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Classical properties of 1/4 Bogomol'nyi-Prasad-SommerfiBllS dyons were previously well understood
both in the field theory context and in the string theory context. Its quantum properties, however, have been
more difficult to probe, although the elementary information of the supermultiplet structures is known from a
perturbative construction. Recently, a low energy effective theory of monopoles was constructed and argued to
contain these dyons as quantum bound states. In this paper, we find these dyonic bound states explicitly in the
N=4 supersymmetric low energy effective theory. After identifying the correct angular momentum operators,
we motivate an anti-self-dual ansatz for all BPS bound states. The wave functions are found explicitly, whose
spin contents and degeneracies match exactly the expected results.

PACS numbgs): 14.80.Hv, 11.15-q, 11.30.Pb

[. INTRODUCTION second BPS equation determines the relative part of the elec-
tric charge of monopoles uniquely.

In the N=4 supersymmetric Yang-Mills theories, there  One may regard 1/4 BPS configurations as deformed 1/2
can be 1/2 Bogomol'nyi-Prasad-SommerfiéBPS and 1/4 BPS configurations when the additional and independent
BPS configurations. The precise nature of these states deliggs expectation is turned on. When this second Higgs ex-
pends on the asymptotic values of six Higgs fields in thepectation is quite small compared to the first, the deviation of
theory. When the Higgs expectation values have only on¢he 1/4 BPS configurations from the 1/2 BPS configuration is
independent component, only 1/2 BPS configurations can amall. In such cases, the authéngth C. Lee have shown in
pear. Classically, 1/2 BPS configurations are made of monaa recent papef6] that one can describe the low energy dy-
poles or dyons, and their electric fields are proportional tonamics of both 1/2 BPS and 1/4 BPS configurations with an
their magnetic fields. When the Higgs expectation valuegffective nonrelativistic Lagrangian.
have two or more independent components, 1/4 BPS con- The kinetic part of the Lagrangian is given by the moduli
figurations can also appear, which are all dyons whose elespace metric of the 1/2 BPS configurations. The potential is
tric charges are not proportional to their magnetic chargealso present, and is given by the square of the norm of a
[1-3]. triholomorphic Killing vector field related to an unbroken

Any 1/2 BPS configuration of a given collection of mono- U(1) gauge symmetry. The size of this attractive potential is
poles is specified by its moduli parameters, and the low enproportional to the square of the additional Higgs expecta-
ergy dynamics of these 1/2 BPS monopoles are determineibn value. This effective Lagrangian can be interpreted as
by the metric on the manifold spanned by these moduli palow energy dynamics of 1/2 BPS monopoles with attractive
rameters[4]. On the other hand, as shown in Refg,3], potential, in other words, and the 1/4 BPS configurations
solutions to 1/4 BPS equations can be obtained in two stepshould be realized as BPS bound states of monopoles with
First one solves for a purely magnetic soliton, which may beadditional electric quantum numbers.
regarded as 1/2 BPS in a technical sense. Then one solves for In Ref.[6], the full N=4 supersymmetric low energy ef-

a certain linear combination of gauge zero modes in thifective Lagrangian is written. This is a sigma model with
purely magnetic background. Curiously enough, one campotential that has extended complex supersymmetry with a
build the electric part of the 1/4 BPS dyons from such acentral term and, as usual, the wave functions can be inter-
gauge zero mode. Because the existence of gauge zeppeted as differential forms on the moduli space. The BPS
modes is guaranteed for any 1/2 BPS monopbleany 1/4  equation was found and translated to the language of differ-
BPS configuration is again specified by the moduli paramential forms.
eters of the corresponding 1/2 BPS monopole configuration. The simplest nontrivial 1/4 BPS configurations appear as
Given a fixed set of moduli parameters, the solution of thecomposites of two distinct fundamental magnetic monopoles
in SU(3) gauge theory. Furthermore, the eight-dimensional
moduli space of these two monopoles is known exactly.

*Electronic address: dshak@mach.uos.ac.kr From Ref.[2], several facts are known about this case. First
"Electronic address: kimyeong@phya.snu.ac.kr of all, classical 1/4 BPS configurations are made of two 1/2
*Electronic address: pilin@kias.re.kr BPS dyons at rest, whose mutual distance is determined by
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their relative electric charge. Also, the supermultiplet struc+tial such thatV xw(r)=—r/r3. The range ofy is [0,4w].
tures of all such dyons have been found by the perturbativerom now on, we will suppress the scale by setting
method around the 1/2 BPS states of the zero relative electrie 1. The resulting monopole moduli space metric is then
charge, where the nonzero relative charge states are con-
structed by exciting certain massive excitations on 1/2 BPS
configurations. Grei=
In this paper, we reconstruct these 1/4 BPS dyons as
quantum bound states of two distinct @Ymonopoles inthe up to an overall scale. This Taub-NUT spage,,, has the
low energy dynamics described above. We construct all suctopology of R*=R*"xS®. The eight-dimensional total
SU(3) dyons. We also recover the phenomenon of instabilitymoduli space is then given by
found in Refs[1,2]: The bound state wave function loses its

1
1+ - dr?+ [dy+w(r)-dr]?, (3)

1+ 1k

normalizability exactly at the point where the instability 3 RYX Mg
should set in. Furthermore, we explicitly show that each M=RX zZ )
(stable dyon comes in the same supermultiplet as found in
Ref.[2] whereZ is the identification map

The plan of the paper is as follows. In Sec. I, we briefly
discuss the moduli space of a pair of distinct monopoles in ( )= ) n ATy ®)
SU(3) theory. In Sec. lll, we review briefly the supersym- XTX) =\ XTI em X )

metric Hamiltonian and BPS conditions on wave functions

as shown in Ref[6]. In Sec. IV we discuss the angular For later convenience, we will make another choice of
momentum and an ansatz for the BPS wave functions. I§oordinates involving Euler angles &,

Sec. V we solve the BPS equations. In Sec. VI, we conclude 1
with some comments. [dr2+r20§+r20§]+1+1k 05’ (6)

Orel=

1
1+
;

II. A PAIR OF DISTINCT MONOPOLES

) _ 3 i
IN THE SU(3) GAUGE THEORY where theo,’'s are one-form frames o6° and satisfy the

canonical relationship,
ConsideN=4 SU3) gauge theory spontaneously broken
to U(1)?. When the six Higgs expectations are all collinear,
the theory contains two distinct types of fundamental mono-
poles, which we will labekr and 8. The low energy interac- o ) )
tion betweena and B monopoles can be described by the More explicitly, we may write these one-forms in terms of
moduli space dynamics. There are four collective coordi-SU(2) Euler angles as follows:
nates for each monopole, three for its position, and one for
the U1) phase. We call their positions and phases y; ,
i=1,2, for @ and B monopoles, respectively. Let us param-
etrize the masses of these monopolegiagand u,. We are
?gr;grﬁ)&?;;mg the gauge coupling constant in all subsequent os=dy+cosode. ®)
The exact nonrelativistic effective Lagrangian has beenrne ranges of), 7,y are respectivelyr, 2w, 4. Let us de-
found to be a sum of the Lagrangians for the center of masgne an orthonormal basis* by
and the relative motiofi7]. As there is no external force, the

1
da'azzeabca'b/\ac. (7)

o= —sinyd#+cosy sinfdd ¢,

o,=cosydf+siny sinfdd ¢,

center of mass Lagrangian is a free one: %=1+ 1/rdr,
(pat o), 1 - 1=r?
Lo = X2+ 2’ 1 W =\r"+roq,
cm 2 2(M1+M2)XT ( )

o w’= r2+r02,
where the center of mass positionXds= (u1Xy+ woXo)/ (g
+,u2_) and t_he center of mass phase)(i$=X1_+ Xx2. The r
relative motion between them is more complicated and de- = 17773
scribed by the Taub-NUTNewman-Unti-Tamburinpmetric
[8,9], and has the Lagrangian

(€)

Because the Taub-NUT manifold is a hyperkfer 4 mani-

1 fold, its curvature is anti-self-dual with an appropriate choice

"2 : “12 of orientation.

r+ Mz(lﬂ,ﬂr)[X*W(”'r] ' When the Higgs vacua is slightly misaligned, the two
2) monopoles are attracted to each otfid)|. The effective low

energy potential{ of this static force has been found in Ref.
where the relative position is=x,— Xy, the relative phase is [6] for all multimonopole configurations in aNl=4 gauge
X=2(m1x2— mox1)! (m1+ u2), andw(r) is the Dirac poten- theories. Specializing to the case of a pair of distinct mono-

M 1
p— +_
> 1

L= ur
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poles in SW3), the relative part of this potential is given by cially with p’s that are canonical momenta of the coordinates
a squared norm of the Killing vector fielg, up to an overall ~ z's. The remaining canonical commutation relations are

factor
[z#,p,]=i8Y,

{0l Wt =8"88,p. (16)

wherea is a measure of Higgs misalignment. The interactingThe Lagrangiar(12) is invariant under thé&N=4 supersym-
part of the two monopole dynamics is dictated by an effecimetry transformations,
tive Lagrangian, whose bosonic part is

_1 2 Jd d 10
Ure|—§a ax axl’ (10)

L L L 802" = ey, 17
Lie=5 ZM7H U= 5| 1+ = |12 : —
rel z(grel),uv rel 2( I’) 5(0)1,0’“:—iZM)/OE—F/]f)\ElﬁVl//}\_)/E,G'U“E, (18)
2

1+1k)°

. . 1 _
[X+W(r)'r]2_ E (ll) 5(a)Z’U“:I(a)p“VE(a)l//V, (19)

1
AT

. . . A 0 v - o
Note that the potentiall,, increases from zero at origin to 5(a)(I(a)#v¢ )=—izty e(a)_rfxz(a) pI(a)AcrE(a)‘/’p’z”
a?/2 at infinity. This behavior allows new bound states of the — yGPre (20)
dynamics which would not have been possible &+ 0. > (@)

Among these are certain dyonic states that preserve 1/4 Qfnhere e and €(s) @re spinor parameters. In order to obtain

field theory supersymmetries. The purpose of this paper is tg percharges, we define supercovariant momenta by
reconstruct these 1/4 BPS dyons as BPS quantum bound

states in the low energy dynamics of monopoles. i — 0.8
WMEp/.L_ EwAB,u.w}y w ’ (21)
ll. SUPERSYMMETRY AND BPS BOUND

. . . . . where wAB# is the spin connection. The correspondiNg
We begin by repapﬂulatmg generic properties Of. the —4 SUSY generators in real form are then
=4 supersymmetric quantum extension of the bosonic effec-

tive actlon[6,1'1,1.2. Its form is rgther similar to the usual Q,= ﬁﬂ,ﬁi()’%’sdf“)aGw (22)
supersymmetric sigma model action but supplemented by an
attractive bosonic potential together with its fermionic @ 7@ g i (OyT @1 g
counter part. These potentials are determined by a single Qa Wamut1(Y7Ys 34 )QG(LZ,S)
Killing vector field G. The supersymmetric Lagrangian writ-
ten with real fermions is which satisfy the following SUSY algebra with a central ex-
L e = o . S tension of
E:E(gﬂvzﬂzv+|gﬂvw#;}/ Dtl/fv+§Rp,Vpu"/,’ulppl//Vl/f0 a a . 0
, — {Qa.Qpt={Q% QY } =28,5H+2i(Y"75) 4 Z,
_g,u G,uGV_ D,uGleM'YSIﬂ )i (12) (24)
where * is a two-component anticommuting Majorana Q Q(Ba)}zo (25)
spinor andy®=o,, ys=03, and y=4¢"9°. In the case of
relative dynamics of the two S8) monopolesG is equal to {Q@ ,Q(Bb)}zo (a#b). (26)

ad, . As required for theN=4 supersymmetry, the metric

here is hyper-Khler, endowed with three complex structures The Hamiltonian{ and the central chargg read
7@~ (a=1,2,3) that satisfy

1/ 1
@70 = — 53by abor(c) 13 == pv n
€ (13 H=>5 \/577#\/69 7,+G,G
D,Z®@¥,=0. (14)
_ - T 0.V p 00 Y v
For the sake oN=4 supersymmetry, the Killing vectd® 4 RuvpaV" V4 Py 7+ DGy ysd” |
=a- K should be triholomorphic; namely its action preserves
the three complex structures via (27)
7@=0, 15 i _
Lo (15 Z=G“wM—E(DﬂGV)¢“7O¢/1”. (28)

where £ denotes the Lie derivative.
Upon quantization, the spinonﬁA=eﬁ¢“ with vielbein It is easily checked that the central chargeindeed com-
eﬁ commute with all the bosonic dynamical variables, espemutes with all SUSY generators.
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For spectrum analysis, SUSY generators in complex form

are more useful. Introducing®= (1/\/2) (¢4 —i %), and de-
fining Q=(1/12)(Q,—iQ,), one finds

Q=¢tm, +ie**G,, (29
Ql=¢*#m,—ip’G,, (30)

which generates the following simple algebra:
{Q.Q"={Q®, Q@M =2n, (3D

{Q,Q}={Q®,Q@}=—{Q",Q"} = - {Q¥T, QT =2i z,

(32
{Q,Q@}={Q",Q@}=0, (33
{Q®@,QP}={Q@T Q™ =0 (a#b). (39

PHYSICAL REVIEW D 61 045003

(d=ig)Q=Fi(6—GN)Q, (44
where we use the same symitafor both the Killing vector
and the one form obtained by contraction with metric. By
solving this first order system, we should recover all 1/2 BPS
and 1/4 BPS states of the underlying Yang-Mills field theory.

IV. ANGULAR MOMENTUM AND EIGENSTATES ON  S®

A. Supermultiplet structure of 1/4 BPS dyons

1/4 BPS dyons have been constructed in several different
guises. The first was as three-pronged strings ending on D3
branes[1], while the field theoretical construction was as
exact classical solitorf2,3]. Neither of these was convenient
for finding their supermultiplet structures; there are subtleties
of the respective moduli space dynamjd#,15. The third
method, also present in RdR], was a perturbative one. In
this setup, one assumes very small electric coupling and

It is easy to read off the BPS condition for quantum statesvorks in vacua where the 1/4 BPS dyons would be stable.
that preserves half of the supersymmetries. Depending on thEne construction proceeds by finding the lowest quantum

sign of central charge, we find
(Q¥iQ"H[®)=0,

so that the given state may saturate the condifiba = Z.

(35

We can express this BPS condition in a more geometric
fashion by transcribing the wave function to differential

forms on the moduli spadd 3]. Note that

[im,,¢"1=—T",¢", (36)
lim, o3 1=T"% 05, 37
{et @r}=0y. (38)

Furthermore, the wave function has the following general

form,
1
|q)>:2p anLl_“#p(zﬂ)(Pﬂl...(Pﬂvp|0>, (39)

@*#|0)=0, (40)

with an inner product defined by
1
<<1>|q>’>=f dz@% a(mrw)*n;l._.ﬂp. (42)
The coefficients),

may be regarded as those ofpaform. In this language,
where we interpret* and <pr as a natural cobasisz* and

,are completely antisymmetric and

excitation modes around a purely magnetic background. The
lowest are massless moduli. The next lowest is massive and
turns out to induce quantized electric charges to the system
when excited, and produces many degenerate states with the
ame electromagnetic charges. In the simplest casetq8
agnetic charge in S@3), the total degeneracy for dyons of
relative chargey#0 is
25x|2q]. (45
Note thatq is quantized in half-integers. The highest spin of
this supermultiplet igq|+ 1. The relative charge, defined
through the following expression of electric charge, that one
may excite on the system is
g=(n+qg)at(n—q)p, (46)
where 21 is an integer. The consistency with Dirac quanti-
zation condition, along with the spectrum of the original field
theory, actually demands thatt q are integers. Thus quan-
tization ofn is correlated with that of the relative chargea
half-integralg comes with a half-integrai, and an integrad|
comes with an integrab.
When we reconstruct the dyons as bound states in the low
energy dynamics, this correlation naturally emerges from the
form of total moduli space

RIX M,

_p3
M=R>X -

(47)

where the quotient action & is crucial. In this paper, we

a natural basig/dz*, one finds that the following replace- will not dwell on this point. It suffices to say that all dyonic

ment can be made:

o, —d, i(p*'“ﬂ"uﬂ—é, (42

QD*MGM—>iG, |Z—>£GEd|G+|Gd, (43)
wherei g denotes the natural contraction of the vector figld
with a differential form. The BPS equation now becomes

states of relative chargg can be built, provided that the
relative part of the wave function is found.

Once we consider the wave function to be a tensor prod-
uct of two parts, one over the relative moduli space, and the
other over the center-of-mass moduli space, the degeneracy
is more naturally organized as,

2*X[(|29]+ D) +(|2a])+ (|2aD +(]2a] - 1)].  (48)
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The common factor 2follows from the low energy dynam- quantized at half-integers. Its origin as a gauge rotation gen-
ics trivially. Among the low energy degree of freedom, thereerator also tells us that its eigenvalue should be identified
are four bosonic and eigliteal) fermionic coordinates that with the relative charge [9].
are associated with the center-of-mass motion and are thus These isometries of the Taub-NUT manifold naturally
free. These eight fermions act as four pairs of massless hagenerate symmetries of the low energy dynamics. In the ab-
monic oscillators, whose excitations lead t6=216 degen- sence of potential terms due ®=ak, this is especially
eracy and the subsequent supermultiplet structurdl-e# clear since the Lagrangian is completely determined by the
vector multiplet. metric alone. Furthermore, the geometrical interpretation of
The rest of the degeneracy factors must arise from théhe wave functior|Q) as differential form() suggests that
relative part of the dynamics, as we construct the 1/4 BP$hese symmetries act db geometrically. In fact, it is easy to
dyons as bound states of monopoles. As the above decorsee that the Noether charge associated with each of these
position suggests, the spin content of the supermultipleisometries acts on wave functions and/or differential forms
found in Ref.[2] is such that the bound state wave functionsas a Lie derivative. Thus, for the rotational &) the above
over the relative moduli space are in four multiplets of an-operatorJ, may be regarded as the symmetry generators.
gular momenta; one with=|q|, two with |=|qg|—1/2, the  And so is—i L for the relative 1) gauge symmetry.
last with |=|g|—1. Thus, finding these BPS bound states Symmetries generated by these vectors remain symme-
explicitly presupposes detailed understanding of angular maxies of the low energy dynamics when we turn on the po-

mentum in the low energy dynamics. tential term determined b =akK. This is guaranteed be-
causel ;'s andK preserveG as in
B. Isometries and symmetries
: Ja(G)=0=Lk(G). (56)
Let us recall the geometry of the Taub-NUT manifold.

The metric is However, it turns out that thé,’s are not quite the physical

. L angular momentum. We will come back to this crucial point

- 2,,.2 2, .2 2 2 shortly.

1-1-r [dret+reoi+r 0'2]+1+1/r0'3, (49

C. Angular momentum on S and spin
where theo,’s are one-form frame 082 as in Sec. Il. The

Taub-NUT manifold has four Killing vectors, three of which
generate S(2) rotation of S®. These S(R) Killing vectors,
which we denote by.,, are[16]

As we observed from the known degeneracy of 1/4 BPS
dyons, the bound state with relative chamenust have an-
gular momentum that scales with linearly. How do we
realize such a multiplet? Note that the Taub-NUT space has

cosé the topology ofR*=R*"x S3. On theS?, the SU?2), which
Li=—singd,— COtGCOqu(?d,erﬁX, (50) itself is topologicallyS®, acts freely as translations, so func-
tions onS® naturally fall under various S@) representa-
sing tions. The angular momentum eigenf_unctionﬁrare well-
Lo=+cos¢ dy—cotsing dy+——--d,, known to those familiar with classic angular momentum
sing 5 theory, and are often denoted By, [17]. Abstractly, it is

defined as a finite rotation operator sandwiched between a
pair of eigenstates of total angular momentym

i — i .
The o,’s are easily seen to be invariant under the action of Dl 0,6, x)=N2j+1(j;K|U(0,¢,x)|ism),  (57)

the vector fields where we chose a normalization so that the norm is indepen-
dent ofj, m, ork. The definition makes it clear that andk

Ly (00)=0. (53 are bounded below and above hyj,
The operatod,= —i£, _ satisfies the usual SP) algebra. ji=m, k=-j, (58)
The fourth Killing vector corresponding to internal1) o )
gauge rotations of monopoles, to be denoted as and separated frornin integer steps. For any fixedor m,
the 2j + 1 functions indexed byn or by k would form a spin
K=d,. (54) | multiplet of SU(2) or SU(2), respectively, where the

isometry group of undeformes® is
This is precisely the triholomorphic Killing vector field that

enters the low energy dynamics. The vector fields do rotate SQ(4)=SU(2) X SU(2)R.

o, and o, among themselves, ) )
One might worry that the angular momentum eigenstates

—iLg(o1*ioy)=* (o *i0y), (55) of our low energy dynamics may have little to do with these

D functions. After all, a wave function should be regarded as

but the Taub-NUT metric itself is invariant under such rota-a differential form whose transformation properties are ge-
tions. Since the range of is 4, the eigenvalue of-iL¢ is  nerically more complicated than functions. However, as we
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pointed out earlier, the Taub-NUT manifold admits orthonor- M,=J,—S,, (63)
mal basisw*, all four of which are invariant undel,. This

means that as long as we construct the wave function and/avhich also span an S@) algebra. Note that, unliké,, M,
differential form in the basis spanned by the orthonormalcommute with theR chargesS, .

frame o*, its transformation property undek, originates We seem to have two possible choices of angular momen-
entirely from its coefficient functions. Thus we expect thetum;J,, which rotateR charge, and/l,, which do not. Both
generic form of the wave function could be written as commute with the Hamiltonian, but their commutators with

supercharges are quite a different matter. Unlderthe four
complex supercharges fall into a singlet plus a triplet, i.e.,

[Ja,Q]=0, [Ja,Quyl=i€anQ(c)- (64)

On the other hand, since the four complex supercharges be-
long to doublets unde8,, they must form doublets under

Q=2 DL (6,4, x)Aj(r;dr,a,), (59)

where the differential forms\;., have no explicit depen-
dence on the three Euler angles except througlertf® D!,

lerg rg;a_réégj 1, form a multiplet unded, with M, as well. More specifically, the following linear combina-
X . i
Given the definition ofD functions, it is not difficult to tions _
show that the other lower indices, namélyare eigenvalues Q. =Q+iQ®),

of the operator—id, . [Because the actual geometry of the Q_=iQW+Q®@ 65)
three sphere is deformed, the @Junder whichD!,,, k - '

=—J,—Jj+1,... ] would have formed a representation is form one doublet undevl, with [S;,Q.]=—1Q. , and the
no longer a symmetry.Sincej is bounded below byk|, a  second combination

large relative charge necessarily implies a large angular mo-

mentum; the degeneracy has to scale linearly with increasing Q.=iQW-Q®,
k=q. This is precisely the behavior we saw from the state ~ c~(3)
counting of Sec. IVA. Q-=Q-iQ™, (66)

However, there is something missing. Given a single ) ~ . ai=
eigenstate(), we expect to generate other physical statego_rm another doublet undei, with [8.3'Qi]._+5Qi'
related to it by acting with a SUSY charge, suchQsThe Since supercharges should carry physical spin 1/2, we sur-

underlying field theory tells us the new sta®Q) must be mise_ thatM, rather thanJ, should_ be interpreteq as the
fermionic and/or bosonic if2) is bosonic and/or fermionic. PhYsical angular momentum. We will denote the eigenvalues
In particular their physical spin should differ by 1/2. On the of M% by I(1+1).
other hand,Q itself is invariant under the action af,= D. Anti-self-dual ansatz
—ILL, and cannot impart additional angular momentum
guantum numbers, it seems.

The resolution of this dilemma is that we should modify
the angular momentum operator by adding a “spin” piece

Now we may proceed to write down the ansatz for dyonic
BPS bound states. The BPS equation is easily seen to be
invariant under the Hodge dual operation on the wave func-

. ) ‘tion. This property can be used to separate the self-dual part
The hyper-Kaler structure of the Taub-NUT manifold sup- ¢, the anti-self-dual part of the trial wave function, so a

plies such additional conserved quantities, fortunaEeB]._ BPS wave function should be either self-dual or anti-self-
Let Z® be the three complex structures as before. Define Aual

triplet of operatorsS, acting on fermions by Does the dynamics prefer one to the other? The Hamil-
i tonian has three kinds of potential terms. In addition to the
Sa:—IS?(P“(P* v (60) purely bosonic potentiab?, there are two more terms; one is
2 a fermion bilinear contracted witdG, while the other is a
fermion quadrilinear contracted with the Riemann curvature.
The salient point is thad G and the Riemann curvature are
i both anti-self-dual tensors on the Taub-NUT manifold. Be-
S,(dz*) = =7, @~ d 2", (61 cause of this, a self-dual ansatz will not be sensitive to some
2 spin-spin type long range interaction, which could be crucial
for the formation of bound states. In fact, the threshold
—i—I @n |9 62 bound_state of S(B) monopoles(whenGzO) is known to .
PR P L be anti-self-dual, while no such self-dual bound state exists
[9]. We expect that this behavior persists wherraK is
which is nothing but the action of the three complex struc-{urned on, which motivates us to look for 1/4 BPS dyonic
turesZ® up to a numerical factor. TheSy's span an S(2) ~ Pound states with an anti-self-dual ansatz.
R symmetry of theN=4 superalgebra.
The S,;’s themselves form a triple under tldg’s, and by
using this fact we may write down a new set of angular Nonetheless, there is no reason to preclude self-dual bound states
momentum generators, that do not saturate the BPS bound.

The pointwise action is, in geometrical terms,

d

S
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Let us start with anti-self-dual 2 forms. One interestingcharge to bej, while four form is ruled out subsequently by
property of anti-self-dual 2 forms on hyper-Klar 4 mani- the fact that the BPS wave functions we are looking for are
folds, is that they are of type (1,1), upon Hodge decomposiall anti-self-dual.
tions with respect to any one of three complex structures We will postpone discussion of the two remaining mul-
[19]. Recall that up to a numerical factor, the “spi8, act tiplets ofl=gq—1/2=0 to the following section. The corre-
on differential forms as complex structures do. Since anysponding multiplets are in odd forms, which can be found by
form of type (,n) is annihilated by the complex structure, acting supercharges dhﬁm and Q9 1. For these two mul-

m;q *
we conclude that the two-form part of an anti-self-dual an-tiplets, S, contribution to the phys?cal angular momentum
satz carries no spin. does not vanish.
On the other hand, the BPS equation connects even forms
with even forms, so an ansatz containing anti-self-dual two- V. DYONIC BPS BOUND STATES
form may contain, in addition, zero form and four form.
Neither carries “spin”: zero form is obviously invariant un- Here, we will solve for the dyonic BPS bound states ex-

derS,, and a four form is always proportional to the volume plicitly. Such dyonic bound state do not exist for all relative
form which is always of typer(,n). Thus, an anti-self-dual chargeq. Rather, it is known thalg| must be smaller than
even form is always “spinless’t equalsj. The angular de- the critical chargeq,,| [1,2,15, where

pendence of anti-self-dual even forms can be written entirely

in terms ofD functions and the basis of,’s. Jer= lima(K,K). (72
Of the four angular momentum multiplets, the case$ of r—o

=g=0 and ofl=gq—1=0 belong to this category. Fdr

=(q, the wave function should have the form With our current normalization(K,K) asymptotes to 1 at
infinity, so the critical chargey, is equal to the parametar

Oq=DmeAaat Dig-1)Aaiq-1- (67)  Thus we expect to find the BPS bound state, that is, a nor-

malizable and regular wave function that preserves half of

for any value ofm=q,q—1,...,—q, where differential |ow energy supersymmetry, only wheg|<|a|. Without

forms A’s can be written entirely withi and w* only. This  |oss of generality, we will take botla and ¢ to be non-
state has relative charge=0 if and only if the anti-self-dual negative.

form A’s satisfy Classical analysis of Ref1,2] leaves it unclear whether
) ] the bound state should exigit threshold whena=q. Clas-
1Lk gq=0, —iLkAgq-1=Agq-1- (68) sically two monopoles are infinitely separated, but quantum

mechanically, there may be a bound state with powerlike
decay. As the following analysis will show, however, no
such threshold bound state exists, exceptaferq=0 case.

Since the only charged combination one can build out of
and w* is w'*iw? which has*=1 charge respectively, the
A’s may contributex 1 to the total charge at most. Fur-
thermore, onlyw+iw? may enter sinceD{, -1y, Which
should accompany —iw?, does not exist for positive.

These considerations constrain possible form &f quite The case ofi=q—1 is the simplest. Starting with the
severely. We find that only the following choice is consistentansatz,
with the known quantum numbers of 1/4 BPS dyons,

A. The I|=g—1 multiplet

Qﬁnjq1=p(r)D:;qu_l(wO+iw3)A(w1+iwz), (73

A%I=f(r)+h(r) (o’ Nw*+ o \w?)
) (0 o A w2 A wd), 69) the BPS equation reduces to a single ordinary differential

equation forp(r),

Agqo1=[b(NI1](0°+i0®)/\(0*+iw?), d
(70 arp(r)=—A(r)rp(r), (74)

for I=q=0 BPS staté.

In case ofl =q—1 with =1, the anti-self-dual ansatz is Where the quantityA is defined to be the following combi-
even more restrictive. The only such ansatz consistent witRation:
known gquantum numbers is

1
Q83 = p(nDEL 1 (001N (@i, (7D Amal1r 7] 79

for m=q—-1,9—-2,...,1-q9. No zero form may appear a seful fact we employed is that
since a factor of ¢ +iw?) is necessary to make the electric
e (0’+iw®)/ \(w'+iw?) (76)

2We have defined the Hodge dual operation with respect to thés a (nonnormalizable harmonic two form. The equation is
volume form— 0’ A w*Aw?Awd. easily solved to give the wave function:
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Qﬂn.‘ql=D%qu_l)rq‘le‘(a‘Q)’(w°+iw3)/\(w1+iwz). turns out to be the only regular and normalizable solution.
’ (77) Using it to generate other radial functions, we find theq
bound states:
The wave function is exponentially small at langand nor-

malizable as long aa>q. This way, we have recovered the rde—(a-ayr 1
fact thata is the critical electric charge, beyond which no Qﬁn;quﬁan at|at— (0N + 0N\ w?)
bound state may exist. Furthermore, the wave function is r r
regular as long ag=1, which is also consistent with the fact
that! =q—1 BPS bound state exists only fqe1. +ao’N\oNe?/\w®
B. The I=q multiplet rde—(@-ar o 5 L )
_pY = i i
The ansatz fot=q=0 is a bit more involved; D177 A2 +iw”) N i),

(85
Qg.q=Dhd F(N +h(r) (0’ Ne?+ ' Aw?)
Again, we find that the wave function is normalizable as long

+1(N)(0®No* N0/ Nw?)]+D 1) asa>(q. The solution is regular at origin for all non-negative
0,: 3 1,: 2 g. We have recovered tHe=q multiplet of 1/4 BPS dyon of
X{[b(N/r](e"+iw’)/\(o-+iw?)}, (78 chargeq>0.
under which BPS equations reduce to The case oq_zo is a bit special, where the BPS state is a
purely magnetic bound state of the two monopoles. ¢or
d b d 2h b =0, the secon® function does not exist, and we must solve
af=—Ah+ 2 ah-l- m=—Af—r—z, a modified BPS equation. Nevertheless, the actual wave
function is also obtained by taking=0 limit of the above
d result as follows:
—b+Ab=q(f—h). (79
dr efar 1
0 _ 0 3 1 2
o="—Jla+|a+ — Nw >+ o'/
In order to solve Eq(79) for generalg>0, we proceed as Qop=15r|at|at | (@heTt oA
follows. By substituting
+aw’ N N\w?Awd|. (86)

f=u(r)e !, h=v(r)e /4 b:W(r)(%)efA,
(80) This BPS state actually preserves all supe_rcharges of I(_)W

energy dynamics. In fact, this is the lowest lying state of this

into Eq. (79), one obtains low energy effective theory. In the limit of aligned vacua
(a=0), this state also reverts to the threshold bound state of

d 0 N d 1412v=0 two monopoles found in Ref9], as it should.
ar Wm0 gt 2 g (MO0
C. The |=q—1/2 multiplets
d i i — g
—(WIA)=u—v. 81) The remaining tyvo multiplets df=q l_/12 can be found
dr most easily by actingQ on Q. , and Q7" found above.

FromQ% 1 we find 20— 1 states

We solve the first equation hy= C,+w with an integration ma

con_stantCl. The remaining eguations can be combined into (3= Q)F

a single second order equation, r'e _ (w1+iwz)/\(1+w°/\w3)Dﬂ{ql,1), 87
d{d[(1+r)w (1+r)w rer
dridr\ A | A —2C1r} =0 B e Q9. produces B+ 1 states

which is integrated with a second integration constasto

rie” (e 0 3 1IN, 2
a———— +io )N\ (1+ o N\
d [ (1+n)w (1+1)w ez LerienAldt e e’
— - =+2C,r—2C,. (83
dr A A
X \/ﬁDﬁnq-l—i(wl-l—ia)z)/\(l-i— wo/\wg)Dﬂ](q,l)].
Integrating this equation gives us three-parameter family of (88)

solutions. But, fortunately, the simplest possible solution,
These account for all@ states in the two=q— 1/2 multip-
(I+nw lets. (Alternatively we could have use@® instead ofQ.
=—TI y (84) . q,l q . -
A Since Q.4 and Q. are invariant under complex struc-
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tures, and sinc®® are essentiall rotated by the complex Since the two S(2) generatorsM, andS,, commute with

structures, the resultingcéstates will be simply the above €ach other,J, multiplets are constructed from multiplets

4q states with complex structut®, acting on then. and S multiplets by the rule of angular momentum addition.
However, becaus® is a singlet underJ,, the above On the other hand, we actually need to reconstiligieigen-

states form multiplets undek, instead of the physical angu- States fromJ, andS, eigenstates, for which we need to re-
lar momenturmM , . To reconstrucM , multiplets, we recall  Verse the procedure. Without delving into details of the com-

the relationship putation, we present the twie=q— 3 multiplets. Becauss;
commutes withM,, we can label the two multiplets by its
Ja=M,+S,. (89 eigenvalues;s. The first hass;=1/2:
|
iy Mdem@ar _ [q+m+1/2 _ _
(Q ))Eﬁ;q 1/2)=T (0°+i )/ \(1+ 0 N\w?) WD?WUZM_‘— (0 +iod)\(1+w' N\

X

g+m+1/2 q g—m-—1/2 41
m[)(mulzxq—l)Jr \/TD(m+1/2)(q—1) - (90)

The other multiplet has;= —1/2;

3 rQe_(a_q)r . q—m+1/2 . .
(Q(,))Eﬁ;q 1/2)=W (0 +i0)N\(1+ 0 Nw?)\/ 2q—+1D((]m71/2)q+ (0 +in?)\(1+w’\w®)

X

[q—m+1/2 q g+m-—1/2 4-1
2q(2q+1)D(m*l/2)(qfl)_ 2q Dim12)g-1)] |- (91

In both expressions, the indem takes valuesq—1/2q this Lagrangian to the original form wita>0. The corre-
-3/2,...—q+1/2. sponding transformation amounts to replacemenddf by

In a direct construction of these twie=-q— 3 multiplets  idx*. The solutions for—a are obtained if one replaces all
from thel=q or =q—1 multiplets, the role of the doublet «* of the above BPS solutions wiftw*. These exhaust all
supercharges in Eq65) and Eq.(66) can be easily identi- the possibilities.
fied. As a simple application of the angular momentum ad- For the remainder of the section, we would like to com-
dition rule, the operations of the doublets on the even-forrment briefly on some other aspects of the BPS states. With
multiplets will produce ¢+ 3)@(q—3)[=3®q] or (q— 3 an excited charge, the effective potential at large relative
@(g—3)[=3®(q—1)], but one may check that both=q separation tends taaf+qg?)/2. Since the energy eigenvalue
+1 andl =q- 2 multiplets vanish identically. Since the dou- of the BPS multiplets ijaq|, one finds the that binding
blet Q.. carries the spin eigenvalisg= — 3, the operation of energy of the dyons is
this doublet onl=q or I=q—1 multiplets produces thé 5
=(q— 3 multiplet with s;=— . Similarly, the application of _(a]=[a]) 92)

~ . . ) binding™ :
Q. results in thd =q— 1 multiplet with s;= + 2. nang 2

D. Characteristics of the BPS states which tends to zero as the charge approaches its critical
value, as one expects from its classical counterpart. Another

In the construction of the BPS bound states, we have lim- L :
characteristic is the separation of the two monopole cores. In

ited ourselves to the case of non-negative electric charge. For : o . .

) e classical limit, the separation between the two cores is
negatively charged bound states, we note the fact that the _

e . . - given byr,=[q|/(|a]—|q|). We expect the vacuum expec-
complex conjugation of a solution to the BPS equations i ation value
Eq. (44) gives another solution. Both the eigenvalues of the
charge andV ; reverse their signs under the complex conju-
gation. Thus the negatively charged soluti(fm',m;,q (ry= (Qfr|Q)
(g=0) is simply given by the complex conjugationﬂfm;q . (QQ)
We now turn to the case where the Higgs misalignment

parameter is negative. Whem is replaced by-a, only the  to approaclr, in the classical limit. For a given supermul-
fermionic term that couples to the Killing potential changestiplet with chargeq, the expectation values are found to be
its sign in the supersymmetric Lagrangidr). By the parity ~ dependent upon the angular momentum quantum number
operationyy—i~y%y or, equivalently,p—i¢, one can bring For instance, we find the expectation value

(93
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1 poles. Along the course of the construction, we have given a
:req( 1+ m) (94)  full account of the supermultiplet structures of the quantum
1/4 BPS dyons.

In this paper, we have focused on the BPS saturated states
in pursuit of the 1/4 BPS dyons. However, it is expected that
there exist spectra of other dyonic bound states that do not

(95  saturate the BPS bound. The problem of finding these non-
BPS bound states is quite involved. Nevertheless, there is
some additional information that might be of help. Super-

symmetric sigma models on the Taub-NUT geometry are

\ : . . known to allow additional conserved quantities of the
d|mens[on asy. S!nce the_dlffereme betwedn) andreq Runge-Lenz typd16,18. It seems quite plausible that this
scales inversely witlg or a=q,, it has to scale linearly

: ) new symmetry generalizes to the present low energy dynam-
with h: ics with potential. We have checked that the purely bosonic
(H—re part indeed aqlmits_such conser\_/ed_ qL_Jantities. S_uch addi-
r—‘ko(\/ﬁ)_ (96)  tional symmetries might be useful in finding the excited non-
eq BPS bound states.

Another aspect of the dynamics we did not discuss here is
the scattering of dyons. The supersymmetric quantum me-
chanics we used can be thought of as low energy dynamics
for 1/4 BPS dyons in two ways. First, it produces these dy-
VI. CONCLUSION ons as bound states. Second, it provides a framework where
interaction among these dyons can be studied in a quantum

In the low energy dynamics of 1/2 BPS monopoles, the

misaligned Higgs vacua induces an attractive potential ber-nEECh""r"C"’lI setting. The dynamics is admittedly more in-

tween monopoles of distinct types. This potential is cruciaIVOIVed than the usual_ moduli space dynamics, given the
in the formation of new dyonic bound states of monopoles,preserlce of the potential. It requires further study.

some of which preserve 1/4 of the supersymmetries in a field
theoretical sense or, equivalently, 1/2 of the supersymmetries
of the low energy dynamics of monopoles. Starting from the D.B. is supported in part by Ministry of Education Grant
full N=4 supersymmetric low energy effective Lagrangian,98-015-D00061. K.L. is supported in part by the SRC pro-
we expressed the BPS equation of the system in the languageam of the SNU-CTP and the Basic Science and Research
of the differential form, which was then further reduced to aProgram under BRSI-98-2418. D.B. and K.L. are also sup-
set of coupled first-order ordinary differential equations.ported in part by KOSEF 1998 Interdisciplinary Research
These equations were solved analytically, giving 1/4 BPSGrant 98-07-02-07-01-5. K.L. acknowledges Aspen Center
dyons as quantum bound states of two distinct3thono-  for Physics, where this work was completed.

_ ( 1
==y | 2pa)

for the | =|g| — 1 multiplet, and

~d _)_
(O={al=Tan | 1" 2[q7) ~"es

for thel =|g| — 1/2 multiplets. To restore the Planck constant
f, we simply observe that classical chamgédas the same

1+

1+ 1
2|q

Thus,(r) indeed approacheas=|q|/(|a]—|q|) in the clas-
sical limit.
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