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Entropic C theorems in free and interacting two-dimensional field theories
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The relative entropy in two-dimensional field theory is studied on a cylinder geometry, interpreted as
finite-temperature field theory. The width of the cylinder provides an infrared scale that allows us to define a
dimensionless relative entropy analogous to Zamolodchikov’sc function. The one-dimensional quantum ther-
modynamic entropy gives rise to another monotonic dimensionless quantity. I illustrate these monotonicity
theorems with examples ranging from free field theories to interacting models soluble with the thermodynamic
Bethe ansatz. Both dimensionless entropies are explicitly shown to be monotonic in the examples that we
analyze.

PACS number~s!: 11.10.Gh, 05.70.Jk, 11.10.Kk
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I. INTRODUCTION

It has been shown that the irreversible character of
renormalization group~RG! can be cast in a sort ofH theo-
rem analogous to Boltzmann’s, thus generalizing this th
rem from ordinary time evolution to the evolution with th
RG parameter@1#. The irreversible quantity, the field theor
entropy relative to a fixed point of the RG, is a monoton
function of the coupling constants and increases in the cr
over from one fixed point to another less stable. Howev
the Wilson RG picture considered in@1#, wherein one has to
deal with all the couplings generated by the RG action,
evant and irrelevant alike, turns out to be too complex a
was indeed assimilated to a non-equilibrium thermodyna
ics setting. One can start with only the relevant couplings
then one must utilize a different RG which changes so
infrared~IR! scale. A possibility is to define the field theor
on a finite geometry characterized by some parame
loosely associated with its size, which plays the role of
IR scale. Then the monotonicity theorem for the relative
tropy can be cast as a RG theorem similar to the celebr
Zamolodchikovc theorem@2#.

Among the various geometries we could consider, the c
inder stands out for its simplicity. It is defined by only on
scale, the length of the compact dimension, and the fin
size corrections to the partition function turn out to be co
putable. Moreover, on a cylinder of circumferenceb the
monotonicity theorem adopts a form with a thermodynam
interpretation, the temperature beingT51/b @2#. Thus the
inverse temperature is used as RG parameter, providin
thermodynamic interpretation of the RG, as in Ref.@3#. The
connection with concepts of 111 quantum field theory
~QFT! at finite temperature is intellectually appealing a
useful for computational purposes. For example, finite-s
corrections are calculated in terms of the properties of o
dimensional~1D! quantum gases. In addition to the relati
entropy, the 1D quantum entropy provides another mo
tonic quantity with a different interpretation. We must r
mark that the definition and monotonicity of the relative e
tropy, as exposed in Ref. @1#, already have a
thermodynamical motivation in the 2D context, indepe
dently of the type of geometry. However, in field theory w
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prefer to dissociate the coupling from a thermal interpre
tion and we reserve the concept of temperature for its rol
the 1D quantum picture. Nevertheless, it shall be evident
the proofs of the monotonicity theorems for the 2D relati
entropy or for the 1D quantum entropy are essentially
same.

In Ref. @2# these ideas were illustrated only with free fie
models and the calculations of the corresponding finite-s
corrections were presented very concisely. We shall be
here with a more detailed analysis of the properties of b
types of entropy, in particular, considering whether they
universal quantities. Next, we proceed to the explicit cal
lation of the finite-size corrections for soluble models cor
sponding to free-field theories, including thermodynam
quantities as well as the expectation values of the stress
sor, and hence of the entropic monotonic quantities. T
properties of these quantities will be displayed in the cor
sponding plottings. Further to free-field models, it will b
demonstrated that interacting models are also suitable
calculation of their finite-size corrections and monoton
quantities with powerful methods. In particular, integrab
models on the cylinder are appropriate for application of
thermodynamic Bethe ansatz~TBA!. Plots of the monotonic
quantities obtained with this method display similar behav
to those of free-field models.

The paper is divided in three parts. The first part is d
voted to formulating the monotonicity theorems for 2D fie
theory and to giving its thermodynamic interpretation on t
cylinder. The second part applies these theorems to the
tively simple cases of the Gaussian and Ising models. T
allow an explicit calculation of thermodynamic quantitie
and their connection with the components of the stress
sor. Section III is devoted to interacting models which le
themselves to computation of thermodynamic quantities. T
essential tool is the thermodynamic Bethe ansatz, whic
first applied to models with purely statistical interaction, r
sulting again in explicit expressions for the relevant quan
ties, and in second place to models in which the TBA eq
tions have to be solved numerically. Afterwards, there com
a discussion of the results obtained and, finally, two app
dices, the first one on the method for the computation
finite-size corrections based on the Euler-MacLaurin form
©2000 The American Physical Society06-1
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and the second one on the computation of the expecta
value of the stress tensor on the cylinder for free theorie

II. ENTROPIC C THEOREMS

A. General properties of the relative entropy
in two-dimensional field theory

Let us briefly recall some concepts already introduced
Ref. @1#. The field theory probability distribution associate
to some statistical system is given by

P@f,$l%#5e2I [f,$l%] 1W[ $l%] , ~1!

and depends on some stochastic fieldf and a set of coupling
constants$l%. The quantityW@$l%# is needed for normaliza
tion and is of course minus the logarithm of the partiti
function. A composite field is defined as the derivative of t
action with respect to some coupling constant:

f l5
]I

]l
. ~2!

For example, if we consider the thermal coupling, the c
pling constant is the inverse temperature and the compo
field represents the energy. As is usual, we assume for
plicity that I @f,$l%# is linear in the coupling constants.

The relative entropy, a concept borrowed from probabi
theory, turns out to be the Legendre transform ofW(l)
2W(0) with respect tol @1#:

Srel~l!5W~l!2W~0!2l
dW

dl
5W2W02l ^ f l&. ~3!

Obviously, Srel(0)50. Furthermore, as a straightforwa
consequence of its definition,

l
dSrel

dl
5l

dW

dl
2l

d

dl S l
dW

dl D
52l2

d2W

dl2

52l2
d

dl
^ f l&

5l2
Š~ f l2^ f l&!2

‹>0. ~4!

For the thermal coupling,Srel has indeed the interpretation o
a real thermodynamic entropy which increases with temp
ture. In other cases, it may or may not have a thermodyna
interpretation but its properties hold nonetheless.

Some qualifications are in order. In field theory we de
with local fields, sof l5*Fl , whereFl(z) is a local com-
posite field, function of the 2D coordinatesz5x11 i x2. We
must remark that, although these fields are usually c
structed as actual composites of the basic fieldf, the exis-
tence of this field needs not be assumed, as in some mo
formulations where it is replaced by theaction principle@4#.
This remark is important when we start from a 2D conform
field theory. To prevent the appearance of ultraviolet~UV!
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on

n

e

-
ite

-

a-
ic

l

n-

ern

l

divergences it is convenient to define all the quantities wit
UV cutoff L—for example, W@l,L#,— which must be
eventually removed to define universal quantities. Ev
thoughW is nonuniversal, we expectSrel to be @1#. In order
to have universality, we consider RG relevant or margi
couplings: In two dimensions the scaling dimension of t
field F must be such that 0<dF<2. This condition may not
be sufficient and shall be made more precise shortly.W and
Srel are extensive and it is convenient to define the associ
specific quantities dividing by the total volume—or area
two dimensions. Henceforth, we use specific quantities
keep the same notation for simplicity. We are interested in
entropy relative to a RG fixed point, so we must substr
from the coupling constants their values at that point.~The
fixed-point coupling constants may be null in some case!
Finally, there is an assumption of positivity of the probabili
distribution implied in the inequality~4!, like in Zamolod-
chikov’s theorem.

To derive a universal expression for the specificSrel we
must analyze its dependence on the UV cutoff. We can
the scaling form of the specificW,

W~l,L!5L2 FS l2/y

L2 D , ~5!

wherey522dF.0 is the dimension of the couplingl. For
the thermal field, the local energy density,y is the inverse of
the critical exponentn. If the scaling function is continu-
ously differentiable around zero~classC1), and we denote
F05F(0), F15F8(0), W can be expanded as

W~l,L!5L2F01F1l2/y1L2o~L22!, ~6!

with o(L22) asymptotically smaller thanL22, hence result-
ing in a vanishing term asL→`. Given that the UV diver-
gent term of this expansion cancels inW(l)2W(0), the
relative entropy yields a finite result in the infinite cuto
limit, namely,

Srel~l!5W~l!2W~0!2l
dW

dl
5F1

y22

y
l2/y. ~7!

Thus the significance of the assumed regularity condition
the scaling function is that it is sufficient to endow the mon
tonicity theorem with universality. One can certainly think
simple functions that are not classC1. For example, the func-
tion F(x)5F02x ln x1o(x), which will appear in some of
the models studied later.

We now examine the question of universality in terms
local fields. This method will lead us to a more concre
formulation. Let us begin by writing the monotonicity theo
rem ~4! as

l
]Srel

]l
5l2E d2z^:F~z!::F~0!:&>0, ~8!

with the use of the definition of normal-ordered compos
fields, :F:5F2^F&. We can study the UV convergence o
this integral. As a prerequisite, note that possible UV div
6-2
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ENTROPICC THEOREMS IN FREE AND INTERACTING . . . PHYSICAL REVIEW D61 045006
gences in the definition of the composite fieldF are removed
by the substraction of̂F&. The most singular part of the
correlation function for short distance is given by

^:F~z!::F~0!:&;uzu22dF. ~9!

Hence, the integral converges if 0<dF,1, that is, 1,y
<2. Then the derivative of the relative entropy,dSrel /dl, is
a universal quantity and so isSrel , because the integratio
constant is fixed by the conditionSrel(0)50. For dimen-
sional reasons, it must adopt a form like that in Eq.~7!:

Srel~l!5Bl2/y, ~10!

whereB is a constant. In fact, upon inversion of the Le
endre transform, this form implies thatW has the previous
first-order expansion~6!, except in the case ofy52.

FieldsF satisfying 0<dF,1 are called strongly relevan
@5,6#. They include the thermal coupling of the unitary min
mal models of conformal field theory~CFT!, except the Ising
model, wherein the local energy density hasdF51. We shall
find that the relative entropy of the Ising model is inde
nonuniversal. In principle, fields with 1<dF<2 give rise to
a nonuniversal relative entropy,Srel(l,L). It is monotonic
and essentially independent ofL as long asl2/y!L2, which
is the condition necessary for the continuum field theory
the statistical system to be meaningful. In this sense,
may consider this non-universal relative entropy within t
philosophy ofeffective field theories, a term which refers to
theories that are not renormalizable but suitable for calc
tion of many physical quantities for scales much lower th
the cutoff.

We must remark that the simple power-law forms of t
relative entropy~10! and the monotonicity theorem are n
very informative, in the sense that, once we know thatSrel is
finite, they follow from dimensional analysis. We thus s
the necessity of introducing a new parameter, for exam
through a finite geometry. We will indeed obtain a richer a
more illuminating version of the relative entropy and t
monotonicity theorem when we introduce a finite geome

Let us introduce the stress tensor trace,QªTa
a . SinceQ

gives the response to a change of scale and the only sca
in the coupling constant, it is in general proportional to t
relevant fieldF:

Q5ylF.

Hence, we can put the monotonicity theorem for the spec
relative entropy in an interesting form:

l
]Srel

]l
~l,L!5

1

y2 E d2z^:Q~z!::Q~0!:&>0. ~11!

We will have the occasion to comment on this form in wh
follows.
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B. Finite-size corrections. The cylinder
and one-dimensional thermodynamics

So far, the relative entropy has been proved to be mo
tonic with respect to the coupling constants. Now we wou
like to reformulate the monotonicity theorem for the relati
entropy as showing irreversibility under the RG. We need
substitute the coupling constantl by some quantity which
can be interpreted as a RG parameter. A common way
introduce a RG parameter is through some IR scale.
example, we may consider a finite size system with a ch
acteristic length, such as a strip or cylinder of widthL. Ac-
cording to finite-size scaling ideas, the free energy can
split into a bulk part and auniversal finite-size correction.
The latter constitutes a suitable function to derive a n
trivial relative entropy. Moreover, one can take advantage
the fact that the classical partition function on a cylinder
width b is equivalent to the one-dimensional quantum pa
tion function at temperatureT51/b to give the RG a ther-
modynamic interpretation@3#. Indeed, relevant thermody
namic functions of this quantum system are given
derivatives with respect tob. The first one is the energy
which has one part independent of the temperature and
other that vanishes atT50, corresponding to the bulk par
and the finite size correction, respectively. The part indep
dent of the temperature, which is nonuniversal, represe
the ground-state energy. A more interesting quantity is
specific one-dimensional quantum entropy, which turns
to be universal and will prove to be the right quantity for
thermodynamic monotonicity theorem.

Let us then consider the system on a cylinder, equiva
to finite temperature field theory. The partition function
Z5Tr e2bH, which can be represented as a functional in
gral onS13R with b51/T the length of the compact dimen
sion. We assume that the specific logarithm of the partit
function on a cylinder of widthb and lengthL asL→` can
be split into a bulk part and a finite-size correction,1

2 ln Z

L
5b

F

L
5e0~L,l!b1

C~b,l!

b
, ~12!

whereC(b,l) is a universal dimensionless function havin
a finite limit asb→`. Hence, definingx5bl1/y we write
C(b,l) as a single-variable function,C(x). At a RG fixed
point it is proportional to the CFT central charge,C(0)5
2pc/6 @7,8#.

One can readily calculate the 1D energy

E

L
52

] ln Z/L

]b
5e01

1

b2 S b
]C

]b
2CD5e02

1

b2 S C2x
dC

dx D .

~13!

At zero temperature (b→`) the system is on its ground
state and thereforee0 represents the specific ground sta

1This formula has already been proposed for generic dimensiod,
on the grounds of dimensional analysis@3#.
6-3
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J. GAITE PHYSICAL REVIEW D 61 045006
energy whereas theC part is a finite-size effect. From th
energy, Eq.~13!, we can compute the thermodynamic e
tropy

S

L
5b

E2F

L
52

2

b S C2
x

2

dC

dx D , ~14!

which is universal, since it contains no contribution frome0.
Moreover, the entropy vanishes at zero temperature, in
cord with the third law of thermodynamics. The relation b
tween S and C in Eq. ~14! implies the proportionality be-
tween S and c at the critical point ~CP!, namely, S/L
5pc/(3b). This is reminiscent of the relation between ge
metric entropy for a CFT and central charge found in@9#.

The theorem of increase of the relative entropy~4! holds
on a finite geometry and guarantees thatSrel(l,b,L) in-
creases withl. We calculate the relative entropy substitutin
W52 ln Z/(bL)5F/L according to Eq.~12!:

Srel~l,b,L!5W~l,b,L!2W~0,b,L!2l
]W~l,b,L!

]l

5Srel~l,L!1
1

b2 S C~x!2C~0!2l
]C

]l D
5Srel~l,L!1

pc

6b2
1

1

b2 S C2
x

y

dC

dx D , ~15!

where Srel(l,L)5 limb→`Srel(l,b,L) is the bulk relative
entropy. If this entropy is universal we have shown tha
takes the formSrel(l)5Bl2/y. Then the presence of the sca
b allows us to define a dimensionless relative entropy,

C~x!5b2Srel~l,b!5
pc

6
1Bx21S C2

x

y

dC

dx D . ~16!

In terms of the monotonicity theorem adopts a dimension
form,

x
dC
dx

5
b2

y E d2z^:Q~z!::Q~0!:&. ~17!

Since derivatives with respect tox are equivalent to deriva
tives with respect tob, C embodies RG irreversibility, in the
manner of Zamolodchikov’s theorem@10#. Although C(0)
50, we can redefine it such that it is proportional to t
central chargec at the CP by substracting the constant te
pc/6 from both sides of Eq.~16!, enhancing the similarity
with Zamolodchikov’sc function. We could say that it also
plays the role of an off-critical ‘‘central charge.’’ From Eq
~16! it is clear thatC(x) has a bulk part proportional tox2

and a finite-size correction, expressed in terms ofC(x). As
x→`, C(x) tends to a finite limit and so does the finite-si
part of C(x). Hence, in the low-temperature limitx→` the
bulk part dominates,C(x)'Bx2, so thatC(x) diverges, un-
lessB50.

If the relative entropy is not universal, we can neverth
less define a dimensionless relative entropy but then a
04500
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function of two variables, namely,C(x,bL). Since we must
have thatbL@1, monotonicity still holds for moderate val
ues ofx.

In parallel with the relative entropy, now it is natural t
consider the behavior of the absolute 1D quantum entropS
with respect tob:

]S

]b
5

]

]b
~bE2bF !5b

]E

]b
5b

]2~bF !

]b2
. ~18!

We have again monotonicity, forbF is a convex function of
b, as deduced from the expression of its second derivativ
the average2Š(H2^H&)2

‹. Unlike the monotonicity of the
2D relative entropy, Eq.~4!, hereH is thetotal Hamiltonian,
that is, including the critical partH* @e.g., the kinetic term
H* 5*(]f)2/2]. This monotonicity is in principle unrelated
to the monotonicity ofSrel with respect to the coupling con
stant. Thus it allows us to define a different monotonic
mensionless function,

C̃~x!5
S

Ll1/y
52

2C

x
1

dC

dx
. ~19!

At the critical pointS/L5pc/(3b), implying that C̃(x) di-
verges linearly atx50, whereasC(0)50. On the other hand
as the temperature is lowered (x→`) C̃(x) vanishes.

We see that there are several quantities that can be re
at a RG fixed point but have a different physical origin a
clearly differ away from it. The quantity which has bee
more prominent in the literature is the finite-size correcti
to the free energyC(x). It was proposed as a monoton
function in Refs.@11,3#. It has sometimes been related to t
dimensionless quantity 3b2^T&/p, which gives the centra
chargec at the fixed point. To clarify this question, we prov
here that this expectation value is instead related to the
quantum entropyS, showing on the way the general relatio
of expectation values of stress tensor components with t
modynamic quantities. Let us consider the expectation v
ues of the complex components of the stress tensor,QªTa

a

and TªT112T2222iT12, on the cylinder geometry. We
have the equalities

E/L5^T11&, F/L5^T22&,

which come from the definition of the stress tensor and
completely general. One deduces that

S/~Lb!5^T112T22&5^T&, ~20!

which generalizes the standard relationF/L5(21/2)^T&
@7,8#, actually only valid at the fixed point. Therefore, th
monotonic functionC̃5(b/l1/y)^T& is the one related with
the expectation valuêT&. In fact,

^T&52
2

b2 S C2
x

2

dC

dx D , ~21!
6-4
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containing the termx dC/dx, which vanishes at the fixed
point.

The coupling may have been understood in all the ab
as taking the statistical system off criticality. However, no
ing in the arguments above requires that forlÞ0 the corre-
lation length be finite. Actually, we can well envisage t
situation in which a coupling of a system at a multicritic
point is such that the coupled system is still critical. Th
situation is described in field theory as amassless flow,
which causes the system to undergo a crossover endin
another non-trivial fixed point of the RG. However, we w
only study here massive flows, with a finite correlati
length and hence a mass parameterm. In free theories, as
considered in@2#, m is the mass of the particles, bosons
fermions. In interacting theories there is a mass spectr
which can be deduced from the long distance behavior of
two-point correlation function. We will be considering the
ries soluble with the TBA, which directly renders the ma
spectrum. One may then select the lowest mass of the T
spectrum and define the dimensionless variable asx5bm. In
massive theories the functionC(x) vanishes exponentially a
x→`, and so do the entropic functionsC(x) and C̃(x).

III. FINITE SIZE THERMODYNAMICS
FOR FREE FIELD MODELS

A. The continuum limit of the lattice Gaussian
and Ising models

The 2D Gaussian model on a square lattice with ther
coupling constantß is exactly soluble,2 yielding

W~ß!5
1

2 E
2p

p d2k

~2p!2
ln@122 ß~coskx1cosky!# ~22!

per site@12#. It has a CP forßc51/4. The continuum limit is
performed by redefining wave vectors ask5ap, a being the
lattice spacing, and consideringW per unit area. Althoughk
belongs to a Brillouin zone, in the continuum limitp runs
over the domain,2L,px ,py,L (L;p/a), which be-
comes the entire plane asL→`. In the continuum limit we
have the field theory of free bosonic particles of massm such
that

m2a2516~ßc2ß!, ~23!

so thaty52 and the coupling isr 5m2, omitting an irrel-
evant proportionality constant.

The relative entropy per unit area of the Gaussian mo
is best calculated with field theory methods, for examp
using dimensional regularization@1#. It can be expressed a

2The thermal coupling constant of a 2D lattice model is of cou
the inverse 2Dtemperature. Since we shall be using throughout th
corresponding 1D temperature,b51/T, we avoid mentioning a 2D
temperature and use the notationß for the 2D coupling constant.
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Srel5
G@~42d!/2#

~4p!d/2d
r d/2,

which in d52 yields

Srel5
r

8p
. ~24!

However, it is more illustrative to start with the expression
the cutoff logarithm of the partition function per unit area

W@r ,L#[2 ln Z@r ,L#5
1

2 E
0

L d2p

~2p!2
ln

p21r

L2
, ~25!

which can be integrated exactly and yields

W@r ,L#5
1

2p

L2

4 H 212
r

L2
ln

r

L2
1S 11

r

L2D
3 lnS 11

r

L2D J . ~26!

Naturally, it is UV divergent. For largeL it becomes

W@r ,L#5
1

8p H 2L21r ln
L2

r
1r 1O~L22!J , ~27!

exhibiting a quadratic and a logarithmic divergence.
Recalling the discussion on the general structure ofW in

the previous section, we see that we are in the case of lo
rithmic corrections to a pure scaling form. Nevertheless, i
easily derived that in the present case all the divergence
L cancel in the relative entropy, yielding in the infinite cu
off limit

Srel5W~r !2W~0!2r
dW

dr
5

r

8p
, ~28!

in accord with the dimensional regularization result. To
precise, in this cutoff regularization the quadratic divergen
cancels by the substraction ofW(0) and the logarithmic di-
vergence by the Legendre transform, while in dimensio
~or analytic! regularization the quadratic divergence does
appear but there is a pole inW, equivalent to the logarithmic
term in L, that cancels inSrel .

Another interesting and exactly soluble example is the
Ising model on a square lattice, with

W~ß!52
1

2 E
2p

p d2k

~2p!2 ln@cosh2~2 ß!2sinh~2 ß!

3~coskx1cosky!#2 ln 2 ~29!

per lattice site@13#. The critical point occurs for the value o
ß such that the argument of the logarithm vanishes wh
kx ,ky→0, namely, when

f ~ß!ªcosh2~2 ß!22 sinh~2 ß!50, ~30!

e

6-5
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with solution ßc5arcsinh(1)/25 ln(A211)/2'0.440687.
The expansion off (ß) nearßc yields

f ~ß!58~ß2ßc!
218A2~ß2ßc!

31O~ß2ßc!
4.

If we definem by

m2a2516~ß2ßc!
2 ~31!

and redefine the momentumk as k5ap, with a the lattice
spacing, we obtain near the critical point that

W~ß!52
a2

2 E
2p/a

p/a d2p

~2p!2
ln@~p21m2!a2/2#. ~32!

In other words, the corresponding field theory is describ
by a W per unit area given by minus that in Eq.~25!. It
agrees with the well known description of this model
terms of a free Majorana fermion theory. However, the re
tive entropy is not minus that of the Gaussian model, si
now the coupling constant is proportional tom instead of
being r 5m2, since Eq.~31! implies thaty51. One obtains

Srel~r !5W~r !2W~0!2m
dW

dm
52

m2

8p S 11 ln
m2

L2D .

~33!

It diverges in the limit of infinite cutoff, which cannot b
removed to obtain a universal value. Nevertheless, form
!L, where the field theory makes sense, the relative entr
in Eq. ~33! is monotonic. This is not surprising because
coincides near the CP with the exact relative entropy of
square-lattice Ising model, represented in@1#.

B. Derivation of finite-size quantities

The expression ofW on a lattice of finite sizeL13L2 is
obtained by replacing the integrals in Eq.~22! or Eq. ~29!
with sums over discrete momenta with step 2p/L1 and
2p/L2. When L1 ,L2@a we approach the thermodynam
limit and the sums become integrals plus some finite-s
corrections. However, the double limitL1 ,L2→` is compli-
cated to study, and it is better to consider finite-size effe
only in one direction. Alternatively, it is sometimes conv
nient to consider a non-symmetrical lattice with differe
coupling constants in the horizontal and vertical directio
In particular, the quantum 1D Gaussian or Ising models o
chain of sites can be obtained as the extreme anisotr
limit of the 2D Gaussian or Ising models@14,15#. The CP is
still where the correlation length diverges but now corre
tions are calculated only between horizontal spins. Now
partition function isZ5Tr e2bH, which can be represente
in the continuum limit as a functional integral onR3S1 with
b51/T the length of the compact dimension. It may be go
to recall that hereb has no relation with the coupling con
stant, unlikeß in the classical 2D models above, and pla
instead the role of RG parameter.

Let us first consider the specific ground-state energy
the 1D lattice system. For the Gaussian model in the c
tinuum limit it is given by
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L dp

2p
Ap21m2

5
1

4p
@LAL21m22m2logm1m2log~L1AL21m2!#.

~34!

WhenL→` the leading terms are

e05
1

8p H 2L212m2ln
2L

m
1m21O~L22!J . ~35!

It is quadratically divergent. The logarithmic divergence
universal, that is, independent of the regularization meth
and corresponds to the logarithmic divergence ofW@r #, Eq.
~27!. However, note that theL2 and m2 terms are nonuni-
versal and their coefficients change from21 and 1 in Eq.
~27! to 2 and 2 ln 211, respectively. We shall show below
that the specific ground-state energy of the Ising mode
given by the same formula, except for an overall minus si
in agreement with its free energy in Eq.~32!.

In order to compute finite-size effects we first consider
behavior of the ground state energy on a segment of lengL
at zero temperature, connected with the well-known Casi
effect. It provides the finite-size correctionC(x) that we
need. To see this, let us take the specificW, according to Eq.
~12!,

2 ln Z

Lb
5e0~L,m!1

C~bm!

b2
, ~36!

and interchange the roles ofL and b: we have that at low-
temperature

2 ln Z

Lb
5e0~L,m!1

C~Lm!

L2
. ~37!

Since E52] ln Z/]b, this formula also gives the specifi
ground-state energy on a segment of lengthL at zero tem-
perature. The term proportional toL is the bulk ground-state
energy considered above and the finite-size correction is
Casimir energy. In other words, the Casimir energy provid
the universal functionC(mb).

1. Direct calculation of the Casimir energy

The Gaussian model with periodic boundary conditi
has a ground state energy

E05
1

2 (
n52`

` AS 2pn

L D 2

1m25
m

2
1 (

n51

` AS 2pn

L D 2

1m2.

~38!

WhenL→` one recovers the continuum integral of Eq.~34!.
However, if we are interested in the vicinity of the critic
theory we may consider the limitL→` but with mL small.
This limit is known to provide a method to calculate the CF
6-6
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central charge. Then the series can be evaluated by exp
ing the square root in powers ofmL and interchanging the
sums. We obtain

E05
m

2
1

2p

L (
l 50

` S 1/2

l D S mL

2p D 2l

z~2l 21!

5
m

2
1

2p

L Fz~21!1
1

2 S mL

2p D 2

z~1!

2
1

8 S mL

2p D 4

z~3!1•••G . ~39!

SinceE0 is divergent, the result amounts to azeta-function
regularization of it. The first term, withz(21)521/12,
yields c51. The next term, proportional toL, accounts for
the bulk terme0. Despite the regularization, it is still diver
gent, sincez(z) has a simple pole atz51. This pole is
equivalent to a logarithmic divergence in regularizatio
with a UV cutoff, as generally happens when comparing a
lytic with cutoff regularizations. The way to realize it for th
case is to restrict the sumz(1)5(1

`(1/n) up to some large
numberN. Then

z~1!.(
1

N
1

n
5 logN1g1OS 1

ND . ~40!

The connection with the regularization provided by cons
ering the system on a discrete chain of spacinga can be
made takingN5L/a, the number of sites. An alternativ
procedure of regularization is first to segregate the diverg
bulk part, with the form~34!, from the finite-size corrections
by using the Euler-MacLaurin formula~Appendix A!.

The Ising model on a closed chain is amenable to
analogous treatment. Its ground state energy forT.Tc is like
Eq. ~38! but with negative sign and with wave numbers th
are odd powers ofp/L @16#

E052
1

2 (
n52`

` AS ~2n11!p

L D 2

1m2

52 (
n50

` AS ~2n11!p

L D 2

1m2. ~41!

The expansion in powers ofmL yields

E05
2p

L (
l 50

` S 1/2

l D S mL

2p D 2l

~1222l 21!z~2l 21!

5
2p

L F1

2
z~21!2

1

2 S mL

2p D 2

z~1!1
7

8 S mL

2p D 4

z~3!1•••G .
~42!

The central charge isc51/2 and the bulk term is minus tha
of the Gaussian model.
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2. Thermodynamic calculation of finite-size effects

Now we concern ourselves with the deviation of the e
ergy at non-zero temperature from the ground-state ene
or, in other words, the finite-sizeb correction to the free
energy. For the Gaussian model it can be expressed as
free energy of the ideal Bose gas constituted by the elem
tary excitations,

b
F

L
5e0b1E

2`

` dp

2p
ln~12e2be(p)!, ~43!

where the one-particle energy ise(p)5Ap21m2. This for-
mula can also be obtained by an explicit calculation of
finite-size corrections in the 2D lattice model@17#. When
m50 it can be used to calculate the central charge@8#. Nev-
ertheless, an expansion in powers ofm2 is not advisable: The
ensuing integral at the next order is IR divergent; that is
say, the expression~43! is nonanalytic atm250. Fortu-
nately, the integral can be computed by changing the in
gration variable toe and expanding the logarithm in powe
of e2be. We obtain

b
F

L
5e0b2

m

p (
n51

`
1

n
K1~nmb!, ~44!

where K1(x) is a modified Bessel function of the secon
kind.

We now define the dimensionless quantityx5mb and
perform a small-x expansion, which yields

b
F

L
5e0b2

1

pb H z~2!2
p

2
x2

x2

4 S ln
x

4p
1g2

1

2D1O~x4!J
~45!

5e0b2
z~2!

pb
1

m

2
1b

m2

4p S ln
mb

4p
1g2

1

2D1O~m4!,

~46!

where O(x4) denotes an analytic remainder of fourth orde
The term withz(2)5p2/6 gives the usualm50 part and
central chargec51. The non-analyticity inm2 of the inte-
gral for F ~43! manifests itself in the appearance of them/2
and logarithmic terms. The former also appears as a z
mode contribution in the Casimir energy~38!. The full
x-power series is obtained as follows: The series of Bes
functions~44! is slowly convergent and one may apply to
a Mellin transform to convert it into a rapidly convergent o
@18#. Fortunately, its Mellin transform is a power series ofx.
Furthermore, after replacingb with L it coincides with Eq.
~39! from l 52 onwards. Of course, this should be expec
on the grounds of symmetry on a torus under interchang
its sidesL and b, that is, modular symmetry. Incidentally
the exact free energy on the torus can be computed w
some more sophisticated mathematics@19,17#. Its two cylin-
der limits yield Eq.~39! or Eq. ~46!. Nevertheless, to show
the modular invariance of the exact expression on the toru
not easy: It can be done performing its expansion in pow
of the dimensionless modular invariant parameterm2A, with
A the area of the torus, but it is very laborious.
6-7
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It is interesting to relate the logarithmic term in the e
pansion ofF ~46! with the Casimir energy calculated in th
previous subsection. It was remarked there that thez(1) di-
vergence can be interpreted as a logarithmic divergenc
the cutoff. Adding the logarithmic terms ine0 andC(x) one
obtains

x2

4p S ln
Lb

2p
1g D'

x2

4p
logN, ~47!

whereN is the number of lattice sites in the time directio
We see that it is equivalent to thez(1) divergence~40! under
the interchangeb↔L.

Now we can calculate the specific entropy

S

L
51

p

3b
2

1

2
m1b

m2

4p
1O~m4!. ~48!

It has no IR singularity atm→0 as opposed to the fre
energy or the energy. The last term is just twice the rela
entropy of a box of sizeLb, Eq. ~28!, times b. In more
generality, for the Gaussian model there is a relation betw
both types of entropy, namely,

Srel~r ,b!5W~r ,b!2W~0,b!2r
]W~r ,b!

]r

5Srel~r !1
1

b2 S C~x!2C~0!2r
]C

]r D
5

r

8p
2

S

2Lb
1

p

6b2
. ~49!

For other models there is no direct relation between the
entropy and the 2D relative entropy.

The derivation of thermodynamic quantities for the Isi
model is analogous. The free energy is that of an ideal Fe
gas

b
F

L
5e0b2E

2`

` dp

2p
ln~11e2be(p)!

5e0b1
m

p (
n51

`
~2 !n

n
K1~nmb! ~50!

where the one-particle spectrum close to the critical poin
again e(p)5Ap21m2. This integral is computed like the
bosonic one. The small-m expansion yields

b
F

L
5e0b2

1

pb H 1

2
z~2!1

x2

4 S ln
x

4p
1g2

1

2D1O~x4!J
5e0b2

z~2!

2pb
2b

m2

4p S ln
mb

4p
1g2

1

2D1O~m4!. ~51!

As well as for the Gaussian model, it is possible to obtain
x-power series by the Mellin transform of the series of Bes
functions ~50!. Similarly, after replacingb with L it coin-
cides with Eq.~42! from l 52 onwards.

In this case the specific entropy is
04500
in

e

en

D
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e
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S

L
51

p

6b
2b

m2

4p
1O~m4!. ~52!

For the Ising model the relative entropy is related to t
energy, instead ofS:

Srel~m,b!5W~m,b!2W~0,b!2m
]W~m,b!

]m

5Srel~m!1
1

b2 S C~x!2C~0!2m
]C

]mD
52

m2

8p S 11 ln
m2

L2D 2S E

L
2e0D1

p

12b2
.

~53!

We see that for free theories we can derive explicit f
mulas for the free energy—and hence for the entropy—
well as perturbative expansions. Moreover, both the 1D
tropy and the 2D relative entropy give rise to monoton
central charges, as we proceed to study, introducing be
for convenience the stress tensor.

C. Expectation values of the stress tensor
and entropic C theorems

The previous section has shown the calculation of fin
size corrections for various quantities of free models w
concepts pertaining to the 1D quantum theories, namely,
lattice Casimir energy or the statistics of quantum gases.
same results can be attained with the use of 2D Green fu
tion techniques, through the calculation of expectation val
of the complex components of the stress tensor, taking
account their relation with thermodynamic quantities alrea
remarked. We shall rewrite the monotonic functions in
suitable way to confirm these relations, hence explaining
structure of those functions. We thus start with the expr
sions of the expectation values,QªTa

a and TªT112T22

22iT12, in the cylinder geometry, as derived by 2D Gre
function techniques~Appendix B!:

^Q&56
m2

2p S K0~0!12(
n51

`

~6 !nK0~nmb!D , ~54!

^T&56
m2

2p S K2~0!12(
n51

`

~6 !nK2~nmb!D , ~55!

with the same sign convention as before. The modifi
Bessel functions are divergent at zero, namely,K0(0) is
logarithmic divergent andK2(0) is quadratically divergent
These are UV divergences, like those already considered
W, which can be removed by normal order.

Using the recursion relations satisfied by the Bessel fu
tions we can write the free energy~44! or ~50! as
6-8
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b
F

L
5e0b7

m2b

2p (
n51

`

~6 !n@K2~nmb!2K0~nmb!#

52
b

2
^T2Q&5b^T22&, ~56!

showing its relation with the expectation values of the co
ponents of the stress tensor, an example of the relations
tained at the end of Sec. I. Notice that it implies a defin
form for e0, to be compared with Eq.~27! or Eq. ~35!. ~See
Appendix B.!

Similarly, we can calculate

]W

]r
5

]e0

]r
6

1

2p (
n51

`

~6 !nK0~nmb!5
1

2r
^Q&, ~57!

E

L
5e06

m2

2p (
n51

`

~6 !n@K2~nmb!1K0~nmb!#

5
1

2
^T1Q&5^T11&. ~58!

The first equation is just a particular case of the expressio
the derivative ofW with respect tor as the expectation valu
of the ‘‘crossover part’’ of the action@1#, sinceQ is propor-
tional to it. Having the values ofW and its derivative avail-
able we further obtain for the Gaussian model that

Srel~r ,b!5Srel~r !1
p

6b2
2

r

2p (
n51

`

K2~nmb!

5Srel~r !1
p

6b2
2

1

2
^:T:& ~59!

and for the Ising model that

Srel~r ,b!5Srel~r !1
p

12b2
1

r

2p (
n51

`

~2 !n

3@K2~nmb!1K0~nmb!#

5Srel~r !1
p

12b2
2

1

2
^:T1Q:&. ~60!

We have substitutedSrel(r ) for e0(r )2e0(0)2r ]e0(r )/]r
ande0(r )2e0(0)2m]e0/]m, respectively. One obtains th
finite expectation values of normal-ordered stress ten
components owing to the subtraction ofW(0,b).3 Using the
connection between the 1D entropy and the stress ten
S/(Lb)5^:T:&, pointed out at the end of Sec. II, one ca
directly obtainS.

3One must be careful when evaluating]e0(r )/]r . Sincee0(r )5
7(m2/2p)@K2(0)2K0(0)# ~Appendix B!, it may seem that
e0(r )2r @]e0(r )/]r #[0. However,K2(0) andK0(0) contain anm
dependence, because of regularization.
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Thus the dimensionless relative entropies for the Gaus
or Ising models, respectively, are

C~x!5
p

6
1

x2

8p
2

x2

2p (
n51

`

K2~nx!, ~61!

C~x!5
p

12
2

x2

8p F11 ln
x2

~Lb!2G1
x2

2p (
n51

`

~2 !n

3@K2~nx!1K0~nx!#. ~62!

The other monotonic quantity,C̃5S/(Lm), is essentially
common and can be written as

C̃~x!5
x

p (
n51

`

~6 !n11K2~nx!, ~63!

which is, of course,C̃5(b/m)^:T:&, according to the expres
sion of ^T& ~55!. Series expansions ofC, C andC̃ are derived
from Eq.~46! or Eq.~51!. BothC andC̃ are plotted in Fig. 1.
The Ising-modelC is for the value (Lb)2510000. It is use-
ful to recall that in general (Lb)2;N, the number of 2D
lattice sites in a box of sideb.

IV. INTERACTING MODELS

For interacting models, the free energy is in principle n
available in closed form. Nevertheless, one can perform
perturbative expansion. In two dimensions one can take
vantage of the information provided by the methods of co
formal field theory~CFT!, namely, the non-perturbative d
mensions and correlations of fields at the critical point; th
one speaks ofdeformed CFT’s. For example, one can per
form a perturbative expansion around the critical point. T
approach, calledconformal perturbation theory, is well
suited for the calculation of an entropy relative to the critic
point; the perturbation parameter islby. The expansions in
Eqs. ~46! and ~51! are instances of it and can be obtain
from the respectivec51 or c51/2 CFT @19#. The logarith-
mic term in them is due to UV divergencies. The analysis
UV divergences is done by examining the behavior of in
grals of correlators for coincident points. If 1,y,2 there
are no UV divergences in the perturbative expansion a
furthermore, this expansion is arguably convergent@5,6#. In
contrast, wheny,1 a finite number of terms will diverge
The condition 1,y,2 agrees with the non-perturbativ
regularity condition for the relative entropy found befor
Conformal perturbation theory is considerably powerful b
at any rate, the perturbative expansion only converges f
limited range oflby, while we are interested in the behavio
of thermodynamical quantities over the entire range of
coupling constant.

Some 2D models are partially soluble with the thermod
namic Bethe ansatz~TBA! @20#. In particular, models for
which the interaction is of purely statistical nature lend the
selves to a derivation of closed expressions for the free
ergy and the entropy similar to the ones for free field mode
albeit more complicated. Hence, the entropicC theorems can
6-9
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FIG. 1. C and C̃ for the Gaussian and Ising models. In the latter modelC is for Lb5100.
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be explicitly verified for them. The Bethe ansatz assume
factorized form for the wave functions and hence an exp
sion for the energy as a sum of contributions of independ
quasi-particle levels, though these quasi-particles have n
trivial exchange properties. To determine the structure
these levels is a complicated business but it dramatic
simplifies in the thermodynamic limit, constituting the bas
of the TBA. This method is nonperturbative in nature a
provides thermodynamical quantities over the entire rang
the coupling constant. In principle, the TBA yields, further
the universal finite-size correction functionC(x), a contribu-
tion proportional tox2, which is interpreted as a UV-finite
bulk term and therefore has been calleduniversal bulk term
@21,5#. Therefore, in this section we redefineC(x) to include
this universal bulk term.

In spite of the virtues of the TBA approach, the TB
equations themselves are by no means easy to solve and
customary to resort to numerical calculation to obtain
coefficients of the series expansion inbm. In this sense the
TBA approach is not superior to perturbation theory in
region of convergence, with which one obtains analytic
pressions for these coefficients. It is only in the case
purely statistical interaction where the TBA approach is d
nitely superior, for one can then solve the TBA equatio
algebraically. Thus we treat this case first. It applies to m
els of Calogero-Sutherland type, which represent the dyn
ics of spinons or other non-interacting particles with fra
tional statistics. We can calculate the entropy and check
is monotonic with respect tob. However, it is beyond our
means to calculate expectation values of the stress ten
since the expression of the stress tensor is not available
second place, we shall treat the general interacting integr
case by the numerical solution of the TBA equations a
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compare with the results of conformal perturbation theor
Last, there is an alternative to conformal perturbati

theory or the TBA that can be applied to any model, name
numerical finite-size scaling on a chain@22#. Like the TBA,
by its own nature it is not limited to a restricted range ofbm.
However, the numerical calculations required to obtain sim
lar accuracy to that of the TBA are prohibitive in practic
Thus this brute-force method is not actually effective to co
puteoff-critical quantities and no use will be made of it her

A. Models with purely statistical interaction

The role of fractional statistics in condensed matter ph
ics, as a generalization of the regular bosonic or fermio
symmetry properties under particle exchange, has been
recognized@23#. Its modern version has given rise to th
concept of anyons. As it happens, this type of statistics le
to highly non-trivial correlations between particles which a
difficult to disentangle and indeed constitute what has b
called statistical interaction. The form of this interaction c
be best realized by transforming the particles to stand
fermions or bosons with a peculiar interaction. Models w
purely statistical interaction are usually referred to as gen
alized ideal gases@24,25#. It is customary to consider the fre
particles as fermions and parametrize the statistics by a n
berg, such that the maximum number of particles that can
in a single fermion momemtum level is 1/g. For no statistical
interactiong51. If g51/n the single-fermion levels can ac
comodaten particles and in the limitn→` the statistics
becomes bosonic. Some models with apparently complex
teractions can be transformed into generalized ideal gase
occurs for the Calogero-Sutherland models@26# or their lat-
tice version@27#.
6-10
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Therefore, models with purely statistical interaction a
interesting systems and, in addition, sufficiently complex
be a suitable benchmark for our irreversibility theorem. W
consider the spin-SU(2) level-one Wess-Zumino-Witten La
grangian in the bosonic representation,

H5E dx@~] tf!21~]xf!2#. ~64!

The spinon field is defined in terms of the bosonic field
c65exp„6( i /A2)f…, where the sign stands for spinon p
larization @27–30#. It is a free theory, which can also b
expressed as a free fermionic theory, but we are going to
some non-trivial manipulations on it. First, we ‘‘simplify’
the model by keeping just one spinon polarization, ‘ ‘1 ’ ’
say. The physical way to achieve this is to introduce a v
strong magnetic field. Now we have asemionicCFT with
central chargec53/5 @31,32#, which is certainly an interact
ing theory. However, its partition function is known, bein
the total partition function of theSU(2) level-one Wess-
Zumino-Witten model restricted to vanishing fugacity
‘‘ 2’’ spinons, z250, @29#. The thermodynamic quantitie
can be obtained with the help of the TBA.4

The second change consists of the addition of some
able coupling, which perturbs the model away from critic
ity and allows one to probe the behavior of the entropy. If
impose that the interaction remains purely statistical,
only possibility is to give mass to the semions: We can
place the dispersion relatione(p)5upu with e(p)
5Ap21m2. We assume that this perturbation fulfills th
conditions for the application of the monotonicity theore
~4! and we shall see that it is easily implemented within
TBA approach and yields expressions which can be trea
by algebraic methods. As a side remark, note that the m
sive relativistic dispersion relation differs from the no
relativistic one assumed in the original Calogero-Sutherl
model. Therefore, if we want to keep to the physics rep
sented by this model, we must interpret the mass as a pa
eter unrelated to the real semion mass. For compariso
can be shown that the 2D Dirac Lagrangian with a mass t
appears as a low-energy effective Lagrangian for~non-
relativistic! conducting electrons in one-dimensional meta
but the Dirac mass is actually related to the electric poten
~@30# Chap. 13!. Regardless of the precise physical interp
tation, we will consider the theory of relativistic massiv
semions as our first interacting field theory to investigate
properties of the entropy.

1. Application of the TBA to the semion gas

The full power of the TBA shows in the calculation o
finite size corrections to thermodynamic quantities. One
tains for the critical semion gas@32,33#

4Derivation of thermodynamic quantities from CFT usually d
mands a thermodynamic approach in the sense of@32#, be the TBA
or Schoutens’ recursion method@31#.
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c5
6b

p2 E
0

`

dk logF21z21zA41z2

2 G
5

6

p2
LSA521

2 D 5
3

5
, ~65!

with z5e2be(k), e(k)5uku. We give the semions a mas
replacing the dispersion relatione(k)5uku with e(k)
5Ak21m2. Then

C~bm!52
b

p E
0

`

dk logF21z21zA41z2

2 G
52

2b

p E
0

`

dk arcsinhF z

2G
52

2b

p E
0

`

dk(
n50

`

~2 !n
~2n!!

22n~112n!n! 2F z

2G (2n11)

52
2b

p
m(

n50

`

~2 !n
~2n!!

24n11~112n!n! 2

3K1@~2n11!mb#. ~66!

One can easily obtain its perturbative expansion in power
mb by expanding first the modified Bessel function,

K1@z#5
1

z
1 ln

z

2

z

2 (
k50

` S z2

4 D k

k! ~k11!!
2

z

4

3 (
k50

`

@c~k11!1c~k12!#

S z2

4 D k

k! ~k11!!
~67!

5
1

z
1

z

2 S ln
z

2
1g2

1

2D1O~z!2, ~68!

wherec(x) is the digamma function. However, we will con
tent ourselves with extracting the bulk part,

C~x!ubulk52
2x

p (
n50

`

~2 !n
~2n!!

24n11~112n!n! 2

3F z

2 S ln
z

2
1g2

1

2D G
z5(2n11)x

52
x2

p FS1ln
x

2
1S21S1S g2

1

2D G
52

x2

A5p
ln x10.104744x2, ~69!

where
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S15 (
n50

`

~2 !n
~2n!!

24n11n! 2
5

1

A5
,

S25 (
n50

`

~2 !n
~2n!!

24n11n! 2
ln~2n11!

520.0536114.

Corresponding tog51/2 statistics, in a segment of leng
L the semion momenta of completely filled single-partic
levels arekn5(2p/L)un/211/4u with nPZ. Hence, theap-
proximateground state energy is like in Eq.~41! but with
wave numbers that are odd powers ofp/(2L) @31,32#,

E052
1

2 (
n52`

` AS ~2n11!p

2L D 2

1m25

2 (
n50

` AS ~2n11!p

2L D 2

1m2. ~70!

Now, an expansion in powers ofmL would yield a wrong
um

x-

04500
Casimir energy, owing to the approximated nature of
ground state energy. We can however see that the bulk t

1

L E
0

`

dne~n!522E
0

` dp

2p
Ap21m2 ~71!

is twice that of fermions, as corresponds to the double av
age occupation number of semions. We can compare
approximate bulk non-analytic term in Eq.~71! with the ex-
act result of the TBA~69!. According to the combined form
of IR and UV logarithmic terms~47! that we expect from Eq.
~71!, we have

C~x!ubulk52
x2

2p
ln x10.390536x2. ~72!

We see that the first term of the sumS1 reproduces the co
efficient in this approximation, 1/2, but the total coefficien
1/A5.0.447214, is slightly smaller.

The total non-analytic part is now an infinite series, o
tained from
2x

p (
n50

`

~2 !n
~2n!!

24n11~112n!n! 2
F ln

z

2

z

2 (
k50

` S z2

4 D k

k! ~k11!!
G

z5(2n11)x

5
1

p
ln

x

2 (
k50

`

(
n50

`

~2 !n
~2n!! ~2n11!2k

24n11n! 2

x2k12

4kk! ~k11!!
1analytic

5
1

pA5
ln

x

2 S x21
x4

25
2

7x6

750
1

353x8

225000
2

2651x10

22500000
2

619619x12

16875000000
1O~x2!7D1analytic. ~73!
the
T.
,
cu-
ich
n,
that
ws
a
ed
are
-
we

ntu-
n-

l
ues
t is
Interestingly, the series coefficients seem to be rational n
bers.

The entropicC functions are easily derived from the e
pression ofC ~66!

C~x!5
p

10
2

x2

2A5p
logS x2

~Lb!2D 2
x2

p

3 (
n50

`

~2 !n
~2n!!

24n11n! 2
$K2@~2n11!x#

1K0@~2n11!x#% ~74!

and

C̃~x!5
2x

p (
n50

`

~2 !n
~2n!!

24n11n! 2
K2@~2n11!x#. ~75!

They are plotted in Fig. 2. We use again the valueLb
5100.
- B. Deformed two-dimensional conformal field theories

A general class of theories amenable to derivation of
finite-size quantities of interest is that of deformed 2D CF
Since CFT provides theexactdimensions of relevant fields
the results of conformal perturbation theory are more ac
rate in 2D than those of ordinary perturbation theory, wh
on the other hand is plagued with IR problems. In additio
many models admit integrable deformations, in the sense
the existence of an infinite number of conservation la
forces theS-matrix to factorize. Then the TBA provides
way to derive thermodynamic quantities. Many deform
CFT are known to be integrable and similar methods
applicable to all@34#, although their complexity can be con
siderable for the most sophisticated models. Therefore,
shall choose one of the simplest cases. It should be i
itively clear how to generalize the computation of the e
tropic quantities to other integrable models.

The natural~and oldest! generalization of the Ising mode
consists of taking a site variable which can take three val
instead of two, constituting the three-state Potts model. I
6-12
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critical for ßc5 ln(A311)/3 and its thermal critical exponen
is n55/6, implying thaty56/5. This model has been lon
known to be integrable and it has been long~but not as long!
known to be describable in terms of particles with fraction
statistics, which are generalizations of the Ising fermions
are called parafermions. This quasi-fermionic representa
is in terms of two conjugate parafermions carryingZ3
charges11 or 21 and spin 2/3, which are massless at t
CP point but acquire a mass forT.Tc . Their interaction is
purely statistical at the CP but it is more complicated
criticality. However, it is still integrable and its thermody
namic properties can be found with the TBA. It yields

C~bm!52bmE
2`

` du

2p
cosh~u!ln~11e2e(u)!, ~76!

which is apparently similar to the formula for free fermio
but nowe(u) are unknown functions to be determined wi
the TBA equations. The concreteS-matrix elements of this
model lead to the TBA equation

e~u!5bm coshu1
2A3

p E
2`

`

du8
cosh~u2u8!

112 cosh 2~u2u8!

3 ln~11e2e(u2u8)!. ~77!

It can be solved numerically by an iterative algorithm, yie
ing a set of numbers which can be displayed in a table@21#.
Hence, according to the general formula~16!,

C~x!5
pc

6
1C~x!2

5x

6

dC~x!

dx
, ~78!

FIG. 2. C (Lb5100) andC̃ for semions.
04500
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where the bulk relative entropySrel(m) does not appear sinc
it is now implicitly included. It is derived from the universa
bulk free energy, which can be calculated exactly, yieldin
2A3x2/6 @21#; hence,Srel(m)5A3m2/9. We can calculate
the monotonic functionsC and C̃ numerically as well. They
are plotted in Fig. 3.

The TBA solution forC(x) can be expressed as a pow
series inx12/5 plus a bulk term@21#,

C~x!52
p

6F4

5
2

A3x2

p
10.339688x12/520.00326095x24/5

10.000114199x36/525.1120931026x48/5

14.0113831027x1221.3869131028x72/5

17.8336310210x84/524.56310211x96/5

12.66310212x108/521.68310213x241O~x!132/5G .
~79!

Its radius of convergence can be estimated todx12/5514.3
60.4, that is,dx.3.0.5 This expansion~79! can also be
obtained by conformal perturbation theory@21#. The series
coefficients are then expressed in terms of integrals of c
elators of the perturbing conformal field, that is, the therm
field of dimensiondF54/5 in the three-state Potts mode
The computation of these integrals is very laborious, exce

5A plot of this series sharply shows that it is very close to t
TBA result for x&3 and quickly departs from it for largerx.

FIG. 3. C and C̃ for the 3-state Potts model.
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for the first ones, which in some cases admit explicit expr
sions as series@5#. A related computational method is th
truncated conformal-space approach, in which one only
takes a finite dimensional subspace of the Hilbert spac
possible states, namely, a number of low-lying states, to
merically diagonalize the Hamiltonian. In the limit of in
creasing the number of states, this approach is equivale
a numerical evaluation of the integrals giving the coefficie
of the perturbation series@5#. We do not think it is worth-
while to dwell in detailed computational methods since
simple numerical integration of the TBA equation~77! suf-

fices to show the monotonicity ofC and C̃.

V. DISCUSSION

For a 2D field theory, one can introduce two monoton

dimensionless functions, namely,C and C̃, derived from the
2D relative entropy and the 1D quantum entropy, resp
tively. It has been shown thatC is universal when the cou
plings are strongly relevant, that is, with dimension 1,y
<2. They include the thermal perturbations of the unita
minimal models of conformal field theory~CFT!, except for
the Ising model, which we have also studied, notwithsta

ing. In contrast,C̃ is always universal, since it only depend
on the universal finite-size correction to the free ener
Given that general theorems may not be particularly usefu
the quantities that they involve cannot be computed in pr
tice, considerable time and effort has been devoted to c

pute C and C̃ for a variety of models. In consequence, w
have been able to show for them that those functions
monotonic.

The dimensionless entropiesC andC̃ play a similar role to
Zamolodchikov’sc function, constraining the structure of th
RG flow, but they have a clear physical origin, unlik
Zamolodchikov’sc function. The existence of a monoton
function is usually argued on the grounds of the irreversi
nature of the RG flow, which in the coarse-grained formu
tion implies a loss of information on microscopic degrees
freedom@10,35#. This idea inspired the adaptation of Bolt
mann’sH theorem to the RG flow in our previous work@1#.
It has been shown here that this philosophy gives rise to
entropic functionsC andC̃, which are computable for a wid
range of models. The non-perturbative computation
Zamolodchikov’sc function is much harder and, in fact,
does not seem to have been carried out for any fully in
acting model. For all these reasons, the entropicC functions
proposed here arguably provide a new perspective in
long-standing problem of the irreversibility of the RG. Ne
ertheless, in comparison with Zamolodchikov’sc theorem, it
must be remarked that universality ofC, the entropic function
more similar to Zamolodchikov’sc function, has been
proved only for deformations of the critical theory by field
with dimension 0<dF,1 ~strongly relevant!, while
Zamolodchikov’s theorem covers the entire range ofdF .

Our entropic monotonicity theorem for the dimensionle
relative entropy is
04500
s-

of
u-

to
s

e

c-

y

-

.
if
c-

-

re

e
-
f

e

f

r-

e

s

x
dC
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5
b2

y E d2z^:Q~z!::Q~0!:&. ~80!

Even though it resembles Zamolodchikov’sc theorem it is
not quite the same: The correlator ofQ ’s in the second term
appears integrated. Furthermore, a detailed calculation
Zamolodchikov’s functionc(m) for the free boson or fer-
mion shows that they differ from the respective values
C(m)5C(x)ub51. The essential discrepancy actually has
geometrical origin: A crucial step in the proof of Zamolo
chikov’s theorem relies on the assumption of rotation sy
metry @21#, which does not exist on the cylinder. Therefor
the theorem does not hold on it. However, the absence
rotation symmetry is traded for the appearance of a new
rameter, the widthb, which replaces the distance to the o
gin in Zamolodchikov’s theorem and is used in the deriv
tion of the entropic monotonicity theorems.

The reason for the introduction of a finite geometry is
have an IR scale to define a dimensionless relative entro
We have used the cylinder because of its thermodyna
interpretation. Of course, other finite geometries are possi
For example, one can use a sphere. Its radius is then th
scale. The advantage is that rotation symmetry is prese
on the sphere and Zamolodchikov’s theorem holds. With t
new geometry the monotonicity theorem for the dimensio
less relative entropy would still involve an integral of th
correlator ofQ ’s but a relation ofC with Zamolodchikov’sc
function seems more feasible. At least in conformal pert
bation theory one should be able to perform that integra
terms of the IR scale and a direct comparison with Zamol
chikov’s theorem could be possible.

The existence of several monotonic functions prompts
question of which one is preferable. It is intuitively clear th
a unique definition of RG monotonic function is not possib
The RG itself is not unique and one can choose a variety
RG parameters. Correspondingly, ifC(x) is monotonic a
monotonic change of the independent variablex will trans-
form it into a different monotonic function. We might the
consider what happens at the boundary,x50 or x→`. The
point x50 is the RG fixed point and it is sensible to define
function related to it, as are the dimensionless relative
tropy C or Zamolodchikov’sc function. The dimensionless
absolute entropyC̃(x) is defined irrespective of the fixe
point and actually diverges there. We could as well dema
good behavior in the limitx→`. This condition is satisfied
by C̃ but may not be satisfied byC, owing to the bulk term. It
is quite possible that a minor modification of the definition
C may remove the bulk term and make it well behaved in
limit x→` as well as atx50.
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APPENDIX A: CALCULATION OF FINITE-SIZE
CORRECTIONS WITH THE

EULER-MACLAURIN FORMULA

For free models the energy series can be evaluated
the Euler-MacLaurin summation formula,6

(
n50

`

e~n!5E
0

`

dne~n!1
1

2
e~0!2

1

12
e8~0!1

1

720
e-~0!

2
1

30240
e (v)~0!1•••, ~A1!

where e(n) are single-particle energies. For the Gauss
model the first term can be proved to be proportional toL
with the change of variablep52pn/L and leads to the in-
tegral in Eq.~34!. One can see that all the odd derivatives
e(n) vanish atn50 because it is an even function. It
natural, because the finite size corrections are exponent
negligible whenL→` and therefore nonanalytic: Every de
rivative pulls out a power of 2p/L and the subsequent serie
of powers of 1/L must have vanishing coefficients.

In the scaling zonemL!1 the finite-size corrections ar
not negligible, despite the previous argument. To evalu
these corrections we can nevertheless make use of the E
MacLaurin expansion but using a non-zero value for
point at which the derivatives are computed, in the followi
form:

(
n51

`

e~n!5E
1

`

dne~n!1
1

2
e~1!2

1

12
e8~1!1

1

720
e-~1!

2
1

30240
e (v)~1!1•••. ~A2!

Now the series can be transformed into an expansion in p
ers of mL. The reason why that trick works can be unde
stood in several ways. One is that the derivativese (2k11)(n)
as functions ofm are ill behaved for smalln. They converge
to the null function forn50 but nonuniformly. It is actually
safer to choose the argumentn of the derivatives larger than
in Eq. ~A2!, n53 or 4 say. Then the Euler-MacLaurin ex
pansion converges very fast and the terms displayed ab
suffice to match the coefficients in Eq.~39! with about ten
decimal places.

Alternatively, one may focus on the fact that form50 the
function e(n)}unu is singular atn50; its derivatives even-
tually diverging there. This is naturally an IR divergenc
which does not exist formÞ0. However, one must be care
ful to evaluatee(n) at nÞ0 before takingm50, or in other

6This is a common method to convert sums to integrals. Howe
since the function summede(n) diverges whenn→` a preliminary
regularization is required. A convenient form is to sum up to so
arbitrary numberN@1, which for a chain can be the number
sites. This UV regularization renders meaningful the formal m
nipulations that follow. However, we do not need to be definite
the UV regularization for our focus is on universal quantities.
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words, one must introduce an IR cutoff and evaluate
Euler-MacLaurin expansion at that point. Of course, the
sult shall be inpependent of the precise value of the cut
although its convergence properties are greatly affected b
Within the realm of classical mathematics, it is interesting
recall that Legendre met a similar problem when he
tempted to evaluate elliptic integrals numerically with t
Euler-MacLaurin expansion. Since the integrand is an e
function of the integration variable at the limits 0 andp/2,
the odd derivatives vanish and the Euler-MacLaurin form
implies that the elliptic integral is equal to any of its recta
gular approximations. The paradox was solved by Poiss
who showed that in this case the remainder term does
tend to zero as the number of terms increases and henc
series does not converge. If we further consider that the b
free energy of the Gaussian or Ising models on a finite ch
can be expressed as elliptic integrals, we may appreciate
Legendre actually encountered an IR divergence without
ing aware of the need of regularization.

For the Ising model~41! the odd derivatives ofe(n) do
not vanish atn50 but it also is necessary to choosen53 or
4 for fast convergence.

APPENDIX B: CALCULATION OF ŠTab‹ ON THE
CYLINDER FOR FREE MODELS

For free field theories the expectation values of the co
ponents of the stress tensor can be expressed in terms o
Green function. Thus for a bosonic field

^Q&5m2^w2&5m2 lim
z→0

Gb~z,z̄!. ~B1!

We use complex notation,z5x11 ix2. The Green function
on a cylinder,Gb(z,z̄) is nontrivial. Its Fourier transform
includes a sum over discrete momenta in the compact di
tion,

Gb~z,z̄!5
1

b (
n52`

` E
2`

` dk

2p

ei (vnx11kx2)

vn
21k21m2

, ~B2!

where the allowed frequencies for bosons arevn
5(2p/b)n. It can be transformed into a more managea
form by the use of the proper-time representation@36#. In
this representation the integral overk is elementary and one
is left with the sum overn and the integral over proper time
After performing a convenient Poisson resummation one
tains

Gb~z,z̄!5 (
n52`

` E
0

` ds

4ps
e2m2s2uz2nbu2/4s. ~B3!

Since the Green function on the plane is just

G`~z,z̄!5
1

2p
K0~muzu!,

r,

e

-
n
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which is then50 term in the sum~B3!, this sum can be
interpreted as the solution of the field equation for a po
source by the method of images. It can be expressed in te
of the Jacobi theta function

u3~n,t!5 (
n52`

`

unqn2/2, u5e2p in, q5e2p i t,

as

Gb~z,z̄!5E
0

` ds

4ps
e2m2s2uzu2/4su3S 2

ix1b

4ps
,

ib2

4psD .

~B4!

Then the Poisson resummation realizes the duality prop
of u3.

The formalz→0 limit of Gb is easily taken,

Gb~0!5 lim
z→0

Gb~z,z̄!5 (
n52`

` E
0

` ds

4ps
e2m2s2(nb)2/4s.

~B5!

It contains the logarithmic divergence

G`~0!5
1

2p
K0~0!5E

0

` ds

4ps
e2m2s.

Taking into account the integral representation of modifi
Bessel functions

Kn~z!5
1

2 S z

2D nE
0

` ds

s
s2ne2s2z2/4s, ~B6!

one obtains

Gb~0!5
1

2p (
n52`

`

K0~nmb!. ~B7!

The computation of̂T& requires a little more work, for

^T&524^~]zw!2&54 lim
z→0

]z
2G~z!. ~B8!

From Eq.~B3!,

]z
2Gb~z,z̄!5 (

n52`

` E
0

` ds

4ps
S z̄1nb

4s
D 2

e2m2s2uz2nbu2/4s.

~B9!

Hence,

]z
2G~0!5 lim

z→0
]z

2G~z!

5 (
n52`

` E
0

` ds

4ps

~nb!2

16s2
e2m2s2(nb)2/4s

52
m2

8p (
n52`

`

K2~nmb!. ~B10!
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It contains a quadratic divergence inK2(0).
For Majorana fermions one could start from the know

expressions of their stress tensor but it is simpler to cons
them as bosons with antiperiodic boundary conditions a
use again the Fourier transform~B2! with allowed frequen-
cies vn5(2p/b)(n1 1

2 ). Before Poisson resummation,Gb
can be expressed in terms of

u2~n,t!5 (
n52`

`

un11/2q(1/2)(n11/2)2.

The Poisson resummation transformsu2 into its dualu4,

u4~n,t!5 (
n52`

`

~2 !nunqn2/2,

which is like the bosonicu3 but with an additional alternat
ing sign.

We can write the final result in a condensed notation,

^Q&56
m2

2p (
n52`

`

~6 !nK0~nmb!, ~B11!

^T&56
m2

2p (
n52`

`

~6 !nK2~nmb!, ~B12!

where the upper signs stand for bosons and the lower s
for fermions.

However, to have well defined expressions we must f
ther introduce a regularization that removes the divergen
in K0(0) and K2(0). It is customary to begin defining
normal-ordered composite fields, namely,

:Q:5m2:w2:, ~B13!

:T:524:~]zw!2:, ~B14!

in the sense of a point splitting regularization and a subst
tion of the divergent part, computed with the Wick prescr
tion. It amounts to the substraction ofG`(0)
561/(2p)K0(0) or 4]z

2G`(0)56m2/(2p)K2(0). Point
splitting on a lattice yields

K0~0!52S ln
ma

2
1g D1O~a2!, ~B15!

K2~0!5
2

m2a2
2

1

2
1O~a2!. ~B16!

Consideringa;1/L we have, for example, that according
Eq. ~56!

e056
m2

4p
@K0~0!2K2~0!#

;6
1

4p H 22L21m2ln
2L

m
1m2S g2

1

2D1O~L22!J .

~B17!
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