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Quantum 1/4 BPS dyons

Dongsu Bak*
Physics Department, University of Seoul, Seoul 130-743, Korea

Kimyeong Lee†

Physics Department and Center for Theoretical Physics, Seoul National University, Seoul 151-742, Korea

Piljin Yi ‡

School of Physics, Korea Institute for Advanced Study 207-43, Cheongryangri-Dong, Dongdaemun-Gu, Seoul 130-012, Ko
~Received 15 July 1999; published 24 January 2000!

Classical properties of 1/4 Bogomol’nyi-Prasad-Sommerfield~BPS! dyons were previously well understood
both in the field theory context and in the string theory context. Its quantum properties, however, have been
more difficult to probe, although the elementary information of the supermultiplet structures is known from a
perturbative construction. Recently, a low energy effective theory of monopoles was constructed and argued to
contain these dyons as quantum bound states. In this paper, we find these dyonic bound states explicitly in the
N54 supersymmetric low energy effective theory. After identifying the correct angular momentum operators,
we motivate an anti-self-dual ansatz for all BPS bound states. The wave functions are found explicitly, whose
spin contents and degeneracies match exactly the expected results.

PACS number~s!: 14.80.Hv, 11.15.2q, 11.30.Pb
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I. INTRODUCTION

In the N54 supersymmetric Yang-Mills theories, the
can be 1/2 Bogomol’nyi-Prasad-Sommerfield~BPS! and 1/4
BPS configurations. The precise nature of these states
pends on the asymptotic values of six Higgs fields in
theory. When the Higgs expectation values have only
independent component, only 1/2 BPS configurations can
pear. Classically, 1/2 BPS configurations are made of mo
poles or dyons, and their electric fields are proportiona
their magnetic fields. When the Higgs expectation valu
have two or more independent components, 1/4 BPS c
figurations can also appear, which are all dyons whose e
tric charges are not proportional to their magnetic char
@1–3#.

Any 1/2 BPS configuration of a given collection of mon
poles is specified by its moduli parameters, and the low
ergy dynamics of these 1/2 BPS monopoles are determ
by the metric on the manifold spanned by these moduli
rameters@4#. On the other hand, as shown in Refs.@2,3#,
solutions to 1/4 BPS equations can be obtained in two st
First one solves for a purely magnetic soliton, which may
regarded as 1/2 BPS in a technical sense. Then one solve
a certain linear combination of gauge zero modes in
purely magnetic background. Curiously enough, one
build the electric part of the 1/4 BPS dyons from such
gauge zero mode. Because the existence of gauge
modes is guaranteed for any 1/2 BPS monopole@5#, any 1/4
BPS configuration is again specified by the moduli para
eters of the corresponding 1/2 BPS monopole configurat
Given a fixed set of moduli parameters, the solution of
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second BPS equation determines the relative part of the e
tric charge of monopoles uniquely.

One may regard 1/4 BPS configurations as deformed
BPS configurations when the additional and independ
Higgs expectation is turned on. When this second Higgs
pectation is quite small compared to the first, the deviation
the 1/4 BPS configurations from the 1/2 BPS configuration
small. In such cases, the authors~with C. Lee! have shown in
a recent paper@6# that one can describe the low energy d
namics of both 1/2 BPS and 1/4 BPS configurations with
effective nonrelativistic Lagrangian.

The kinetic part of the Lagrangian is given by the mod
space metric of the 1/2 BPS configurations. The potentia
also present, and is given by the square of the norm o
triholomorphic Killing vector field related to an unbroke
U(1) gauge symmetry. The size of this attractive potentia
proportional to the square of the additional Higgs expec
tion value. This effective Lagrangian can be interpreted
low energy dynamics of 1/2 BPS monopoles with attract
potential, in other words, and the 1/4 BPS configuratio
should be realized as BPS bound states of monopoles
additional electric quantum numbers.

In Ref. @6#, the full N54 supersymmetric low energy ef
fective Lagrangian is written. This is a sigma model wi
potential that has extended complex supersymmetry wit
central term and, as usual, the wave functions can be in
preted as differential forms on the moduli space. The B
equation was found and translated to the language of dif
ential forms.

The simplest nontrivial 1/4 BPS configurations appear
composites of two distinct fundamental magnetic monopo
in SU~3! gauge theory. Furthermore, the eight-dimensio
moduli space of these two monopoles is known exac
From Ref.@2#, several facts are known about this case. F
of all, classical 1/4 BPS configurations are made of two
BPS dyons at rest, whose mutual distance is determined
©2000 The American Physical Society03-1
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their relative electric charge. Also, the supermultiplet str
tures of all such dyons have been found by the perturba
method around the 1/2 BPS states of the zero relative ele
charge, where the nonzero relative charge states are
structed by exciting certain massive excitations on 1/2 B
configurations.

In this paper, we reconstruct these 1/4 BPS dyons
quantum bound states of two distinct SU~3! monopoles in the
low energy dynamics described above. We construct all s
SU~3! dyons. We also recover the phenomenon of instabi
found in Refs.@1,2#: The bound state wave function loses
normalizability exactly at the point where the instabili
should set in. Furthermore, we explicitly show that ea
~stable! dyon comes in the same supermultiplet as found
Ref. @2#

The plan of the paper is as follows. In Sec. II, we brie
discuss the moduli space of a pair of distinct monopoles
SU~3! theory. In Sec. III, we review briefly the supersym
metric Hamiltonian and BPS conditions on wave functio
as shown in Ref.@6#. In Sec. IV we discuss the angula
momentum and an ansatz for the BPS wave functions
Sec. V we solve the BPS equations. In Sec. VI, we concl
with some comments.

II. A PAIR OF DISTINCT MONOPOLES
IN THE SU „3… GAUGE THEORY

ConsiderN54 SU~3! gauge theory spontaneously brok
to U(1)2. When the six Higgs expectations are all colline
the theory contains two distinct types of fundamental mo
poles, which we will labela andb. The low energy interac-
tion betweena and b monopoles can be described by t
moduli space dynamics. There are four collective coor
nates for each monopole, three for its position, and one
the U~1! phase. We call their positions and phasesxi , x i ,
i 51,2, for a andb monopoles, respectively. Let us param
etrize the masses of these monopoles asm1 andm2. We are
suppressing the gauge coupling constant in all subseq
formulas.

The exact nonrelativistic effective Lagrangian has be
found to be a sum of the Lagrangians for the center of m
and the relative motion@7#. As there is no external force, th
center of mass Lagrangian is a free one:

Lcm5
~m11m2!

2
Ẋ21

1

2~m11m2!
ẋT

2 , ~1!

where the center of mass position isX5(m1x11m2x2)/(m1
1m2) and the center of mass phase isxT5x11x2. The
relative motion between them is more complicated and
scribed by the Taub-NUT~Newman-Unti-Tamburino! metric
@8,9#, and has the Lagrangian

Lrel5
m

2 F S 11
1

mr D ṙ21
1

m2~111/mr !
@ ẋ1w~r !• ṙ #2G ,

~2!

where the relative position isr5x22x1, the relative phase is
x52(m1x22m2x1)/(m11m2), andw(r ) is the Dirac poten-
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tial such that¹3w(r )52r /r 3. The range ofx is @0,4p#.
From now on, we will suppress the scalem by settingm
51. The resulting monopole moduli space metric is then

grel5S 11
1

r Ddr21S 1

111/r D @dx1w~r !•dr #2, ~3!

up to an overall scale. This Taub-NUT space,M0, has the
topology of R45R13S3. The eight-dimensional tota
moduli space is then given by

M5R33
R13M0

Z
, ~4!

whereZ is the identification map

~xT ,x!5S xT12p,x1
4pm2

m11m2
D . ~5!

For later convenience, we will make another choice
coordinates involving Euler angles onS3,

grel5S 11
1

r D @dr21r 2s1
21r 2s2

2#1
1

111/r
s3

2 , ~6!

where thesa’s are one-form frames onS3 and satisfy the
canonical relationship,

dsa5
1

2
eabcsb`sc . ~7!

More explicitly, we may write these one-forms in terms
SU~2! Euler angles as follows:

s152sinxdu1cosx sinudf,

s25cosxdu1sinx sinudf,

s35dx1cosudf. ~8!

The ranges ofu,t,x are respectivelyp,2p,4p. Let us de-
fine an orthonormal basisvm by

v05A111/rdr ,

v15Ar 21rs1 ,

v25Ar 21rs2 ,

v35A r

11r
s3 . ~9!

Because the Taub-NUT manifold is a hyper-Ka¨hler 4 mani-
fold, its curvature is anti-self-dual with an appropriate cho
of orientation.

When the Higgs vacua is slightly misaligned, the tw
monopoles are attracted to each other@10#. The effective low
energy potentialU of this static force has been found in Re
@6# for all multimonopole configurations in allN54 gauge
theories. Specializing to the case of a pair of distinct mo
3-2
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QUANTUM 1/4 BPS DYONS PHYSICAL REVIEW D61 045003
poles in SU~3!, the relative part of this potential is given b
a squared norm of the Killing vector field]x up to an overall
factor

Urel5
1

2
a2K ]

]x
,

]

]x L , ~10!

wherea is a measure of Higgs misalignment. The interact
part of the two monopole dynamics is dictated by an eff
tive Lagrangian, whose bosonic part is

Lrel5
1

2
~grel!mnżmżm2Urel5

1

2 S 11
1

r D ṙ2

1
1

2 S 1

111/r D @ ẋ1w~r !• ṙ #22
1

2 S a2

111/r D . ~11!

Note that the potentialUrel increases from zero at origin t
a2/2 at infinity. This behavior allows new bound states of t
dynamics which would not have been possible fora50.
Among these are certain dyonic states that preserve 1/
field theory supersymmetries. The purpose of this paper i
reconstruct these 1/4 BPS dyons as BPS quantum bo
states in the low energy dynamics of monopoles.

III. SUPERSYMMETRY AND BPS BOUND

We begin by recapitulating generic properties of theN
54 supersymmetric quantum extension of the bosonic ef
tive action @6,11,12#. Its form is rather similar to the usua
supersymmetric sigma model action but supplemented b
attractive bosonic potential together with its fermion
counter part. These potentials are determined by a si
Killing vector field G. The supersymmetric Lagrangian wri
ten with real fermions is

L5 1
2 ~gmnżmżn1 igmnc̄mg0Dtc

n1 1
6 Rmnrsc̄mcrc̄ncs

2gmnGmGn2DmGnc̄mg5cn!, ~12!

where cm is a two-component anticommuting Majoran
spinor andg05s2 , g55s3, and c̄5cTg0. In the case of
relative dynamics of the two SU~3! monopoles,G is equal to
a]x . As required for theN54 supersymmetry, the metri
here is hyper-Ka¨hler, endowed with three complex structur
I (a)m

n(a51,2,3) that satisfy

I (a)I (b)52dab1eabcI (c), ~13!

DmI (a)n
r50. ~14!

For the sake ofN54 supersymmetry, the Killing vectorG
[a•K should be triholomorphic; namely its action preserv
the three complex structures via

LGI (a)50, ~15!

whereL denotes the Lie derivative.
Upon quantization, the spinorscA5em

Acm with vielbein
em

A commute with all the bosonic dynamical variables, es
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cially with p’s that are canonical momenta of the coordina
z’s. The remaining canonical commutation relations are

@zm,pn#5 idn
m ,

$ca
A ,cb

B%5dABdab . ~16!

The Lagrangian~12! is invariant under theN54 supersym-
metry transformations,

d (0)z
m5 ēcm, ~17!

d (0)c
m52 i żmg0e2Gnl

m ēcncl2g5Gme, ~18!

d (a)z
m5I (a)m

nē (a)c
n, ~19!

d (a)~I (a)m
ncn!52 i żmg0e (a)2Gnl

m I (a)n
rI (a)l

sē (a)c
rcs

2g5Gme (a) , ~20!

wheree and e (a) are spinor parameters. In order to obta
supercharges, we define supercovariant momenta by

pm[pm2
i

2
vABmc̄Ag0cB, ~21!

where vA
Bm is the spin connection. The correspondingN

54 SUSY generators in real form are then

Qa5ca
mpm1 i ~g0g5cm!aGm , ~22!

Qa
(a)5I (a)m

nca
n pm1 i ~g0g5I (a)m

ncn!aGm ,
~23!

which satisfy the following SUSY algebra with a central e
tension of

$Qa ,Qb%5$Qa
(a) ,Qb

(a)%52dabH12i ~g0g5!abZ,
~24!

$Qa ,Qb
(a)%50, ~25!

$Qa
(a) ,Qb

(b)%50 ~aÞb!. ~26!

The HamiltonianH and the central chargeZ read

H5
1

2 S 1

Ag
pmAggmnpn1GmGm

2
1

4
Rmnrsc̄mg0cnc̄rg0cs1DmGnc̄mg5cnD ,

~27!

Z5Gmpm2
i

2
~DmGn!c̄mg0cn. ~28!

It is easily checked that the central chargeZ indeed com-
mutes with all SUSY generators.
3-3
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For spectrum analysis, SUSY generators in complex fo
are more useful. Introducingwm[(1/A2)(c1

m2 ic2
m), and de-

fining Q[(1/A2)(Q12 iQ2), one finds

Q5wmpm1 iw* mGm , ~29!

Q†5w* mpm2 iwmGm , ~30!

which generates the following simple algebra:

$Q,Q†%5$Q(a),Q(a)†%52H, ~31!

$Q,Q%5$Q(a),Q(a)%52$Q†,Q†%52$Q(a)†,Q(a)†%52iZ,
~32!

$Q,Q(a)%5$Q†,Q(a)%50, ~33!

$Q(a),Q(b)%5$Q(a)†,Q(b)%50 ~aÞb!. ~34!

It is easy to read off the BPS condition for quantum sta
that preserves half of the supersymmetries. Depending on
sign of central charge, we find

~Q7 iQ†!uF&50, ~35!

so that the given state may saturate the conditionH56Z.
We can express this BPS condition in a more geometr
fashion by transcribing the wave function to different
forms on the moduli space@13#. Note that

@ ipm ,wn#52Gmr
n wr, ~36!

@ ipm ,wn* #5Gmn
r wr* , ~37!

$wm,wn* %5dn
m . ~38!

Furthermore, the wave function has the following gene
form,

uF&5(
p

1

p!
Vm1•••mp

~zm!wm1 •••wmpu0&, ~39!

w* mu0&50, ~40!

with an inner product defined by

^FuF8&5E dzAg(
p

1

p!
~Vm1•••mp!* Vm1•••mp

8 . ~41!

The coefficientsVm1 . . . mp
are completely antisymmetric an

may be regarded as those of ap form. In this language,
where we interpretwm andwm* as a natural cobasisdzm and
a natural basis]/]zm, one finds that the following replace
ment can be made:

iwmpm→d, iw* mpm→2d, ~42!

w* mGm→ i G , iZ→LG[diG1 i Gd, ~43!

wherei G denotes the natural contraction of the vector fieldG
with a differential form. The BPS equation now becomes
04500
s
he

al

l

~d2 i G!V57 i ~d2G` !V, ~44!

where we use the same symbolG for both the Killing vector
and the one form obtained by contraction with metric. B
solving this first order system, we should recover all 1/2 B
and 1/4 BPS states of the underlying Yang-Mills field theo

IV. ANGULAR MOMENTUM AND EIGENSTATES ON S3

A. Supermultiplet structure of 1/4 BPS dyons

1/4 BPS dyons have been constructed in several diffe
guises. The first was as three-pronged strings ending on
branes@1#, while the field theoretical construction was a
exact classical solitons@2,3#. Neither of these was convenien
for finding their supermultiplet structures; there are subtle
of the respective moduli space dynamics@14,15#. The third
method, also present in Ref.@2#, was a perturbative one. In
this setup, one assumes very small electric coupling
works in vacua where the 1/4 BPS dyons would be sta
The construction proceeds by finding the lowest quant
excitation modes around a purely magnetic background.
lowest are massless moduli. The next lowest is massive
turns out to induce quantized electric charges to the sys
when excited, and produces many degenerate states wit
same electromagnetic charges. In the simplest case ofa1b
magnetic charge in SU~3!, the total degeneracy for dyons o
relative chargeqÞ0 is

263u2qu. ~45!

Note thatq is quantized in half-integers. The highest spin
this supermultiplet isuqu11. The relative charge, define
through the following expression of electric charge, that o
may excite on the system is

q5~n1q!a1~n2q!b, ~46!

where 2n is an integer. The consistency with Dirac quan
zation condition, along with the spectrum of the original fie
theory, actually demands thatn6q are integers. Thus quan
tization ofn is correlated with that of the relative chargeq; a
half-integralq comes with a half-integraln, and an integralq
comes with an integraln.

When we reconstruct the dyons as bound states in the
energy dynamics, this correlation naturally emerges from
form of total moduli space

M5R33
R13M0

Z
, ~47!

where the quotient action ofZ is crucial. In this paper, we
will not dwell on this point. It suffices to say that all dyoni
states of relative chargeq can be built, provided that the
relative part of the wave function is found.

Once we consider the wave function to be a tensor pr
uct of two parts, one over the relative moduli space, and
other over the center-of-mass moduli space, the degene
is more naturally organized as,

243@~ u2qu11!1~ u2qu!1~ u2qu!1~ u2qu21!#. ~48!
3-4
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QUANTUM 1/4 BPS DYONS PHYSICAL REVIEW D61 045003
The common factor 24 follows from the low energy dynam
ics trivially. Among the low energy degree of freedom, the
are four bosonic and eight~real! fermionic coordinates tha
are associated with the center-of-mass motion and are
free. These eight fermions act as four pairs of massless
monic oscillators, whose excitations lead to 24516 degen-
eracy and the subsequent supermultiplet structure ofN54
vector multiplet.

The rest of the degeneracy factors must arise from
relative part of the dynamics, as we construct the 1/4 B
dyons as bound states of monopoles. As the above dec
position suggests, the spin content of the supermulti
found in Ref.@2# is such that the bound state wave functio
over the relative moduli space are in four multiplets of a
gular momenta; one withl 5uqu, two with l 5uqu21/2, the
last with l 5uqu21. Thus, finding these BPS bound stat
explicitly presupposes detailed understanding of angular
mentum in the low energy dynamics.

B. Isometries and symmetries

Let us recall the geometry of the Taub-NUT manifol
The metric is

S 11
1

r D @dr21r 2s1
21r 2s2

2#1
1

111/r
s3

2 , ~49!

where thesa’s are one-form frame onS3 as in Sec. II. The
Taub-NUT manifold has four Killing vectors, three of whic
generate SU~2! rotation ofS3. These SU~2! Killing vectors,
which we denote byLa , are@16#

L152sinf]u2cotu cosf]f1
cosf

sinu
]x , ~50!

L251cosf ]u2cotu sinf ]f1
sinf

sinu
]x ,

~51!

L35]f . ~52!

The sa’s are easily seen to be invariant under the action
the vector fields

LLa
~sb!50. ~53!

The operatorJa52 iLLa
satisfies the usual SU~2! algebra.

The fourth Killing vector corresponding to internal U~1!
gauge rotations of monopoles, to be denoted asK, is

K5]x . ~54!

This is precisely the triholomorphic Killing vector field tha
enters the low energy dynamics. The vector fields do ro
s1 ands2 among themselves,

2 iLK~s16 is2!56~s16 is2!, ~55!

but the Taub-NUT metric itself is invariant under such ro
tions. Since the range ofx is 4p, the eigenvalue of2 iLK is
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quantized at half-integers. Its origin as a gauge rotation g
erator also tells us that its eigenvalue should be identi
with the relative chargeq @9#.

These isometries of the Taub-NUT manifold natura
generate symmetries of the low energy dynamics. In the
sence of potential terms due toG5aK, this is especially
clear since the Lagrangian is completely determined by
metric alone. Furthermore, the geometrical interpretation
the wave functionuV& as differential formV suggests that
these symmetries act onV geometrically. In fact, it is easy to
see that the Noether charge associated with each of t
isometries acts on wave functions and/or differential for
as a Lie derivative. Thus, for the rotational SU~2!, the above
operatorJa may be regarded as the symmetry generato
And so is2 iLK for the relative U~1! gauge symmetry.

Symmetries generated by these vectors remain sym
tries of the low energy dynamics when we turn on the p
tential term determined byG5aK. This is guaranteed be
causeLa’s andK preserveG as in

Ja~G!505LK~G!. ~56!

However, it turns out that theJa’s are not quite the physica
angular momentum. We will come back to this crucial po
shortly.

C. Angular momentum on S3 and spin

As we observed from the known degeneracy of 1/4 B
dyons, the bound state with relative chargeq must have an-
gular momentum that scales withq linearly. How do we
realize such a multiplet? Note that the Taub-NUT space
the topology ofR45R13S3. On theS3, the SU~2!, which
itself is topologicallyS3, acts freely as translations, so fun
tions on S3 naturally fall under various SU~2! representa-
tions. The angular momentum eigenfunctions onS3 are well-
known to those familiar with classic angular momentu
theory, and are often denoted byDmk

j @17#. Abstractly, it is
defined as a finite rotation operator sandwiched betwee
pair of eigenstates of total angular momentumj,

Dmk
j ~u,f,x![A2 j 11^ j ;kuU~u,f,x!u j ;m&, ~57!

where we chose a normalization so that the norm is indep
dent of j , m, or k. The definition makes it clear thatm andk
are bounded below and above by6 j ,

j >m, k>2 j , ~58!

and separated fromj in integer steps. For any fixedk or m,
the 2j 11 functions indexed bym or by k would form a spin
j multiplet of SU(2)L or SU(2)R , respectively, where the
isometry group of undeformedS3 is

SO~4!5SU~2!L3SU~2!R .

One might worry that the angular momentum eigensta
of our low energy dynamics may have little to do with the
D functions. After all, a wave function should be regarded
a differential form whose transformation properties are
nerically more complicated than functions. However, as
3-5
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pointed out earlier, the Taub-NUT manifold admits orthon
mal basiswm, all four of which are invariant underJa . This
means that as long as we construct the wave function an
differential form in the basis spanned by the orthonorm
frame vm, its transformation property underJa originates
entirely from its coefficient functions. Thus we expect t
generic form of the wave function could be written as

V5( Dmk
j ~u,f,x!L j ;k~r ;dr,sa!, ~59!

where the differential formsL j ;k have no explicit depen
dence on the three Euler angles except through thesa’s. Dmk

j

with m52 j ,2 j 11, . . . ,j form a multiplet underJa with
2 i ]x chargek.

Given the definition ofD functions, it is not difficult to
show that the other lower indices, namelyk, are eigenvalues
of the operator2 i ]x . @Because the actual geometry of th
three sphere is deformed, the SU~2! under whichDmk

j , k
52 j ,2 j 11, . . . ,j would have formed a representation
no longer a symmetry.# Since j is bounded below byuku, a
large relative charge necessarily implies a large angular
mentum; the degeneracy has to scale linearly with increa
k.q. This is precisely the behavior we saw from the st
counting of Sec. IV A.

However, there is something missing. Given a sin
eigenstateV, we expect to generate other physical sta
related to it by acting with a SUSY charge, such asQ. The
underlying field theory tells us the new stateQuV& must be
fermionic and/or bosonic ifuV& is bosonic and/or fermionic
In particular their physical spin should differ by 1/2. On th
other hand,Q itself is invariant under the action ofJa5
2 iLLa

, and cannot impart additional angular momentu
quantum numbers, it seems.

The resolution of this dilemma is that we should mod
the angular momentum operator by adding a ‘‘spin’’ piec
The hyper-Ka¨hler structure of the Taub-NUT manifold sup
plies such additional conserved quantities, fortunately@18#.
Let I (a) be the three complex structures as before. Defin
triplet of operatorsSa acting on fermions by

Sa5
i

2
I mn

(a)wmw* n. ~60!

The pointwise action is, in geometrical terms,

Sa~dzm!5
i

2
Il

(a)m
ldzl, ~61!

SaS ]

]zmD 5
i

2
Im

(a)l
mS ]

]zlD , ~62!

which is nothing but the action of the three complex stru
turesI (a) up to a numerical factor. TheseSa’s span an SU~2!
R symmetry of theN54 superalgebra.

The Sa’s themselves form a triple under theJa’s, and by
using this fact we may write down a new set of angu
momentum generators,
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Ma[Ja2Sa , ~63!

which also span an SU~2! algebra. Note that, unlikeJa , Ma
commute with theR chargesSa .

We seem to have two possible choices of angular mom
tum; Ja , which rotateR charge, andMa , which do not. Both
commute with the Hamiltonian, but their commutators w
supercharges are quite a different matter. UnderJa , the four
complex supercharges fall into a singlet plus a triplet, i.e

@Ja ,Q#50, @Ja ,Q(b)#5 i eabcQ(c) . ~64!

On the other hand, since the four complex supercharges
long to doublets underSa , they must form doublets unde
Ma as well. More specifically, the following linear combina
tions

Q15Q1 iQ (3),

Q25 iQ (1)1Q(2), ~65!

form one doublet underMa with @S3 ,Q6#52 1
2 Q6 , and the

second combination

Q̃15 iQ (1)2Q(2),

Q̃25Q2 iQ (3), ~66!

form another doublet underMa with @S3 ,Q̃6#51 1
2 Q̃6 .

Since supercharges should carry physical spin 1/2, we
mise thatMa rather thanJa should be interpreted as th
physical angular momentum. We will denote the eigenval
of M2 by l ( l 11).

D. Anti-self-dual ansatz

Now we may proceed to write down the ansatz for dyo
BPS bound states. The BPS equation is easily seen to
invariant under the Hodge dual operation on the wave fu
tion. This property can be used to separate the self-dual
from the anti-self-dual part of the trial wave function, so
BPS wave function should be either self-dual or anti-se
dual.

Does the dynamics prefer one to the other? The Ham
tonian has three kinds of potential terms. In addition to
purely bosonic potentialG2, there are two more terms; one
a fermion bilinear contracted withdG, while the other is a
fermion quadrilinear contracted with the Riemann curvatu
The salient point is thatdG and the Riemann curvature ar
both anti-self-dual tensors on the Taub-NUT manifold. B
cause of this, a self-dual ansatz will not be sensitive to so
spin-spin type long range interaction, which could be cruc
for the formation of bound states. In fact, the thresho
bound state of SU~3! monopoles~whenG50) is known to
be anti-self-dual, while no such self-dual bound state ex
@9#. We expect that this behavior persists whenG5aK is
turned on, which motivates us to look for 1/4 BPS dyon
bound states with an anti-self-dual ansatz.1

1Nonetheless, there is no reason to preclude self-dual bound s
that do not saturate the BPS bound.
3-6
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Let us start with anti-self-dual 2 forms. One interesti
property of anti-self-dual 2 forms on hyper-Ka¨hler 4 mani-
folds, is that they are of type (1,1), upon Hodge decompo
tions with respect to any one of three complex structu
@19#. Recall that up to a numerical factor, the ‘‘spin’’Sa act
on differential forms as complex structures do. Since a
form of type (n,n) is annihilated by the complex structur
we conclude that the two-form part of an anti-self-dual a
satz carries no spin.

On the other hand, the BPS equation connects even fo
with even forms, so an ansatz containing anti-self-dual tw
form may contain, in addition, zero form and four form
Neither carries ‘‘spin’’: zero form is obviously invariant un
derSa , and a four form is always proportional to the volum
form which is always of type (n,n). Thus, an anti-self-dua
even form is always ‘‘spinless’’;l equalsj. The angular de-
pendence of anti-self-dual even forms can be written enti
in terms ofD functions and the basis ofsa’s.

Of the four angular momentum multiplets, the cases ol
5q>0 and of l 5q21>0 belong to this category. Forl
5q, the wave function should have the form

Vm;q
q 5Dmq

q Lq;q1Dm(q21)
q Lq;q21 , ~67!

for any value of m5q,q21, . . . ,2q, where differential
forms L ’s can be written entirely withr andvm only. This
state has relative chargeq>0 if and only if the anti-self-dual
form L ’s satisfy

2 iLKLq;q50, 2 iLKLq;q215Lq;q21 . ~68!

Since the only charged combination one can build out or
andvm is v16 iv2, which has61 charge respectively, th
L ’s may contribute61 to the total chargeq at most. Fur-
thermore, onlyv1 iv2 may enter sinceDm(q11)

q , which
should accompanyv2 iv2, does not exist for positiveq.

These considerations constrain possible form ofL ’s quite
severely. We find that only the following choice is consiste
with the known quantum numbers of 1/4 BPS dyons,

Lq;q5 f ~r !1h~r !~v0`v31v1`v2!

1 f ~r !~v0`v1`v2`v3!, ~69!

Lq;q215@b~r !/r #~v01 iv3!`~v11 iv2!,
~70!

for l 5q>0 BPS state.2

In case ofl 5q21 with q>1, the anti-self-dual ansatz i
even more restrictive. The only such ansatz consistent w
known quantum numbers is

Vm;q
q215p~r !Dm(q21)

q21 ~v01 iv3!`~v11 iv2!, ~71!

for m5q21,q22, . . . ,12q. No zero form may appea
since a factor of (v11 iv2) is necessary to make the electr

2We have defined the Hodge dual operation with respect to
volume form2v0`v1`v2`v3.
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charge to beq, while four form is ruled out subsequently b
the fact that the BPS wave functions we are looking for
all anti-self-dual.

We will postpone discussion of the two remaining mu
tiplets of l 5q21/2>0 to the following section. The corre
sponding multiplets are in odd forms, which can be found
acting supercharges onVm;q

q andVm;q
q21 . For these two mul-

tiplets, Sa contribution to the physical angular momentu
does not vanish.

V. DYONIC BPS BOUND STATES

Here, we will solve for the dyonic BPS bound states e
plicitly. Such dyonic bound state do not exist for all relativ
chargeq. Rather, it is known thatuqu must be smaller than
the critical chargeuqcru @1,2,15#, where

qcr5 lim
r→`

a^K,K&. ~72!

With our current normalization,̂K,K& asymptotes to 1 a
infinity, so the critical chargeqcr is equal to the parametera.
Thus we expect to find the BPS bound state, that is, a n
malizable and regular wave function that preserves half
low energy supersymmetry, only whenuqu<uau. Without
loss of generality, we will take botha and q to be non-
negative.

Classical analysis of Ref.@1,2# leaves it unclear whethe
the bound state should exist~at threshold! whena5q. Clas-
sically two monopoles are infinitely separated, but quant
mechanically, there may be a bound state with powerl
decay. As the following analysis will show, however, n
such threshold bound state exists, except fora5q50 case.

A. The l 5q21 multiplet

The case ofl 5q21 is the simplest. Starting with the
ansatz,

Vm;q
q215p~r !Dm,q21

q21 ~v01 iv3!`~v11 iv2!, ~73!

the BPS equation reduces to a single ordinary differen
equation forp(r ),

d

dr
rp~r !52A~r !rp~r !, ~74!

where the quantityA is defined to be the following combi
nation:

A[a2qS 11
1

r D . ~75!

A useful fact we employed is that

er~v01 iv3!`~v11 iv2! ~76!

is a ~nonnormalizable! harmonic two form. The equation i
easily solved to give the wave function:
e

3-7
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Vm;q
q215Dm(q21)

q21 r q21e2(a2q)r~v01 iv3!`~v11 iv2!.
~77!

The wave function is exponentially small at larger and nor-
malizable as long asa.q. This way, we have recovered th
fact thata is the critical electric charge, beyond which n
bound state may exist. Furthermore, the wave function
regular as long asq>1, which is also consistent with the fac
that l 5q21 BPS bound state exists only forq>1.

B. The l 5q multiplet

The ansatz forl 5q>0 is a bit more involved;

Vq;q5Dmq
q @ f ~r !1h~r !~v0`v31v1`v2!

1 f ~r !~v0`v3`v1`v2!#1Dm(q21)
q

3$@b~r !/r #~v01 iv3!`~v11 iv2!%, ~78!

under which BPS equations reduce to

d

dr
f 52Ah1

b

r 2 ,
d

dr
h1

2h

11r
52A f2

b

r 2 ,

d

dr
b1Ab5q~ f 2h!. ~79!

In order to solve Eq.~79! for generalq.0, we proceed as
follows. By substituting

f 5u~r !e2*A, h5v~r !e2*A, b5w~r !S q

ADe2*A,

~80!

into Eq. ~79!, one obtains

d

dr
~u2w!50,

d

dr
u1

1

~11r !2

d

dr
~11r !2v50,

d

dr
~w/A!5u2v. ~81!

We solve the first equation byu5C11w with an integration
constantC1. The remaining equations can be combined in
a single second order equation,

d

dr F d

dr S ~11r !w

A D22AS ~11r !w

A D22C1r G50, ~82!

which is integrated with a second integration constantC2 to

d

dr S ~11r !w

A D22AS ~11r !w

A D512C1r 22C2 . ~83!

Integrating this equation gives us three-parameter family
solutions. But, fortunately, the simplest possible solution

~11r !w

A
52r , ~84!
04500
is
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f

turns out to be the only regular and normalizable soluti
Using it to generate other radial functions, we find thel 5q
bound states:

Vm;q
q 5Dmq

q r qe2(a2q)r

11r Fa1S a1
1

11r D ~v0`v31v1`v2!

1av0`v1`v2`v3G
2Dm(q21)

q r qe2(a2q)r

11r
Aq/2~v01 iv3!`~v11 iv2!.

~85!

Again, we find that the wave function is normalizable as lo
asa.q. The solution is regular at origin for all non-negativ
q. We have recovered thel 5q multiplet of 1/4 BPS dyon of
chargeq.0.

The case ofq50 is a bit special, where the BPS state is
purely magnetic bound state of the two monopoles. Foq
50, the secondD function does not exist, and we must solv
a modified BPS equation. Nevertheless, the actual w
function is also obtained by takingq50 limit of the above
result as follows:

V0;0
0 5

e2ar

11r Fa1S a1
1

11r D ~v0`v31v1`v2!

1av0`v1`v2`v3G . ~86!

This BPS state actually preserves all supercharges of
energy dynamics. In fact, this is the lowest lying state of t
low energy effective theory. In the limit of aligned vacu
(a50), this state also reverts to the threshold bound stat
two monopoles found in Ref.@9#, as it should.

C. The l 5q21/2 multiplets

The remaining two multiplets ofl 5q21/2 can be found
most easily by actingQ on Vm;q

q and Vm;q
q21 found above.

From Vm;q
q21 , we find 2q21 states

r qe2(a2q)r

Ar 1r 2
~v11 iv2!`~11v0`v3!Dm(q21)

q21 , ~87!

while Vm;q
q produces 2q11 states

r qe2(a2q)r

Ar 1r 2
@~v01 iv3!`~11v1`v2!

3A2qDmq
q 1 i ~v11 iv2!`~11v0`v3!Dm(q21)

q #.

~88!

These account for all 4q states in the twol 5q21/2 multip-
lets. ~Alternatively we could have usedQ(a) instead ofQ.
Since Vm;q

q21 and Vm;q
q are invariant under complex struc
3-8
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tures, and sinceQ(a) are essentiallyQ rotated by the complex
structures, the resulting 4q states will be simply the abov
4q states with complex structureIa acting on them.!

However, becauseQ is a singlet underJa , the above
states form multiplets underJa instead of the physical angu
lar momentumMa . To reconstructMa multiplets, we recall
the relationship

Ja5Ma1Sa . ~89!
t

ad
rm

-

im
. F

t
i

th
ju

en

es

04500
Since the two SU~2! generators,Ma andSa , commute with
each other,Ja multiplets are constructed fromM multiplets
andS multiplets by the rule of angular momentum additio
On the other hand, we actually need to reconstructMa eigen-
states fromJa andSa eigenstates, for which we need to r
verse the procedure. Without delving into details of the co
putation, we present the twol 5q2 1

2 multiplets. BecauseS3
commutes withMa , we can label the two multiplets by it
eigenvalues3. The first hass351/2:
~V (1)!m;q
(q21/2)5

r qe2(a2q)r

Ar 1r 2 F ~v01 iv3!`~11v1`v2!Aq1m11/2

2q11
D (m11/2)q

q 1 i ~v11 iv2!`~11v0`v3!

3SAq1m11/2

2q~2q11!
D (m11/2)(q21)

q 1Aq2m21/2

2q
D (m11/2)(q21)

q21 D G . ~90!

The other multiplet hass3521/2;

~V (2)!m;q
(q21/2)5

r qe2(a2q)r

Ar 1r 2 F ~v01 iv3!`~11v1`v2!Aq2m11/2

2q11
D (m21/2)q

q 1 i ~v11 iv2!`~11v0`v3!

3SAq2m11/2

2q~2q11!
D (m21/2)(q21)

q 2Aq1m21/2

2q
D (m21/2)(q21)

q21 D G . ~91!
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In both expressions, the indexm takes valuesq21/2,q
23/2, . . . ,2q11/2.

In a direct construction of these twol 5q2 1
2 multiplets

from the l 5q or l 5q21 multiplets, the role of the double
supercharges in Eq.~65! and Eq.~66! can be easily identi-
fied. As a simple application of the angular momentum
dition rule, the operations of the doublets on the even-fo
multiplets will produce (q1 1

2) % (q2 1
2)@5 1

2^ q# or (q2 1
2)

% (q2 3
2)@5 1

2^ (q21)#, but one may check that bothl 5q
1 1

2 andl 5q2 3
2 multiplets vanish identically. Since the dou

blet Q6 carries the spin eigenvalues352 1
2, the operation of

this doublet onl 5q or l 5q21 multiplets produces thel
5q2 1

2 multiplet with s352 1
2. Similarly, the application of

Q̃6 results in thel 5q2 1
2 multiplet with s351 1

2.

D. Characteristics of the BPS states

In the construction of the BPS bound states, we have l
ited ourselves to the case of non-negative electric charge
negatively charged bound states, we note the fact that
complex conjugation of a solution to the BPS equations
Eq. ~44! gives another solution. Both the eigenvalues of
charge andM3 reverse their signs under the complex con
gation. Thus the negatively charged solutionV2m;2q

l

(q>0) is simply given by the complex conjugation ofVm;q
l .

We now turn to the case where the Higgs misalignm
parametera is negative. Whena is replaced by2a, only the
fermionic term that couples to the Killing potential chang
its sign in the supersymmetric Lagrangian~12!. By the parity
operationc→ ig0c or, equivalently,w→ iw, one can bring
-

-
or

he
n
e
-

t

this Lagrangian to the original form witha.0. The corre-
sponding transformation amounts to replacement ofdxm by
idxm. The solutions for2a are obtained if one replaces a
vm of the above BPS solutions withivm. These exhaust al
the possibilities.

For the remainder of the section, we would like to com
ment briefly on some other aspects of the BPS states. W
an excited chargeq, the effective potential at large relativ
separation tends to (a21q2)/2. Since the energy eigenvalu
of the BPS multiplets isuaqu, one finds the that binding
energy of the dyons is

Ebinding5
~ uau2uqu!2

2
, ~92!

which tends to zero as the charge approaches its cri
value, as one expects from its classical counterpart. Ano
characteristic is the separation of the two monopole cores
the classical limit, the separation between the two core
given by r eq[uqu/(uau2uqu). We expect the vacuum expec
tation value

^r &[
^Vur uV&

^VuV&
~93!

to approachr eq in the classical limit. For a given supermu
tiplet with chargeq, the expectation values are found to b
dependent upon the angular momentum quantum numbl.
For instance, we find the expectation value
3-9
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^r &5
uqu

~ uau2uqu! S 11
1

2uau D5r eqS 11
1

2uau D ~94!

for the l 5uqu21 multiplet, and

^r &5
uqu

~ uau2uqu! S 11
1

2uqu D5r eqS 11
1

2uqu D ~95!

for the l 5uqu21/2 multiplets. To restore the Planck consta
\, we simply observe that classical chargeq has the same
dimension asA\. Since the difference between^r & and r eq
scales inversely withq or a5qcr , it has to scale linearly
with A\:

^r &2r eq

r eq
;O~A\!. ~96!

Thus,^r & indeed approachesr eq5uqu/(uau2uqu) in the clas-
sical limit.

VI. CONCLUSION

In the low energy dynamics of 1/2 BPS monopoles,
misaligned Higgs vacua induces an attractive potential
tween monopoles of distinct types. This potential is cruc
in the formation of new dyonic bound states of monopol
some of which preserve 1/4 of the supersymmetries in a fi
theoretical sense or, equivalently, 1/2 of the supersymme
of the low energy dynamics of monopoles. Starting from
full N54 supersymmetric low energy effective Lagrangia
we expressed the BPS equation of the system in the lang
of the differential form, which was then further reduced to
set of coupled first-order ordinary differential equation
These equations were solved analytically, giving 1/4 B
dyons as quantum bound states of two distinct SU~3! mono-
s
n,

4.

04500
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e-
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poles. Along the course of the construction, we have give
full account of the supermultiplet structures of the quant
1/4 BPS dyons.

In this paper, we have focused on the BPS saturated s
in pursuit of the 1/4 BPS dyons. However, it is expected t
there exist spectra of other dyonic bound states that do
saturate the BPS bound. The problem of finding these n
BPS bound states is quite involved. Nevertheless, ther
some additional information that might be of help. Sup
symmetric sigma models on the Taub-NUT geometry
known to allow additional conserved quantities of t
Runge-Lenz type@16,18#. It seems quite plausible that thi
new symmetry generalizes to the present low energy dyn
ics with potential. We have checked that the purely boso
part indeed admits such conserved quantities. Such a
tional symmetries might be useful in finding the excited no
BPS bound states.

Another aspect of the dynamics we did not discuss her
the scattering of dyons. The supersymmetric quantum
chanics we used can be thought of as low energy dynam
for 1/4 BPS dyons in two ways. First, it produces these
ons as bound states. Second, it provides a framework w
interaction among these dyons can be studied in a quan
mechanical setting. The dynamics is admittedly more
volved than the usual moduli space dynamics, given
presence of the potential. It requires further study.
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