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The relative entropy in two-dimensional field theory is studied on a cylinder geometry, interpreted as
finite-temperature field theory. The width of the cylinder provides an infrared scale that allows us to define a
dimensionless relative entropy analogous to Zamolodchikowsction. The one-dimensional quantum ther-
modynamic entropy gives rise to another monotonic dimensionless quantity. | illustrate these monotonicity
theorems with examples ranging from free field theories to interacting models soluble with the thermodynamic
Bethe ansatz. Both dimensionless entropies are explicitly shown to be monotonic in the examples that we
analyze.

PACS numbgs): 11.10.Gh, 05.70.Jk, 11.10.Kk

[. INTRODUCTION prefer to dissociate the coupling from a thermal interpreta-
tion and we reserve the concept of temperature for its role in
It has been shown that the irreversible character of th¢he 1D quantum picture. Nevertheless, it shall be evident that
renormalization grougRG) can be cast in a sort ¢fl theo-  the proofs of the monotonicity theorems for the 2D relative
rem analogous to Boltzmann'’s, thus generalizing this theoentropy or for the 1D quantum entropy are essentially the
rem from ordinary time evolution to the evolution with the same.
RG parametef1]. The irreversible quantity, the field theory  In Ref.[2] these ideas were illustrated only with free field
entropy relative to a fixed point of the RG, is a monotonicmodels and the calculations of the corresponding finite-size
function of the coupling constants and increases in the crosgorrections were presented very concisely. We shall begin
over from one fixed point to another less stable. Howeverhere with a more detailed analysis of the properties of both
the Wilson RG picture considered [it], wherein one has to types of entropy, in particular, considering whether they are
deal with all the couplings generated by the RG action, reluniversal quantities. Next, we proceed to the explicit calcu-
evant and irrelevant alike, turns out to be too complex andation of the finite-size corrections for soluble models corre-
was indeed assimilated to a non-equilibrium thermodynamsponding to free-field theories, including thermodynamic
ics setting. One can start with only the relevant couplings butjuantities as well as the expectation values of the stress ten-
then one must utilize a different RG which changes someor, and hence of the entropic monotonic quantities. The
infrared (IR) scale. A possibility is to define the field theory properties of these quantities will be displayed in the corre-
on a finite geometry characterized by some parametesponding plottings. Further to free-field models, it will be
loosely associated with its size, which plays the role of thedemonstrated that interacting models are also suitable for
IR scale. Then the monotonicity theorem for the relative encalculation of their finite-size corrections and monotonic
tropy can be cast as a RG theorem similar to the celebrateguantities with powerful methods. In particular, integrable
Zamolodchikovc theorem[2]. models on the cylinder are appropriate for application of the
Among the various geometries we could consider, the cylthermodynamic Bethe ansafZBA). Plots of the monotonic
inder stands out for its simplicity. It is defined by only one quantities obtained with this method display similar behavior
scale, the length of the compact dimension, and the finiteto those of free-field models.
size corrections to the partition function turn out to be com- The paper is divided in three parts. The first part is de-
putable. Moreover, on a cylinder of circumferengethe  voted to formulating the monotonicity theorems for 2D field
monotonicity theorem adopts a form with a thermodynamictheory and to giving its thermodynamic interpretation on the
interpretation, the temperature beifig= 1/8 [2]. Thus the cylinder. The second part applies these theorems to the rela-
inverse temperature is used as RG parameter, providing tively simple cases of the Gaussian and Ising models. They
thermodynamic interpretation of the RG, as in H&f. The allow an explicit calculation of thermodynamic quantities
connection with concepts of 11 quantum field theory and their connection with the components of the stress ten-
(QFT) at finite temperature is intellectually appealing andsor. Section Ill is devoted to interacting models which lend
useful for computational purposes. For example, finite-sizehemselves to computation of thermodynamic quantities. The
corrections are calculated in terms of the properties of oneessential tool is the thermodynamic Bethe ansatz, which is
dimensional(1D) quantum gases. In addition to the relative first applied to models with purely statistical interaction, re-
entropy, the 1D quantum entropy provides another monosulting again in explicit expressions for the relevant quanti-
tonic quantity with a different interpretation. We must re- ties, and in second place to models in which the TBA equa-
mark that the definition and monotonicity of the relative en-tions have to be solved numerically. Afterwards, there comes
tropy, as exposed in Ref.[1], already have a a discussion of the results obtained and, finally, two appen-
thermodynamical motivation in the 2D context, indepen-dices, the first one on the method for the computation of
dently of the type of geometry. However, in field theory we finite-size corrections based on the Euler-MacLaurin formula
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and the second one on the computation of the expectatiodivergences it is convenient to define all the quantities with a
value of the stress tensor on the cylinder for free theories. UV cutoff A—for example, W[\,A],— which must be
eventually removed to define universal quantities. Even

Il. ENTROPIC C THEOREMS thoughW is nonuniversal, we expe& to be[1]. In order
_ _ to have universality, we consider RG relevant or marginal
A. General properties of the relative entropy couplings: In two dimensions the scaling dimension of the
in two-dimensional field theory field & must be such that€dg<2. This condition may not

Let us briefly recall some concepts already introduced irbe sufficient and shall be made more precise shoviyand
Ref.[1]. The field theory probability distribution associated S, are extensive and it is convenient to define the associated

to some statistical system is given by specific quantities dividing by the total volume—or area in
WL two dimensions. Henceforth, we use specific quantities but
Plo{r]=e 1" , (1) keep the same notation for simplicity. We are interested in an

dd q hastic fiéldnd ¢ i entropy relative to a RG fixed point, so we must substract
and depends on some stochastic figldnd a set of coupling ¢,y the coupling constants their values at that poifihe

constantgA}. The quantit\W[{x}] is needed for normaliza- gy oq_noint coupling constants may be null in some cases.

tion and is of course minus the logarithm of the partition g,y there is an assumption of positivity of the probability
function. A CompOSIte field is defined as the derivative of thedistribution Implled in the |nequal|t}(4) like in Zamolod-

action with respect to some coupling constant: chikov’s theorem.
To derive a universal expression for the spec8jg we

al .
fa=—. 2 must analyze its dependence on the UV cutoff. We can use
2 the scaling form of the specifid/,
For example, if we consider the thermal coupling, the cou- N2y
pling constant is the inverse temperature and the composite W\, A)=A f(_) (5)
field represents the energy. As is usual, we assume for sim- A?

plicity that I[ ¢,{\}] is linear in the coupling constants.

The relative entropy, a concept borrowed from probabilitywherey=2—dg>0 is the dimension of the coupling. For
theory, turns out to be the Legendre transform V@) the thermal field, the local energy densiyis the inverse of
—W(0) with respect to\ [1]: the critical exponentv. If the scaling function is continu-
ously differentiable around zer@lassC?'), and we denote

dw = =F

Srel()\):W()\)_W(O)_)\KZW_WO_)\<f}\>- 3 Fo=F(0), F1=F'(0), W can be expanded as
W(N,A)=A%Fy+F AN+ A20(A2), (6)
Obviously, S(0)=0. Furthermore, as a straightforward

consequence of its definition with o(A ~2) asymptotically smaller than ~2, hence result-

ing in a vanishing term ad —«. Given that the UV diver-

dSe dW d dw gent term of this expansion cancels Wi(\)—W(0), the
N :)\ﬁ— an M an relative entropy yields a finite result in the infinite cutoff
limit, namely,
d*w
— 2 dw y—2 2ly
dN2 Sal(M) =W\ =W(0) ~A = =F1 =A%, (7)
d
= —)\Zaﬁx) Thus the significance of the assumed regularity condition on
the scaling function is that it is sufficient to endow the mono-
=\¥(f,—(f,))2=0. (4)  tonicity theorem with universality. One can certainly think of

simple functions that are not cla€s. For example, the func-
For the thermal couplings, has indeed the interpretation of tion F(x)=Fy—xInx+0o(x), which will appear in some of
a real thermodynamic entropy which increases with temperathe models studied later.
ture. In other cases, it may or may not have a thermodynamic We now examine the question of universality in terms of
interpretation but its properties hold nonetheless. local fields. This method will lead us to a more concrete

Some qualifications are in order. In field theory we dealformulation. Let us begin by writing the monotonicity theo-

with local fields, sof, = [®, , where®, (z) is a local com- rem(4) as
posite field, function of the 2D coordinates- x; +i X,. We
must remark that, although these fields are usually con-
structed as actual composites of the basic fig¢|dhe exis-
tence of this field needs not be assumed, as in some modern
formulations where it is replaced by tlaetion principle[4].  with the use of the definition of normal-ordered composite
This remark is important when we start from a 2D conformalfields, ®:=® —(®). We can study the UV convergence of
field theory. To prevent the appearance of ultravigldy)  this integral. As a prerequisite, note that possible UV diver-

asrel _

)‘ax_

xzf d?z(:®(2)::®(0):)=0, (8)
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gences in the definition of the composite fididare removed B. Finite-size corrections. The cylinder
by the substraction of®). The most singular part of the and one-dimensional thermodynamics
correlation function for short distance is given by So far, the relative entropy has been proved to be mono-
tonic with respect to the coupling constants. Now we would
(:D(2)::®(0):)~|z| 2%, (9) like to reformulate the monotonicity theorem for the relative

entropy as showing irreversibility under the RG. We need to
substitute the coupling constaktby some quantity which
can be interpreted as a RG parameter. A common way to
introduce a RG parameter is through some IR scale. For
example, we may consider a finite size system with a char-
acteristic length, such as a strip or cylinder of widithAc-
cording to finite-size scaling ideas, the free energy can be
split into abulk part and auniversal finite-size correction
Sre|()\)=B)\2’V, (10 The latter constitutes a suitable function to derive a non-
trivial relative entropy. Moreover, one can take advantage of
the fact that the classical partition function on a cylinder of
width B is equivalent to the one-dimensional quantum parti-
tion function at temperaturé=1/8 to give the RG a ther-
modynamic interpretatiori3]. Indeed, relevant thermody-
namic functions of this quantum system are given by

Hence, the integral converges if<Ql4,<1, that is, Ky
<2. Then the derivative of the relative entrogh§¢/d\, is

a universal quantity and so 8, because the integration
constant is fixed by the conditioB8,(0)=0. For dimen-
sional reasons, it must adopt a form like that in EX):

whereB is a constant. In fact, upon inversion of the Leg-
endre transform, this form implies th¥{ has the previous
first-order expansiofi6), except in the case of=2.

Fields® satisfying 0<dg <1 are called strongly relevant
[5,6]. They include the thermal coupling of the unitary mini- /<" "~ X , .
mal models of conformal field theofCFT), except the Ising derivatives with respect t@. The first one is the energy,

model, wherein the local energy density ligs=1. We shall which has one part independent of th_e temperature and an-
find that the relative entropy of the Ising model is indeed®ther that vanishes &t=0, corresponding to the bulk part

nonuniversal. In principle, fields with<2d,<2 give rise to and the finite size correction, .respectively..The part indepen-
a nonuniversal relative entrop®.e(\,A). It is monotonic dent of the temperature, which IS nonun_wersal, re.p"?se”ts
and essentially independent &fas long as\?Y< A2, which the g_r_ound-sta_lte energy. A more interesting quantity is the
is the condition necessary for the continuum field theory ofSpeCIfIC one-dimensional quantum entropy, which turns out

the statistical system to be meaningful. In this sense, on be universal and will prove to be the right quantity for a

may consider this non-universal relative entropy within thel ermodynamic monotonicity theorem. . .
Let us then consider the system on a cylinder, equivalent

philosophy ofeffective field theoriesa term which refers to e i " Co
theories that are not renormalizable but suitable for calculal® finite temperature field theory. The partition function is
=Tre A", which can be represented as a functional inte-

tion of many physical quantities for scales much lower tha
the cutoff. ¥ Py a gral onStx R with 8= 1/T the length of the compact dimen-

We must remark that the simple power-law forms of thesion. We assume that the specific logarithm of the partition

relative entropy(10) and the monotonicity theorem are not funchqn_on a cylinder of widttB .af‘d Ie_ngtH_ aSL._)OC can
very informative, in the sense that, once we know Batis be split into a bulk part and a finite-size correctfon,
finite, they follow from dimensional analysis. We thus see —Inz = C(B\)
the necessity of introducing a new parameter, for example, =B—==ey(A,\)B+ —
through a finite geometry. We will indeed obtain a richer and L L B
more illuminating version of the relative entropy and the
monotonicity theorem when we introduce a finite geometrywhereC(8,\) is a universal dimensionless function having

Let us introduce the stress tensor tra@e=T2. Since®  a finite limit as 8—. Hence, definingc= B\ we write
gives the response to a change of scale and the only scale@8,\) as a single-variable functiol§(x). At a RG fixed
in the coupling constant, it is in general proportional to thepoint it is proportional to the CFT central charge(0)=
relevant fieldd: —cl6 [7,8].

One can readily calculate the 1D energy

(12

O=y\D.
E dinzZ/L +1('8(9C C) 1(C dC)
—=————=gy+—|B—=—-C|=ep——| C—x—].
Hence, we can put the monotonicity theorem for the specifid- B o g2\" B o B2 dx
relative entropy in an interesting form: (13

At zero temperature — ) the system is on its ground

(7Srel()\,A):£2 j d?z(:0(2)::0(0):)=0. (11) state and therefore, represents the specific ground state
y

)\&)\

We will have the occasion to comment on this form in what This formula has already been proposed for generic dimemsion
follows. on the grounds of dimensional analygs.
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energy whereas th€ part is a finite-size effect. From the function of two variables, namely(x, BA). Since we must
energy, Eq.(13), we can compute the thermodynamic en-have thatBA > 1, monotonicity still holds for moderate val-
tropy ues ofx.

In parallel with the relative entropy, now it is natural to

§ .y E-F _ E C—i d_C (14) consider the behavior of the absolute 1D quantum ent®py
L L B 2 dx/’ with respect toB:
which is universal, since it contains no contribution frem 9S 9 JE 5( BF)
Moreover, the entropy vanishes at zero temperature, in ac- —=——(BE—BF)=B—=p8 5 (18
cord with the third law of thermodynamics. The relation be- BB Ip B

tweenS and C in Eq. (14) implies the proportionality be- . o _ .

tween S and ¢ at the critical point(CP), namely, S/L We have again monotonicity, f@F is a convex function of

=7rc/(3B). This is reminiscent of the relation between geo-8. as deduced from the 2expres_sion of its secong _derivative as

metric entropy for a CFT and central charge found9n the average-((H—(H))*). Unlike the monotonicity of the
The theorem of increase of the relative entrggyholds 2D relative entropy, Eq(4), hereH is thetotal Hamiltonian,

on a finite geometry and guarantees t&gl()\”g,/\) in- that is, including the critical parIt-I* [e.g., the kinetic term

creases with.. We calculate the relative entropy substituting H* =/ (9¢)%/2]. This monotonicity is in principle unrelated

W= —In Z/(BL)=F/L according to Eq(12): to the monotonicity oS with respect to the coupling con-
stant. Thus it allows us to define a different monotonic di-
IW(N\,B,A) mensionless function,
Srel()\yBaA):W()\aBuA)_W(O,,B,A)—R—(9)\
20 S 2C N dC 19
1 aC =y~ % T dx”

— il _ N LAWY X dx
=Se(hA)+ 5 C0=C(0) A (M)

At the critical pointS/L=c/(38), implying thatC(x) di-
Cc— X d_C> , (15 Vverges linearly ax=0, whereag(0)=0. On the other hand,
as the temperature is lowereg{ ) C(x) vanishes.
) . ) We see that there are several quantities that can be related
where Sg(N,A)=limg_...Sei(N,8,A) is the bulk relative at 3 RG fixed point but have a different physical origin and
entropy. If this entropy is universal we have shown that itciearly differ away from it. The quantity which has been
takes the forn§,e(\) =BA?Y. Then the presence of the scale more prominent in the literature is the finite-size correction
ﬁ allows us to define a dimensionless relative entropy, to the free energ)(:(x)_ It was proposed as a monotonic
function in Refs[11,3]. It has sometimes been related to the
C—i d_C) (16) dimensionless quantity @&(T)/a, which gives the central
y dx/’ chargec at the fixed point. To clarify this question, we prove
here that this expectation value is instead related to the 1D
In terms of the monotonicity theorem adopts a dimensionlesguantum entropys, showing on the way the general relation
form, of expectation values of stress tensor components with ther-
) modynamic quantities. Let us consider the expectation val-
Xd_Czﬂ_ j 022(:0(2)::0(0):). 17 ues of the complex_components of the stress ter@es T3
dx vy and T:=Tq;—T»—2iT4,, on the cylinder geometry. We
have the equalities

7C
CX)= SN, B) = 5+ BX*+

Since derivatives with respect toare equivalent to deriva-

tives with respect t@, C embodies RG irreversibility, in the E/IL=(Ty), FIL=(T5),

manner of Zamolodchikov's theorefii0]. Although C(0)

=0, we can redefine it such that it is proportional to thewhich come from the definition of the stress tensor and are
central charge at the CP by substracting the constant termcompletely general. One deduces that

mcl6 from both sides of Eq(16), enhancing the similarity

with Zamolodchikov'sc function. We could say that it also SI(LB)=(T1— T =(T), (20)
plays the role of an off-critical “central charge.” From Eq.

(16) it is clear thatC(x) has a bulk part proportional &  which generalizes the standard relati6iL =(— 1/2)(T)
and a finite-size correction, expressed in term€0k). As  [7,8], actually only valid at the fixed point. Therefore, the

x—, C(x) tends to a finite limit and so does the finite-size ,5n0tonic functiorﬁ:(ﬁ/)\llyK-D is the one related with

part of C(x). Hence, in the low-temperature limit— the 4 expectation valuéT). In fact,
bulk part dominatesg(x)~Bx?, so thatC(x) diverges, un-
lessB=0.

If the relative entropy is not universal, we can neverthe- (Ty= (21)
less define a dimensionless relative entropy but then as a B?
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containing the ternx dC/dx, which vanishes at the fixed T[(4—d)/2]
point. Sem————— 192,
The coupling may have been understood in all the above (4m)%%d

as taking the statistical system off criticality. However, noth-
ing in the arguments above requires thatXat 0 the corre-
lation length be finite. Actually, we can well envisage the ;

situation in which a coupling of a system at a multicritical Se=o—. (24)
point is such that the coupled system is still critical. This 8
situation is described in field theory asmassless flow
which causes the system to undergo a crossover ending
another non-trivial fixed point of the RG. However, we will t
only study here massive flows, with a finite correlation

which ind=2 yields

wever, it is more illustrative to start with the expression of
e cutoff logarithm of the partition function per unit area

length and hence a mass parameterin free theories, as W[r,A]=—InZ[r A]:E JA d’p Inp2+r (25)

considered irf2], mis the mass of the particles, bosons or ’ ’ 2 Jo (2m)2 A%’

fermions. In interacting theories there is a mass spectrum,

which can be deduced from the long distance behavior of thevhich can be integrated exactly and yields

two-point correlation function. We will be considering theo-

ries soluble with the TBA, which directly renders the mass 2 r r

spectrum. One may then select the lowest mass of the TBA ~ WINA]=5— T[ BvLUTE By

spectrum and define the dimensionless variable=agm. In

massive theories the functi@i(x) vanishes exponentially as r

x—o, and so do the entropic functio$x) andC(x). X In( 1+ —2)] (26)
IIl. EINITE SIZE THERMODYNAMICS Naturally, it is UV divergent. For larg& it becomes

FOR FREE FIELD MODELS 2

A
_ 2 -2
A. The continuum limit of the lattice Gaussian WIr,A]= 877( —A“+rin p +r+0(A )], 27

and Ising models
The 2D Gaussian model on a square lattice with thermafXhibiting a quadratic and a logarithmic divergence.

coupling constanR is exactly solublé, yielding Recalling the discussion on the general structurgVvah
’ the previous section, we see that we are in the case of loga-

1 (= dk rithmic corrections to a pure scaling form. Nevertheless, it is
W(R)= > J’ 5 In[ 1—2 B(cosk,+cosky) | (22) easily derived that in the present case all the divergences in
-m (2m) A cancel in the relative entropy, yielding in the infinite cut-
off limit
per site[12)]. It has a CP fof3;=1/4. The continuum limit is q
performed by redefining wave vectorslas ap, a being the Se=W(r)—W(0)—r _W: L (28)
lattice spacing, and considering per unit area. Althouglk ¢ dr 8w

belongs to a Brillouin zone, in the continuum linptruns

over the domain,—A<p,,py<A (A~/a), which be- in accord with the dimensional regularization result. To be

comes the entire plane @s—. In the continuum limit we precise, in this cutoff regularization the quadratic divergence

have the field theory of free bosonic particles of massuch ~ Cancels by the substraction ¥#(0) and the logarithmic di-
that vergence by the Legendre transform, while in dimensional

(or analytig regularization the quadratic divergence does not
appear but there is a pole W, equivalent to the logarithmic
m?a®=16(B,—R), (23 terminA, that cancels irS,.
Another interesting and exactly soluble example is the 2D

so thaty=2 and the coupling is =m?, omitting an irrel- Ising model on a square lattice, with

evant proportionality constant. 1 j

The relative entropy per unit area of the Gaussian model  W(R)=— >

2

4%k _
) Wln[cosr‘?(z R)—sinh(2 B)

m

is best calculated with field theory methods, for example,

using dimensional regularizatidi]. It can be expressed as % (cosky -+ cosk,)]—In 2 (29)

per lattice sitd 13]. The critical point occurs for the value of
The thermal coupling constant of a 2D lattice model is of coursel3 such that the argument of the logarithm vanishes when
the inverse 20emperature Since we shall be using throughout the k, ,ky—>0, namely, when

corresponding 1D temperatur@= 1/T, we avoid mentioning a 2D
temperature and use the notati®rfor the 2D coupling constant. f(R):=cosH(2R)—2 sinh2R)=0, (30
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with solution B,=arcsink{1)/2=In(y2+ 1)/2~0.440687. T —
The expansion of () nearf3. yields €= . 27 p=+m

f(R)=8(R—BRc)2+82(R—R,)3+O(R—B)%. 1
=2-[A JAZ+ m?—m2logm+m2log(A + VAZ+m?)].

(34

If we definem by

m?a?=16(R—R)? (31
and redefine the momentutnas k=ap, with a the lattice VhenA—c the leading terms are
spacing, we obtain near the critical point that

1 2A
€=5—12A%+2mlIn—+m?+O(A"?);. (35
m

a d%p 8m

a2 l
W(R)= — = f
2 J-ma (2m)? . . , e _
It is quadratically divergent. The logarithmic divergence is

In other words, the corresponding field theory is described/niversal, that is, independent of.the. regularization method,
by a W per unit area given by minus that in E(5). It and corresponds to the Iogarlzthmw d;vergencé/\tﬁf], Ea.
agrees with the well known description of this model in (27)- However, note that thé.® and m” terms are nonuni-
terms of a free Majorana fermion theory. However, the relaversal and their coefficients change froml and 1 in Eq.
tive entropy is not minus that of the Gaussian model, sincé2?) t0 2 and 2In2-1, respectively. We shall show below

beingr =m?, since Eq.(31) implies thaty=1. One obtains  9iven by the same formula, except for an overall minus sign,
in agreement with its free energy in E@2).

In[(p2+m?)a?/2]. (32

dw m2 m?2 In order to compute finite-size effects we first consider the
Sel(r)=W(r)—W(0)— md_m =— @( 1+ In—2 . behavior of the ground state energy on a segment of ldngth
A at zero temperature, connected with the well-known Casimir
(33 effect. It provides the finite-size correcticB(x) that we

It diverges in the limit of infinite cutoff, which cannot be need. To see this, let us take the spedMcaccording to Eq.

removed to obtain a universal value. Nevertheless,nfior (12),

<A, where the field theory makes sense, the relative entropy

in Eq. (33) is monotonic. This is not surprising because it _|”Z:e (A.m)+ C(Bm)
coincides near the CP with the exact relative entropy of the LB EA 2
square-lattice Ising model, represented i

(36)

and interchange the roles bfand B: we have that at low-

B. Derivation of finite-size quantities temperature
The expression ofV on a lattice of finite size.; XL, is
obtained by replacing the integrals in E@2) or Eq. (29) —InZ ey (Am)+ C(Lm) 37
with sums over discrete momenta with stepr/2,; and LB o L2 -

2m/L,. WhenlLq,L,>a we approach the thermodynamic

limit and the sums become integrals plus some finite-siz&since E= — g InZ/dB, this formula also gives the specific
corrections. However, the double lintit ,L,— is compli-  ground-state energy on a segment of lengtat zero tem-
cated to study, and it is better to consider finite-size effectperature. The term proportional tois the bulk ground-state
only in one direction. Alternatively, it is sometimes conve- energy considered above and the finite-size correction is the
nient to consider a non-symmetrical lattice with different Casimir energy. In other words, the Casimir energy provides
coupling constants in the horizontal and vertical directionsthe universal functior©(mg).

In particular, the quantum 1D Gaussian or Ising models on a

chain of sites can be obtained as the extreme anisotropic 1. Direct calculation of the Casimir energy

limit of the 2D Gaussian or Ising mod€l&4,15. The CP is . . - .
still where the correlation length diverges but now correla- The Gaussian model with periodic boundary condition

tions are calculated only between horizontal spins. Now thé1as a ground state energy

partition function isZ=Tre A", which can be represented w 5 - 5
, m 2n )
M=+ > — | +m?
2 n=1 L

in the continuum limit as a functional integral & St with 2mn

B=1/T the length of the compact dimension. It may be good ° 2 <= L

to recall that here8 has no relation with the coupling con- (38
stant, unlikeR in the classical 2D models above, and plays

instead the role of RG parameter. WhenL — o0 one recovers the continuum integral of E84).

Let us first consider the specific ground-state energy ofHowever, if we are interested in the vicinity of the critical
the 1D lattice system. For the Gaussian model in the contheory we may consider the limit— oo but with mL small.
tinuum limit it is given by This limit is known to provide a method to calculate the CFT
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central charge. Then the series can be evaluated by expand- 2. Thermodynamic calculation of finite-size effects
ing the square root in powers afiL. and interchanging the  Now we concern ourselves with the deviation of the en-

sums. We obtain ergy at non-zero temperature from the ground-state energy
or, in other words, the finite-siz@ correction to the free

m 27 <« (1/2\/mL\? energy. For the Gaussian model it can be expressed as the
5 T 2 (Z) {2-1 free energy of the ideal Bose gas constituted by the elemen-
tary excitations,

m, 277[ 1 1 mL)2 L - g
> T |Vl 5y ) fD ,8—=e0/3+J Prn(1—e ), 43
L —w 27
1/mL\*
_g(ﬁ) {3+ (39) where the one-particle energy é$p) = \/p2+ mZ. This for-

mula can also be obtained by an explicit calculation of the
finite-size corrections in the 2D lattice model7]. When
m=20 it can be used to calculate the central chd&jeNev-
ertheless, an expansion in powerswtis not advisable: The
ensuing integral at the next order is IR divergent; that is to

SinceE, is divergent, the result amounts tozata-function
regularization of it. The first term, withl(—1)=—1/12,
yieldsc=1. The next term, proportional tb, accounts for

the bulk termey. Despite the regularization, it is still diver- say, the expressiofd3) is nonanalytic atm?=0. Fortu-

gent, sincef(z) has a simple pole at=1. This pole is nately, the integral can be computed by changing the inte-

equivalent to a logarithmic divergence in regularizations " " . : . .
with a UV cutoff, as generally happens when comparing anagratlon variable tce and expanding the logarithm in powers

7ﬁ5 .
lytic with cutoff regularizations. The way to realize it for this of e”"%. We obtain
case is to restrict the sug(1)==7(1/n) up to some large E m> 1
numberN. Then B =eoB—— 21 —Ka(nmg), (44)

=
N
1 1 i ifi i
§(1)=; ﬁ=|ogN+y+ O( N)' (40) \Izzgire K1(x) is a modified Bessel function of the second
We now define the dimensionless quantty mg and

The connection with the regularization provided by consid-Perform a smalk expansion, which yields

ering the system on a discrete chain of spacingan be = T X2
made takingN=L/a, the number of sites. An alternative g—=e,8— — [g(z)——x——(m - = +O(x4)]
procedure of regularization is first to segregate the divergent B 2
bulk part, with the form(34), from the finite-size corrections (45)
by using the Euler-MacLaurin formulgppendix A). 42) m m2( mg 1
The Ising model on a closed chain is amenable to an :eog__+_+5_(|n_+7__ +0(m%,
analogous treatment. Its ground state energyfoiT . is like B 2 4m ™ 2
Eq. (38) but with negative sign and with wave numbers that (46)
are odd powers ofr/L [16] where Ok*) denotes an analytic remainder of fourth order.
The term with¢(2)=#%/6 gives the usuain=0 part and
1 o \/ (2n+1)m\? central charge=1. The non-analyticity irm? of the inte-
Eo=— 2 n;% (f) +m gral for F (43) manifests itself in the appearance of ¢
and logarithmic terms. The former also appears as a zero
* (2n+1)m\? ) mode contribution in the Casimir energyd8). The full
= _nZO —) +me. (4)  x-power series is obtained as follows: The series of Bessel

functions(44) is slowly convergent and one may apply to it
o ) a Mellin transform to convert it into a rapidly convergent one
The expansion in powers ofiL yields [18]. Fortunately, its Mellin transform is a power seriesxof
Furthermore, after replacing with L it coincides with Eq.
2 1/2 - (39) from | =2 onwards. Of course, this should be expected
Bo=~— P (ﬁ) (1-2777)¢(21-1) on the grounds of symmetry on a torus under interchange of
its sidesL and B, that is, modular symmetry. Incidentally,
the exact free energy on the torus can be computed with
some more sophisticated mathemafit8,17. Its two cylin-
der limits yield Eq.(39) or Eq. (46). Nevertheless, to show
(42 the modular invariance of the exact expression on the torus is
not easy: It can be done performing its expansion in powers
The central charge is= 1/2 and the bulk term is minus that of the dimensionless modular invariant parametéA, with
of the Gaussian model. A the area of the torus, but it is very laborious.

T

1/mL)\?2 7 /mL\*
5¢(—1)— ( 77) 5(1)+§(§) {3)+---|.
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It is interesting to relate the logarithmic term in the ex- S T m?2
pansion ofF (46) with the Casimir energy calculated in the =t 68 E+O(m4)' (52
previous subsection. It was remarked there that/{tig di-
vergence can be interpreted as a logarithmic divergence in

the cutoff. Adding the logarithmic terms &, andC(x) one  For the Ising model the relative entropy is related to the
obtains energy, instead of

X |A'B )~X2| N 4 dW(m, B)
an\"2r YT ar 00 @0 Sre(M, B)=W(M, B)~W(0,8)~m— "

whereN is the number of lattice sites in the time direction.
We see that it is equivalent to tl§é1) divergencd40) under _ 1
i - Srel( m) +—
the interchangg—L. 2
Now we can calculate the specific entropy

aC
C(x)—C(O)—m%)

> + 2 ! - m2+o N 48 ~ 8
— = _ N a
L 38 2m ﬂ477 (). (48)

E N T

a2) L% T g

. . (53

It has no IR singularity ain—0 as opposed to the free

energy or the energy. The last term is just twice the relative . ) .

entropy of a box of size g, Eq. (28), times 3. In more We see that for free theories we can derive explicit for-

generality, for the Gaussian model there is a relation betweeffulas for the free energy—and hence for the entropy—as

both types of entropy, namely well as perturbative expansions. Moreover, both the 1D en-
' ’ tropy and the 2D relative entropy give rise to monotonic

IW(r,B) central charges, as we proceed to study, introducing before

Srel(1,8) =W(r,8)=W(0,8) -1 ———— for convenience the stress tensor.

C. Expectation values of the stress tensor

1 JC
= r+—|Cx)—C(0)—r—
Sl B? b=C@ ar and entropic C theorems

The previous section has shown the calculation of finite-
= — +— 49 size corrections for various quantities of free models with
8 2L 2 (49) ini i

™ B 6p concepts pertaining to the 1D quantum theories, namely, the
. . . lattice Casimir energy or the statistics of quantum gases. The
For other models there is no direct relation between the 1Rome results can be attained with the use of 2D Green func-
entropy an_d the 2D relative entropy. . ._tion techniques, through the calculation of expectation values
The_denvatlon of thermodynamic quantltles for_ the Ising of the complex components of the stress tensor, taking into
model is analogous. The free energy is that of an ideal Fermic.qnt their relation with thermodynamic quantities already

gas remarked. We shall rewrite the monotonic functions in a
= = dp suitable way to confirm these relations, hence explaining the
,BEZeO,B—f Zln(lJr e Bep)) structure of those functions. We thus start with the expres-

sions of the expectation value®:=T3 and T:=T1;—T»,
—2iT 45, in the cylinder geometry, as derived by 2D Green

[

_\n
:e0ﬁ+T 2 ( n) K,(nmg) (50) function techniquesAppendix B:
T n=1
2 o0
where the one-particle spectrum close to the critical point is (@)= t1< K0(0)+22 (i)“Ko(nm,B)), (54)
again e(p)=JpZ+m?. This integral is computed like the 27 n=1
bosonic one. The smath expansion yields
F 1 (1 X2 x 1 m? -
e g — = Zlin=+y-= 4 T ==-—| Ky(0)+2 =)"Ky(nmB) |, (55
B =eo WB{2§<2>+4 Ing—+7= 5| +0(x >] (M 277( 20)+23 (£)'Ko(nmp) |, (59)
[2) m?*[ mp 1 .
:eoﬁ—m— 2.\ Nz +ty=5]+0m"). (81 with the same sign convention as before. The modified

Bessel functions are divergent at zero, namddy(0) is
As well as for the Gaussian model, it is possible to obtain théogarithmic divergent and,(0) is quadratically divergent.
x-power series by the Mellin transform of the series of Besselhese are UV divergences, like those already considered for

functions (50). Similarly, after replacings with L it coin- W, which can be removed by normal order.
cides with Eq.(42) from | =2 onwards. Using the recursion relations satisfied by the Bessel func-

In this case the specific entropy is tions we can write the free energ@44) or (50) as

045006-8
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E m2B8 Thus the dimensionless relative entropies for the Gaussian
’Bf: eoﬂiﬁ E (2)"Ka(nmB)—Ko(nmB)] or Ising models, respectively, are
n=1
B =T XX 5‘, K 61
=—§<T—®>=,8(T22), (56) (X)—E‘Fg_ﬁn:l 2(Nx), (61)
showing its relation with the expectation values of the com- T X2 2 X2 o N
ponents of the stress tensor, an example of the relations ob- ~ C(X)= 15~ 5~ 1+In—(A 2 to 241 (=)
tained at the end of Sec. I. Notice that it implies a definite B
form for_eo, to be compared with Eq27) or Eq. (35). (See X[Ko(nx)+Ko(nx)]. (62)
Appendix B)
Similarly, we can calculate The other monotonic quantity/(=S/(Lm), is essentially
" common and can be written as
oW ey 1 ] 1
T am 2 (2 KoMB)=5(0), (57 I
" COO== 2 ()" Ky(nx), (63
" T n=1
E m? . ~
=8 5 Z’l (£)[Kz(nmB) +Ko(nmp)] which is, of course(’= (8/m)(:T:), according to the expres-
1 sion of (T) (55). Series expansions @, C andC are derived
=§<T+ O)=(T1). (58) from Eq.(46) or Eq.(51). BothC and(C are plotted in Fig. 1.

The Ising-modet is for the value (\ 8)2=10000. It is use-
ful to recall that in general A8)2~N, the number of 2D

The first equation is just a particular case of the expression ALttice sites in a box of sidg

the derivative ofW with respect ta as the expectation value
of the “crossover part” of the actiofil], since® is propor-
tional to it. Having the values oV and its derivative avail-

able we further obtain for the Gaussian model that For interacting models, the free energy is in principle not

available in closed form. Nevertheless, one can perform its
perturbative expansion. In two dimensions one can take ad-
vantage of the information provided by the methods of con-

formal field theory(CFT), namely, the non-perturbative di-

IV. INTERACTING MODELS

©

r
Sl ) =Sl ¢ 555, Kalnm)

T 1 mensions and correlations of fields at the critical point; then
:Sre|(r)+p— §<3T3> (590 one speaks ofleformed CFT’sFor example, one can per-
B form a perturbative expansion around the critical point. This

approach, calledconformal perturbation theoryis well
suited for the calculation of an entropy relative to the critical
. P point; the perturbation parameterNgY. The expansions in
Sel1,B) =S+ —+5=2>, (—)" Egs. (46) and (51) are instances of it and can be obtained
12p% 2mi=1 from the respective=1 or c=1/2 CFT[19]. The logarith-
mic term in them is due to UV divergencies. The analysis in
UV divergences is done by examining the behavior of inte-
1 grals of correlators for coincident points. Iily<<2 there
—=(:T+0:). (60) are no UV divergences in the perturbative expansion and,
2 furthermore, this expansion is arguably converd&nb]. In
i contrast, whery<<1 a finite number of terms will diverge.
We have substitute,(r) for eo(r) —€o(0)—rdeo(r)/or  The condition ky<2 agrees with the non-perturbative
andey(r) —eg(0)—mdeg/dm, respectively. One obtains the regularity condition for the relative entropy found before.
finite expectation values of normal-ordereds stress tensofonformal perturbation theory is considerably powerful but,
components owing to the subtraction\ak0,8).” Using the 4t any rate, the perturbative expansion only converges for a
connection between the 1D entropy and the stress tensqfnited range ofx 7, while we are interested in the behavior
S/(LB)=(:T:), pointed out at the end of Sec. Il, one can of thermodynamical quantities over the entire range of the
directly obtainS coupling constant.
Some 2D models are partially soluble with the thermody-
namic Bethe ansatfTBA) [20]. In particular, models for
30ne must be careful when evaluatifigy(r)/dr. Sinceey(r)= which the interaction is of purely statistical nature lend them-
F(m2/2m)[K4(0)—Ko(0)] (Appendix B, it may seem that Selves to a derivation of closed expressions for the free en-
eo(r)—r[dey(r)/ar]=0. HoweverK,(0) andKy(0) containarm  ergy and the entropy similar to the ones for free field models,
dependence, because of regularization. albeit more complicated. Hence, the entropitheorems can

and for the Ising model that

X[Ka(nmB) +Ko(nmp) ]

™

12p2

=S+
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FIG. 1. C andC for the Gaussian and Ising models. In the latter matis for A 8= 100.

be explicitly verified for them. The Bethe ansatz assumes aompare with the results of conformal perturbation theory.
factorized form for the wave functions and hence an expres- Last, there is an alternative to conformal perturbation
sion for the energy as a sum of contributions of independentheory or the TBA that can be applied to any model, namely,
guasi-particle levels, though these quasi-particles have nomumerical finite-size scaling on a chdi?2]. Like the TBA,
trivial exchange properties. To determine the structure oby its own nature it is not limited to a restricted rangeBon.
these levels is a complicated business but it dramaticalljHowever, the numerical calculations required to obtain simi-
simplifies in the thermodynamic limit, constituting the basislar accuracy to that of the TBA are prohibitive in practice.
of the TBA. This method is nonperturbative in nature andThus this brute-force method is not actually effective to com-
provides thermodynamical quantities over the entire range gbuteoff-critical quantities and no use will be made of it here.
the coupling constant. In principle, the TBA yields, further to

the universal finite-size correction functi@{x), a contribu-

tion proportional tox?, which is interpreted as a UV-finite A. Models with purely statistical interaction

bulk term and therefore has been callgdversal bulk term The role of fractional statistics in condensed matter phys-
[21,5]. Therefore, in this section we redefi@é€x) to include ics, as a generalization of the regular bosonic or fermionic
this universal bulk term. symmetry properties under particle exchange, has been long

In spite of the virtues of the TBA approach, the TBA recognized[23]. Its modern version has given rise to the
equations themselves are by no means easy to solve and itdencept of anyons. As it happens, this type of statistics leads
customary to resort to numerical calculation to obtain theto highly non-trivial correlations between particles which are
coefficients of the series expansion@m. In this sense the difficult to disentangle and indeed constitute what has been
TBA approach is not superior to perturbation theory in itscalled statistical interaction. The form of this interaction can
region of convergence, with which one obtains analytic exbe best realized by transforming the particles to standard
pressions for these coefficients. It is only in the case ofermions or bosons with a peculiar interaction. Models with
purely statistical interaction where the TBA approach is defi-purely statistical interaction are usually referred to as gener-
nitely superior, for one can then solve the TBA equationsalized ideal gasd®4,25. It is customary to consider the free
algebraically. Thus we treat this case first. It applies to modparticles as fermions and parametrize the statistics by a num-
els of Calogero-Sutherland type, which represent the dynanberg, such that the maximum number of particles that can fit
ics of spinons or other non-interacting particles with frac-in a single fermion momemtum level isgl/For no statistical
tional statistics. We can calculate the entropy and check thahteractiong=1. If g=1/n the single-fermion levels can ac-
is monotonic with respect t@. However, it is beyond our comodaten particles and in the limin—o the statistics
means to calculate expectation values of the stress tensdrecomes bosonic. Some models with apparently complex in-
since the expression of the stress tensor is not available. igractions can be transformed into generalized ideal gases, as
second place, we shall treat the general interacting integrableccurs for the Calogero-Sutherland moded§] or their lat-
case by the numerical solution of the TBA equations andice version[27].
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Therefore, models with purely statistical interaction are 68 (= 24+ 24+ A+ 2
interesting systems and, in addition, sufficiently complex to c=— f dklogl —————
be a suitable benchmark for our irreversibility theorem. We 7 JO 2
consider the spitsU(2) level-one Wess-Zumino-Witten La-
grangian in the bosonic representation, — i ( \/5—1) — § (65)
w2 2 5’

H=f dX[(3:)?+ (dy)?]. (64)

with =e PN ¢(k)=|k|. We give the semions a mass,
replacing the dispersion relatior(k)=|k| with e(k)

=kZ+mZ. Then

The spinon field is defined in terms of the bosonic field as

g =exp(=(i//2)$), where the sign stands for spinon po- .
larization [27-30. It is a free theory, which can also be C(,Bm)=—£ f dklog
expressed as a free fermionic theory, but we are going to do ™ Jo

some non-trivial manipulations on it. First, we “simplify” 28 (= ¢
the model by keeping just one spinon polarizatiory ** - f dkarcsin+—
say. The physical way to achieve this is to introduce a very ™ Jo 2
strong magnetic field. Now we haves&mionicCFT with

2+ 2+ A+ P
2

central charge=3/5[31,32, which is certainly an interact- _ 2B fxde (=) (2n)! ¢ (2n+1)
ing theory. However, its partition function is known, being T Jo  h=o0 22"(1+2n)n!? 2
the total partition function of the&sU(2) level-one Wess-
Zumino-Witten model restricted to vanishing fugacity of 2B N (2n)!
“ —" gpinons, z_=0, [29]. The thermodynamic quantities = 7"‘20 (=) 24n+1(1 4 2n)nI2
can be obtained with the help of the THA. '
The second change consists of the addition of some tun- X Kq[(2n+1)mg]. (66)

able coupling, which perturbs the model away from critical-

ity and allows one to probe the behavior of the entropy. If wepne can easily obtain its perturbative expansion in powers of

impose that the interaction remains purely statistical, theng py expanding first the modified Bessel function,
only possibility is to give mass to the semions: We can re-

place the dispersion relatione(p)=|p| with €(p) (22 k

=p?+m?. We assume that this perturbation fulfills the 1 o .
z

ZZ
iy 5 2 Wk D1 4

conditions for the application of the monotonicity theorem Kq[z]=
(4) and we shall see that it is easily implemented within the
TBA approach and yields expressions which can be treated 2\ K
by algebraic methods. As a side remark, note that the mas- . (Z_)
sive relativistic dispersion relation differs from the non-
relativistic one assumed in the original Calogero-Sutherland ngo [y(k+1)+ ¢(k+2)]k! (k+1)! (67)
model. Therefore, if we want to keep to the physics repre-
sented by this model, we must interpret the mass as a param-

) : : 1 z[ z 1
eter unrelated to the real semion mass. For comparison, it =4 —(In—+ S
can be shown that the 2D Dirac Lagrangian with a mass term z 2\ 2 2
appears as a low-energy effective Lagrangian (oon-
relativistio conducting electrons in one-dimensional metals,wherey(x) is the digamma function. However, we will con-
but the Dirac mass is actually related to the electric potentialent ourselves with extracting the bulk part,
([30] Chap. 13. Regardless of the precise physical interpre-
tation, we will consider the theory of relativistic massive ox = (2n)!
semions as our first interacting field theory to investigate the COOlpu=—— 2, ()" P 5
properties of the entropy. 7 n=0 27 (1+2n)n!

+0(z)?, (68)

z[ z 1
1. Application of the TBA to the semion gas X 2 lnE tre E”
z=(2n+1)x
The full power of the TBA shows in the calculation of >

finite size corrections to thermodynamic quantities. One ob- __x s In§+82+8 _ E”
tains for the critical semion gd82,33 w7t 2 : 2

X2

=— Inx+0.1047442, (69)
“Derivation of thermodynamic quantities from CFT usually de- \/577

mands a thermodynamic approach in the seng82f be the TBA
or Schoutens’ recursion meth¢ai]. where
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(2n)! 1

31:;::0 (_)n—:E,

24n+ln! 2

- 2n)!
sz=n§0 (—)”ﬁln&m—l)

n:

=—0.0536114.
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Casimir energy, owing to the approximated nature of the
ground state energy. We can however see that the bulk term

1 o o dp
T fo dne(n)——ZJ’0 E\/szrm?

(71

is twice that of fermions, as corresponds to the double aver-
age occupation number of semions. We can compare the

Corresponding tg=1/2 statistics, in a segment of length @PProximate bulk non-analytic term in E(/.1) with the ex-
L the semion momenta of completely filled single-particle@ct result of the TBA69). According to the combined form

levels arek,=(2w/L)|n/2+ 1/4 with neZ. Hence, theap-
proximateground state energy is like in E41) but with
wave numbers that are odd powersmf(2L) [31,32,

1 & (2n+1)m\?
EO:_En;w \/(T) =

2

Now, an expansion in powers ofL would yield a wrong

2n+1)=
T (70

2
) +m?.

(2n)! {
240+1(1 4+ 2n)n12|

2X
=2

n=0

o

zZZz
|n§§k20

- S(2n)!1(2n+1)%

of IR and UV logarithmic term#47) that we expect from Eq.
(71), we have

2

X
C(X)| b=~ 5—Inx+0.390536°. (72)

We see that the first term of the susq reproduces the co-
efficient in this approximation, 1/2, but the total coefficient,
1/\/5=0.447214, is slightly smaller.

The total non-analytic part is now an infinite series, ob-
tained from

gl

| |
kl(k+1)! 21
X2k+2
+analytic
41 (k+1)!
2651x1° 61961%12

K=0 n=0 24n+1n!2
1 x[ , x* 7x® 3538
=——=In5| x
75 2

Interestingly, the series coefficients seem to be rational num-

bers.

The entropicC functions are easily derived from the ex- fin

pression ofC (66)

ow x2 . X2 x?
C(X)_E_ 2\/577-:09 (AIB)Z —;
- . (2n)!
X2 (=) anriaKal(2n+1)x]
+Kol(2n+1)x]} (74
and
o 2X G, (2n)
C(X):?nzo(—) WKZ[(2n+1)X] (75)

They are plotted in Fig. 2. We use again the valu@
=100.

* 257750 225000 22500000 16875000000

O(x?)"| + analytic. (73

B. Deformed two-dimensional conformal field theories

A general class of theories amenable to derivation of the
ite-size quantities of interest is that of deformed 2D CFT.
Since CFT provides thexactdimensions of relevant fields,
the results of conformal perturbation theory are more accu-
rate in 2D than those of ordinary perturbation theory, which
on the other hand is plagued with IR problems. In addition,
many models admit integrable deformations, in the sense that
the existence of an infinite number of conservation laws
forces theS-matrix to factorize. Then the TBA provides a
way to derive thermodynamic quantities. Many deformed
CFT are known to be integrable and similar methods are
applicable to al[34], although their complexity can be con-
siderable for the most sophisticated models. Therefore, we
shall choose one of the simplest cases. It should be intu-
itively clear how to generalize the computation of the en-
tropic quantities to other integrable models.

The naturaland oldestgeneralization of the Ising model
consists of taking a site variable which can take three values
instead of two, constituting the three-state Potts model. It is

045006-12



ENTROPICC THEOREMS IN FREE AND INTERACTING . .. PHYSICAL REVIEW 51 045006

C Semion model C 3-Potts model
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FIG. 2. C (A=100) andC for semions. FIG. 3. C andC for the 3-state Potts model.

critical for B.=In(y/3+1)/3 and its thermal critical exponent where the bulk relative entrog;,(m) does not appear since
is ¥=>5/6, implying thaty=6/5. This model has been long it is now implicitly included. It is derived from the universal
known to be integrable and it has been Igbgt not as lony  bulk free energy, which can be calculated exactly, yielding
known to be describable in terms of particles with fractional— V3x%/6 [21]; hence,S.(m)=3m?9. We can calculate

statistics, which are generalizations of the Ising fermions anghe monotonic functions andC numerically as well. They
are called parafermions. This quasi-fermionic representatiogre plotted in Fig. 3.

is in terms of two conjugate parafermions carryitig The TBA solution forC(x) can be expressed as a power
charges+1 or —1 and spin 2/3, which are massless at theseries inx'?° plus a bulk tern{21],

CP point but acquire a mass fée>T.. Their interaction is

purely statistical at the CP but it is more complicated off al4  3x2
criticality. However, it is still integrable and its thermody- C(x)=- 65
namic properties can be found with the TBA. It yields

—+ 0.33968&'%5— 0.0032609%24/°

. +0.000114199%6/°—5.11209 10 ®x*8/®
= de
C(Bm)=—pm f ——cost{0)In(1+e <), (76) +4.01138< 10" "x*2— 1.38691x 10~ 8x725

o 27T
+7.8336x< 10 1%345—4.56x 10" 11x%/
which is apparently similar to the formula for free fermions
but now e(6) are unknown functions to be determined with
the TBA equations. The concrefmatrix elements of this
model lead to the TBA equation

+2.66x10 1519851 68x 10~ 13?4+ O(x) 1325,

(79
a\= Bm h0+2\/§ ® de’ cosh(6—¢") Its radius of convergence can be estimatedsx$?°=14.3
€(6)=pmecos 7 J-»  1+2cosh26-6") +0.4, that is,6x=3.0° This expansion(79) can also be
obtained by conformal perturbation thedi®1]. The series
XIn(1+e €= ¢), (770 coefficients are then expressed in terms of integrals of corr-

elators of the perturbing conformal field, that is, the thermal
It can be solved numerically by an iterative algorithm, yield-field of dimensiondq,=4/5 in the three-state Potts model.
ing a set of numbers which can be displayed in a tiplg.  The computation of these integrals is very laborious, except-
Hence, according to the general formyi®),

5_X dC(x) (79) 5A plot of this series sharply shows that it is very close to the
6 dx ’ TBA result forx=3 and quickly departs from it for large«

mC
C(x)= 5t C(x)—
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for the first ones, which in some cases admit explicit expres- dc p? 5

sions as serief5]. A related computational method is the Xd_x:7 J d°z(:0(2)::0(0):). (80
truncated conformal-space approacim which one only

takes a finite dimensional subspace of the Hilbert space dEven though it resembles Zamolodchikowsheorem it is
possible states, namely, a number of low-lying states, to nu20t quite the same: The correlator ®fs in the second term
merically diagonalize the Hamiltonian. In the limit of in- @PPears integrated. Furthermore, a detailed calculation of
creasing the number of states, this approach is equivalent fg@melodchikov's functionc(m) for the free boson or fer-

a numerical evaluation of the integrals giving the coefficientg O shows that they differ from the respective values of

of the perturbation serig6]. We do not think it is worth- C(m)=C(X)|g—;- The essential discrepancy actually has a

geometrical origin: A crucial step in the proof of Zamolod-

while to dwell in detailed computational methods since the.nikov's theorem relies on the assumption of rotation sym-

simple numerical integration of the TBA equation?) suf-  metry [21], which does not exist on the cylinder. Therefore,
fices to show the monotonicity @f andC. the theorem does not hold on it. However, the absence of
rotation symmetry is traded for the appearance of a new pa-
rameter, the width3, which replaces the distance to the ori-
V. DISCUSSION gin in Zamolodch'ikov’s theorem and is used in the deriva-
tion of the entropic monotonicity theorems.

For a 2D field theory, one can introduce two monotonic  The reason for the introduction of a finite geometry is to
dimensionless functions, namel,and?, derived from the have an IR scale to deflne a d|menS|onIe§s relative entropy.
2D relative entropy and the 1D quantum entropy, respecyve have .used the cylinder be.cguse of its _thermodynqmu:
tively. It has been shown that is universal when the cou- interpretation. Of course, other finite geometries are possible.
plings are strongly relevant, that is, with dimensior:yl For example, one can use a sphe_re. Its radius is then the IR
_ hev include the th | bati f th . scale. The advantage is that rotatlon symmetry is preseryed
<2. They include the thermal perturbations of the unitary,, yhe sphere and Zamolodchikov's theorem holds. With this
minimal models of conformal field theoCFT), except for oy geometry the monotonicity theorem for the dimension-
the Ising modeh which we have also studied, notwithstandiess relative entropy would still involve an integral of the
ing. In contrast( is always universal, since it only depends correlator of®’s but a relation o with Zamolodchikov’sc
on the universal finite-size correction to the free energyfunction seems more feasible. At least in conformal pertur-
Given that general theorems may not be particularly useful ibation theory one should be able to perform that integral in
the quantities that they involve cannot be computed in practerms of the IR scale and a direct comparison with Zamolod-
tice, considerable time and effort has been devoted to conshikov's theorem could be possible.
pute C andC for a variety of models. In consequence, we The existence of several monotonic functions prompts the

have been able to show for them that those functions arguestion of which one is preferable. It is intuitively clear that
monotonic a unique definition of RG monotonic function is not possible:

. . . ~ e The RG itself is not unique and one can choose a variety of
The dimensionless entropiésandC play a similar role to

lodchikov'sc f . inina th fth RG parameters. Correspondingly, ¢{x) is monotonic a
Zamolodchikov’sc function, constraining the structure of the ., o qtonic change of the independent variableill trans-

RG fllow, ht')lgt ,the)f/ haye a rc\;lear'physicalforigin, unIiI_<e form it into a different monotonic function. We might then
Zamolodchikov'sc function. The existence of a monotonic .. <iqar what happens at the boundary,0 or x—. The

function is usually argued_on _the grounds of the irreVerSiblepointx=0 is the RG fixed point and it is sensible to define a
hature Of. the RG ﬂOW.’ which In the cogrse-gramed formUIa'function related to it, as are the dimensionless relative en-
tion implies a loss of information on microscopic degrees of,

freedom[10,35. This idea inspired the adaptation of Boltz- tropy C or Zamol~odch|.kov S(? func.t|on. Thg d|menS|on!ess
mann'sH theorem to the RG flow in our previous wofk]. ab_solute entrop}C(x) is defined irrespective of the fixed

It has been shown here that this philosophy gives rise to thRoInt and ac_tua_lly dlvgrggs there. We cou_lgl as well .de;mand
entropic functions? andC, which are computable for a wide gocld behavior in the I|r.n|t.<—>so. Th|§ condition is satisfied
range of models. The non-perturbative computation ofY € Putmay not be satisfied i owing to the bulk term. It
Zamolodchikov'sc function is much harder and, in fact, it 'S quite possible that a minor mod|f|cat|qn of the def|n|t|(_)n of
does not seem to have been carried out for any fully inter My remove the bulk term and make it well behaved in the
acting model. For all these reasons, the entr@pfanctions ~ IMit X—< as well as axk=0.

proposed here arguably provide a new perspective in the
long-standing problem of the irreversibility of the RG. Nev-
ertheless, in comparison with Zamolodchikoe'theorem, it | acknowledge hospitality at the Nuclear Research Insti-
must be remarked that universality@fthe entropic function tute of Dubna(Russia, where this work was started, and
more similar to Zamolodchikov'sc function, has been partial support under Grant PB96-0887. | thank D. O’Connor
proved only for deformations of the critical theory by fields for conversations in the early stages of this work, M.A.R.
with dimension G<de<<1 (strongly relevant while  Osorio, M. Laucelli Meana and J. Puente Biaa for con-
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APPENDIX A: CALCULATION OF FINITE-SIZE words, one must introduce an IR cutoff and evaluate the
CORRECTIONS WITH THE Euler-MacLaurin expansion at that point. Of course, the re-
EULER-MACLAURIN FORMULA sult shall be inpependent of the precise value of the cutoff,

[though its convergence properties are greatly affected by it.
ithin the realm of classical mathematics, it is interesting to
recall that Legendre met a similar problem when he at-
- . 1 1 1 tempted to evgluate eIIi|_otic in.tegrals n.umerically. with the
> e(n):f dne(n)+= €(0)— —¢'(0) +===€"(0) Euler-MacLaurin expansion. Since the integrand is an even
=0 0 2 12 720 function of the integration variable at the limits 0 amd2,
the odd derivatives vanish and the Euler-MacLaurin formula
_ eW(0)+ -, (A1) implies that t_he e.IIiptic integral is equal to any of its rectan-
30240 gular approximations. The paradox was solved by Poisson,
) _ _ . who showed that in this case the remainder term does not
where e(n) are single-particle energies. For the Gaussiangng to zero as the number of terms increases and hence the
model the first term can be proved to be proportional.to  series does not converge. If we further consider that the bulk
with the change of variablp=2n/L and leads to the in- free energy of the Gaussian or Ising models on a finite chain
tegral in Eq.(34). One can see that all the odd derivatives of .o e expressed as elliptic integrals, we may appreciate that
e(n) vanish atn=0 because it is an even function. It is | egendre actually encountered an IR divergence without be-
natural, because the finite size corrections are exponentlalﬁy]g aware of the need of regularization.
negligible whenL — and therefore nonanalytic: Every de- Eqr the Ising model41) the odd derivatives o&(n) do

rivative pulls out a power of 2/L and the subsequent series ot vanish an=0 but it also is necessary to choase 3 or
of powers of 1IL. must have vanishing coefficients. 4 for fast convergence.

In the scaling zonenL<1 the finite-size corrections are
not negligible, despite the previous argument. To evaluate
these corrections we can nevertheless make use of the Euler- APPENDIX B: CALCULATION OF (Tg,) ON THE

For free models the energy series can be evaluated wi
the Euler-MacLaurin summation formuia,

MacLaurin expansion but using a non-zero value for the CYLINDER FOR FREE MODELS
point at which the derivatives are computed, in the following  £qr free field theories the expectation values of the com-
form: ponents of the stress tensor can be expressed in terms of the

Green function. Thus for a bosonic field

- w 1 1 1
> e(n):f dne(n)+=e(1)— —=€' (1) +===€"(1) .
i=1 L 2 12 720 (©)=m(¢?)=m2lim G(z,2). (B

z—0

- 30240,5<V>(1)+ el (A2)
We use complex notatiorz=x;+iX,. The Green function

Now the series can be transformed into an expansion in pow?" & cylinder,G(z,z) is nontrivial. Its Fourier transform
ers of mL. The reason why that trick works can be under-',”dUdeS a sum over discrete momenta in the compact direc-
stood in several ways. One is that the derivatig@*(n) ~ toM,
as functions ofn are ill behaved for smal. They converge
to the null function fom=0 but nonuniformly. It is actually .
safer to choose the argumembf the derivatives larger than Gp(z,2)= E Z_w f_m or m
in Eg. (A2), n=3 or 4 say. Then the Euler-MacLaurin ex- " “n m
pansion converges very fast and the terms displayed above )
suffice to match the coefficients in E(R9) with about ten ~Where the allowed frequencies for bosons atg,
decimal places. =(2#/B)n. It can be transformgd into a more manageable
Alternatively, one may focus on the fact that for=0 the ~ form by the use of the proper-time representati86]. In
function e(n)=|n| is singular am=0; its derivatives even- fth|s representation the integral 0\',4ers elementary and one
tually diverging there. This is naturally an IR divergence, S left with the sum oven and the integral over proper time.
which does not exist fom= 0. However, one must be care- After performing a convenient Poisson resummation one ob-

ful to evaluatee(n) atn#0 before takingn=0, or in other ~ tains

o dk ei(wnX1+kX2)
, (B2

. | Goza= 3 [ Eemelensius (g3
5This is a common method to convert sums to integrals. However, n==« Jo 4ms
since the function summaed(n) diverges whem—« a preliminary
regularization is required. A convenient form is to sum up to somesjce the Green function on the plane is just
arbitrary numbeMN>1, which for a chain can be the number of
sites. This UV regularization renders meaningful the formal ma-
nipulations that follow. However, we do not need to be definite on G (z?)z iKo(m|z|)
the UV regularization for our focus is on universal quantities. o 2 '
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which is then=0 term in the sumB3), this sum can be It contains a quadratic divergence ki(0).

interpreted as the solution of the field equation for a point For Majorana fermions one could start from the known
source by the method of images. It can be expressed in ternexpressions of their stress tensor but it is simpler to consider
of the Jacobi theta function them as bosons with antiperiodic boundary conditions and
use again the Fourier transfor(B2) with allowed frequen-
cies w,=(2#/B)(n+%). Before Poisson resummatio@,

can be expressed in terms of

[

03(1/ 7_)_ z u qn /2 u=e217iv’ q=e271'i7"

n=—wx
as 0,(v,7)= E un+1/2q(1/2)(n+1/2)2_
- 2 e
G (z?):f Ee m’s—|z|%4sg | _ B 1B _ _ o
B o 4ms Ams’Ams) The Poisson resummation transformsinto its dual6,,
(B4)
. . . . (v,7)= 2 (—)"u" qn /2
Then the Poisson resummation realizes the duality property
of 6s.
The formalz—0 limit of G is easily taken, which is like the bosoni@; but with an additional alternat-
ing sign.
G 4(0) = lim G,g(Z,?) 2 e‘m s—(nB)%ds We can write the final result in a condensed notation,
z—0 = 0 4775 mz o
B5) (@)==5— X ()Ko(nmg),  (B1Y)
n=—wx
It contains the logarithmic divergence
2 o0
m
1 o dS _ a4 +\n
G..(0)=5—Ko(0)= J 1<e ~m?s, (M=%5_ n:E_m (£)"Ky(nmp), (B12)
0

where the upper signs stand for bosons and the lower signs
Taking into account the integral representation of modn‘|edfor ferm|onspp 9 9

Bessel functions

However, to have well defined expressions we must fur-
1/2\" (= ds , ther introduce a regularization that removes the divergences
K, (2)= _(_) f —g v ST TS (B6) in Ko(0) and K,(0). It is customary to begin defining
212] Jo s normal-ordered composite fields, namely,
one obtains 10:=m? 2, (B13)
1< Ti=—4:(0,0)%, B14
Go(0)=5= 3 Ko(nmp). ®7) (720) (819

in the sense of a point splitting regularization and a substrac-

The computation of T) requires a little more work, for ~ tion of the divergent part, computed with the Wick prescrip-
tion. It amounts to the substraction ofG,(0)

(T)=—4(3,0)>)=41lim>G(z). (B8  =+1/(2m)Ko(0) or 49°G..(0)=*m?(27)K,(0). Point
z—0 splitting on a lattice yields
From Eq.(B3), ma
Ko(0)=— |n7+y +0(a?), (B15)
o - 2
— = ds [z+nB 5 5
2 — = —m“s—|z—ng|“/4s
&ZGB(Z’Z) n:z—oc 0 41s 4s € ) 2 1 )
(B9) K2(0)= 20 ). (B16)
Hence, L .
Consideringa~ 1/A we have, for example, that according to
92G(0)= lim 92G(z) Eq. (56)
—0
Z ==* m* Ko(0)—K5(0
_ JOC ds (nﬁ)2 s (ng)2s €= %7 -[Ko(0)—=K2(0)]
~ e
n=== Jo 4TS 16s 1 2A 1
" ~+—{ —2A%+min—+m?| y— = | +O(A " ?){.
m? 47 m 2
=~ gn .2 Knmp). (10) 617
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