gauge in this formalism leaves, in additionAf the
The exclusion of the propagators with zerand zergp™* (nondynamicalfields F, _ andFy,. Our prescription simply gives
renders every Feynman integral finite, making our discretithese extra fields a short-lived dynamics.

D. Tadpoles
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A e o e ~}O - O D

FIG. 4. The couplings of the transverse components of the FIG. 5. Three tadpole diagrams resulting from the spreading out
gauge field to the fictitous scalar field. The subscriptndicates ~ ©f the quartic gauge vertex.
that this is amagneticghost vertex. These replace the two quartic
vertices at the bottom of Fig. 1.

ﬁ’“’(Q,M,E)=k21 e EI1#"(Q,M k). (12)
“ghosts”: to reproduce the quartic couplings, either their

coupling to two transverse gluons must be taken imaginaryne exact gluon propagator is then algebraically related to
or their propagator must be negative. We choose the seco%ie the bare one andi. We define u=e Q%2MTo
alternative for which the vertices are given in Fig. 4. AE—Q2I2MTy i .

Note that the quartic vertex which involves adjacentlike =€ °, in terms of which bare propagators have the
direction spins in one channel can be viewed as a spin zer¥glues
exchange in only one way, whereas the vertex with unlike
adjacent spins in both channels becomes two exchange dia-
grams, giving a natural interpretation of the factor of 2 in the
effective quartic vertex. If we now consider the “tadpoles”
arising from connecting any pair of external lines, we see i
that there are 3 diagranisee Fig. %, but the two with the 5‘0‘(Q,M,E): -~ __
topology of a cubic tadpole, which cannot be drawn in our 2M2 1-u
discretized light-cone formalism, cancel. Thus the only re-
maining tadpole is the bubble diagram on the far right of Fig.For D™~ we have, for the discretization of E(y),
5, which poses no problem for our formalism.

The fictitious scalar propagator can be taken to be 5 2y

D(Q’M’k):_hkToe—kQZ/ZMTO Do (QM.E) 2M3 1—u

) )
BYQME)= o (12

To
72 k§>‘,0 fuk. (13

Because of the light-cone gauge, ofily,IT'* andII**
S he=1 ) are required. By transverse rotational invariance, these quan-
o KT tities can be decomposed as

. . . . I=Q' QI+ 71
where theh,’s, like the f,’s, vanish rapidly withk. The nor- QI+ 7l
malization condition guarantees that the correct quartic ver-

tex will be reproduced in the continuum limit. The exponen- *=mQ'my
tial factor damps ultraviolet divergences, and with the form
we have specified, maintains Galilei invariance even for fi- T+ _ M2
i M2} . (14)

nite lattice constants. Furthermore, by leaving the choice of
the h,’s open, we gain additional flexibility to cancel un-
wanted symmetry violations. The hope is that tuningftfis
andh,’s will remove the need for explicit counter-terms.

We shall find that at the one-loop approximatidi;=11;
=1I1I,, and if that were to hold generally, the exact propaga-
tors would be given by

Ill. GLUON SELF-ENERGY AND COUNTER-TERMS Dii = 77_” u (15)
AT ONE LOOP 2M 1—u—ull,/2M
In this section we illustrate the way discretization regu- :
lates divergences by computing the one-loop contribution to Bi-— Q u
the gluon self-energy part]1#”, defined as the sum of all "~ 2M2 1—u—ull,/2M

one particle irreducible diagrams for the two-point function.
For this purpose it is convenient to pass froaih represen-
tation to energy E=p™) representation. With discretized
this is accomplished by defining

+ +

D*(Q,M,E)= D>, e*FD~(Q,M,k 10
@ ) k§=:l @ ) (10 FIG. 6. The two bubble diagrams that contributelf3 *.

045007-5



KLAUS BERING, JOEL S. ROZOWSKY, AND CHARLES B. THORN

_ fk
To %ku

_ Q? u
=12

T OMT, T u—ull,/2M

1+ Toll, Y, fuX
k

A. Calculation of 1I;

After these preliminaries, let us now turn to the computa-

tion of I, at one loop. The simplest term " *, which is
given in x* representation bynote that there are 2 equal
diagrams that contributesee Fig. 8]

g [ d?p "GN (M—21)?

++
=2 T2 ) (2m)® & A(M-1)

Xe~ k[p?/2l+(Q—p)2/2(M—1)]/ T

292N, Mt oL
> _ = —kQX2MT
16771, = M2 ’
NGZ(M-1)(M-2)
_ A—kQ22MT
ATk © ° (16)
2
~ 9°N¢
++:— _ _ _ _
(17)

The evaluation of /™ is not much harder. Here there are

four diagrams that differ only in the prefactor of the trans-

verse momentunsee Fig. 7. Since the prefactor is linear in

PHYSICAL REVIEW b1 045007

p”\p”* both integrate to zero. Thus, again, prefactorof
may simply be set tdQ”\/M. Eight diagrams contribute to
this quantity, equal in pair¢see Fig. 8 The prefactors of
these diagrams combine as follows:

NA/\
%QQ—[(M+|)2+(2|v|—|)2—(|v|+|)(2|v|—|)—(|v|+|)

NA/\
x(ZM—I)]z%(ZI—M)Z. (20)

So again we have the same sum oldeading to

2 AAN
g°N;. Q"Q
AN _ _ _ _
(21)
The upshot of the calculations so far is that
I, =I1;=0= o, 1- >4 2 )i
7 A VR VL
(22)

The equality of the variou$l’s holds even at finitem,a.

This can be understood because the diagrams we have evalu-
ated show no violation of Galilei invariance. Our result for
IT; can be compared with the result from the study of
asymptotic freedom in the infinite momentum fran®&s:

: (23

) gch AZ
Hl(Q ): Ez In62+12

momentum, we need only to remember that the Gaussian

integral over transverse momentum involves the ghiftp
+1Q/M. After this shift the term linear irp integrates to
zero, so the net effect is to spt=1Q/M. Thus the net pref-
actor is

j
%(ZI—M)[(1+I/M)+(—2+I/M)+77+,(—1—I/M)

2Q) )
+7.-(2=1IM)]= =z (21 =M)7, (18
which involves the identical sum ovérasII™*. Thus we

end up with

_g°N. Q
—MV(M—].)(M_Z)[_“’](]._U)] (19)

j+
The coefficient ofQ'Q! in IT'! may be singled out by

computingIT”*. This leads to a similar calculation to the
above because, after the shift in integration variapfe and

AAR

FIG. 7. The four bubble diagrams that contributelt6 .

in which a simple cutofk?< A? was employed. To make the
comparison, note that in the continuum lim#—0, M
—o0, 1—u~(Q*-2Q"E)/2MTy=Q?2MT,. Thus, for us,
the role of A2 is played by the quantity @T,=2Q"/a.
Note that if we choose to keely, fixed, the ultraviolet cutoff
is removed by simply taking/l —oo.

B. Calculation of II,

Finally we turn to the real core of the self energy calcu-
lation, the determination dfl,, which can be inferred from
\V=Q QVII,+II,=1II,+Q%I,/2. Seventeen diagrams

09
0 ¢

FIG. 8. The eight bubble diagrams that contributd 6"

VY
Gy
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09
00

FIG. 10. The eight bubble diagrams that contributeﬂl@v.

FIG. 9. The three bubble diagrams that contributeﬂlﬁ\/ in-
volving only transverse components.

contribute to this quantity, 15 of which do not involize” ~
and are relatively simple to analyze.

First consider the three diagrams that only involve trans-
verse internal propagatorsee Fig. 9. The prefactors of
transverse momentum combine as follows:

:+
-+
+
o\ _ A —_ N
(2p-Q)(2p~Q)V+(p+ Q) (P+Q)V+(2Q-p)(2Q MMM+ 1)

~p)V=3(p*+Q*p-Q) & IM-h= 6
—3{p?+[1-1/M+(1/M)?]Q?}, (24)

respectively. The contribution of these three diagrams,
11,V is given by
where in the last line we have indicated the result of shifting
p by IQ/M and dropping the term linear m The transverse 9°N.[M?2—1 B5M?-6M+1
mtegral of the term iMQ? is the same as before, but the term HA “ 16721 KM + 2kM2T
in p? gives an extra factor Byl (M —1)/kM. These terms 0
require the sums

—KQZ/2M T

(26)

The next class of diagrams consists of the eight graphs

M—1 with one D!™ propagator, shown in Fig. 10. Remembering
E (M2=IM +12)= M(M-1)(5M-1) (25) the single factorp, _, we find that the prefactors combine
=1 6 ’ as follows:

p/ pYv
—(2M=1)|5(Q=2p+Q+p)V+5-(Q-2p+Q+p)"
AV v
—(MJrI)(?\,l—_p)(—Q+2|0+2Q—|0)V+(Q ID)( Q+2p+2Q—p)"
o 2M-d M +1 5M2—2IM + 212 ) 2M2—2IM + 22 5
——|—p-(2Q—p)—m(Q—p)-(Q+p)—>— VE Q°+ TED p (27)

where as before the arrow indicates the effect on the prefacombining this with the previous three diagrams vyields, for
tors after the usual shift of integration variables. Performingthe 11 diagrams considered thus far

the by now familiar integrals and sums leads to the following
result for the contribution of this class of eight diagrams,
labeled byl :

2 2_ _
H/\\/+HAV=g N 13M“—12M -1
A B 487° M

1 Q 2
2 2 _ —kQ“/12M T,
o= 24N [SM kzi/lMJrl x[l? 2kMTJe . (29
7T
2_
_ w —kQ?2M Ty (28) The prefactors in the pair of diagrartshown in Fig. 11
2kM<Ty involving two D/™ propagators combine to form
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+ + + +
+ + + +
FIG. 11. The two bubble diagrams that contributetg" . FIG. 12. The two bubble diagrams that contribute Tig,"
which involve aD ™~ propagator.
M+1)(1—2M M+1)(2M—I . ' . .
# (Q—p) u 2 evaluation than the first 13. Using E() the Gaussian ex-
(M=) (M=1) ponents are the same as with the first 13 diagrams. One finds
——(MH?\;iM_l)QZ- - (2|\/|—|)2 ) M=l f,
AV _ kQ2/2MT, __k
P e R
L . - 1Q?
This time the required sum is just + +(l—=M-=1)
2kM3T,
M-1 2
) ) 0°N¢ 2 1-
> (2MZ2+IM —13)=M(M—-1)(13M+1)/6, (31) =07 ~kQ“/2MTo {4M[1//(M)+y]
=1 ™

(M—1)(14M —1)

so that these two diagrams simply double the result of the ~7(M—1)/2}—

first eleven. So, in summary, the total contributions of the 13 6k
diagrams that do not involv® =~ to II"'V and 1"V are (M—1)(14M —1)Q?
5 : (34)
5 2 o -1 12kM-T,
92N, 13M2—12M —
LV + IV +TI¢V = 24772 v where we have made use of the identity
1 Q2 K 2 - _1\2
i —kQ?/2MT 2M I 7
X[kz 2kMTJe ’ 2 T =AMIY(M) + ] - 5[M - 1], (35)
(32

where y(z)=I""(2)/T'(z) is the digamma function ang is
Euler’s constant. At larg®, we have
2N, 13M2—12M—1

TV 4+ TIQV+ TNV =2

247 M 1 Ban
M)~INM— =—— —_—, 36
v o (M) SN 2 g (36)
X Z —+ =——In(1-u)|. :
& k2 2MT, whereB,,, are the Bernoulli numbers.

With the quartic vertices realized as the exchange of a
(33 magnetic scalar, we have a definite proposal for the tadpole
contribution to the self-energy, namely the two diagrams of
The two diagrams in Fig. 12 have™ ~ propagator as Fig. 13, which each give equal contributions. Calling the
one of the internal lines and lead to a qualitatively differenttadpole contributiodI¢" , we find

2 M-1

N h
AV _ 9 Ne 2 2 k —K[MpZ/I(M—1)+Q%/M]/2T
e 2(277)3T(J P2 sm—n® °
Ih 92N h
- Ne K kQZ2MTo— _ 2 €\ 1) K @ kQ%2MT
471' 2 ° 872 (M=1) Kk € > (37)

Adding IT}V + IV to the first 13 diagrams givein energy representatipn
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ﬁAv:ﬁAAv+ﬁQv+ﬁév+ﬁQv+ﬁ§v and a similar expansion fat,f,u*/k. The coefficient of the

linear term is completely determined by the normalization

9°N,| < conditions on thd’s andh’s. Momentum independent terms
= | E i2 4|V|[l//( )+ ] in II, imply a (divergent and noncovariantachyonic gluon
mass squared in perturbation theory. Since the gluon has

_ _ % only helicity +1, such a mass is inconsistent with Poincare
_ (M~-1)(1IM 1)) E u_ —1 invariance of the continuum limit. Clearly these symmetry
3M &k 2 violating terms would be cancelled if we could impose the
o 72(M=1) constraints
-2 fge k 4M[¢<M>+y]—T
U (M—1)(M-2)Q? nkre (42)
.3, u(M-H(M-2)Q°| - 216
k=1 k 12M?T,
To getIl, we must subtrac®?I1,/2, which exactly cancels “ hy w2 2
the last term, leavin LS I
g 2 k 18( M)’ (43
9Ny « Uk (M—1)(11M—1)
o= 7| 2 12| 4M[¥(M) + 5] -
= 3M

but clearly the second of these is impossible withinde-
o KM=—1 = uk penden_t ofM [implicitly assumed in Eq(9)]. Th(_e best we

_ E hy— PRI E f— " (4M[¢,//(M)+ 7] can do is to set the RHS of EG3) to — 72/18, which would
cancel the linear divergence Hf,. However, there remains a
finite gluon mass which is still inconsistent with the Poincare

(39) invariance of the continuum theory. One option would be to

cancel this with a mass counter-term, whose coefficient

would have to be determined order by order.

7(M—1))
it

The first term inside the large square brackets is exactly the another approach is to allow, to be dependent oM.
contribution one would obtain using the modified cubic ver-\ye nave the freedom to make this replacement as long as we
tex (6) in the three diagrams of Fig. 9. The terms witQi  recover the correct continuum limi{— and a—0) of

represent the tadpole diagram that would have been conpe theory? With this modification, Eq(37) is replaced by
structed from the induced quartic vertex had been elimi-

nated from the formalism. This is as it should be because

summing over aII.the diagrams i-nv.olvirjg‘k andD™ " is N 92N, M-1 |hk(|)
the graphical equivalent of the elimination of the degree HgV=-—
of freedom. The formalism witth . eliminated gives an ex-

2
a2 ST (Y

tremely efficient calculation of the three bubble diagrams, as

shown in the next subsection, but no candidate for the tad-
poles. But by treating\, graphically we are led to a useful
proposal for the tadpole diagram.

In order to compare our results to the continuum calcula

where the sum ovelris not performed. Similarly Eq438)
and(39) should now include the correcteFﬂAv ThuslIl, is
given by

tion of Ref.[8], we must examine the limits—1 andM

—o0, The behavior of the first term of E¢39) in this limit is

(M—1)(11IM —1)

transparent once we use the identity {2 (4M[¢//(M)+ v]—
= 3M

k s (1— U)k

Z—ZZF—MU'H(]. U)_le |

~%+(1—u)[ln(1—u)—1], (40) 7(M_1)”

2 fkk(4M[w<M>+ﬂ

(45

for u=1. The last two terms can be expanded ahoutl:

[

2{ (u- 1)2 it O((u=1)?)

and the expansion of E¢41) aboutu=1 should now be

Uk
2 N

|

2 _k (U—1)+O(u—1)?), (41) Swe have the same flexibility for thiés in Eq. (7) but as we will
k=1 K see this is not necessary at least at one loop order.
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FIG. 13. The two bubble diagrams that contributeﬂ(ﬁv
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this simplification by using the modified cubic vertices, Eq.
(6), for the transverse gluons. At the same time we retain our
replacement of both the bare and induced quartic vertices by
the exchange of two short-lived scalars. The self-energy dia-
grams involving those scalars will be exactly as described
previously (i.e. the terms involving’s and h’s). However,

all of the remaining contributions tH¥' are reduced to the

which correspond to the tadpole contributions induced by thewo or three diagrams involving only transverse gluons and

spread out quartic vertices.

o

o M-1

the modified cubic vertices.
Only two diagrams contribute tbl”\", the last two dia-

M-1 . . .
Ihy(1) Thy (1) grams in Fig. 8, and they each involve a prefactor
_k21 Ukl—zl Mk :_2’1 |21 Mk —(u=1 A A 20 ARA
B - B (Mp—1Q)"(Mp—1Q)"—Mp"p", (50)
o M-1
Ihy(1) after the shift in momentum. Clearly this integrates to zero so
X +O((u—1)2 ) : y 9
k; ;1 m o= I1"*=0. Finally there are only three non-tadpole graphs to
e M1 consider forlI”"V, namely those in Fig. 9. In this case the
B Ih(1) 1 M-1 relevant prefactors from the three diagrams contributing to
=TA A vk b3 11\ combine as
+0((u-1)%). (46) M?2 12 (M—1)2 o
. . . 2|2(M_|)2+(M_|)2M2+ M2|2 (Mp lQ)
The constraint equation that replaces Ep) is , i .
B M I (M=D=|
'S () (M—1)(M=2) 72 H2[|2(M_|)z+(M_|)zMz+ V22 }M P
D < @D
=1 M k=1 k 6M 6 (51)
which can be satisfied if we require after the usual shift in momentum. Note that because these
" ) vertices are manifestly Galilei invariant, there is no term pro-
> he() = 1 1 48) portional toQ? in the prefactor. Thus after integration over
=1k 18 [ loop momentum we are left with the contribution iV

M-1
M?2 E

We prefer this approach to that of a mass counter-term, since_ 9°N, 1 n
[(M=1)  (M=1)M?

it is possible that this is a uniform description that works " non-tadpole” 4 -2 |2 ,Zl
order by order(at each order the cancellation places con-

straints on higher moments &f). The hope is that this can (M—1)3
be used non-perturbatively. + M2
In the continuum limitM (1—u)—Q?/2T, stays finite -
and we find thafl, tends to 9N, 1 4AM  —3M?+3MI-1?
e & |7t M2
I N, O° 8(InM+y)— 2| o 2
27 1672 To | | BIMM V) F{IngmT, T 3 g°N, 1 11 4 1
(49 s AR I VIR TVEL R

Remembering that ouH, is a factor of—Q?%/T, times that (52

defined in Ref{8], we find agreement for the coefficient of In this way of organizing the calculation, the longitudinal

2[n O2 ; ; ; Y wi +
QInQ’, provided we identifyMe” with Q*/e and MTo components ofI#” play no role and the new diagrams con-

with A2, We do not get, nor should we expect, the same”, '+ AV i .
(finite) coefficient of Q. tributing toI1"*V give II, directly. For the non-tadpole part

we find

C. Brief calculation of 1 gch Z Uk
non-tadpole_ _
In the work just completed, we deliberately kept the 113 T AP kzl k2M APpM)+7]
degree of freedom in the graphical rules in order to keep the
calculation as close as possible to one in other gauges. How- 11 4 1
ever, having seen how all of the graphs with longitudinal N §+ M 3MZ2|’ (53

gluons combine so nicely, it is appropriate to note that the

calculation withA, explicitly eliminated, so that the Feyn- which is clearly a much simpler and more compact calcula-
man rules refer only to the transverse gluons, is much moréon. To this result must be added the contribution of the
compact and efficient. With our prescription we can exploitfictitious scalar diagrams, which represent the tadpoles.
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the minimumP * =m (so the number of particles is maximal
/*\ /& . /)\ A\ C Mo b =M), and each propagator evolves only one time step. For
, (Mo = M) even M these diagrams include the large fishnet diagrams

that form a seamless web of quartic vertices and propagators,

/& ; and the resulting Gaussian integrals could be identified as a
AN (M) (41,02 — M:Q0) AN +h discretized path integral for a relativistic bosonic string
qguantized on the light-cone.
This work on scalar field theory was immediately fol-

/X\ 2 (M) (MiQY - MaQY) AN -4 lowed by a first attempt to apply these ideas to laxigeQCD
— [5]. In that work QCD was formulated on a light front, with

. P* andix™ discretized. The ordinary bare vertices of QCD,
— prid

both cubic and quartic, were used. Because the quartic cou-
pling in QCD s of ordery?, the literal strong coupling limit,

S ~fungre b FMTe as formulated if4], favored fishnet diagrams witbnly the
primitive (i.e. non-induced quartic couplings. Actually this
_________ by Tye- b 2M Ty conclusion required thad hocexclusion of theP™ =0 ex-

change part of the induced quartic interactions arising from

FIG. 14. Summary of discretized Feynman rules using only cu fixing the light-cone gauge. Nonetheless, the resulting fishnet
bic vertices. We have explicitly inserted a factor of dfor each was very interesting: the spin of the gluons played the role of

vertex arising from the discretization the arrows of a certain six vertex model, knovyn as the F
' model[9]. In fact the four gluon vertices of the field theory
) . were exactly the vertices of the F model. The fact that some
Needless to say, the calculation of more complicated propf the vertex weights were negative did not cause problems
cesses should make use of these new Feynman rules, whighy the leading strong coupling fishnets because those dia-
we have summarized in Fig. 14. grams always had asvennumber of negative weight verti-
ces. However, the problem with them reappears at next order
because the deletion of a single negative vertex reveals a
repulsivenearest neighbor interaction in that spin charfnel.
The discretized Feynman rules given at the end of Sec. |IThus that channel could not have formed a bond in the first
provide a tool to sum classes of diagrams. As described iRlace. In some spin channels there were also positive
[4] summing diagrams on a light front has a direct interpre-weights, so that the bondsould form. However, unfortu-
tation as the path history quantum evolution of a system ofately for these fishnets, the attractive channels are ferro-
particles moving in the transverse space under Newtoniamagnetic: the only long polymers that could be formed by
dynamics. By fixing the total discretize®@™=Mm, the these interactions would have enormous spin.
maximum number of particles present at any tim&/isBe- The problem is that at strong coupling only the quartic
cause the vertices allow particles to fuse and fission, particléiteractions survived with the discretization[sf. The spin-
number is not conserved and there is quantum mechanic&pin interaction from gluon exchange has anti-ferromagnetic
mixing between states with any number of particles betweeRehavior, and it is possible that a discretization that allowed
1 andM. the exchange interaction to compete with the quartic interac-
We are particularly interested in the class of planar diation could cure this problem. To explore this possibility, one
grams singled out by 't Hooft'®\.— o limit of QCD. Itis  Of us examined the relative strengths of quartic and cubic
actually more precise to think of this class of diagrams ag€Xxchange interactions for neighbors on a gluonic chain by
drawn on a cylinder rather than a plane: At any time theputting the two gluons in a spherical MIT bag0]. In that
system of particles is ordered around a ring, and interactiongontext one can see explicitly, not only that the cubic ex-
only exist between neighbors on this ring. Thus the stage i§hange of a transverse gluon is anti-ferromagnetic, but that
set for the particles to bind into a closed polymer chain. Thidts strength(at least in weak coupling perturbation thepiy
was previously investigated ] where scalar matrix field more than sufficient to reverse the ferromagnetic character of
theory with quartic couplingsx Tr ¢*/4, was considered. the quartic interaction. A major shortcoming of the discreti-
These interactions are attractigepulsive if A\<0 (\>0).  Zzation of[5] is that at strong coupling the cubic interactions
Thus bound chains can form only)f<0, the unstable sign. have no opportunity to compete with the quartic interactions.
In the interpretation of the sum of diagrams as a sum over The discretization developed in Sec. Il of this paper is
histories of a system of particles, this sign assures that alnore promising. In fact, we do away with quartic interac-
histories contribute with a positive weight. Using the dis-tions completely: All interactions are cubic. The quartic in-
cretization of P™ andix™, as reviewed here in Sec. Il, a teractions have been replaced by the exchange of fictitious
strong 't Hooft coupling limit\N,— o was formulated and
analyzed. This was achieved by focusing attention on the
cylinder diagrams that evolve a system of particles with 4contrast this with the cubic scalar theory where the sign of the
P"=Mm a fixed large numbeN steps forward in time. The coupling is indeed irrelevant because the deletion sihgle cubic
limit singles out those diagrams in which every particle hascoupling is not allowed by the Feynman rules.

IV. SUMMING PLANAR DIAGRAMS: FISHNETS
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| there is no “unique” discretized theory to associate with
continuum QCD: all sorts of lattice details get washed out in
' the continuum limit. Instead our goal is to find a single lat-
! tice model that shows continuum QCD at weak coupling and
| string theory at strong coupling. This dual requirement will
hopefully help to determine a unique theory.
: As in [4] we shall consider the sum of cylinder diagrams
: that evolve a system witR*=Mm forward in time by the
. amountT =Na. For fixed initial and final states, according to
our prescription, there are only a finite number of diagrams
i that contribute. This defines a definite model that can be
studied as a function of the bare couplings. If the complete
FIG. 15. Hexagonal cell fishnet made of only cubic VertiCGS.Sum could be done for arbitraﬂyl and N, one could then
The dashed lines indicate the closed cylindrical topology. read off the exact spectrum of the continuum theory by
studying the limitM,N—«, with parameters tuned so that
scalars, and these exchanges are not enhanced by strong Cﬂlﬁ limit is nontrivial. This is presumably too ambitious, but
pling over the exchanges of the ordinary transverse gluondd the next section we shall at least be able to deal nonper-
Without quartic vertices the basic cells of the densest diaturbatively with some small values dfl. One might also
grams are no longer square but hexagonal: the fishnet loolgVvision studying moderate values Bf numerically on a
like a honeycomksee Fig. 15 computer. In the rest of this section we shall discuss the
These fishnet diagrams require particles with both 1 and fishnet diagrams that describe the infinite coupling limit of
units of P*. Thus the leading fishnet structure is somewhatour model.
looser than in the quartic coupling case. The inclusion of two ~ Let us first consider the scalar paradigm. It is sometimes
different values o " in the leading approximation also sets helpful to define a transfer matriXwhich evolves one step
the stage for the emergence of a string degree of freedof@rward in time. In order to do this, start with time continu-
(provided string states do fonoorresponding to fluctuations 0us and express the exact time evolution by an amaunt
in P*. Such a degree of freedom is expected to be describelffe interaction picture:
at long worldsheet wavelength by Polyakov's Liouville field w0 .
[11]. efa(Ho+V):efaH02 (—a)
Because all of our vertices are cubic, the paradigm scalar n=o n!
field theory is nowg Tr ¢°/3 (see[12] for a discussion of
this model in &1 dimensions Of course, the presence of
factors of transverse momentum in the QCD cubic vertices
will cause a profound qualitative difference between gauge
and scalar theory. For one thing, the scalar theory is superthis expression is exact, and of course it does not correspond
renormalizable with the cubic coupling carrying dimensionsto any discretization. Our discretization is given by approxi-
of mass. This means that weak or strong coupling is determating eachV,(t;)~V,(0)=V and only retaining the term
mined by the size of the ratig?N./u?, whereu is a mass  T[V(t1)---V,(t,)] when eachV, acts on adifferent sub-
scale relevant to the calculated physical quantity. For exsystem of the particles present initially. We shall therefore
ample, in our strong coupling considerations, we can simplyvrite the transfer matrix for our discretized theory as
take u?=T,. Also, since¢? is unbounded at large in one
direction, the theory is ultimately unstable, although this in-
stability is not evident in weak coupling perturbation theory
if the scalar field has a non-zero mass. But the topology of
graphs and momentum flow is the same in both scalar fielavhere we understand/"]=0 unless each of the V's acts
theory and our version of discretized QCD, so we shall exon a different subsystem of the particles present. With this
ploit the scalar paradigm to illustrate such common featuresunderstanding we implement our discretization rule that ev-
The absence of spin degrees of freedom in the scalar theosry line in a diagram propagat leastone step in time.
is a helpful simplification for at least some issues. These approximations are strictly valid for sufficiently small
Before turning to details, we comment on the ambiguitiesa at fixed coupling parameters. But we use Exp) to define
in our setup contained in the values of this andh’s [see a discretized fishnet model at fixed fingewhich we intend
Egs.(7) and(9)]. As shown in our study of the gluon self- to study at all values of the coupling, includimg-o. Al-
energy in Sec. Ill, weak coupling perturbation theory con-though the strong coupling limit at fixeal (as alwayg takes
strains moments of these quantitigsr example, at one loop one far from the original continuum theory quantitatively, we
we find constraints oX f, /k and>h,/k). Since strong cou- hope that it will lead to a new continuum QCD string theory
pling emphasizes short times, we expect this limit to putbearing qualitative resemblance to real QCD. But there is, of
constraints on thd, and h, for low values ofk. Thus we course, nca priori guarantee of this outcome.
gain complementary or “dual” information about the theory  An efficient way to implement thdl.— < limit is via the
as we explore both limits. It should be stressed here thadtock space approach pf3]. One chooses a state of the form

X foadtldtz- S dt TV () - - - V()] (54
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Mo retain the color trace structure and describe interactions be-
lyy= >, — > f Tr{a), (p1)---al, (p,)]]0) tween nearest neighbors as defined by the color trace. If we
/=1 N My} ! ‘ wish also to take the infinite 't Hooft coupling described by
the densest fishnet, we choddeeven (M =2n) and restrict
XY (1M, ....p/ M), (56)  /in the sum to the two value$=2n with M,=1 for all k
and /=n with M, =2 for all k, and we require that every
and applies the transfer matrix keeping only terms that surparticle present participate in an interaction at each time step.
vive theN.— e limit. The second sum is over all partitions This leads to the following coupled equations figr and ¢,
of M, such thatM;+Mj,+---+M, =M. All such terms when|) is an eigenstate of the transfer matrix:

g“NQ’Ze‘E (7 ud)2Tg 1
]
5L ¥n(P1+P2,PsFPa, - - Pan-1%P2n) + ¥n(P2+ P3.PatPs, - - - P2ntP1)]
(57)

tion(Pas - - - P2n) = (4T0)n(277)3n/2

2 2
29"N2e™ 2}: (aF+ )T

tlv[/n(qlv e in): H dzkj l//2n(k1:q1_k1| v :kn 1qn_kn)! (58)

(4TO) n( 277_)3n/2

wheret is the eigenvalue of the transfer matrix, and we have included a bareggéss the scalar field. In the continuum
limit t=e~2E, We have suppressed tMy’s in the arguments of,, and ,,, due to their simplicity. Clearly, we can eliminate
o, to Obtain a single equation faf, :

gche_5”§/4T0

" 2 dzk
2 .
e < q-/4Toj — J:1,92, --. .9
|6T0(2 )3 ) ] ! H To [‘/’n( 1,42 n)

t2n(dy, - . . ,qn)=(

(Ui ko—Ky, .. Gt Ky— k) e 2 K @k)2To (59)

We see that the.g dependence is a trivial factor in this strong coupling equation, so we shall,sed in the following. The
2
integral of the first term in square brackets is elementary yielding a facter ~i%/4To. Defining

9°N,

M= 1282,

and rearranging the equation leads to

\ de
e T 30 T S aoige 3

d2k;
=Ane~ 2 7Ty f 11 W—T(')wn<qi/2+qi+1/2+ki+1—ki>e*2i i, (60)

where in the last line we have shifted integration variables t@erturbation theory, the self-energy bubble by itself would
complete the square in the Gaussian exponent. This equatidpver the scalar mass squared by an infinite amount. To keep
sums diagrams including not only the basic fishnet, but alséh€ scalar mass non-tachyonic at weak coupling one needs a

fishnet diagrams containing any number of time intervals jaSS counter-term. With discrete time, it is convenestin
which n subsystems each withl=2 propagate freely for CU' freatment of tadpolggo spread such a mass counter-
arbitrary lengths of timdsee Fig. 16 term over several time steps by introducing a short lived

. S . fictitious scalar with a quadratic coupling to the real scalar
This complication is described by the second term on thgjq|q of orderg. q ping
LHS. In considering the effect of this term, one should keep \ve would then have additional diagrams as in Fig. 17,

in mind that no self-mass counter-terms have been includegnd the upshot for Eq60) would be an adjustable coeffi-
in the derivation of Eq(60). For example, in weak coupling cient in front of the second term on the LHS:
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Ax=x(M "1, Q (65

Qp=Mp Q. (66)

Because of the Gaussian structureYafit also has a lin-
ear action on the coordinates and momenta:

Yie=[X+ipy/Tol(M ™) Y (67)
~ ~ . TO ~ ey 71
FIG. 16. Fishnet with a section ofl =2 subsystems propagat- Ype=|Myp,—i ?[X|+ID| IToll2(M ™)k
ing freely. The dashed lines again indicate the closed cylindrical
topology.

(MY = (MY 1Y, (68

PoA(L=ay)e 2 20y (q)
iy This linear action can be diagonalized by passing to normal
e 3 o [ 1 Sy (a2 modes:
! i 7o
~ 1 R _
+k|+1_k|)e_2 kiz/Tol (61) XIE T Ek Xke*Z‘ITI”(/n (69)
n

We shall begin by dropping this term completdiye. by
choosings;=1) to determine the contribution of the basic -1 . ”
fishnet for the scalar cubic theory. Later, we shall comment pPi= ﬁ ; pre2mkn, (70

on the effect of5;<1.

In order to understand the dynamics inherent in the basic
fishnet, it is helpful to express the integral transform on theOne then finds that the modésall decouple from one an-
RHS of Eq.(60) as an operator in the state space of a firstother under the action of :
guantized system af particles. It is straightforward to show

that the appropriate operator is given by - 2[X+ip/Tol 7l -
R X . X|=mY= 1+itan—|[x+ip /TolY
Y=o~ X PH2To0) e~ To Y, (i-1—%)%4 62) 1+e n
i [ ' (71)
where thep’s and X's are the momentum and coordinate 2mil /i -~ o~
operators for then particle system. Her€) is an operator Y5 = 1+e 5—il 1— 27l | 2To[ X +1py /To]
i ; . o] p—i cos— i
defined in momentum and coordinate bases by 2 n 1+ g 2mil/n
5 5 o o\~ . ol
o= | II &?pjlpd(Mpil= | TT d2x|xMud(xd, =|1+itan— 1+S|r12? p,—2|TOS|nZFx, Y.
j j
(63 (72)

andM is annxXn matrix defined by
We can now search for eigenoperators of the fotm

M p= % (64) +&p; . This leads to a quadratic equation fr,
It is easy to check thad#l is invertible providech is odd. For &2 i_g n -0
n even there is a zero eigenvalue which must be separated b2T,% " 2T3siré(lm/n)

and handled before continuing the analysis. For simplicity,
we assumen is odd in the following discussion. One can
readily verify that() has the following action on the coordi-
nates and momenta:

with solutions

i / 8
Fe=—| 1t \/1+ ——|. 7
—_—— - ----- -~ & 4T0( sire(1a/n) (73
FIG. 17. Additional diagrams introduced by spreading out a
mass counter-term. These eigenoperators change the eigenvaldé by a factor
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L N ks and
AL=[1+itan—||1—-2i& Tosit—
n n (n—1)
co(la/n)= ) 80
= 1+itan—I7T 1+Esin2|_77 |H1 (i) 2200-1) ©0
2

we find that the eigenvalue for the ground state is given by

1 Ix Ll
*osin—- 8+S|n2F : (74) (n-1)12
tZ2=\" [] 1+§sin2(la-r/n)

Note that these eigenvalues are not real because not a

Hermitian operator. However, also note that the second fac- 1 i -
tor is positive for both branches and ford<n. The eigen- Ssin(la/n) 8+ sir?(Iar/n)
value is therefore always in the right half complex plane. We

also have that{A . A_|=1 which implies that|A ,|>1 Since it is positive, all cyclically symmetric states generated
>|A _|. Moreover, the first factor which contains the com- by applying suitable monomials of the eigenoperators to the

(81)

plex phase can be rewritten in two ways ground state will have positive eigenvaluesYof
Clearly the long fishnet wavelength excitations show be-
o 1 ol 1 il havior identical to those of the continuous light-cone quan-
1+itan—=————¢!"M=—" e i(n=Nm/n : A : :
n cogla/n) cog(n—1)a/n] ' tized bosonic string. The excited states are obtained by ap-

(75 plying appropriate zero momentum monomials of the

eigenoperators;+ & p; to W. From the interpretation
which shows that the phase is proportional to the fishnet ge agpwe seelthilt P G P

momentum created by the eigenoperatém: for | <n/2 and

—(n—=1)/n for I>n/2. Cyclic symmetry of the initial wave
function implies that the total fishnet momentum must be 0.  Eg=— —IntG 5a f dv In 1+ —Sln27TV
The ground statébelonging to the largest eigenvalYd
is determined by the condition that it be annihilated by all the 1 7T, 1
eigenoperators which increasg x,+&p, . Its wave func- +§sin7rv\/8+sin27rv) -—=+0 Fz)
tion is therefore proportional to the Gaussiavith normal- 6v2nm
ization \V) (82
n-1 2Tosin(lar/n) where we have used the Euler-Maclaurin summation formula
Wo=Nexp — > : for largen
=1 sin(l@r/n)+ \/8+5|n2(lq-r/n
(76) 1" 1 1
L - 2 #l )= [[avr- e R
which is always damped becauge=X,_,. The eigenvalue ni= 0 n
corresponding to this state can be obtained in the following B
way. First, we observe that +> —[F(Zk D(1)—FE@-10)7.
=1 (Zk)' 2k
1
m=f d?py S(Myp)) = det? = =221 (77) (83
. In lattice string theory the bulk term proportional ocon-
Then together with Eq67) we get that tains no physics and can be droppsde[14]). The ground
(n—1)/2 ~ ~ state string mass squared is predicted to(reeall thatP™*
¥ :sz(n_l)exp{ 2 PiPn- |] :an)
=1 Ty
(=2 ~=~ M2=2P*Eg=—=T \ﬁ (84)
_ XXnop ¢ 6T TloN3
X ex o2 im
=1
cos(l/n) We also see that the basic energy splittings are given for
i |7 <n by
X | — +2Tsit—| ;. (78)
& n 2 2
AE=AP =l 2—=7T|T0 P (85)
Thus with the use of the identities an
~ or splittings in mass squared of
e~ aE’IBn—Ie*B;(I;n—I = 1 ex ,8X|Xn ! (79)
(1+ap)? 1+aB ]’ AMP?=2P AP =27IT(V2. (86)
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(@) (b)

FIG. 19. Here we see how bubbles of a gendiie-2 fishnet
lattice can close in 2 ways due to the cylindrical topology. The
wraparound diagrarte) has the opposite sign to the bubble diagram

(b), so that they cancel.
FIG. 18. Typical example of a strong coupling QCD fishnet.
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Strong coupling. This was also discussed in the context of the
paradigm cubic scalar theory. In this section we are inter-
ested in the dynamics of the discretized theory away from
strong coupling. Potentially the strong coupling limit will not
be described only by the dense fishnet lattice. While the ul-
timate goal is to do this foM —o (rememberP™=Mm),

we will begin by analyzing systems with small valueshof

This result shows that the string arising from our basic cubi
fishnet has an effective rest tensionTef/ 2, corresponding
to a Regge slope parametet=1/\27T,. Noting that here
the transverse dimensionality is 2 and not 24, 84) gives
the usual result of bosonic string theoryd/6a’.

This is all for the basic cubic scalar fishnet, in which the
second term on the LHS of E¢G0) is tuned to zero. Includ- (i.e. baby fishnets
ing that term, we find a solution for genenalintractable. s

However, qualitatively, we can say that it introduces a con- The simplest non—tr|.V|aI QCD fishnet hag=2. We al-
tinuum threshold at=\"%(1— &,)"2, corresponding to a ways understand our fishnets to propagate color singlet sys-

tems so that they have cylindrical topology. Then te

r=2 fishnet has no interesting dynamics due to the fact that

E <E. we can expect qualitatively similar bhvsics for géflor-singlet gluons decouple from gluon bubbles. However,
S P q y phy the color adjointM =2 gluon propagator, which plays an

largen. However, forEg=E;,,, we can expect that the seam- . :
. : : . important role as a subsystem of larger diagrams, can be
less fishnet structure begins to be disrupted with a dramatic ) . A
olved to all orders in perturbation theory due its simplicity.

qualitative change in the physics. We shall explore this effec e leave investigation of1=3 to the future. Another pos-

for small values oM in the next section. . - T . :
sible avenue of investigation is systems involving sources

Finally, let us turn to QCD. The first major difference is rather than pure glugsuch configurations are discussed in
that each line can exist in four different internal states, cor- P gluds 9

responding to the two polarizations of the transverse gluor[nls])' We also defer exploration of such systems. .
(with spin S*= +1) and the two fictitious scalars introduced In Sec. IV we were only able o solve the strong coupling

. - . . ; cubic scalar fishnet for genenalwith the term on the LHS of
to simulate the quartic interactiorisee Fig. 18 for an ex-

ample of a generic dense QCD fishnet lattide Fock space E?'_(Gl) cancelle;j via a T“;"‘SS countette(me will def'Te
language this can be described by affixing a 4-valued indeX 1-6y) .I E(’jl.ﬂ OL Spgc'a casES d¥t —|2n W? %an SO VE;]
to the creation operators. The basic fishnet diagrams will b q;(61) Inciugding t _e'< term. T € simp est of these Is the
the same as in the cubic scalar theory, but with the compli- _22 scalar. fishnet; however, in th's case the on_ly effect of
cation that the vertex value depends on the states of the Iinjge K" term Is .to reSC?"e the solution presentgd in Sec. V.
entering it. In particular, some of the vertices are linear in th or the more interesting cases M= 4'6.We will see that
transverse momenta of the incoming lines, leading to an in'Ehey too can be solved. F&4 =6 we restrict attention to the
teresting spin-orbit coupling on the fishnet world sheet. ThudWave sector.
the QCD fishnet dynamics requires the solution of a two-
dimensional lattice spin system with a nontrivial interplay A. M=2 states of QCD
the latice el Contractthis with the fishnet contemplated,__EM =2 color sngle gluebal states isplay o dyna-
in [5] and basea solely on the quartic coupling. In the Iattercs’ because our dlscregzatlor_] W|th _excluswely cubic verti-
b . : ces only allows interactions via mixing between one gluon
situation the spin degrees of freedom decoupled from th

transverse coordinate degrees of freedom and correspond d two gluon states, and there is no interacting color singlet
to the soluble F model, one of the 6-vertex models. Th on.[Even if the gauge group I9(N,), the Abelian gluon

fishnet model we are proposing here has a considerablcomlmen:}Iy decouples in the pure gauge theofy under-

richer structure, which we shall begin to explore for smallé’{tand this decoupling in terms of our Feynman rules, note
o ; 9 P that on a cylinder the gluon self-energy bubble can close in
values ofM in the next section.

two ways as in Fig. 19. It is then easy to see from our rules
that the two diagrams are equal in magnitude and opposite in
sign. The conclusion is that tHd =2 color singlet channel

In Sec. IV we discussed how our discretized Feynmarconsists of two freeM =1 gluons or, in theJ(N;) case, a
rules can be used to determine the dense QCD fishnets fsingle freeM =2 gluon. This trivial situation is due to the

V. BABY FISHNETS
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manner in which the quartic vertices of the initial gaugeEven with thef’s andh(1)’s general, one can note that the
theory have been replaced by scalar exchange. Only the “diRHS tends to—« asu— 1, with behavior completely fixed
rect channel” scalar exchange is allowedMit=2, and the by the constraints. Also far— 0 the RHS vanishes quadrati-
part of the quartic vertex that is described by the “crossed”’cally as [9—9f;—h;(1)]u?/4. Therefore, if 9-9f,
channel exchange only makes its appearancé/fer3. —h4(1)>0, there would be at least two solutions for suffi-

Thus the only nontriviaM =2 channels are color non- ciently largeg, the lowest of which would tend ta=0 as
singlets. Moreover, fixingl =2 limits the allowed diagrams g—c. If, however, the inequality were reversed, the RHS
so drastically that the nonvanishing ones can be explicitlymight never be positive, in which case there would be no
summed to all orders in perturbation theory. We first look atsolution. Alternatively, if it did cross the axis, there would be
the M =2 gluon propagator, which can be simply read off at least two solutions, the lowest of which would tend to
from Sec. Ill. For simplicity we work in the center of mass some nonzera=uy,>0 asg— . It is amusing to see which
frame. of these behaviors is suggested by a minimal solution of the

The diagrams that contribute to the gluon propagator areonstraints so far imposddee Eq(88)]. For M=2 we can
depicted in Fig. 20. The shaded bubble corresponds to all theeet the constraints with only the first two elements of each
one-loop bubble diagrams that contribute to the transversseries nonzero, which are then fully determined by the con-
gluon self-energy1”"V, which is obtained by puttindv straints:

=2 in Eq. (45):
’772 ’772
2 ® ok o k k fi=—1+—, f,=2——, hy(1)=—-1, hy(1l)=2.
9°N¢ u u u ! 3 2 3 ! 2
ANy =2 ¢ R R _
1 87T2 9k§=:1 k2 9k§=:1 fk k k§=:1 hk(l) k ’ (91)
(&7) The eigenvalue equation then reduces to

whereu=e2F in the center of mass and with 872 9 ] f f u2

- S N, 2o AWty

k§_:1 fi=1, Z K- 6" k§_)1 h(1)=1, 1 u2

- - - _§(h1(1)u+h2(1)7) , (92

(88)  where Li(u) is the dilogarithm(Spencé function [16].
As we can see in Fig. 21 this minimal choice shows no

) physical eigenvalue, since there is no positive solution for
These constraints on thEs and h(1)’s have been deter- g;2/92N_ for any value ofue[0,1].

mined in Sec. Il at largé/ [see Eqs(42) and(48)] in order Finally, theM =2 color adjoint magnetic scalar propaga-
to cancel divergences i,. We tentatively impose the same tor also receives self-energy corrections which can be
constraints at all finitél in order to have a uniform descrip- symmed exactlysee Fig. 22 [Note that the fictitious elec-
tion for all M. The exact transverse gluon propagatorNor tric scalar(solid line propagatgrdoes not play a role in the

“ h
>
k=1

=2 is[see Eq(19)] M =2 channel, since its coupling to twdl =1 transverse
gluons is zerd.Although the magnetic scalar’'s contribution

= Ay u o [ 3 9g°N, u to the dynamics of a color singl® =2 glueball cancels, its
_4(1_ u)—ulr’ Vv T1- u[ 872 (1—u) propagator describes a spirM)=2 color adjoint subsystem

in larger fishnets, and so it is also useful to analyze it here.

uk -1 In these diagrams the bubbles correspond to the one-loop

E K- Z fk kK 9 E h(1) — ” . self-energy diagrams of the fictitious magnetic scdtae

- dashed scalarThe magnetic scalar self-ener(gee Fig. 23

(890  is given by
This propagator evolves a spin 1 color adjoint system, which o KPT g°N, 1 < uk
by itself would not correspond to a glueball, which must be a I, ﬁof Z J 277)3 0= 1672 T_o gl K
color singlet. Because of its importance for larger diagrams,

it is worth understanding the energy eigenstates implied by 9N, 1
the propagator's pole structure. The—-l)~! factor out =—WT—O|H(1—U)- (93

front is just the massless gluon polE=0 impliesu=1).

Zeros of the quantity in square brackets in E8f) deter-  The hare magnetic scalar propagator Kbe=2 is then
mine any additional eigenvalues:

872 9 u iuk 2 uk 1§ uk Dm=—Tok§lhk<2>uk, (94)
N, A-m| &k & g WD)

(900  where theh(2) have to obey the constraints
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e o o —_— FIG. 20. Gluon propagator favl=2.
* > he(2) 2 B. Strong coupling M =4 scalar fishnet
,Zl h(2)=1, k§=:1 kK 36 (95 Clearly we need to be able to deal with large valueMof

if we are to understand QCD. In this section, to better under-
The exact propagator is then given by the geometric seriegiand what this will involve, we look more closely at the
M =4 sector of the simpler paradigm scalar theory. In par-
°° D ticular we would like to explore the effect of the term on
Dn=Dpn> (IIyDy)'= . (96)  the LHS of the strong coupling, E¢61). Recall that we have
1=0 1-Drm set 1- §;= k2. We dropped this term in the analysis of Sec.
o . , , . IV because it made the equation intractable for general
We again investigate pos§|ble energy eigenstates by Ioo"'”ﬂowever, for the special case M=4 (n=M/2=2) it is
at the pole structure of this amplitude. Focusing on the depggjple to solve this equation. We also note that this case
hominator we see was not covered in Sec. I\éven with thex? term removeyl

82 1/ 1 because of the limitation to odd. The additional special

5 - _ . : ) . . i

Do o = E hk(2)uk In(1—u) 97) case ofM =6 will be investigated in the following subsec
g°‘N. 2\ =1 tion.

For M =4 the strong coupling eigenvalue equation reads
Again we see the same possible behaviors as in the case of .
the gluon propagatadiexcept, of course, there is no massless (t2— «*\%e~(91792To) (g, ,q)
pole atu=1). In this case we also present the results of

2 2
choosing a minimal set of thg (2) to satisfy the constraints. - )\ze—(qi+q§)/2To & &%(qu ko —Kq,qr/2
Doing this yields mTo 7Ty
2 2 +ky—kp)e (TR To, (100
h1(2):—1—1—8, hy(2)=2+ 18" (98

where gr=q;+q,. After the change of variablek{=k;,
+k, andk=k,—k,) we can integrate with respect kg on
the RHS. What remains is

With this set of parameters the denominator factor in Eq
(97 will have a pole if there is a solution to the following
equation:

87 1 2, 2
N, ~ 2tMi(2utha(2)ulin(1-u) (2= x>\ % (0 R2T0) yy(qy )
A2 2, 2 d?k 2
1 —— - (apta)2Ty | _ — k22T

bl i, 69 et of a2+ ka2 ke K7
(101

wherea=h,(2)/h;(2)~ —1.646.

As we can see in Fig. 24, this minimal choice shows a

physical bound statéactually twg with O<u<1 for the If we now perform a variable transformation on thes

coupling greater than some critical valggN,/87°=18.28.  [gr=0;+0q, andg=(qg;—0,)/2], then the equation becomes

Such a bound state would be significant because it would

mean that the short-lived magnetic scalar, which we have

introduced as a device, can gain longevity at strong coupling, 0.2 02 04 % 06 08 1
so that it can play the role of a spin 0 gluon in larger dia-
grams. .
There is also a solution for negativefor all couplings. 21 \
From the interpretatiom=e?F we see that these solutions N

N,
\

would correspond to complex energies with imaginary part
+qil/a. In fact the relation between and E is fundamen-
tally ambiguous by the imaginary amountrih/a simply
due to the discretization af. We presume that this ambigu- -67
ity is simply a lattice artifact, and it seems likely that the
solutions with negativeu are also artifacts. However, the
ultimate proof of their artifactual nature must await a more
complete understanding of the continuum limit, which will  FIG. 21. A plot of Eq.(92) with 87%/g?N,, (along the vertical
involve takingM —« as well asa—0. axis) againstu.

-4

-8-
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02, .02 04106 08 |1

FIG. 22. Magnetic scalar propagator fek=2. In each bubble N
the transverse gluon index may circulate in either direction. -0.27 b
2 -
(1= kN2 €7+ 40V4T0) g (1/2-+ 0 /2 0) o
)\2 d2k -0.6
=2 e~ (a7 +4a%)/aTg j —— (/24 Kk, qr/2— k) e </2To,
2 7Ty 08 \

(102

We can absorb theq; dependence by scalingt
=t0exp(—q$/8T0), in effect going to the center of mass
frame.

For the case of5> k?\?, we can eliminate the, depen-
dence by manlpulatlng this equation and integrating with re- If we refer back to Eq(102, we see that it?< «?, then

FIG. 24. A plot of Eq.(99) with 872/g®N, (along the vertical
axis) againstu.

spect tod?q. The result a delta function term restricting momentum to energy shell
may be added. Fas waves(nons waves are freg we then
N2 [ d2q e3¢ have
2

is a transcendental equation for the eigenvalue, as is readily .,(q)=As| o? Toln—>
seen by direct evaluation of the integral:

~ ~ 2

T T+« e 47T f d’k 2

2 | +— k efk /2T0'
K 2Klnt_K 1, (104 (P r?e Potic) ﬂotlfz( )

(107

wheret=ty/\ and we have assumed>0. If K’°<0, we
write k=i« and the equation becomes
where the coefficient of the delta function can be fixed via

, t o the following equation which relate& to the normalization
1-a"=—tan 7] (105 of the wave function:
It is immediately clear that a solution exists in this case only d2q .
for a?=— k?<1. f -4 — /2T,
T, V2 @e

If we analyze Eq(104) we see that by varying between

k and«~ the RHS takes on values between 0 amdthus Alt d2q e73q2/2T0
there is a solution to this equation for any value<ofor the AP f T 57 2T
special case ok=0, a more careful analysis of this equation 0 0 2(t°— ke Hotie)

also yields a solution. For a given eigenvalue solution to Eq. d2k s
(104) the eigenfunction is given by f —Tz,lfz(k)e*" f2To, (108
mlo
2
e*q ITo d?k )
D= [ Stk o - A
2(t 0) In this caset“< «*, there is no restriction on the value of

(106)  thus this solution corresponds to the continuum. To summa-

nze the spectrum of includes a discretswave bound state
and a continuum forz< k?\2. Clearly the discrete state will

not change drastlcally in the limit— 0, but the continuum

' ' would be dramatically squeezed to a set of measure zero in

; this limit.

where the integral on the RHS represents a number that ca
be fixed by normalization.

C. Strong coupling M =6 scalar fishnet

The starting point for evaluating the strong couplilg
FIG. 23. The two bubble diagrams that contribute to the mag-=6 bit scalar fishnet diagrams is E@1). For n=M/2=3
netic scalar self-energy],,. the equation to solve is
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(t2_KZ)\Se—(qi+q§+q§)/2To)¢3(q1 d2,03) (tz—K27\39_(3u§+u§))¢3(“1,uz)
2,2 2 d2k1 d2|(2 d2k3 4)\3
=\% (q1+q2+q3)/2Tof 7T, 7TT 7T, —— [ (01 +02)/2 de (3u1+u2)f d?v,d?v, gr(vy,Vy)

+Kz1,(02+03)/2+ K3z, (3 +01)/2

2 2 2 1 2 2
Xexpg — 5(3vi+Vvy) — = (3ui+uz) +Uus-vi+Uup-v,
— (P + K2+ KA)T 3 6
+kygle” (Kitka k)l To, (109

1
where we have usekl; =k;—k;. By working in the center UVt g Up- Vol
of mass frame, we can replagg— —q; —, and the equa-
tion becomes

(114

If we rescaleu, andv, by a factor ofy/3, then we can make
the O(4) symmetry manifesfup to the last four terms in the

2_ 2y 30— (02+02+0y-0p)/T
(12— k?\%e” (792 9 ®T0) g gy, 05, — 1~ Q) exponential on the RHSby combiningu; andu, (v; and
, d?k, d2k2 d2ks V,) into a Euclidean 4-vectdd (V). Thus the equation may
=>\3e‘(q1+q2+q1'q2)”0f s —3(q/2 be written as
0
_ 2
+ Qo2+ Koy — Qg2+ Kap, — Qo2+ Ky e~ (KIHKGTKETo, (2= k2373 y5(V)
(110

an° —70%2 | 44 —2v2+2vT RU
=€ d*V (Ve :
If we change the integration variablks andk; on the RHS
to

4)\3 ) )
_ —7u22 | 44 —2v2+2V.U
P1=01/2+0x/2+Kyy, Pr=—01/2+kg,, (11D B J dVys(RV)e '

(119
then we see that; in the integrand on the RHS is indepen-
dent ofkq, so the Gaussian integral over may be trivially ~ whereR is the real orthogonaD(4) rotation:
performed by completing the square.
Once this has been done the result is 1 0 -3 0
(tz_Kz)\se—(qi+q§+q1~qe)/To) ¥a(01,05) REE 0 1 0 -3 116
2 dp, &% 21 J3 o0 1 0
C(Rralian 1 2
:?e (97 +a5+ag QZ)/TOI e —3(P1,P2) 0 \/§ 0 1

s 5. 2 We note thatR ®= — 1. We can search for @B (4) invariant
xex;{—3—To(p1+ P2+ p1'pz)_6_'ro(Q1+QZ+ql'q2) solution to this equation which is a function only of the
length, |U||. Although this will not yield the most general
112 eigenstate, it is expected to include the ground state. Plug-
ging in this ansatz, the equation simplifies to

1
+ 3T(p1'Q1+2p1'Q2_p2'Q1+ P2-02) |
0

In this equation we see that except for the last term in the (t2—;<2)\3e‘3uz)z,b (U)
exponential on the RHS this integral equation only depends 8

on the scalar quantity?+ g3+ d; - g. This is not surprising AN e[ s 2 L
since this scalar quantity is proportionaldd+ g3+ g3 and is - z€ f VEdV gs(V)e f dQyve ™",
the only cyclically invariant ¢;—q;.,) scalar of order?.

We next perform another change of variables, (117

a 0% whereU=|U| andV=||V|. The angular integral on the RHS

P1 . .
—=U;t+U,, —=U;—Uy, —=V;+V,, may be evaluated with standard techniques,
VTo VTo VTo
1 2721, (2UV
0, [ aoverv=an [ o i g2t
_:V1_V21 (113) -1
VTo (118

remembering thaty;, p; and nowu;, v; are Euclidean wherel(x) is the modified Bessel function regularat 0.
2-vectors. With these substitutions our equation becomes Thus the integral equation to solve is
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t25(U) = k2\%e 3% (L)

—7U%2
+8\°3

fvde|1(2UV)¢3(V)e—2V2.

(119

The first thing to note is that fok?=0 the eigenfunction
solution is a Gaussian of the form

2 105
Pa(U)=e V" where é=3+ \/T. (120

For this solution the corresponding eigenvalue is

t?= oA (122
(11+ /1052

Both of these match the values predicted by E@$) and
(81) for n=3. For x?> away from zero we can solve this

PHYSICAL REVIEW D61 045007

cretized model of QCD attempted if], and we proposed an
improved formulation which at least mitigates, and might
well overcome, these defects.

Discretization enables a formal strong 't Hooft coupling
limit of the sum of diagrams. A major disadvantage of the
discretization of 5] was that this formal limit suppressed the
cubic gluonic interaction essential for the “anti-
ferromagnetic” ordering of glueball mass levels: the domi-
nant quartic interaction ordered levels ferromagnetically. Our
new discretized model replaces the quartic interactions by
the exchange of two kinds of fictitious “short-lived” scalars,
so that all interactions can compete on an equal footing in the
strong coupling limit. The ambiguities inherent in such a
replacement can also be exploited to remove unwanted sym-
metry violations induced by the usual ultraviolet divergences
present in the continuum limit.

Having defined our discretized model, we explored its
physical properties in several ways. We first studied the na-
ture of weak coupling perturbation theory by calculating the

integral equation by means of an iterative procedure. Startingluon self-energy to one loop order, regaining the known
with the solution fork?=0 we can iterate the RHS of Eq. continuum answer. This calculation showed how the discreti-
(119 repeatedly. This is a convenient way of solving this zation regulates ultraviolet divergences and how the ambigu-
equation since the functions generated by the integral on thiées in the model begin to be fixed by the restoration of
RHS are always Gaussian. Thus at each iteration step theoincareinvariance. Although we have not done a two loop
solution will be of the form calculation, there is sufficient flexibility in these ambiguities
to hope to achieve Poincaievariance to all orders in per-
turbation theory. The discretized model can also be studied
in the strong coupling limit, but in this article we just began
. . ) this study for QCD by looking only at states with very small
yv|th _the number of_terms in the sum doubling after eaChtotaI P*=Mm for M=2, where the dynamics is so drasti-
lteration. qu a splutlon of th.'s fqrm it can be shown that thecaIIy simplified that it can be solved exactly. We defer to a
corresponding eigenvalug, is given by future publication studies of QCD &1 =3 and higher. The
continuum limit, of course, will requirdl —oe.
4 Cnl(2+ ap)? As a warmup for going to larger values bf, we evalu-
n ated the strong coupling limit in a paradigm matrix scalar
field theory with only cubic interactions. Not surprisingly,
; Cn the bosonic light-cone string was obtained. Although this
paradigm model yielded some useful insights into the nature
We have tested this iteration procedure numerically and®f large planar diagrams, we stressed that the corresponding
for values ofx? small (x2<0.3) we see that the wave func- QCD calculation will have profound differences: for one
tion (eigenvalug converges to a well-defined function thing the gluons carry spin, and for another their interactions
(value. For «? larger (closer to 1 this becomes murkier as show both repulsion and attraction depending on the quan-
one needs a lot more iterations for the convergence to a valugm numbers of the channel. In contrast, the interactions of
distinct from x? to be evident. Another interesting phenom- the scalar theory are exclusively attractive. Because of this,
enon is that forx®< —0.11, thent? becomes negative, indi- the strong coupling limit forced the™ carried by each scalar
cating that no physical solution exists. guantum to be minimal, i.e. one discretized umit This
circumstance prevented a “Liouville” degree of freedom,
associated with collective fluctuations of tRé distribution
among the scalar quanta, from arising. Thus the limit must
In this article, we have refined and extended an approactoe interpreted as a critical string theory.
proposed in the late 1970s, to obtain the laMelimit of The diversity of interaction signs of QCD will obviously
QCD by directly summing the planar diagrams which sur-complicate this outcome. It is possible, and a major focus for
vive. The basic tool is to define the planar diagrams usinduture study, that cancellations deemphasize the contribu-
light-front space-time coordinates for which™ and thep™  tions where all quanta carry the minimyai to such a de-
carried by each gluon are discretized. This effectively digi-gree that a collective Liouville field emerges. Then the
tizes the sum of diagrams, a first step toward a numericadtrong coupling limit might be a subcritical version of one of
evaluation. It also regulates the usual divergences of Feyrthe existing string models. If so, the Liouville world-sheet
man diagrams. We identified several shortcomings of the disfield could be thought of as a fifth dimension, and the dual

Pa(U)=> cpe Y’ (122

2= k’+

(123

VI. CONCLUSION
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description of our model as a field theory at weak coupling B To(e?E—1) u

and a subcritical string theory at strong coupling would re- D, (Q,M,E)= — 2 1 4 (A1)
semble the anti—de Sitter gravitgAdS)/conformal field M

theory (CFT) duality of [17,2,18. Another logical possibil-

ity, though, is that the strong coupling limit of large. QCD ~ The self-energy part$I¥!, TI** and IT** will of course
is actually a novel critical string theory with critical dimen- have different values in this discretization, but the decompo-
sion 4. Of course, it could also turn out that the attempt tositions (14) remain valid. Under the assumption thet
reach a reasonable Poincdnwariant strong coupling limit =II;=1I;, the relations of the exact propagators to Ihs
of largeN. QCD simply fails. After all, continuum QCD is, are identical to Eqs(15) except forD~~, for which the
strictly speakingnot an infinite coupling theory in any sense relation is

of the word. The coupling is scale dependent and corre-

sponds to no tunable parameter at all. The strong coupling

limit, as everyone knows, describes the discretized model 5*’—E u(e®t—1-Q?%2MTy)

and can vary wildly frqm one discretization to _another. e 1—u—Toull,(€*E—1—Q2/2MT,)
Much has been said about the “holographic” nature of

the duality mentioned above. We would like to conclude Q? u

with a few comments about this. The hologram metaphor + 2MTo 1—u—ull,/2M | (A2)

was invented by 't Hooff 19] to describe a possible resolu-
tion of the “information loss paradox” of quantum black
holes. Since the horizon of a black hole is two dimensional, The only parts of the one loop self-energy calculation
it should be possible to describe all of three dimensionahffected by the different discretization are the two diagrams,
physics by a two dimensional quantum theory. The disFig. 12, which have &~ ~ propagator as one of the internal
cretized model we have presented here is not holographic iitnes. The evaluation is quite different for this discretization
this sense. The transverse space of a light front is indeed tw@ecause the completion of squares in the second term of Eq.
dimensionaj’ but the third |0ngitudina| dimension has not(8) _IeadS to different fa-Ctors than the first term. The contri-
been eliminated: it is present in the disguised form of a variPution of the first term involves the exponent
able Newtonian mas#$/1m for each gluon. However, the
mo_del is holographic in the higher dimens,i,ongl sense de- k (pz (Q_p)Z) Kk (M(p—IQ/M)Z Q2
scribed by Witten[18]. The “fundamental” discretized |+ = |+ —,
model is 3+1 dimensional, 2 transverse dimensions, vari- 2Tol | M=l 2o\ I(M=1) M

+ + : o (A3)
ablep™ andx™. However, in the strong coupling limit we
expect 41 dimensions: the™ of light-cone string should
emerge as a function of the transverse and Liouville degreeghereas the contribution of the second term involves
of freedom. Holography in 't Hooft's sense would require a
more profound circumstance: there should be no Liouville (k=1)p2  k(Q—p)?
field and the variabl@™ of each gluon must itself be a mere +
collective effect. For example, the gluon with units ofp™ 2Tl 2To(M=1)
might be thought of as a bound systemMfminimal p* 1 [M(k—1)+I IkQ 2
“bits” [20]. In that case, the model presented here would = f{ (M—1) (p— M(k—1)+l)
just be a stepping stone toward that more fundamental 0
theory. k(k—1)Q?

M(k—1)+I

: (A4)
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APPENDIX: ALTERNATE DISCRETIZATION _ (A5)
M(k—1)+I Mk|’

In this appendix we explore the ramifications of the alter-
nate discretization, Ed8), of D~ . The bare propagator in
energy representation is for k>1, and by
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( 4

2N, 2M —1)?
g 2( | )

=1

g°N, "

472

) 2 o- Q%12MT,

M

LoM—1
|

9N 13M2—-12M—1
2472 M

15

AN
myV=-— >

(A6) I,=

i u, 9N,
=1 ' =1 K2 " 48472
M-

1

Q2
v T

—In(l u)+ =

for k=1. Translating to energy representation gives the more

compact el (k+1)Q¥2M To(Mk+1)

MK+

(A8)

_W}

X > uk
k=1

The violation of Galilei invariance caused by this alternate

9N, (2M—I)2 -

AV —
H 472 |

E

el (k+ 1)Q%/2MT(Mk+1)

X MK+

u —Mk.

(A7)

discretization is apparent from the non-polynomial depen-
dence orQ?. However, one can easily see that each power of
Q? comes with an accompanying power oML/At most one
power ofM is supplied by the prefactors, so all powersf
higher than the first are irrelevant in the continuum limit.

In order to compare our results to the continuum calcula-
tion of Ref.[8], we must examine the limits—1 andM
—o0, The behavior of the first two terms of EGA8) in this
limit is transparent once we use the identi#0). The con-
tinuum limit of the last term requires a bit more analysis.

Adding the result of the unchanged first 13 diagrams to thisirst, as mentioned in the previous paragraph, we only need

and subtracting)?I1,/2 givesII, for this discretization:

keep two terms in the expansion of the exponential:

[

(2M —1)? u
) E y
k=1

k

oy

MK+1

LoMm-n2 &
M3

1
Mk

uf i (k+1)
=1 (k+1/M)?

Q? "
+ o 2 (A9)

o I=1

The sums ovel can be approximated using the Euler-Maclaurin summation forfisela Eq(83)] as long ag- is not singular
at the end points of integration. Clearly terms with ity the summand must be treated separately, which is easily handled
using Eq.(35). Applying these formulas, we fintfor largeM but arbitraryu)

M
u uk+l

(2M —1)?

L2=1/m)?

DTS B
k=1 =1

I k=1

MKk+1

uk+1

oo
>
k=1

+4M

Q* o

k1
~—=—>u
2Ty k=1

L.
M{ g+ (k+2)
InM+'y——}(1 Win(1-u)z—

7 4
3k 3k

7
— 4 —

+4M(1—u)In(1—u) SRETY,

M)+ y—

2M—-1)2 &
M3

k+I1/M

a
1 1
Kk 2Kz
2 M—-1

To 4

1 2
3k k2

1
2M

1 1 4 1
Tk K kvt

In K

uk i (k+1)
k=1 (k+1/M)?

Q

1 1

11 1
Tk 33 |

The continuum limit also requiresu~Q?/2MTo=(Q?—2mME)/2MT,, sou may be set to unity in all nonsingular terms

without a prefactor oM. Then the above terms simplify to
where we have defined
a=12§(3)—6é:l( +2)Tln(1+%)—i+ %} (A12)
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_7172§k+1k22|11 1 1 1 2 AL3
B=1g T & i |k IN It Tt i sk e (AL3)
6—432§k1k2I11111 Al4
== 360722 (kFD(k+2)In| 1+ )=+ 55~ 33 (A14)

which can be numerical evaluated:
a~1.188, B~1.991, 6~0.633. (A15)

Putting all this together, we get, for the continuum limit,
gch w? gch 7 1 Q2 76 gch Q2 22 Q2 gch Q2
=M o2t 6T a2 |3 72 T, 6 T 16,2 15| B MM F8Y T | INoyT, T 2402 27, B4 L

(A16)

Remembering that ouil, is a factor of— Q?/T, times that defined in Ref8], we find agreement for the coefficient of @4,
provided we identify M T, with A2. The first two groups of terms on the RHS of E416) violate important symmetries and

must be removed by explicit counter-terms. The term linea@3rviolates Galilei invariance and the momentum independent
terms imply a finite gluon mass squared in perturbation theory, thus violating Poinearéance. Note that the necessary
counter-terms are low order polynomials in both the transverse momentum and in the disdPétizdtthout the tadpole
contributions the discretization used in the text would have required counter-terms with logafithdgpendence. But we
found (at least at one logpthat the tadpoles could be designed to eliminate the need for counter-terms. Then the fact that it
preserves Galilei invariance makes it the superior choice.
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