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A generalization of the Ferber-Shirafuji formulation of superparticle mechanics is considered. The general-
ized model describes the dynamics of a superparticle in a superspace extended by tensorial central charge
coordinates and commuting twistorlike spinor variables. Dhe4 model contains a continuous real parameter
a=0 and ata=0 reduces to th&U(2,21) supertwistor Ferber-Shirafuji model, while @1 one gets an
OSp(1/8) supertwistor model proposed by two of the authors which describes BPS states with all but one
unbroken target space supersymmetries. Whem€ 1 the model admits a®@ S(2|8) supertwistor descrip-
tion, and whena>1 the supertwistor group becom@sp(1,18). We quantize the model and find that its
guantum spectrum consists of massless states of an arhi@fy)integer helicity. The independent discrete
central charge coordinate describes the helicity spectrum. We also outline the generalizatica-ol theodel
to higher space-time dimensions and demonstrate thBX=it8, 4, 6, and 10, where the quantum states are
massless, the extra degrees of freedwith respect to that of the standard superpartiprametrize compact
manifolds. These compact manifolds can be associated with higher-dimensional helicity states. In particular, in
D =10 the additional “helicity” manifold is isomorphic to the sphe®a.

PACS numbgs): 04.60.Kz, 11.25-w

[. INTRODUCTION the description in terms dDSp(1|8) supertwistor§11,12.
The supergroupssU(2,21) and OSp1|8) are not sub-

In a recent pap€frl] two of the present authors proposed groups of each other, but they are different subgroups of the
a new superparticle model with tensorial central chargesupergroupOSp(2|8). Hence, one can assume that the
[2—8] and auxiliary fundamental spinor variables. An inter- Ferber-Shirafuji model and the model of REE] are differ-
esting peculiar feature of this model is that it describes ant reductions of a®@Sp(2|8) supertwistor model.
superparticle whose presence breaks only one target-spaceln this paper we construct such a genele1, D=4
supersymmetry. In all previously known cases superparticlesuperparticle action which depends on a numerical non-
and(in general superbranes break half or more of the super-negative real parametar When the value oé varies within
symmetries of a target superspace vacuum. the interval 6<a<1 the model admits a®Sp2|8) su-

As we shall show in this paper the model of REf] pertwistor description, whilea=0 anda=1 are two critical
describes an infinite tower of massless particles of arbitrarpoints. Ata=0 the model reduces to the Ferber-Shirafuji
(half-)integer helicities. The model can be regarded as asuperparticle. And aa=1 one arrives at th© Sp(1|8) su-
extension of a Ferber-Shirafuji formulatid®,10] of D=4 pertwistor model of Ref[1].

superparticle mechanics. In the framework of tNe=1 For all values ofa except fora=1 the superparticle
Ferber-Shirafuji model one performs, at the classical levelpreaks half of the target-space supersymmetries, whike at
the twistor transform{9,10] from the N=1, D=4 super- =1 only one supersymmetry is broken. Whar 1 the su-

space description of massless superfields to their descriptigrertwistor group become®©Sp(1,18) which contains a
in terms of supertwistors forming a fundamental representanoncompact grougQ(1,1) as a subgroup instead $1(2)
tion of a superconformal groupU(2,21). in the case oDSK(2|8).

In an analogous way the superparticle moddlidfadmits The (supejtwistor formulation of relativistic(supejpar-
ticle dynamics is useful in many aspects. Let us recall that,
since the relativistig¢supeiparticle is a constrained dynami-

*On leave of absence from Institute for Theoretical Physics, NSGal system not all its dynamical variables are independent.
Kharkov Institute of Physics and Technology, 310108 Kharkov,By performing(supeitwistor transform we deal directly with
Ukraine. Email address: bandos@hep.itp.tuwien.ac.at independent physical degrees of freedom of (thepejpar-

"Email address: lukier@proton.ift.uni.wroc.pl ticle in a covariant way. This, for instance, simplifies the

*On leave of absence from Institute for Theoretical Physics, NSQjuantization procedure and the analysis of the spectrum of
Kharkov Institute of Physics and Technology, 310108 Kharkov,quantum states of the model.

Ukraine. Email address: sorokin@physik.hu-berlin.de We perform the quantization of the generic superparticle
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model for arbitrary values of the paramegeand find thatin =1 generalized superparticle has threesymmetries and,
D=4 first—quantized states of the superparticle form an inhence, preservesof the supersymmetries. We also find that
finite tower of massless states oftalf-)integer helicity. We the U(1) symmetry is inherent to the=0 case only.
thus demonstrate that an extra dynami@zéntral charge In Sec. Ill we describe the transform to a supertwistor
coordinate in the model under consideration has the physic&rm of the action. We show that<Oa<1 models are de-
meaning of a spin variable. This allows one to admit that thescribed by a fre© S(2|8) supertwistor action and thus link
model considered might be related to the higher-spin fieldhe Ferber-ShirafujsU(2,21) supertwistor model and the
theory of Vasiliev[13] (see also relevant papdrE4]). free OS(1|8) supertwistor model of1]. The model with

We first quantize the superparticle in the supertwistor for-a>1 is transformed into a fre®@ Sp(1,18) supertwistor ac-
mulation where the quantization is almost straightforwardtion. We perform the quantization of the supertwistor models
since ata#0 the supertwistor model is unconstrained and atnd find that the “supertwistor” wave function describes an
a=0 there is only one first-class constraint. We then quaninfinite tower of short supersymmetric multiplets of massless
tize the model in thdN=1, D=4 superspace extended with fields of all possible helicities.
the tensorial central charge coordinates, and show that the In Sec. IV we extend the initial phase space of the super-
resulting spectrum of the quantum physical states coincidegarticle model with auxiliary variables and perform the con-
with that of the supertwistor formulation. Since in this for- version of the initial set of first and second class constraints
mulation the model contains second class constraints ounto the first-class constraints generating new gauge symme-
main tool in carrying out the quantization procedure will betries. We then carry out the quantization of the extended
the extension of the model in such a way that all the conimodel and find that the dependence of the wave functions on
straints of the initial model become first class constraintsGrassmann-odd conversion variables is inessential and can
This method, which can be traced back to the papers bpe ignored. We show that the wave function of the first-
Faddeev and Shatash\jili5,16, Batalin, Fradkin, and Frad- quantized model of Sec. Il can be identified with the su-
kina [17,18, and Egorian and Manveliaf19] has already pertwistor wave function of Sec. Il if Cartan-Penrose twistor
been applied to the quantization of “standard” massless suformulas relating superspace and supertwistor coordinates
perparticles by Moshg20] and Eisenberg and Solomp21—  are imposed. Thus, we find that the infinite spectrum of the
23]. The main advantage of this method is that it allows ondirst-quantized states of the superparticle consists of massless
to avoid problems with covariant splitting fermionic con- fields of an arbitraryhalf)integer helicity.
straints into first and second class ones. The initial formula- In Sec. V we consider a multidimensional generalization
tion of the model is recovered when we fix additional gaugeof thea=1 model and its quantization. It appears that after
symmetries(associated with new first-class constrairly ~ quantization the superwave function depends on only one
putting the conversion variables to zero. In its nature theéGrassmann variable, and all other fermionic degrees of free-
conversion method is related to an old Stueckelberg formaldom can be eliminated byl —1 « transformations, wheril
ism [24] which extends the theory of massive vector fieldsis the total number of supersymmetries. Thus, the corre-
with an auxiliary scalar gauge degree of freedom. sponding superparticle configuration preserves thé (

The quantization of the model at=1 has additional pe- —1)/N fraction of target-space supersymmetry. In the Ap-
culiarities. In this case superparticle dynamics is subject t@endix we analyze in detail the quantization of a supersym-
only one second-class constraint, which is quite unusual. Dymetric system with one real Grassmann variable, which after
namical systems with the odd number of fermionic secondjuantization becomes a single Clifford variable.
class constraints are rather rare. One of few known examples
is a superparticle irD=2 superspace with a single chiral
fermion direction[27]. So the quantization of such systems Il. D=4 MODEL WITH FUNDAMENTAL SPINOR AND
is an interesting exercise by itself which requires dealing TENSORIAL CENTRAL CHARGE COORDINATES
with.a single Clifford-like variablg._ In the case undgr consid- | et us consider the followin@® =4 superpatrticle action:
eration we shall use an auxiliary Clifford variable of
Grassmann-odd parity to convert the single second class fer-
mionic constraint into the one of a first class. Further we
present two methods for quantizing the model with the single
Clifford variable, both producing the same spectrum of first- (2.9
guantized physical states.

The paper is organized as follows. where

In Sec. Il we consider the one-parameter family of actions
describing the generalized =4 superparticle models la- _ _ _ - .
beled by the real positive paramete®0 where the casa MAB=d1*B=dx"B+i(dO"OE— 0 d0"®), (2.2
=0 corresponds to the Ferber-Shirafuji model, whileaat
=1 the action describes the superparticle model of Réf.
We demonstrate that in the target space with four supersym- AB=d7I12°=dy**~i0(*de®),
metries the a#1 models possess two fermionic
k-symmetries and, hence, corresponding superparticle con- —i b B (ha=h
figurations preserve 1/2 of the supersymmetries, whila if MA8=d7112°=dy**-i0*de®), 2.3

S= f dr(MANGITAB+ a\ s\ gITAB+ an ah gITAB),
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A,B=1,2, A,B=1,2 are Weyl spinor indices, and the spin—  The superalgebre.8) has the following realization in the

tensorsx*B andyB are related td =4 vector coordinates superspac€2.5):
x™ and antisymmetric tensorial coordinatg8" through the

. . ' .1
Pauli matrices QA:“;A_(?AB@B_E@BO?A&
. . 1 ~ ..
XAB:Xmo,gB, yABZEymn(U[mUn])AB:(yAB)*- B B -
(2.4) Qa=—ida+ae®°+ 50250°, (2.9
a is a numerical parameter which, without the loss of gener- o o
ality, can be taken to be real and positive defirite a Pag=—1dag, Zas=—"1dpe, Zag="10hs,
€[0). Indeed, ifa is complex its phase can always be (2.10
absorbed by the bosonic spinog redefined in an appropri-
ate way fa—(a/|a])¥\,). The action(2.1) describes a 9 _d 4
- e InB= "m0 9AB= T apr  9ABE /g
superparticle propagating in the extended superspace 9xAB ayPB gyhB

MBI yM)={(x"A yRB Y2804, %)) (2.5

with tensorial central charge coordinates®§;y*8.1 The
configuration space of the system

If a=0 the action(2.1) reduces to the Ferber-Shirafuji action
[9,10], and ifa=1 the action becomes the one considered in
[1]. We shall see that=0 anda=1 are “critical” values of
the parameter where symmetries of the ac{id) as well as
the physical content of the model are modified.

MU= M= {(YM;AANR))
— [(XPA yAB VAB\A YA 0A OM)) (2.6)

contains in addition four bosonic spinor coordinaxésa”.
The presence of the paramegein the action(2.1) reflects

the property that each of its three terms is separately invari- A. Critical points a=0 anda=1

ant under global supersymmetry transformations acting on |n order to analyze symmetry properties of the action

M(“+814) as follows: (2.1) at different values ofi we consider the general varia-

A A — tion of (2.1) which (modulo boundary termshas the form
60"=¢",  60°=¢", (2,1 for a=1:

AB_:i _A@B_:@A.B — AL N /
X"B=irOB— @A, 5s:f [ ONANITAB+ 2N gTTAB) + SN A(TTB N g

Sy B=ieP@B),
o= dhg®) - +2anpl1A8)]— J [AOaNg)i STTAB+ ad(h ah g)i STTAR
SNa=0, SNA=O. +ad(TAYB)i5HAB]+f [2i(dO®\g
The generators of the transformatio2s7) 1+ adOBN ) SO\ 4+ 2i (dOBN 5+ adOBNg) 5O BN ],
SYM=i(erQ+ Quet)YM (2.12)
satisfy the supersymmetry algebra with central charges  where the basis in the space of variationg ahdy is chosen
[Q4,Q8) =25, in the form
{Qa.Qe} = —2Pss, 1A8= 58415005 0450%), (212
{Qa.Qa}=Zas, 2.8 i114%= 65y"P~i0" 50,
and all other commutators of the generators vanish. igﬁABE a?’*é—@%@éx (213

1. U(1) gauge symmetry of a0 model
For previous consideration of different models of superparticles . o . .
andp-branes in superspaces with tensorial central charges see Refs. L€t US consider the variation of the action when the varia-

[22,29,8. tions of all fields except fok 5, Ny are zero
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5S= f [ SN AN aITAB+ 2a) gITAB)
+ SNA(TIBAN g+ 22N T78)]. (2.14)

If the variation of\ corresponds to local infinitesimél(1)
rotations

Ma(7)=ha@), NL=Rpe e

(2.19

the Eq.(2.14) takes the form
5S= f [i a(P)NA(NGITAB+ 22N gTTAB)

—ia(PNA(TIBAN g+ 22N TTAB)].

Such a variation vanishes at=0. Hence at this value ci
the U(1) transformation$2.15 describe local symmetry of

the model which is inherent to the Ferber-Shirafuji formula-

tion [9,10] of the massless superpatrticle.

Note that for all values of the parametgithe spinorsh
are constants on the mass shell. Indeed, the equations
motion

which follow from Eq.(2.11) have the form

ad(AaNg)=0.
216

In the framework of any twistor or twistorlike approal30]
one assumes that the bosonic spinors parametrize a proj
tive space. This requirement does not allovio have all its
components equal to zero simultaneously.

Then in the generic case#0 EQs.(2.16 imply

d(AaNg)=0, ad(Aa\g)=0,

d(Ay) =0, d(Ap)=0, (2.17)

i.e., the bosonic spinor is constant on the mass shell

Na(T)=A3=const, Na=AS=const.  (2.18
Whena=0 only one equation is left in Eq2.16
a=0: d(Aa\p)=0. (2.19
The general solution of Eq2.19 is
)\A(T)=)\ge‘z“(7), f’A=X2e‘iZ“(T). (2.20

The arbitrary functione(7) [whose presence in E2.20
reflects théJ (1) gauge symmetry of the=1 model can be
gauged away by the loc&J(1) transformation(2.15), and
we are again left with constant on the mass shell.

PHYSICAL REVIEW D61 045002

2. Fermionic variations ands symmetry

Let us consider now the formul&.11) with the variations
of fermionic coordinates accompanied by the following
variations ofx andy

XAB=—i(50708—0"50°)=i,I18=0,
Sy"B=i0"A50P = J1"B=0,

SyPB=i@AdO® =i JTB=0. (2.21)

The bosonic spinoi , remains unchanged. In such a case
Eqg. (2.1)) takes the form

5S= f [2i dOP\ A(SOBN 5+ 2508\ )

+2idOBNL(60BNs+a80BNE)].  (2.22

We see that fom# 1 only two out of four variations of

the fermionic coordinate6®*, 50" are effectively involved
inFto the variation(2.22 of the action(2.1). This reflects the
8 esence of local fermionie symmetry[25] with two inde-
pendent parameters=(k;+iks), k=(x1—ik5). The k
transformations of the coordinates are given by Ej21)
and

5OA= kN = (k1 +iKk)\A,

SOB=1NB=(xy—iKp)\E. (2.23

At the critical pointa=1 the number of independent
k—symmetries increases from 2 to 3, since in this case only

one linear combination @&\ g+ 5(35@) of four real fer-

&Siionic variations enters into the variation of the action

(2.29

a=1:

5s=f 2i(dO N\ p+dOAN ) (SOBN5+dOBNL).

Thus remaining three fermionic variations correspond to the
local fermionic symmetries of the=1 model[1].

In order to present an explicit form of thedeee x sym-
metrieswe should introduce an additional bosonic spingr
such that

MUs=MuA=1. (2.29
Then one can perform the decomposition of the unit matrix
in the spinor space
S =Nrug—u\g, 5€=YAUB—UAYB

(2.2

2The pair of Weyl spinors\,u, is analogous to the Newman-
Penrose dyai31] widely used in general relativity.
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and use it to decompose the fermionic variationBaf As a

PHYSICAL REVIEW B1 045002

To separate the constraif&30—(2.35 into the first and

result we find that thec—symmetry transformations of the second class let us project them on the bosonic spinairsd

a=1 model are given by Eq$2.21) and

8OA=(k1+ik) N +ikzu?,

(SG—)B:(K1_|K2)TB_|K3UA

(2.27)

B. Hamiltonian analysis

We now turn to the Hamiltonian analysis of the model
with the purpose of getting all the constraints on the dynam-
ics of the system, classifying them in the manner of Dirac
and thus identifying all local symmetries of the model. For
the casea=1 the analysis has been performed in Réf.

The generic model g+ 0) has the same total number of
constraints as the=1 model, the only difference being that
when the parametex takes the valuea=1 one of the fermi-

onic second-class constraints becomes the first-class con-
straint generating the third symmetry. So what we should

do is just to adapt the results of the Hamiltonian analysis of
Ref.[1] to the generic case.

The constraints corresponding to the case0 of the
Ferber-Shirafuji superparticle are obtained from the generic
set of constraints by putting the canonical momenta for the
central charge coordinates identically equal to zero. The ca-
nonical momenta of the generic system are

u[Egs.(2.29, (2.26]. We get

B,=M\BP,5=0, (2.36
B,=MAUBP s 5— NAUBZ,5=0, (2.37)
By=(B,)* =UM\BPrg— MUBZa5=0,  (2.38
B,=2uAUBP \5— guAuBZAB— giAUBZAE;: 0,
(2.39
Bs=A"\BZ,5=0, (2.40
Be=(Bs)* =\"\°Z;5=0, (2.40)
B,=MAUBP 5+ \AUBZA5=0,
Bg=U*\BP 5+ NAUBZA5=0, (2.42)
Be=U”UBZ,g—a=0, Bj=u”uPZyz—a=0,
(2.43
By=i(AAPo—N"P3) =0, (2.44
B, =\"Po+\*P,=0, (2.49
Bys=UPP,=0, By=U"P,=0.
F,=ADA=0, (2.46
F,=(F;)* =\"D;=0, (2.47)
Fa=UAD+UADA=0, (2.48
F,=u*D,—Uu*D,=0. (2.49

PM:m_M:(PAAaZAB!ZAB;PAaEA;WAa;A),
(2.28
[Pr, M p=—(—DMMqV.Pude=68Y: (229
[Pan XP]p= 0365,
[ZAB,YCD]P:25[CA5E] )
[Zas Y01p=265,65,,
[F’AJ\B]p=5§, [FA,YB]P:%,
{72, 0%p= 0%, {mA,0%p=00.
They satisfy the following set of constraints:
®pp=Pas—Aaks=0, (230
D pg=Zpp—a\sAg=0, (2.3)
Dpz=Zpz—aNAAz=0, (2.32
PA=0, PA=0, (2.33
Dp=— ma+iPas@B+iZ,z@B=0, (2.34
Dp=ma—iOBPgA—i1Z2s0B=0. (2.39

For arbitrarya#0,1 it can be checked that the bosonic
constraintg2.36)—(2.41) and the fermionic constraintg.46
and(2.47 belong to the first class, i.e., their Poisson brackets
with all constraints vanish on the constraint surface, and the
constraints (2.42—(2.45, (2.48, and (2.49, are second
class. When computing the Poisson brackets of the con-
straints one should take into account that, because of the
normalization conditior(2.25), the spinoru® should be re-
garded as a variable dependingp. The simplest way of
taking this into account is to assume the following Poisson
(actually Dirag brackets ofu® with the A\ momentumP, :3

These brackets appear as Dirac brackets with respect to the pair
of the second class constraitis25, u*P{’=0 and their complex
conjugate pair, when the bosonic spinois considered as an inde-
pendent variable whose momentum is constrained to be Rg?o
=0. Then itis not hard to verify that the new phase space variables
uA, P do not introduce new redundant degrees of freedom into the
system under consideration.

045002-5



IGOR BANDOS, JERZY LUKIERSKI, AND DMITRI SOROKIN PHYSICAL REVIEW D61 045002

[Pa,UBTp=—UBU,. F,=(F;)* =\"Dx=0, (2.60

Thus in the casa+ 0,1 among 14 bosonic and 4 fermionic
constraints 6 bosonic and 2 fermionic constraints are of the
first class and 8 bosonic and 2 fermionic constraints are of P
the second class. F4=Uu"DA—U"D4=0. (2.62

The first class constraints generate local symmetries of the ) o )
dynamical system. For instance, the constrai@t86), and These are the constraints of the Ferber—Shirafuji formulation

(Bs+Bg) of Egs. (2.40,(2.4) generate worldline reparam- of the superparticle which has been analyzgd in deta_il in a
etrizations of the coordinates andy. The fermionic con- number of paper§l0,20-23. Now two bosonic constraints

straints(2.46 and (2.47) generate thec-symmetry transfor- (2.53 and(2.57) are first class and the other six are second
mations(2.21) and (2.23. class, while, as in the generic case 1, two of the fermi-

Each first class constraint reduces the number of indepe/iC constraints are first clagd.59), (2.60 and two are sec-

dent phase space variables by 2, while each second cla8d class2.61), (2.62). , _
constraint eliminates only one degree of freedom. Hence, in 1 erefore, the number of independent phase-space physi-

the casea#0,1 the phase space of>xq4+6+4)=28 cal degrees of freedom of the stand&ie-1, D=4 super-
bosonic and 22428 fermionic canonical variables of the particle consists of six bosonic and two fermionic variables

system is reduced to

Fa=UAD A+ U*D =0, (2.61)

a=0: nph=6b+2f. (263
a#0l: npn=8+2, 2.59 In the next section we shall show that the independent
i.e., we get eight bosonic and two fermionic physical degree®hase-space physical degrees of freed@rs0, (2.52, and
of freedom. (2.63 of the generic superparticle model can be covariantly

In order to see how aa=1 the fermionic second-class described byOSp(2|8) [or OSK(1,18)], OSK(1/8), and
constraint (2.48 transforms into the first-class constraint SU(2,21) supertwistors, respectively.
generating the thirde symmetry(2.27) let us consider the
Poisson bracket of the constraii®.48 with itself lll. SUPERTWISTOR TRANSFORM: OSp(2]|8), OSp(1]8),

AND SU(2,21) SUPERTWISTORS
{F3,Fafp=2(a—1). (2.5

Let us integrate the actiof2.1) by parts and neglect the
Whena#1 the right-hand sidéRHS) of Eq. (2.51) is non-  boundary term. The result is
zero and hence this constraint is second class, autdt the

RHS of Eq.(2.51) vanishes. SincE ; weakly commutes with B A —h
all other constraints, at this critical value afwe obtain one S=— | (uTdhatuldha)
more fermionic first class constraint, and we achieve the re-
duction of the number of independent fermionic physical de- _if dv+ydv+aydyv+ardy) 31
grees of freedom from two to one (xdx+x dy+aydy+axdy) 33
a=1: nph:8b+ 1f . (252 or
Finally, whena=0 the tensorial coordinatgsdisappear _ A — = )
from the action(2.1), and in Eqs(2.36—(2.49 we must put S=— | (uidhatpidhp) =21 [ [(1+a)x.dx;
to zero their canonical momenka The remaining set of the
constraints takes the following form: +(1-a)x2dx2]
B1=M\BP=0, (2.53 =—f (MAdxAJr;AdYA)—zifI(a)dx(a), (3.2
BZZAAUBPAB:O, (254) where
— * _ ANBp . _ - —
B3=(B2)" =u"\"P»3=0, (2.59 UA=xPBN g+ 2ayABr g +iOA[(ON) +a(ON)], (3.3
By=UAUBP A~ 2=0, 25 - N —
4 AB 259 wP=NpXBA2ayPBr 5+ i OA[(ON) +a(ON)],
Bs=i(A\*P,—\*Pj)=0, (2.57) o
oo X=(ON)=0%,, x=(0N)=0",, (3.4
Be=\"Po+\"PA=0, (2.58

1 — i —
AT =35 + ) =5 - 3 3.
B7EUAPA:O, BgEUAPA:O, X1 2(X X) X2 2(X X) ( 5)
F1=\"D,=0, (2.59 x(@)=V(1+a)x;+iv(1-a)xz,
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Ya)=JA+a) vi—i(1l—a)v,. 3  Wherer” and u“ are real Majorana spinors formed of the
x(@)=v(1+a)x;—iv(l-ax (3.6 Weyl spinors
[Note thaty(a) and ;(g) are complex conjugate 'to each Aa Un
other only fora<1, while fora=1 they are real spinork. s | — ae| |
. - A 1 M A
Thus, in the generic case# 0,1 one can reformulate the A 2

dynamical system in terms of 8 bosonic variables

A— —h o ) One can write the actio(8.2) in the form
Aasu ™ Ng,u” and two real fermionic variableg, x».

These variables can be regarded as components of a real 1 ABY
(8,2) component supertwistocf. with [1]) S=- > dr Y, G*°Yg, (3.8
Ya= (Y1, - Yeixnx2) =(Nu% x1.x2),  (3.7)  where
|
0, Iz 02 0
-l 02 0, 0
w(8) 0 02 02 02 |2 0
AB_ —
© ‘( 0 iw<2>)— 0, 0 —I O : 39
2(1+a) 0
0 [
0 2(1—-a)
|
® is the Sp(8) invariant simplectic metric. Y =(Y1, - - Yaix1)- (3.13
Whena# 1 we can rescale the fermionic variabjgsand _ _

X2, i.e. multiply them, respectively, by1+a andy[1—al. Consider now the case=0. At a=0 the action has the
This results in the following form of the metrie® in Eq. ~ same form as foma<1 and hence is formalyDSp(2(8)
(3.9: invariant. But, as we have seen in the previous section, at

this critical point the model acquires additional lo¢a{1)
1 0 symmetry, which must have its counterpart in the su-
w(z)ﬂw(2)=2(0 1) for a<1 (3.10  pertwistor description, i.e., there should appear a first-class
constraint on the supertwistor variables which generates this
symmetry. In order to identify this constraint we use the

or defining relations(3.3) and consider the following bilinear
1 0 combination of supertwistor components for an arbitrary
w<2uw<2>=2(o 1) for a>1. (3.1  value ofa
A A . H —
We see that the symmetry group of the fermionic sector of W@ (@NAT 21 xx =280V 2a>\y)\.(3 14
the metric(3.9) is SO(2)=U(1) whena<1 andSQ(1,1) '
whena>1. At a=0 Eq. (3.14 does not involve central charge coordi-

Hence, whema<1 the complete symmetry group of the natesy and thus we obtain the pure supertwistor constraint
metric (3.9) is the supergrou® Sp(2|8), while in the case

a>1 the symmetry group become3Sp(1,18). The su- wANO)NA— A (0)N A+ 2i xx=0. (3.15
pertwistors(3.7) transform under the fundamental represen-
tations of these supergroups. Hence, ata=0 for the action(3.1) to be equivalent to Eq.
Whena=1 the metric becomes degenerate (2.1 it must be supplemented with tlffrst-clasg constraint
(3.15 introduced through a Lagrange multiplier term
(@), 2 =9 10 (3.12 AN
@ ®as1m 4 g o) ' a=0: s:—J (uAdhp+ PN R)

This reflects the absence of the second fermionic varighle ) .

from the action (3.2. Thus ata=1 the supergroups —'f(XdX+XdX)

OSp2|8) andOS[1,18) reduce toOSK(1|8) with the

corresponding supertwistor representation having one real . i

fermionic componentcf. with [1]) +i | dTA(ph—ph+2ixx). (3.16
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The constraint3.15 generates th& (1) gauge symmetry
appearing only in th@=0 case. This constraint introduces
the complex structure and thus breaks @&Q2|8) sym-
metry of thea<1 model down t&SU(2,21). As a result one
gets the Ferber-Shirafuji formulatiof®,10] of a conven-
tional massless superparti¢l@7—4Q in terms ofSU(2,21)
supertwistors
ZA=(pANax),

Z.A ()\Ai 1X)

a=0: sz—f (EAdzA)HJdTA(EAzA—s),
(3.17

where the constarsthas been introduced in order to have the
possibility of describing massless superparticles with non-

zero (supevhelicity [30] (see Refs[22,32, and references
therein for details
A. Quantization of the supertwistor model
1. Canonical supertwistor quantization

The quantization of the dynamical systg®.2) with a

PHYSICAL REVIEW D61 045002

Appendix. To understand what kind of physical states are
described by the functio(8.20 in the casea# 0,1 we shall
first consider the well known case=0.

a=0

At a=0 the dynamics of the system is subject to the
first-class constrain{3.15 which at the quantum level is
imposed on the wave functio(3.20*

3 _
(D(O)JFXa—S)‘D(?\A,?\A;X):O, (3.21)

where

— 9
A oA

D(O)—)\Aa)\
A

is the supertwistor representation of the bosonic part of the
U(1) generatory= x(0) [see Eqs(3.4—(3.6)] andsis an
integer constant which appears due to the ambiguity in or-
dering the operators in E¢3.21) (see Refs[30,22,32, and
references therein for details, here we only note that the

#0,1 is quite straightforward. The action is of the first orderquantization ofs follows from the requirement for the wave

form, thereforew, . should be identified with the canonical
momenta conjugate to, ,)\A, and Zx(a) is the momentum

conjugate tgy(a) [remember thag(a) andX(a) are defined
by Eq.(3.6)]. The canonical Poisson brackets are

[MAi)\B]P: 5ABv

x(@).x(@)}p=— -

5 (3.18

function to be single valuedThe (half-)integer values 0§/2
describe helicities of massless quantum states.

Let us consider first the case=0. Equation(3.21) re-
quires the bosonic and fermionic components of the super-

field (3.20 to be homogeneous functions ®f\ of the de-
gree 0 and-1, respectively,

D@O@(AaNa)=0, DOy(Ng,Aa)=—(Aa,\A).
(3.22

The solution i8

b= bo(Pm)s =N "Ya(Pm), (3.23

At the quantum level the dynamical variables become opera-

tors, and the Poisson brackets are replacedby)commu-
tators (...,...Jp—i[...,...1, {,}p——i{,}). For in-
stance, in the “coordinate” representatlon the momenta are
the derivatives of corresponding coordinates

(3.19

The canonical Hamiltonian of the system vanishes identi*

cally. The wave function of the system in the supertwistor

“coordinate” representation is

a#1:®[Aa.Ap.x(8)]= ¢()\Av)\A)+iX(a)¢()\Au)\(A3)

and the spectrum of quantum states is described by one

“In this section we basically follow the quantization procedure of
reference$21]. The operatoD =D+ yd/dy is the superhelicity
operator.

5A rigorous approachi32,33 consists of the consideration of the
decomposition of the wave functicxy:()\AIA) in the basis of the
functions on C2—{0} formed by homogeneous _infinite-
differentiable functnonsﬁv Vz(z)\A ,zAA) z”lz”2¢V Vz()\A,)\A) of
a homogeneity index= (Vl,vz) [34]. The homogeneous functions
are defined by the Mellin transformation

by, VZ()\AI)\A)_ J’dz dzz 122 L p(2Ap DR

The decomposition
o0

¢(?\A')\A):Ef2f dp Pntipy2,(—n+ipy2AaNA)

bosonic and one fermionic function depending on Weylcan be substituted into E(.22 instead of the power series iy,

spinor variables.
At a=1 x(1) becomes a real Clifford variable and the
field (3.20 becomes a Clifford algebra valued function. We

\ A to obtain the general solution. We refer the readdB®33 for
further details and t¢34] for an excellent presentation of related
mathematics and, for simplicity, use a physical “shortcut” of the

shall discuss this case in detail in Secs. lll A4, V B, and therigorous approach.

045002-8



SUPERPARTICLE MODELS WITH TENSORIAL CENTRAL ... PHYSICAL REVIEW B1 045002

wheE:, by definitionp,, is a lightlike vector composed of
andX [see also Eq(2.30]

and thus the spectrum of the quantum states of the model is
represented by a supermultiplet of helicify-s/2,(—s
+1)/2].
" _

A= PmOar=NaNA - (3.29
PAA= PmOpp= AAAA 3. a0 1

We see that the spectrum of the Ferber-Shirafuji model at | et ys return to the generia#0,1 models. Their spec-

s=0 consists of a masslesé=1, D=4 (antjchiral super-  trym is defined by arbitrary scalar bosonic and fermionic
multiplet containing a complex scalar field of zero helicity fynctions of the Weyl bosonic spinorg(Aa,A) and
and a Weyl fermion field of helicity- 3. This supermultiplet #(\a,Na) Which, in contrast to tha=0 case, are not sub-
can be described either by the set of bosonic and fermionigact to any constraints. The bosonic spinor components can
wave functions depending on the bosonic Weyl spinor varihe regarded to be defined through the components of the
ablesk a4 in accordance with the formul®.23,(3.24), or jightlike vectorp,,p™=0 (3.24 up to the phase transforma-
as a set of the unrestricted bosonic scalar functgfp,,) tions
and the fermionic spinor functiora(p,,) depending on the
lightlike vector p,,p™=0 which we identify with the mo- (3.28
mentum of the massless superparticle. In such a way w . . .
establish the relation of the supertwistor formulation with thePrhus fora?ﬁo we can consider the bpsonlc and fermionic
space-time description of the massless superpatrticle, and thigfve funghons to depend on the lightlike vector anld@)
dual description can be extended to the case of more gener%l'i‘gle variablex~a+ 2wk
model with nonvanishing central charge coordinates. N

Finally, let us consider the case of the nonvanishing op- PNA A= (P ), (3.29
erator ordering constargtin Eq. (3.21) which we shall call '
the superhelicity parameter, characterizing the helicity prop- Hence, in contrast to the Ferber-Shirafuji model, the wave
erties of the superfield solutions. The component form of théunction of the generic dynamical systef8.1) with a#0

Aa—€ N, Ny—e ey,

I/’()\A!)\A): lll(pmva)-

constraint(3.21) now reads

D@¢(Aa,Na)=Sh(NaNA),

DOy(Na NA)= (5= 1) h(Aa NA)- (3.29
For integers>0 the solution of Eq(3.25 is
d=\" . Nsha AP,
Y= N NS (P)- (3.26

depends orone additional variablewhich parametrizes a
compact manifold 1)=S!. This means that the functions
¢ and iy, as the single valued functions, can be expanded in
the Fourier series

¢(pm !a) :Ekezeika¢k(pm)l
P(Pm, @) =S 2€%* (P (3.30

The meaning of this series expansion becomes clear if we
use the Lorentz-covariant representatiorpadind ¢ as single

valued functions ofA 5 (3.20 where )\AY-A are replaced by

We thus obtain supermultiplets whose components have thﬁm_ Then the serie€3.30 acquires the form

helicities s/2 ands/2—1/2, respectively. The choice of the
statistics of the superfield8.26 should be made in accor-
dance with the general spin-statistics theorem, such that for

the even values of (integer superhelicitigsthe superfields
(3.26 are bosonic and for odsl(half-integer superhelicitigs
they are fermionic.

Notice that the Grassmann parity of the superfidid
(3.21) (and its componentg and ¢) is related to the parity
of ®(\,\,x) under the changa — —\ (N parity) which
implies y— —x. If ®(=\,—N,—x)=®(\,\,x) then from
Eq. (3.26 follows thats is even(integer superhelicitigsand
such a superfield is Grassmann eveéhi$ bosonic andy is

fermionic). Analogously if the superfield (A ,\,x) changes
the sign under tha parity, thens is odd (half-integer super-
helicities and the superfield is Grassmann odgl i6 fermi-
onic, andy is bosonig.
For integers<0 the solution of Eq(3.29 is
p=NA1 - NAsgp A

S

P=NPL AR (3.27

—s+1

SN =B(Pm) + ez [N N pa A (Pm)

NGB A (P, (3.30

PN =Y (p) + Siez [N Nga A (D)
NG APl

We therefore conclude that the most general solution of the
model with a#0 describes an infinite doubly degenerate
spectrum of massless fields of an arbitrary helicity, with the
additional compacS' coordinate in the momentum space
conjugate to the discrete helicity variable.

If we assume the validity of spin-statistics theorem the
bosonic fields should have positive parity, and fermionic
fields should have odd\ parity. Thus, thex-even part

CLANX)=P (NN =)= (WA Hixg-(NN)
of the general superfield solutiomp(\,\,x)= &(\,\)

+in,//()\,f) [see Eqs(3.20 and(3.31)] should be regarded
as bosonic(i.e., Grassmann—evenConsequently this im-
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plies that the wave functiog, (\,\) has positivex parity It is easy to se7e that each term is separately invariant under
(even powers ok) i.e., it is bosonic, and the fermionic wave SUP€rsymmetry.

. . . In the casea=0 the additionalU(1) constraint(3.21)
function (A, \) has negative. parity (odd powers OM.' appears. It singles out one irreducible superfield with a defi-
Another sector of the full quantum state spectrum is de

) . _ — nite superhelicity out of the infinite seri¢3.32.
scribed by the fermionic\-odd superfield® _(\,\,x)=

—®_ (=N, =N, = x)=6-(\\)+x¢+ (\,)\) which is com- 4.a=1
posed of the fermionia-odd field¢ _(\,\) and the bosonic Consider now a peculiarity of the modelat1. In this
\-even fieldy, (\,N). case the actiori3.1), (3.2) contains only one real fermionic

We, therefore, see that in order to obtain physically meanvariablex;. The corresponding term in the action is
ingful solutions described by the superfieftis (\ |\, x) and 1 .
®_(\,\,x) with definite Grassmann parity one should di- SX:—‘HJ xidxs x1=5(ON+6N).  (3.33
vide the general solutiof8.20 into two parts with even and
odd\ parity. Note that the superfield solutions with definite From Eq.(3.33 we conclude that the odd momentumyofs
even/odd\ parity have the even/odd superhelicities, but eactproportional toy itself
of them contains a complete nondegenerate spectrum of
states with both even and odd helicities. Sy=my,~4ix1=0. (3.39

It is instructive to compare the consequences of the pres-
ence of the “internal” compact coordinate in our case and inEquation(3.34 is the second-class constraint being typical
Kaluza-Klein theories. In the Kaluza-Klein theories the com-Of any free fermion theory
pact variables arise in an extension of space time with extra (S, .S.}p=—8i (3.35
directions and lead to the quantization of corresponding “in- =X ' ’
teral” momenta in the extended momentum space. The can be regarded to be satisfied in the strong sE28eafter

“internal” quantized momenta describe masses and gaugge pass from the Poisson brackets to the Dirac brackets
charges of Kaluza-Klein fields in the dimensionally reduced

theory® In our case the compactification is achieved by ex- [

pressing the generalized momenta in terms of bosonic spinor [f.gto=[f.g}p— g[f’SX}P[SX gtp (3.36
(twistor) componenta. Thus, we have the opposite situation:

the compact “internal” manifold is in the extendedomen-  which imply

tum (twistor) space and guantized (discretegentral charge )

coordinate is in the extendetordinatespacespace-timet {X1,x1}p=2i. (3.37
central charge coordinatesThe Fourier transform of the — . .
compact “internal” momentum results in the discrete vaIuesgggcg;aggfnnag#aprglrﬁgtloﬁ becomes a Clifford variable of
of the conjugate coordinate, which are described by an inte-

gers. From the physical point of view thinalf)integer num- (x0)?=1 (3.39
bers/2 describes the possible helicities of the massless quan- X1 ' ’
tum states. The Clifford algebra generated by this variable consists of

. '!'he qpantum states of our model form a redUCIbIetwo elements, the unit element ap}ql. Hence, all functions
(infinite-dimensional representation of target space super- f %, can be written as a “Clifford algebra valued super-
symmetry. Indeed, as the bosonic spinor is inert under globaﬁelg}, having two component§27]

supersymmetry, the field&.31) can be collected into the
superfield series expansion with each term having definite B = bris
superhelicity D& =o+ix1y, (3.39

where ¢ and ¢ do not depend ory;. We conclude thaat
_ a=1 the wave functions (3.20), (3.32) become Clifford “su-
PN x(2)]= D P, x(a)] perfield§ whose components again (as in the case0gal)
A A describe an infinite tower of fields of all possible helicities
Flkez A AP [P ()] We can decompose the superfie(8s39 into the even and
. AT odd parts with respect ta parity and thus have the wave
ez AN AP X ()] functions with definite Grassmann parityosonic and fermi-

(3.32 onic superfields

"Remember that the supersymmetry transformations of the super-
81t is worth mentioning that “usual” Lorentz-scalar central field (3.32 are generated by the transformationsyoés functions
charges can be interpreted as Kaluza-Klein momgsta of ® [Egs.(3.4)].
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We see that ada=1 the model has the same spectrum of {S,Slp=0, {§§}~p=0, {SE}FF —2i(1-a?).
guantum physical states as in the generic case. The differ- (4.4)
ence with the generic casa#£1) is only in the transforma-
tion properties of the field components with respect to target Note, thatS is complex conjugate o6 only for the case
space supersymmetry—ttee=1 supersymmetry multiplets g<a<1, while for a>1, where J(1—a)=i[1-a] is

are shortenedsee Ref[1], Sec. 2. Note also that in the imaginary, bothS andS are independent real variables. For

models witha=1 one can impose additional reality condi- 15 b ded h 0a®
tion on the quantum wave functions. In the Appendix wed” can be regarded as the momentum conjugat to

shall present another way of quantizing a single classical

fermionic variabley, [see Eq(3.33] which allows to treat it B. Conversion of the constraints
as a usual Grassmann variable and quantum superwave func-we use the additional degrees of freedotr) and (4.2)
tions as standard superfields. in order to convert the mixture of first and second class con-
straints (2.30—(2.35 into the first class ones. As it was
IV. QUANTIZATION BY USING THE CONVERSION shown in Ref.[26], in twistorlike formulations of particle
METHOD mechanics it is convenient to perform conversion of the

o ) . whole set of primary constraints, without dividing them into
In order to justify the results of the supertwistor quantiza-ine sets of first and second class constraints.

tion of the model presented in Sec. Ill and to clarify the  For anya the first class constraints obtained as the result
space-time structure of the quantum wave functions, in thig¢ conversion arfe

section we shall perform the quantization directly in the co-

ordinate representation. Because of the appearance of a par- @ p5=Prz— (Aot pa)(Ng+pp)=0, (4.5
ticular mixture of fermionic first and second class constraints
there appears a problem of quantizing the system covari- ®ppg=Zpg—a(Ap+pa)(Ag+pp)=0, (4.6)
antly. However, there exists a powerful method to handle
this problem[19,17,18, Wh_lch is based on the conversion of ®ps=Zps—aMa+ pa)(Ng+ p) =0, 4.7
the second class constraints into the first class ones.

The quantization of the Ferber-Shirafuji model by the —A

=P, +P{=0, ®i=P+Pr

ntPp=0 438

conversion method was considered in RE20—23. In Ref.
[22] a D=10 supersymmetric particle with extra tensorial — —

coordinates has been also discussed. In the present paper, P?A)—Pﬁ,)ZO, Po—Pp=0 (4.9
however, the relation between spinor variables and the ten-

sorial central charges, as well as their physical interpretation, p = — 7 +iP ;0B +iZ,g@B+ (f;+if,) (A s+ pa) =0,

goes far beyond the results presented in Red]. (4.10
A. Conversion degrees of freedom Da=mp—iOBPgA— iz_-Al-363+ (fi—if2)(Ng+pa)=0.
To convert the second class constraints into the first class (4.1

ones we introduce addition&tonversion phase space de-
grees of freedom, whose number is equal to the number g
the second class constraints.

Thus, for thea#0,1 models we nee8,+2; conversion
degrees of freedom. For this purpose we introduce bosonic {Da.Dglp {DA,Dglp —dp D

spinorsp, pa plus its canonical momentdy, , Pg;

The algebra of the first class constraifs5)—(4.11) is
uite simple. The only nonvanishing brackéits the strong
sensg appear in the fermionic sector and have the form

Dop=| = = = =2 e _a.
@8\ {Da,Dg}p {Da.Dg}p Ppa —dug

[P().pele=35" [P).psle=733. (4.0 4.12
and two real fermionic variablet, and f, whose Poisson The RHS of Eq.(4.12 vanishes weakly, i.e., on the con-
brackets form a Clifford algebra straint surfac€4.5—(4.7).

Note that the expressiong.5—(4.7), (4.10, and (4.1))

{f1,f1}p=—i(1-a), {f,,f,}p=0, contain only the combination\(+p) of the commuting

_ spinors. We denote this combination By
{fz,fz}p:_|(1+a). (42) - - _ .
. _ Aa=Aatpa,  MaA=ANatpa, (4.13
Instead off, andf, we shall also use two conjugate fermi-
onic variables while the linearly independent variables
S=V(l+a)f;—iy(1—-a)f,,
o 8We denote the converted constraints with the same letters as the
S=yJ(1+a)f,;+iy(1l—-a)f,, (4.3)  original ones.
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PA=Na=Pa,  PA=NA~PA (4.14 V=AY YABRANA 0R0RS) (419

completely decouple and have vanishing canonical momentave recall that we have consistently removed the variables
(4.9. Hence, the variablegt.14 can be excluded from the (4.14 from the consideration Thus, the wave function of
consideration, since the wave functions will not depend orthe system satisfies the first order differential equations
these variables.

C. Quantization of the converted system: equations for the ( 9xAB _i)‘A)\B) ¥=0, (4.20
wave function
Now it is straightforward to quantize the system by using 1 9 -
the Dirac method28]. For this purpose let us choose the 5 72 1akakg | V=0, (4.2
(superyShralinger representation for the superspace coordi- Iy
nates and the bosonic spinor variables L
g = =
L 9 (Eﬁgg—la)\A)\B)‘P:O, (4.22
Pag=—1I Py
J . d —5 [ d B NN _
2 - 9 W_I—IO’)X_A";@ +§aayAB® —I(f1+|f2))\A v =0,
AB —&yAB, (4.23
: i 9 2 i eer ol GBri(r —ityna| =0
ZAB —1 (QVAB s (415) (?G_)A &XBA 2 (9?\8 1 2) A =V.
(4.29
pA= _ii Ié‘,é: _ i_‘?_ The solution of Eqs(4.20—(4.22) is
A TA’ A NA?
2N ON . B . .
\I,:ei)\A)\'AxAA+ia)\A)\ByAB+ia)\A)\ByABg(’XA,;\A;@A,6A,S)_
- 4 . _ (4.29
7TA=+I—A, 7TA=+IT-A. (416)
J0 90 Because of the constrain.23 and(4.24) the functiong

o . _ (4.25 satisfies the conditions
The fermionic variables, and f, become Clifford algebra

operators J ~  — . .
—oA ~ Mal(ON) —a(ON) —i(f1+if)]|g=0,
- 1 o 1 o
(f?=5(1-a), (f)?=5(1+a), {f,f}=0. (4.26
(4.17 g L
— = M[(ON)—a(ON) +i(f—if =0.
The Grassmann parity df, andf, must be odd because the JOA ALON)—a(OM) +1(1-1E)] g
constraintg4.10 and(4.11) should have definite parity. (4.27
Note that the linear combinatiot4.3) of fermionic quan- . _
tum variablesf, andf, satisfy the commutation relations An evident consequence of Eqd.26) and(4.27) is thatg

depends only on the composite Grassmann variakles
{58=0, {58=0, {58=2(1-a?). (418 =0°B\gandyx=0°8\; introduced in Eq(3.4)

So one can choosBas an odd coordinate arilas its mo- g 04,0%,9) =g(\A NN 080,082 5,9).
mentum operator (4.28

R , 9 A Then Eqs(4.26) and (4.27) reduce to
S=2(1-a )(9_8’ S=S. . L
. , o ((9__X_aX_i(f1+if2))g()\A.7\A;X,X,S):O,

Despite the fact that such a representation makes hermiticity X

condition nonmanifest, it is convenient since it simplifies the (4.29

calculations and provides the possibility of treating the cases

0<a<1 anda>1 on an equal footing. e v—av+i(f.—if AaNa‘v.x:S)=0.
After quantization the first-class constrairis5—(4.8), ax x—axtihimifz) Jghahaix xS

(4.10, and(4.11) are imposed on the wave function (4.30
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D. Quantization of the converted system: dependence on the
fermionic variables

To find the solution of Eq94.29 and(4.30 we take their
linear combinations and rewrite them in the following form:

[Jl—az(%—x(a) —S|g=0, (4.31)

g

(@) —x(a)

i

2(1-a?)|g=0

(4.32
where y(a) were introduced in Eq93.5), (3.6) and S are
defined in Eq.(4.3.

Equations(4.31) and(4.32 are easily solved in terms of
the components of the superfunctig(S)

9(S)=0o(x.x) +iSG(x.x) (4.33
which satisfies the conditions
( ’ (a) 0
—_ a =
@) X Jo
:>90(Xv;)
= M@OX@P[ N, N4 ix(@)],
(4.39
2\1-a%g;(x.x)=—i W—Ra) do. (439

We see that whea# 1 the componeng, of the superfunc-
tion (4.33 is expressed in terms @f, which is specified by
the condition(4.34) in terms of a single independent super-
field ®[ A5 Na5x()].

Hence, the independent wave functighl9 which de-
scribes the general solution of Eq4.20—(4.24) is

T = eiAA;AxAA+iaAAAByAB+ 'a)TA)TB;AB_;(a)X(a)(I)[XA, )_—;A, X(a)] )

(4.36
At the critical valuea=1 the result is the same though the
proof is slightly changed since in such a cdgss in Sec.
I1A4) we should deal with a single conversion Clifford
variablef instead off; andf, (and/orSandS). More pre-
cisely, in Egs.(4.29 and (4.30 one should puta=1, y
=y, and f;=S=0, and then follow the quantization pre-
scription described in the Appendix.

One should notice that the wave functi(hﬁXA,iA;X(a)]

PHYSICAL REVIEW B1 045002

supersymmetric variation$2.7) of the coordinates. The
higher dimensional generalization of the=1 model and its
quantization will be the subject of the next section.

V. THE a=1 MODEL IN HIGHER DIMENSIONS AND
INTERNAL DEGREES OF FREEDOM

A generalization of thdd =4, a=1 superparticle model
has been proposed in R¢l]. In higher space-time dimen-
sionsD we consider an extension of &~ 1 supersymmetry
algebra by tensorial central charges

{QaaQB}:Pa,Bv [PaﬁiQy]:Oy

where, depending on space—time dimensinnthe super-
chargesQ, (a=1,...2%) are real Majorana, or Majorana-
Weyl spinors and P,z is a symmetric generalized “momen-
tum” generator conjugate to *@2X+1) symmetric spin-
tensor coordinateX“?, which can be split into the usual
space-time coordinates and tensorial central charge coordi-
nates, as we shall demonstrate below.

We assume thaP,; is defined by the Cartan-Penrose
relation

(5.9

Paﬁzy\a)\ﬁ’ (52)

where the real bosonic spinar, has the same spinor prop-
erties as the superchar@®,. The expressioni5.2) implies
the Bogomol'nyi-Prasad-Sommerfield BPS condition
detP,;=0 and can be obtained as a primary constraint from
the action functional1]

S= (5.3

ap
fMlxaxﬁH :

M =dX*$—id® (0P =drI1#,
2.

For any value ok the model possesse$ Blobal target
space supersymmetries generated by (bd)

dsusy® “= €,

as well as 8— 1 « symmetries. To show the presence of the
2X—1 k symmetries let us write the variation of the action

a=1,...

SsusyX“P=10"eP), Osusyha=0,

5S= f (28N A BITP (N N )i SIT*A
/\/ll

—2idO NN OP) + (N i SITP)| T, (5.4

in Eq. (4.36 has exactly the same structure as in the su-

pertwistor casé€3.20), but where nowy(a) are the compos-
ite Grassmann coordinates defined by E&sS), (3.6). We

where

therefore conclude that the direct supertwistor quantization—
and the quantization with the use of conversion of the super-9, e general case one can also consider the cases of pseudo-

particle model based on the generic act{@rl) result in the
same supersymmetric spectrum of the quantum states.
The supersymmetry transformations of the components

O[NA A y(a)] are easily derived from Eq4.36 using the

Majorana, simplectic-Majorana and DirécomplexX supercharges
36]. Technical details of the extension of the results of Sec. V to
rbitrary type of supercharges will be considered in another publi-

cation.
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i I =5XF—i 50 (*@A), A. OSp(1]2%) supertwistor representation
of the D-dimensional model
One can see that only one linear combinatigRs®” of 2 Performing the integration by parts we can rewrite the
independent variations of Grassmann coordina@é is ef- ~ action (5.3 in the OSp1]2") invariant form [i.e.,
fectively involved into the variation of the action. OSp(1|16) for D=10 andOSH(1|32) for D=11] in terms

Hence, other ®—1 Grassmann coordinate variations Of & supertwistol=(u%,¢)
[which do not appear in Eq5.4)] can be identified with the
parameters of local fermionia—symmetry. They can be s:—f (nd\,+id¢0), e=1,...,% (55
written in the form

The generalized Penrose-Ferber correspondence between the

K'=u'ﬁé®ﬁ, supertwistors and the generalized superspace looks as fol-
lows
where up (I1=1,... ,2‘—_1) and\, form a set of % lin- Pug=Nahg, m =X\, i0%OP,), (=0,
early independent bosonic spinors. Identifying theymme- (5.6)

try with the part of target space supersymmetry which is
preserved by the particle or brane configuration, we clainand does not imply other constraints.
that the model5.3) describes the dynamics of BPS states
preserving all but one target space supersymmetries in spac®. Quantization of the higher dimensional model with the use
time of a dimensiorD. of conversion

Examples In D=3 (where k=1) the action(5.3) de-

scribes the standard massless superparticle The quantization of the supertwistor formulatih3) is

straightforward and is completely analogous to the quantiza-
tion of the D=4 model considered in Sec. llIA4 and the
k=1-D=3: X%¥=XMy2B = pab=pmyabs Appendix. The spectrum of quantum states is described by
the superfield

On the other hand the cake=1 can be regarded as a model D=D(\,,0)=d(N)+ilp(\,) (5.7)
in a “minimal” D=2+ 2 superspace with self-dual tensorial ¢ “ “
central charge coordinate§*?=y™"g2A = ymn=21mkh,  depending on the bosonic spinoy and one Grassmar(or,

The case ofk=2 corresponds to th®=4, a=1 model equivalently, Clifford variable {. For completeness we
considered in Secs. -1V but written in the Majorana repre-briefly describe the quantization of the higher dimensional

sentation. model (5.3) with the use of conversion.
The construction also holds =6 wherek= 3, but here The primary constraints of the mod@.3) are
we should use thESU(2)—Majorana-Weyll “reality” con-
ditions. In addition to the four-dimensional spinor index D =P~ N Ap=0, (5.9
the complex eight-component spind@;, and \!, carry the )
SU(2) indexi=1,2 and they are th8U(2) Majorana-Wey!l DaEWa+'®BPBa:0v (5.9
spinors(see for details Ref.36]). The number of tensorial
central charges in this model is 30. =0, (5.10

The casek=4 can be regarded as describingDa= 10 ) .
massless superparticle with 126 composielf-dua) tenso- whe_re _the momenta are defined in such a way that the non-
rial central chargeZml...ms [1] (cf. with Refs.[2,22]). The vanishing Poisson brackets have the following form:

real supercharge®,, satisfy the Majorana-Weyl reality con- [P.s Xyﬁ]Pzzthvgg)) {7, 0P p=5"
dition. o R “ “
The action(5.3) with k=5 corresponds to a 0-superbrane [Py N lp=55. (5.11)

model in D=11 superspace with 517 tensorial central

charges composed from 32 components of one real bosoniis set of %(2+ 1)/2 bosonic and 2 fermionic constraints
Majorana spinor. In contrast to the casesof 3, 4, 6, and  gpeys the algebra

10, in such a model the superparticle is not massless, the

mass of the O-brane being generated dynamically in a way [QJQB,P(&)]F,:Z)\(LﬁZ),

similar to the mechanism generating the tension of super-

strings and superbrang41]. {D4,Dgtp=2iP ,5=2i(P 5T \,\p), (5.12
On the other hand it is possible to use the twelve dimen-

sionalD=2+10 32x32 gamma matrices to treat the=5 all other brackets 0,

model from the point of view of two-time physidg]. The

bosonic coordinateX“? are decomposed into two-index and and thus contains*2bosonic and 1 fermionic second class
self-dual six-index central charge coordinaig®",y™ "™  constraints. Therefore, our system with(2¢+1)/2 bosonic
=1/6le™ Mot Moy, and X fermionic configuration space variables contaifi 2
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bosonic and 1 fermionic physical degrees of freedom whichncides with a D=3 counterpart of the usualFerber-
can be identified with the components OfSp(1|2%) su-  Shirafujij model[9,10], the Fierz identity read$

pertwistor.
Exactly as in theD=4 case, to perform the conversion D=3 1 1. b
(see Refs[15-18) of the second class constraints into the =31 Nahp= §7aﬁ()‘7’a7‘)_§7aﬁ a

first class ones we introduce additional “conversion” de-

grees of freedongtwo for each pair of the bosonic second and we can identify the matrix coordinat¥s? and their
class constraints and one self-conjugate fermionic variablenomemapaﬁ with the usual vector coordinates and mo-

for each fermionic second class constraint menta
7 « | D=3 XPmoyRxe, Xob=x
[Py pple=0%, 1£&&6=—7, (5.13 =3 =2 Yap =X"Yaap:
and transform the second—class constraints into the first-class pa_ } a paf p _pa
ones extending the former with the new coordinates and mo- 2 Yap™ ap Yaap-
menta
Thus, inD=3 Eq.(5.19 describes a plane wave solutdn
D, 5=Pos— Nk z=0, 5.1 m
af= T ap Tep 614 D=3: W=ePX"p(p,). (5.20
D,=D,+2\ =7, +i0PP,,+2),E=0, (5.15 The case&k=2, D=4 has been analyzed in detail in Secs.

II-1V. To transform the wave functioii5.19 to the wave
(5.16 function (4.36 (ata=1, and® =0) one should perform the
' similarity transformation from the real Majorana to the com-
plex Weyl representation of the =4 gamma-matrices and
where replace the Majorana spinor by the pair of complex conju-
gate Weyl spinors

P<=0,
P

Xa:)\a—‘rpal np‘a:)\a_pa' (517) ~
~ XA
. . . Aol = . (5.22
Following the Appendix we obtain the superwave func- A
tion describing the first-quantized states of the model deter-
mined by the single superfielt6.7) depending onx, and In the momentum representation the wave functign ,)
one Grassmann variabje=(®\). We have differs from the usual one given by,(p.,) by the presence

of additional dependence on the angle variableshich de-
- - s~ B o~ e - scribes the common phase factor of the Weyl spinor
W[Aa, (ON)]=e2" "7 [ h(N o) +iI(ON) (N ,)]. Aa (=€ @A\ ], N=€@P\,]) and parametrizes
(5.18  the one-dimensional spheg?
In the sector with even-parity of the wave function ¥ D=4: A=A Na)= ). ael027
=¥, ) the spectrum of the quantum states of the m¢8&) $ha)=E(hah8)= $(Pm. ), =L0.2m),

is d~escribed by one bosoni¢,(X) and one fermionic \here me%KYmKI%KAUAAYA (see also Ref[10]). The
#_(\) function, while in thex-odd sector ¥ =¥ _) we  additional internal momentum variable is the only inde-

have the fermionic fields_ (X) and the bosonic fielg. (X). ~ pendent degree of freedom contained in Me 4 tensorial
This is in complete correspondence with the result of thecentral charges composed of the bosonic spinor
guantization of the free supertwistor modgl5).
1
ael0,2m)=Znn=7NYmn\-
C. Properties of the wave function with arbitrary helicity 4

spectrum

To clarify the meaning of the wave functidb.?) [or Eq. L . _ _ )
(5.19], let us consider its bosonic limit @“=0 We use the matricey,; which are symmetric and obtained

from standard Dirac matricesyt) ., by lowering one of the indi-
ces with the charge conjugation mati= y,=i7,, which plays
the role of the metric in the spinor space.

More precisely, ilD=3 ¢(\,) = ¢{pm.Sgn()], where sgnx)
and use the decomposition of the product of the spinor repdenotes the sign factor{(1) of the bosonic spinor. This is a “pa-
resentations in the basis BFdimensional gamma matrices. rameter” of the residuaZ, symmetry, whose action ax does not
For the simplest case=1 (a=1,2), where our model co- changep,,.

V=AY, a=1,....% (519
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It describes th® =4 helicity spectrum of the quantum states 0 yi .
of the superparticle. o= - W) — _Gies (5.27)
In the general case &f>2 with 2¢ equal to the dimension & yldp 0
of an irreducible spinor representation 8{0(1,D—1) in
D=3,4,6, 10(mod 8 (i.e.,, k=3,4,...) thediscussion is oap =(0%+0%),5=diag 25,,0)
similar. For example, in the case=4, D=10 we can use - T
the basis of symmetrio- matriceso,, o, .. m, to make the =— (02— 0d)B=g" 2B,
decomposition e o 9 )
T o5 =(0=—02),p=diag0,25yp)
)\a’)\ﬁ: PaB_ Pm(7215+zm1...m50-aé 51 (522 :('&9+'&g)a_ﬂz'&++a_ﬂ
where In the frame(5.25 the Cartan-Penrose representatibr23
looks as follows:
_ af _ i
Pm—l6)\acrm Ng=PyP"=0 (5.23 Aghq=p, 25:34=0, AqV:qub:O- (5.29

is an ordinary lightlike momentum vector b=10 and The general solution of Eq$5.28) is

~ [Aq
1 up 34=0, =\,= , (5.29

Zmy-ms= T 51 a0 my---mghp (5.29 0

and the only nonvanishing component of the momentum

is the momenta canonically conjugate to the6 tensorial (525 is given by the norm of th&Q(8) spinorA
central charge coordinatgs' s,

It was demonstrated that tH2=10 model contains the P=AgAq. (5.30
local symmetries(first class constraintsand second-class . . . .
constraints which reduce the number of the classical bosonit® €xPressior5.30 is invariant under th&(8) rotations
degrees of freed_om t_o the ones described by the 16- Ag—ApS sg=|.
component bosonic spinot, and its momentum plus one
Grassmann degree of freedom. In the quantum theory this But not all SQ(8) transformations act o, effectively.
reflected in the dependence of the “momentum space repréndeed, if one fixes th&O(8) gauge
sentation” of the wave function on 16 bosonic spinor vari-
ables and one Grassmann variable only. * JB

Due to the identities &) (,5(0™),)s=0 the D=10 mo- 0
mentum (5.23 is lightlike. Hence, the tensorial central
charge momentiml,,‘ms contain 16-9=7 additional de- A= T (5.3)

grees of freedom which are not determined by the lightlike q
momentum.

We now show that these additional internal degrees of
freedom parametrize a®’ sphere. For this purpose we per-
form a Lorentz transformation to the frame where the light-
like momentum(5.23 acquires the form

pPq:

one finds that(i) this gauge is invariant under tHeQ(7)
transformations andii) any form of the spinorA, can be
P.,=(p,0,0,0,0,0,0,0,(). (5.25 obtained from Eq(5.31) by a transformation from the coset
spaceSO(8)/SO(7) isomorphic to the spher®’. Thus, the
Then in this frame we make &@®Q(8) invariant split of the 16 components of the bosonic spinoy in D=10 can be
bosonic spinoi split into (i) degrees of freedom which characterize the light-
“ like momentumP,,, and (i) 7 coordinates of the sphef.
3 Aq _ The variables parametrizing the sphe®é correspond to
)\a=( ) g=1,...8, g=1,...8, (5.2 “helicity” degrees of freedom of the quantum states of the
24 massles® = 10 superparticle.

It is worth mentioning that the appearance of extra com-
pact dimensions in the momentum spaces of the superpar-
ticle models considered above is related to the well known

and choose the&sQ(8)XS(O(1,1) covariant representation
for the D=10 o matrices

0 . .. ~0 «
055 diad 8qp , Sgp) = ol 2B,

U%ﬁ: diag 84p, — Sgp) = — 028,

fact that inD=3, 4, 6, and 10 the commuting spindtaist-
org with n=2(D—-2)=2, 4, 8, and 16 components param-
etrize, modulo scale transformatiorst, S®, S’, and S*®
spheres, respectively. These spheres are Hopf fibratfens
ber bundleswhich are associated with the division algebras
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R, C, H, andO. Their bases are the sphe®@s $?, S*, and  Lorentz scala®”\ ,. The “short” superfields4.36), (5.18,

S8, and the fibers ar@?, S'=U(1), S*>=SU(2), andS’, which exist only due to the presence of the auxiliary spinor
respectively. The base spheres are parametfigetb a scal- variable, describe the quantum states of the generalized su-
ing factor which, due to the Cartan-Penrose representation, Rerparticle.

identified with the square of spinor componeriig the light- We have shown that in contrast to standard superparticles
like vectors(massless particle momenta D=3, 4, 6, and the considered model possesses additional compact phase-
10, respectively. We see that the fibers are extra “momenspace variables which describe helicity degrees of freedom
tum dimensions” which we have in our models with central of the superparticle and which upon quantization parametrize

charges(at a#0). This is the geometrical ground for the infinite tower of free states with arbitrarghalf-)integer he-
appearance d&' in D=4 andS’ in D=10. licities. Due to this property it would be interesting to con-

sider the possibility of treating our generalized superparticle
model as a classical mechanics counterpart of the theory of
higher-spin fields developed by Vasiligi3]. Since the non-

We have performed the detailed analysis and quantizatiottivially interacting higher spin fields should live in a space-
of the massless superparticle model with tensorial centraime of (ant)—de Sitter geometry a natural generalization of
charges associated with twistorlike commuting spinors irthe results of this paper would be to consider a superparticle
space-times of dimensioD =3, 4, 6, and 10. The physical model on supergroup manifolds describing isometries of cor-
phase space degrees of freedom of this model have a naturgisponding AdS superspaces. FDr=4 the supergroup
description in terms of supertwistors which form a funda-OSp(1|4) is the isometry of aD=4 AdS superspace
mental representation of a corresponding maximal supel©Sp(1|4)/SO(1,3) which in addition to four bosonic direc-
group of conformal type underlying the dynamics of the su-tions has four Grassmann fermionic directions. Six bosonic
perparticle. coordinates corresponding to the gro8@(1,3) [which ex-

A peculiarity of thea=1 model is that it possesses tends the coset superspa@&p(1|4)/SO(1,3) to the super-
=2[P2l_1 x symmetries, while the standard massless sugroup manifoldOSp(1|4)] are a non-Abelian generalization
perparticles hava=2[P21"1 x symmetries. The presence of of the central charge coordinates of the-4 model consid-
such a large number of symmetries in thea=1 models ered above. It appears that our model with central charges
means that the superparticle breaks only one of 12 can be regarded as an appropriate truncation of the
supersymmetries of the target space vacuum. This results @Sp(1|4) model. Work in this direction is now in progress.
very short two-component supermultiplets describing the We should also remark that tensorial central charges are
qguantum states of tha=1 superparticle, since the corre- usually associated with brane charges, which are topological
sponding target space superfields depend only on one Gras®ad take discret@quantum values. In contrast, in the super-
mann coordinate. The existence of these short Lorentzparticle models considered in this paper the central charges
covariant superfields is made possible because the targetke continuous values and parametrize compact manifolds,
superspace has been enlarged by commuting spinor coorditile their Fourier conjugate coordinates are quantized.
nates, whose role is in singling out a “small” covariant sub-
superspace in the extended target superspace. Let us compare
this situation with well known cases. ACKNOWLEDGMENTS
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supersymmetriesSU(2)-harmonic variables allow one to

pick a harmonic analytic subsuperspace out of the general

N=2, D=4 superspacf44], and quantum states of the su- APPENDIX
perparticle are described by analytic superfields which de-
pend on four Grassmann coordinates singled out from the
original eight Grassmann coordinates by the use of the har-
monic variables. In the analogous way, in the case of the Here we shall present a method of quantizing a single
generalized superparticle mod@.1), (5.3) ata=1, when fermionic variable alternative to that used in Sec. 1l A4, but
only one target space supersymmetry is broken, one finds\&hich leads to the same spectrum of quantum states. Let us
Lorentz covariant subsuperspace of the target superspaaggnvert the second-class constraidt34) into the first-class
which has only one Grassmann direction parametrized by theonstraint by introducing one more Clifford-like varialdé

VI. CONCLUSION AND DISCUSSION

1. Quantization of one fermionic degree of freedom
by a “half-conversion” prescription

045002-17



IGOR BANDOS, JERZY LUKIERSKI, AND DMITRI SOROKIN

GRAISEE (AD

Using ¢’ we replace Eq(3.39 by the first class constraint

AEé‘:_i’ﬂ(g)‘f’Zg,:O, {A,A}p=0, (AZ)

where instead ofy; of Eq. (3.34 we have introducedt
:2)(1

Let us quantize the model using the coordinate represen-

tation for the original Grassmann variakje

E=¢ me=i—

23

and a real X2 matrix representation

., 1 1 X 2| A3
§=57=5« «| T (A3)
for the new Clifford algebra valued variabfé
&2=1/4.
Then the wave function is regarded as a column
v _(¢(§)) )
Al

and the quantum counterpart of the first class constfAidy

N J
A=<§_¢9_§ T+T (A5)
should be imposed on the wave function
~ a\
AapVp=|| &~ g Tapt Tap|Pp(£) =0. (AB6)
In Egs.(A5) and (A6) the second X2 matrix
Tﬁ,lb:(* * )’ (T,)ZZI (A7)

was introduced. It is required to ensure the anticommutativ-

PHYSICAL REVIEW D61 045002

one easily finds that the first two terms (A8) cancel and
arrives at

~o a1
A= é_o'?_f E{T \ T} (A10)
The last input vanishes if and only {f’,7}=0. This result
cannot be reached if one choseto be the unit matrixz and
7' can be chosen to be two Pauli matrices.
Let us stress that the necessity to introduce the second
matrix 7’ is a peculiarity of the quantization of the odd num-
ber of Clifford variablesz’ can be the unit matrix in the case
of even number of Clifford variablgsee, e.g., Ref45], and
references therejn
To fix the representation for the matriceendr’ one has
to note that the conservation of the Grassmann parity in the
form of the first class constrai(A6) requires the following.
The componentg)(£) and (&) of (A3) must havedif-
ferent Grassmann parityFor instance, if we choosé(¢) to
be bosonic superfield theu(£) is fermionic.
If the diagonal representation is chosen for one of the
matrices, sayr’, then another matrix is antidiagonal.
Keeping these in mind we choose

, 1 0 0 1
7'—7'=0 1) T=T1= 1 o (Al11)

Then the quantum constraint&6) acquire the form

,axp=((§_"”9§) 1 )(¢(§> )
R —(&=alae) [\ (&) ],

- ( (£ ala&) (&) + w(a) L a2
@O (E-aloypd))
which splits into two equations
e o=
f_a_g d(&)=— (&), (A13)
“[e-
d(E)=| &~ 7€ (8).

ity of the Grassmann and Clifford part of the first class con-
straint(A6). Indeed, let us calculate the square of the quantsing Eq.(A9), we notice that the second equation is a con-

tum constrain{A5)

;422521;4_ 2+ _iz 12+ _i ’
= A=+ 6 ] ()7 6= )i
(A8)
Since
(=78 =3 {eag =3l -
5_(9_5 =3 §—a—§,§—a—§ =-1 (A9
and

sequence of the first one. The first equation

14
(§— —) (&) =—¢(§) (A14)

&

expresses the fermionic superfield through the bosonic one.
That is, if we write (&) in components

d(&)= o1&y,

then from Eq.(A14) it follows that

(&) =iy~ Eo.

045002-18



SUPERPARTICLE MODELS WITH TENSORIAL CENTRAL ... PHYSICAL REVIEW B1 045002

Thus, we can represent the spectrum of states carrying one H(XPBX )

Clifford degree of freedom by ongither bosonic or fermi- \ya:xpa(xaﬁ,}:ﬂ): Nﬂ ) (A18)
onic) superfield¢ (&) depending on the singl&rassmann Pp(XP\p)

variable &

with the elements carrying opposite Grassmann péeity.,
g=¢ £=0. ¢ is bosonic andy is fermionig and the quantum first class

) o . constraintg5.14), (5.19, (5.16 should be taken in the form
This result is in accordance with that of Sec. Ill Agke also

Ref.[27]), and both methods of quantizing a single fermionic
variable result in the same field content of quantum states
(one boson and one fermipn

D=0t Xof=i(d,—10Pdg,) T3+ X7, (A20)
2. Quantization of the high-dimensional model with the use
of conversion The incorporation of thez matrix is necessary to provide

Here we present some details of getting the wave functiortlhe properties of the first class constraints to form the closed

(5.18 from the converted system of constrain{s.14), algebra
(5.19, and(5.16 describing the high-dimensional generali-

zation of the first-quantized=1 model. Let us choose the {Dn.Dyt=—2i0,. (A21)
(supejcoordinate representation for supercoordinates and
bosonic spinors This is a peculiarity of the quantization of the models with

odd number of phase space Grassmann varigbtes Sec. 1

R ) s 4 of this appendix
Pap= B P&= T (A15) The further steps of the quantization procedure exactly
repeat the steps of tHe=4 case(see Sec. IY. The wave
5 function describing the spectrum of the quantum states is
Ty=i—, (A16) -
0« ~ e s WX, 0N)
T, =i/ akpX B _
and use the X2 matrix representation —i[d/(ON) +ON]W(N,,ON)
(A22)
~ 1 0 1 ~a~ 1
&= 57'22(1 O)’ {&8= 5 (Al7)  As the second element in the column is expressed through
the first one, we can describe the spectrum of the quantum
for the Clifford variable¢. states by the single superfie(8.18 depending on bosonic
Then the wave function is a column Xa and fermionicy=(®\) coordinates.
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