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A generalization of the Ferber-Shirafuji formulation of superparticle mechanics is considered. The general-
ized model describes the dynamics of a superparticle in a superspace extended by tensorial central charge
coordinates and commuting twistorlike spinor variables. TheD54 model contains a continuous real parameter
a>0 and ata50 reduces to theSU(2,2u1) supertwistor Ferber-Shirafuji model, while ata51 one gets an
OSp(1u8) supertwistor model proposed by two of the authors which describes BPS states with all but one
unbroken target space supersymmetries. When 0,a,1 the model admits anOSp(2u8) supertwistor descrip-
tion, and whena.1 the supertwistor group becomesOSp(1,1u8). We quantize the model and find that its
quantum spectrum consists of massless states of an arbitrary~half-!integer helicity. The independent discrete
central charge coordinate describes the helicity spectrum. We also outline the generalization of thea51 model
to higher space-time dimensions and demonstrate that inD53, 4, 6, and 10, where the quantum states are
massless, the extra degrees of freedom~with respect to that of the standard superparticle! parametrize compact
manifolds. These compact manifolds can be associated with higher-dimensional helicity states. In particular, in
D510 the additional ‘‘helicity’’ manifold is isomorphic to the sphereS7.

PACS number~s!: 04.60.Kz, 11.25.2w
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I. INTRODUCTION

In a recent paper@1# two of the present authors propose
a new superparticle model with tensorial central char
@2–8# and auxiliary fundamental spinor variables. An inte
esting peculiar feature of this model is that it describe
superparticle whose presence breaks only one target-s
supersymmetry. In all previously known cases superparti
and~in general! superbranes break half or more of the sup
symmetries of a target superspace vacuum.

As we shall show in this paper the model of Ref.@1#
describes an infinite tower of massless particles of arbitr
~half-!integer helicities. The model can be regarded as
extension of a Ferber-Shirafuji formulation@9,10# of D54
superparticle mechanics. In the framework of theN51
Ferber-Shirafuji model one performs, at the classical le
the twistor transform@9,10# from the N51, D54 super-
space description of massless superfields to their descrip
in terms of supertwistors forming a fundamental represe
tion of a superconformal groupSU(2,2u1).

In an analogous way the superparticle model of@1# admits
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the description in terms ofOSp(1u8) supertwistors@11,12#.
The supergroupsSU(2,2u1) and OSp(1u8) are not sub-
groups of each other, but they are different subgroups of
supergroupOSp(2u8). Hence, one can assume that t
Ferber-Shirafuji model and the model of Ref.@1# are differ-
ent reductions of anOSp(2u8) supertwistor model.

In this paper we construct such a genericN51, D54
superparticle action which depends on a numerical n
negative real parametera. When the value ofa varies within
the interval 0,a,1 the model admits anOSp(2u8) su-
pertwistor description, whilea50 anda51 are two critical
points. At a50 the model reduces to the Ferber-Shiraf
superparticle. And ata51 one arrives at theOSp(1u8) su-
pertwistor model of Ref.@1#.

For all values ofa except for a51 the superparticle
breaks half of the target-space supersymmetries, whilea
51 only one supersymmetry is broken. Whena.1 the su-
pertwistor group becomesOSp(1,1u8) which contains a
noncompact groupSO(1,1) as a subgroup instead ofSO(2)
in the case ofOSp(2u8).

The ~super!twistor formulation of relativistic~super!par-
ticle dynamics is useful in many aspects. Let us recall th
since the relativistic~super!particle is a constrained dynam
cal system not all its dynamical variables are independ
By performing~super!twistor transform we deal directly with
independent physical degrees of freedom of the~super!par-
ticle in a covariant way. This, for instance, simplifies th
quantization procedure and the analysis of the spectrum
quantum states of the model.

We perform the quantization of the generic superparti

C
,

C
,

©2000 The American Physical Society02-1



in

ic
th
el

or
r
a

an
th

t
id
r-
o

be
on
ts
b

-

s

n
n-
la
g

th
a

lds

t
D
n
pl
al

s
in
id
of
fe

w
gl
st

n
-

t

ym
ic
co
f

at

tor

k
e

els
an
ss

er-
n-
ints
me-
ed
on
can

st-
u-
or
ates
the
less

on
ter
one
ee-

rre-
(
p-
m-
fter
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model for arbitrary values of the parametera and find that in
D54 first–quantized states of the superparticle form an
finite tower of massless states of a~half-!integer helicity. We
thus demonstrate that an extra dynamical~central charge!
coordinate in the model under consideration has the phys
meaning of a spin variable. This allows one to admit that
model considered might be related to the higher-spin fi
theory of Vasiliev@13# ~see also relevant papers@14#!.

We first quantize the superparticle in the supertwistor f
mulation where the quantization is almost straightforwa
since ataÞ0 the supertwistor model is unconstrained and
a50 there is only one first-class constraint. We then qu
tize the model in theN51, D54 superspace extended wi
the tensorial central charge coordinates, and show that
resulting spectrum of the quantum physical states coinc
with that of the supertwistor formulation. Since in this fo
mulation the model contains second class constraints
main tool in carrying out the quantization procedure will
the extension of the model in such a way that all the c
straints of the initial model become first class constrain
This method, which can be traced back to the papers
Faddeev and Shatashvili@15,16#, Batalin, Fradkin, and Frad
kina @17,18#, and Egorian and Manvelian@19# has already
been applied to the quantization of ‘‘standard’’ massless
perparticles by Moshe@20# and Eisenberg and Solomon@21–
23#. The main advantage of this method is that it allows o
to avoid problems with covariant splitting fermionic co
straints into first and second class ones. The initial formu
tion of the model is recovered when we fix additional gau
symmetries~associated with new first-class constraints! by
putting the conversion variables to zero. In its nature
conversion method is related to an old Stueckelberg form
ism @24# which extends the theory of massive vector fie
with an auxiliary scalar gauge degree of freedom.

The quantization of the model ata51 has additional pe-
culiarities. In this case superparticle dynamics is subjec
only one second-class constraint, which is quite unusual.
namical systems with the odd number of fermionic seco
class constraints are rather rare. One of few known exam
is a superparticle inD52 superspace with a single chir
fermion direction@27#. So the quantization of such system
is an interesting exercise by itself which requires deal
with a single Clifford-like variable. In the case under cons
eration we shall use an auxiliary Clifford variable
Grassmann-odd parity to convert the single second class
mionic constraint into the one of a first class. Further
present two methods for quantizing the model with the sin
Clifford variable, both producing the same spectrum of fir
quantized physical states.

The paper is organized as follows.
In Sec. II we consider the one-parameter family of actio

describing the generalizedD54 superparticle models la
beled by the real positive parametera>0 where the casea
50 corresponds to the Ferber-Shirafuji model, while aa
51 the action describes the superparticle model of Ref.@1#.
We demonstrate that in the target space with four supers
metries the aÞ1 models possess two fermion
k-symmetries and, hence, corresponding superparticle
figurations preserve 1/2 of the supersymmetries, while ia
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51 generalized superparticle has threek symmetries and,
hence, preserves34 of the supersymmetries. We also find th
the U(1) symmetry is inherent to thea50 case only.

In Sec. III we describe the transform to a supertwis
form of the action. We show that 0,a,1 models are de-
scribed by a freeOSp(2u8) supertwistor action and thus lin
the Ferber-ShirafujiSU(2,2u1) supertwistor model and th
free OSp(1u8) supertwistor model of@1#. The model with
a.1 is transformed into a freeOSp(1,1u8) supertwistor ac-
tion. We perform the quantization of the supertwistor mod
and find that the ‘‘supertwistor’’ wave function describes
infinite tower of short supersymmetric multiplets of massle
fields of all possible helicities.

In Sec. IV we extend the initial phase space of the sup
particle model with auxiliary variables and perform the co
version of the initial set of first and second class constra
into the first-class constraints generating new gauge sym
tries. We then carry out the quantization of the extend
model and find that the dependence of the wave functions
Grassmann-odd conversion variables is inessential and
be ignored. We show that the wave function of the fir
quantized model of Sec. II can be identified with the s
pertwistor wave function of Sec. III if Cartan-Penrose twist
formulas relating superspace and supertwistor coordin
are imposed. Thus, we find that the infinite spectrum of
first-quantized states of the superparticle consists of mass
fields of an arbitrary~half!integer helicity.

In Sec. V we consider a multidimensional generalizati
of the a51 model and its quantization. It appears that af
quantization the superwave function depends on only
Grassmann variable, and all other fermionic degrees of fr
dom can be eliminated byN21 k transformations, whereN
is the total number of supersymmetries. Thus, the co
sponding superparticle configuration preserves theN
21)/N fraction of target-space supersymmetry. In the A
pendix we analyze in detail the quantization of a supersy
metric system with one real Grassmann variable, which a
quantization becomes a single Clifford variable.

II. D54 MODEL WITH FUNDAMENTAL SPINOR AND
TENSORIAL CENTRAL CHARGE COORDINATES

Let us consider the followingD54 superparticle action:

S5E dt~lAl̄ ḂPt
AḂ1alAlBPt

AB1āl̄ Ȧl̄ ḂPt
ȦḂ!,

~2.1!

where

PAḂ[dtPt
AḂ5dxAḂ1 i ~dQAQ̄ Ḃ2QAdQ̄ Ḃ!, ~2.2!

PAB[dt Pt
AB5dyAB2 iQ (AdQB),

P̄ ȦḂ[dt P̄t
ȦḂ5dȳȦḂ2 i Q̄ (ȦdQ̄ Ḃ), ~2.3!
2-2
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A,B51,2, Ȧ,Ḃ51,2 are Weyl spinor indices, and the spin
tensorsxAḂ and yAB are related toD54 vector coordinates
xm and antisymmetric tensorial coordinatesymn through the
Pauli matrices

xAḂ5xmsm
AḂ , yAB5

1

2
ymn~s [ms̃n] !

AB5~ ȳȦḂ!* .

~2.4!

a is a numerical parameter which, without the loss of gen
ality, can be taken to be real and positive definitea5ā
P@0,̀ ). Indeed, if a is complex its phase can always b
absorbed by the bosonic spinorlA redefined in an appropri
ate way (lA→(ā/uau)1/2lA). The action~2.1! describes a
superparticle propagating in the extended superspace

M (416u4)5$YM%[$~xAȦ,yAB,ȳȦḂ;QA,Q̄ Ȧ!% ~2.5!

with tensorial central charge coordinates yAB,ȳȦḂ.1 The
configuration space of the system

M (41614u4)5$qM%[$~YM;lA,l̄ Ȧ!%

5$~xAȦ,yAB,ȳȦḂ;lA,l̄ Ȧ;QA,Q̄ Ȧ!% ~2.6!

contains in addition four bosonic spinor coordinateslA,l̄ Ȧ.
The presence of the parametera in the action~2.1! reflects

the property that each of its three terms is separately inv
ant under global supersymmetry transformations acting
M (416u4) as follows:

dQA5eA, dQ̄ Ḃ5 ē Ḃ,

dxAḂ5 i eAQ̄ Ḃ2 iQAē Ḃ,

dyAB5 i e (AQB),

d ȳȦḂ5 i ē (ȦQ̄ Ḃ), ~2.7!

dlA50, dl̄ Ȧ50.

The generators of the transformations~2.7!

dYM5 i ~eAQA1Q̄Ȧē Ȧ!YM

satisfy the supersymmetry algebra with central charges

$QA ,QB%5ZAB ,

$QA ,Q̄Ḃ%522PAḂ ,

$Q̄Ȧ ,Q̄Ḃ%5Z̄ȦḂ , ~2.8!

and all other commutators of the generators vanish.

1For previous consideration of different models of superpartic
andp-branes in superspaces with tensorial central charges see
@22,29,8#.
04500
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The superalgebra~2.8! has the following realization in the
superspace~2.5!:

QA5 i ]A2]AḂQ̄ Ḃ2
1

2
QB]AB ,

Q̄Ȧ52 i ]̄ Ȧ1] ȦBQB1
1

2
]̄ ȦḂQ̄ Ḃ, ~2.9!

PAḂ52 i ]AḂ , ZAB52 i ]AB , Z̄ȦḂ52 i ]̄ ȦḂ ,
~2.10!

]AḂ[
]

]xAḂ
, ]AB[

]

]yAB
, ]̄ ȦḂ[

]

] ȳȦḂ
,

]A[
]

]QA , ]̄ Ȧ[
]

]Q̄ Ȧ
.

If a50 the action~2.1! reduces to the Ferber-Shirafuji actio
@9,10#, and if a51 the action becomes the one considered
@1#. We shall see thata50 anda51 are ‘‘critical’’ values of
the parameter where symmetries of the action~2.1! as well as
the physical content of the model are modified.

A. Critical points a50 and a51

In order to analyze symmetry properties of the acti
~2.1! at different values ofa we consider the general varia
tion of ~2.1! which ~modulo boundary terms! has the form
~2,1! for a51:

dS5E @dlA~ l̄ ḂPAḂ12alBPAB!1dl̄ Ȧ~PBȦlB

12al̄ ḂP ȦḂ!#2E @d~lAl̄ Ḃ!i dPAḂ1ad~lAlB!i dPAB

1ad~ l̄ Ȧl̄ Ḃ!i dP ȦḂ#1E @2i ~dQ̄ Ḃl̄ Ḃ

1adQBlB!dQAlA12i ~dQBlB1adQ̄ Ḃl̄ Ḃ!dQ̄ Ḃl̄ Ḃ#,

~2.11!

where the basis in the space of variations ofx andy is chosen
in the form

i dPAḂ[dxAḂ1 i ~dQAQ̄ Ḃ2QAdQ̄ Ḃ!, ~2.12!

i dPAB[dyAB2 iQ (AdQB),

i dP̄ ȦḂ[d ȳȦḂ2 i Q̄ (ȦdQ̄ Ḃ). ~2.13!

1. U(1) gauge symmetry of a50 model

Let us consider the variation of the action when the var
tions of all fields except forlA , l̄ Ȧ are zero

s
fs.
2-3
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dS5E @dlA~ l̄ ḂPAḂ12alBPAB!

1dl̄ Ȧ~PBȦlB12al̄ ḂP ȦḂ!#. ~2.14!

If the variation ofl corresponds to local infinitesimalU(1)
rotations

lA8 ~t!5lAeia(t), l̄ Ȧ
85l̄ Ȧe2 ia(t) ~2.15!

the Eq.~2.14! takes the form

dS5E @ ia~t!lA~ l̄ ḂPAḂ12alBPAB!

2 ia~t!l̄ Ȧ~PBȦlB12al̄ ḂP ȦḂ!#.

Such a variation vanishes ata50. Hence at this value ofa
the U(1) transformations~2.15! describe local symmetry o
the model which is inherent to the Ferber-Shirafuji formu
tion @9,10# of the massless superparticle.

Note that for all values of the parametera the spinorsl
are constants on the mass shell. Indeed, the equation
motion

dS

dxAḂ
50,

dS

dyAB
50,

dS

d ȳȦḂ
50

which follow from Eq.~2.11! have the form

d~lAl̄ Ḃ!50, ad~lAlB!50, ad~ l̄ Ȧl̄ Ḃ!50.
~2.16!

In the framework of any twistor or twistorlike approach@30#
one assumes that the bosonic spinors parametrize a pr
tive space. This requirement does not allowl to have all its
components equal to zero simultaneously.

Then in the generic caseaÞ0 Eqs.~2.16! imply

d~lA!50, d~ l̄ Ȧ!50, ~2.17!

i.e., the bosonic spinor is constant on the mass shell

lA~t!5lA
05const, l̄ Ȧ5l̄ Ȧ

0
5const. ~2.18!

Whena50 only one equation is left in Eq.~2.16!

a50: d~lAl̄ Ḃ!50. ~2.19!

The general solution of Eq.~2.19! is

lA~t!5lA
0ei ã(t), l̄ Ȧ5l̄ Ȧ

0
e2 i ã(t). ~2.20!

The arbitrary functionã(t) @whose presence in Eq.~2.20!
reflects theU(1) gauge symmetry of thea51 model# can be
gauged away by the localU(1) transformation~2.15!, and
we are again left with constantl on the mass shell.
04500
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2. Fermionic variations andk symmetry

Let us consider now the formula~2.11! with the variations
of fermionic coordinates accompanied by the followin
variations ofx andy

dxAḂ52 i ~dQAQ̄ Ḃ2QAdQ̄ Ḃ!⇒ i dPAḂ50,

dyAB5 iQ (AdQB)⇒ i dPAB50,

d ȳȦḂ5 i Q̄ (ȦdQ̄ Ḃ)⇒ i dP̄ ȦḂ50. ~2.21!

The bosonic spinorla remains unchanged. In such a ca
Eq. ~2.11! takes the form

dS5E @2i dQAlA~dQ̄ Ḃl̄ Ḃ1adQBlB!

12i dQ̄ Ḃl̄ Ḃ~dQBlB1adQ̄ Ḃl̄ Ḃ!#. ~2.22!

We see that foraÞ1 only two out of four variations of

the fermionic coordinatesdQA,dQ̄ Ȧ are effectively involved
into the variation~2.22! of the action~2.1!. This reflects the
presence of local fermionick symmetry@25# with two inde-
pendent parametersk5(k11 ik2), k̄5(k12 ik2). The k
transformations of the coordinates are given by Eq.~2.21!
and

dQA5klA5~k11 ik2!lA,

dQ̄ Ḃ5k̄l̄ Ḃ5~k12 ik2!l̄ Ḃ. ~2.23!

At the critical point a51 the number of independen
k –symmetries increases from 2 to 3, since in this case o

one linear combination (dQBlB1dQ̄ Ḃl̄ Ḃ) of four real fer-
mionic variations enters into the variation of the action

a51: ~2.24!

dS5E 2i ~dQAlA1dQ̄ Ȧl̄ Ȧ!~dQBlB1dQ̄ Ḃl̄ Ḃ!.

Thus remaining three fermionic variations correspond to
local fermionic symmetries of thea51 model@1#.

In order to present an explicit form of thesethreek sym-
metrieswe should introduce an additional bosonic spinoruA
such that

lAuA5l̄ ȦūȦ51. ~2.25!

Then one can perform the decomposition of the unit ma
in the spinor space2

dB
A5lAuB2uAlB , d Ḃ

Ȧ
5l̄ ȦūḂ2ūȦl̄ Ḃ ~2.26!

2The pair of Weyl spinorslA,uA is analogous to the Newman
Penrose dyad@31# widely used in general relativity.
2-4
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and use it to decompose the fermionic variation ofQ. As a
result we find that thek –symmetry transformations of th
a51 model are given by Eqs.~2.21! and

dQA5~k11 ik2!lA1 ik3uA,

dQ̄ Ḃ5~k12 ik2!l̄ Ḃ2 ik3ūȦ. ~2.27!

B. Hamiltonian analysis

We now turn to the Hamiltonian analysis of the mod
with the purpose of getting all the constraints on the dyna
ics of the system, classifying them in the manner of Dir
and thus identifying all local symmetries of the model. F
the casea51 the analysis has been performed in Ref.@1#.
The generic model (aÞ0) has the same total number
constraints as thea51 model, the only difference being tha
when the parametera takes the valuea51 one of the fermi-
onic second-class constraints becomes the first-class
straint generating the thirdk symmetry. So what we shoul
do is just to adapt the results of the Hamiltonian analysis
Ref. @1# to the generic case.

The constraints corresponding to the casea50 of the
Ferber-Shirafuji superparticle are obtained from the gen
set of constraints by putting the canonical momenta for
central charge coordinates identically equal to zero. The
nonical momenta of the generic system are

PM5
]L

]q̇M 5~PAȦ ,ZAB ,Z̄ȦḂ ;PA,P̄Ȧ;pA ,p̄ Ȧ!,

~2.28!

@PM ,qN%P52~21!MN@qN,PM%P5dM
N : ~2.29!

@PAȦ ,xBḂ#P5dA
Bd Ȧ

Ḃ ,

@ZAB ,yCD#P52d [A
C dB]

D ,

@ Z̄ȦḂ ,ȳĊḊ#P52d [ Ȧ
Ċ d Ḃ]

Ḋ ,

@PA,lB#P5dB
A , @ P̄Ȧ,l̄ Ḃ#P5d Ḃ

Ȧ ,

$pA ,QB%P5dA
B , $p̄ Ȧ ,Q̄ Ḃ%P5d Ȧ

Ḃ .

They satisfy the following set of constraints:

FAḂ[PAḂ2lAl̄ Ḃ50, ~2.30!

FAB[ZAB2alAlB50, ~2.31!

F̄ ȦḂ[Z̄ȦḂ2al̄ Ȧl̄ Ḃ50, ~2.32!

PA50, P̄Ȧ50, ~2.33!

DA[2pA1 iPAḂQ̄ Ḃ1 iZABQB50, ~2.34!

D̄Ȧ[p̄ Ȧ2 iQBPBȦ2 i Z̄ ȦḂQ̄ Ḃ50. ~2.35!
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To separate the constraints~2.30!–~2.35! into the first and
second class let us project them on the bosonic spinorsl and
u @Eqs.~2.25!, ~2.26!#. We get

B15lAl̄ ḂPAḂ50, ~2.36!

B25lAūḂPAḂ2lAuBZAB50, ~2.37!

B3[~B2!* 5uAl̄ ḂPAḂ2l̄ ȦūḂZ̄ȦḂ50, ~2.38!

B452uAûḂPAḂ2
1

a
uAuBZAB2

1

a
ūȦūḂZ̄ȦḂ50,

~2.39!

B55lAl̄BZAB50, ~2.40!

B6[~B5!* 5l̄ Ȧl̄ ḂZ̄ȦḂ50, ~2.41!

B7[lAūḂPAḂ1lAuBZAB50,

B8[uAl̄ ḂPAḂ1l̄ ȦūḂZ̄ȦḂ50, ~2.42!

B9[uAuBZAB2a50, B10[ūȦūḂZ̄ȦḂ2a50,
~2.43!

B11[ i ~lAPA2l̄ ȦP̄Ȧ!50, ~2.44!

B12[lAPA1l̄ ȦP̄Ȧ50, ~2.45!

B13[uAPA50, B14[ūȦP̄Ȧ50.

F15lADA50, ~2.46!

F2[~F1!* 5l̄ ȦD̄ Ȧ50, ~2.47!

F35uADA1ūȦD̄Ȧ50, ~2.48!

F4[uADA2ūȦD̄Ȧ50. ~2.49!

For arbitraryaÞ0,1 it can be checked that the boson
constraints~2.36!–~2.41! and the fermionic constraints~2.46!
and~2.47! belong to the first class, i.e., their Poisson brack
with all constraints vanish on the constraint surface, and
constraints ~2.42!–~2.45!, ~2.48!, and ~2.49!, are second
class. When computing the Poisson brackets of the c
straints one should take into account that, because of
normalization condition~2.25!, the spinoruA should be re-
garded as a variable depending onlA . The simplest way of
taking this into account is to assume the following Poiss
~actually Dirac! brackets ofuA with the l momentumPA :3

3These brackets appear as Dirac brackets with respect to the
of the second class constraints~2.25!, uAPA

(u)50 and their complex
conjugate pair, when the bosonic spinoru is considered as an inde
pendent variable whose momentum is constrained to be zeroPA

(u)

50. Then it is not hard to verify that the new phase space varia
uA,PA

(u) do not introduce new redundant degrees of freedom into
system under consideration.
2-5
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@PA ,uB#P52uBuA .

Thus in the caseaÞ0,1 among 14 bosonic and 4 fermion
constraints 6 bosonic and 2 fermionic constraints are of
first class and 8 bosonic and 2 fermionic constraints are
the second class.

The first class constraints generate local symmetries of
dynamical system. For instance, the constraints~2.36!, and
(B51B6) of Eqs. ~2.40!,~2.41! generate worldline reparam
etrizations of the coordinatesx and y. The fermionic con-
straints~2.46! and ~2.47! generate thek-symmetry transfor-
mations~2.21! and ~2.23!.

Each first class constraint reduces the number of indep
dent phase space variables by 2, while each second
constraint eliminates only one degree of freedom. Hence
the caseaÞ0,1 the phase space of 23(41614)528
bosonic and 23458 fermionic canonical variables of th
system is reduced to

aÞ0,1: nph58b12f , ~2.50!

i.e., we get eight bosonic and two fermionic physical degr
of freedom.

In order to see how ata51 the fermionic second-clas
constraint ~2.48! transforms into the first-class constrai
generating the thirdk symmetry~2.27! let us consider the
Poisson bracket of the constraint~2.48! with itself

$F3 ,F3%P52~a21!. ~2.51!

WhenaÞ1 the right-hand side~RHS! of Eq. ~2.51! is non-
zero and hence this constraint is second class, but ata51 the
RHS of Eq.~2.51! vanishes. SinceF3 weakly commutes with
all other constraints, at this critical value ofa we obtain one
more fermionic first class constraint, and we achieve the
duction of the number of independent fermionic physical
grees of freedom from two to one

a51: nph58b11 f . ~2.52!

Finally, whena50 the tensorial coordinatesy disappear
from the action~2.1!, and in Eqs.~2.36!–~2.49! we must put
to zero their canonical momentaZ. The remaining set of the
constraints takes the following form:

B15lAl̄ ḂPAḂ50, ~2.53!

B25lAūḂPAḂ50, ~2.54!

B3[~B2!* 5uAl̄ ḂPAḂ50, ~2.55!

B45uAūḂPAḂ2250, ~2.56!

B5[ i ~lAPA2l̄ ȦP̄Ȧ!50, ~2.57!

B6[lAPA1l̄ ȦP̄Ȧ50, ~2.58!

B7[uAPA50, B8[ūȦP̄Ȧ50,

F15lADA50, ~2.59!
04500
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F2[~F1!* 5l̄ ȦD̄ Ȧ50, ~2.60!

F35uADA1ūȦD̄Ȧ50, ~2.61!

F4[uADA2ūȦD̄Ȧ50. ~2.62!

These are the constraints of the Ferber–Shirafuji formula
of the superparticle which has been analyzed in detail i
number of papers@10,20–23#. Now two bosonic constraints
~2.53! and ~2.57! are first class and the other six are seco
class, while, as in the generic caseaÞ1, two of the fermi-
onic constraints are first class~2.59!, ~2.60! and two are sec-
ond class~2.61!, ~2.62!.

Therefore, the number of independent phase-space ph
cal degrees of freedom of the standardN51, D54 super-
particle consists of six bosonic and two fermionic variabl

a50: nph56b12 f . ~2.63!

In the next section we shall show that the independ
phase-space physical degrees of freedom~2.50!, ~2.52!, and
~2.63! of the generic superparticle model can be covarian
described byOSp(2u8) @or OSp(1,1u8)], OSp(1u8), and
SU(2,2u1) supertwistors, respectively.

III. SUPERTWISTOR TRANSFORM: OSp„2z8…, OSp„1z8…,
AND SU„2,2z1… SUPERTWISTORS

Let us integrate the action~2.1! by parts and neglect the
boundary term. The result is

S52E ~mAdlA1m̄ Ȧdl̄ Ȧ!

2 i E ~x dx̄1x̄ dx1ax dx1ax̄ dx̄ ! ~3.1!

or

S52E ~mAdlA1m̄ Ȧdl̄ Ȧ!22i E @~11a!x1dx1

1~12a!x2dx2#

52E ~mAdlA1m̄ Ȧdl̄ Ȧ!22i E x̄~a!dx~a!, ~3.2!

where

mA5xAḂl̄ Ḃ12ayABlB1 iQA@~Q̄l̄ !1a~Ql!#, ~3.3!

m̄ Ȧ5lBxBȦ12āȳȦḂl̄ Ḃ1 i Q̄ Ȧ@~Ql!1ā~Q̄l̄ !#,

x5~Ql![QAlA , x̄5~Q̄l̄ ![Q̄ Ȧl̄ Ȧ , ~3.4!

x15
1

2
~x1x̄ !, x25

i

2
~ x̄2x!, ~3.5!

x~a!5A~11a!x11 iA~12a!x2 ,
2-6
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x̄~a!5A~11a!x12 iA~12a!x2 . ~3.6!

@Note thatx(a) and x̄(a) are complex conjugate to eac
other only fora,1, while for a>1 they are real spinors.#

Thus, in the generic caseaÞ0,1 one can reformulate th
dynamical system in terms of 8 bosonic variab
lA ,mA;l̄ Ḃ ,m̄ Ḃ and two real fermionic variablesx1 , x2.
These variables can be regarded as components of a
(8,2) component supertwistor~cf. with @1#!

YA5~y1 , . . . ,y8 ;x1 ,x2!5~la,ma,x1 ,x2!, ~3.7!
o

e

n

re

04500
eal

wherela and ma are real Majorana spinors formed of th
Weyl spinors

la⇔S lA

l̄ ȦD , ma⇔S mA

m̄ ȦD .

One can write the action~3.2! in the form

S52
1

2E dt YAGABẎB , ~3.8!

where
GAB5S v (8) 0

0 iv (2)D 5S S 02 I 2 02 02

2I 2 02 02 02

02 02 02 I 2

02 02 2I 2 02

D 0

0 i S 2~11a! 0

0 2~12a!
D
D . ~3.9!
, at

u-
lass
this
he
r
ry

i-
nt
v (8) is theSp(8) invariant simplectic metric.
WhenaÞ1 we can rescale the fermionic variablesx1 and

x2, i.e. multiply them, respectively, byA11a andAu12au.
This results in the following form of the metricv (2) in Eq.
~3.9!:

v (2)→v (2)52S 1 0

0 1D for a,1 ~3.10!

or

v (2)→v (2)52S 1 0

0 21D for a.1. ~3.11!

We see that the symmetry group of the fermionic sector
the metric~3.9! is SO(2)5U(1) whena,1 andSO(1,1)
whena.1.

Hence, whena,1 the complete symmetry group of th
metric ~3.9! is the supergroupOSp(2u8), while in the case
a.1 the symmetry group becomesOSp(1,1u8). The su-
pertwistors~3.7! transform under the fundamental represe
tations of these supergroups.

Whena51 the metric becomes degenerate

v (2)→va51
(2) 52S 1 0

0 0D . ~3.12!

This reflects the absence of the second fermionic variablex2
from the action ~3.2!. Thus at a51 the supergroups
OSp(2u8) and OSp(1,1u8) reduce toOSp(1u8) with the
corresponding supertwistor representation having one
fermionic component~cf. with @1#!
f

-

al

YA5~y1 , . . . ,y8 ;x1!. ~3.13!

Consider now the casea50. At a50 the action has the
same form as fora,1 and hence is formallyOSp(2u8)
invariant. But, as we have seen in the previous section
this critical point the model acquires additional localU(1)
symmetry, which must have its counterpart in the s
pertwistor description, i.e., there should appear a first-c
constraint on the supertwistor variables which generates
symmetry. In order to identify this constraint we use t
defining relations~3.3! and consider the following bilinea
combination of supertwistor components for an arbitra
value ofa

mA~a!lA2m̄ Ȧ~a!l̄ Ȧ12i x̄x52alyl22āl̄ ȳl̄.
~3.14!

At a50 Eq. ~3.14! does not involve central charge coord
natesy and thus we obtain the pure supertwistor constrai

mA~0!lA2m̄ Ȧ~0!l̄ Ȧ12i x̄x50. ~3.15!

Hence, ata50 for the action~3.1! to be equivalent to Eq.
~2.1! it must be supplemented with the~first-class! constraint
~3.15! introduced through a Lagrange multiplier term

a50: S52E ~mAdlA1m̄ Ȧdl̄ Ȧ!

2 i E ~x dx̄1x̄ dx!

1 i E dt L~ml2m̄l̄12i x̄x!. ~3.16!
2-7
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The constraint~3.15! generates theU(1) gauge symmetry
appearing only in thea50 case. This constraint introduce
the complex structure and thus breaks theOSp(2u8) sym-
metry of thea,1 model down toSU(2,2u1). As a result one
gets the Ferber-Shirafuji formulation@9,10# of a conven-
tional massless superparticle@37–40# in terms ofSU(2,2u1)
supertwistors

ZA5~lA ,m̄ Ȧ,x!, Z̄A5~mA,l̄ Ȧ ,x̄ !,

a50: S52E ~Z̄AdZA!1 i E dt L~Z̄AZA2s!,

~3.17!

where the constants has been introduced in order to have t
possibility of describing massless superparticles with n
zero ~super!helicity @30# ~see Refs.@22,32#, and references
therein for details!.

A. Quantization of the supertwistor model

1. Canonical supertwistor quantization

The quantization of the dynamical system~3.2! with a
Þ0,1 is quite straightforward. The action is of the first ord
form, thereforem,m̄ should be identified with the canonica
momenta conjugate tolA ,l̄ Ȧ , and 2i x̄(a) is the momentum
conjugate tox(a) @remember thatx(a) andx̄(a) are defined
by Eq. ~3.6!#. The canonical Poisson brackets are

@mA ,lB#P5dA
B,

@m̄ Ȧ ,l̄ Ḃ#P5d Ȧ
Ḃ ,

$x̄~a!,x~a!%P52
i

2
. ~3.18!

At the quantum level the dynamical variables become op
tors, and the Poisson brackets are replaced by~anti!commu-
tators (@ . . . , . . .#P→ i @ . . . , . . .#, $,%P→2 i $,%). For in-
stance, in the ‘‘coordinate’’ representation the momenta
the derivatives of corresponding coordinates

mA5 i
]

]lA
, m̄ Ȧ5 i

]

]l̄ Ȧ

, x̄~a!52
1

2

]

]x~a!
.

~3.19!

The canonical Hamiltonian of the system vanishes ide
cally. The wave function of the system in the supertwis
‘‘coordinate’’ representation is

aÞ1:F@lA ,l Ȧ ,x~a!#5f~lA ,l Ȧ!1 ix~a!c~lA ,l Ȧ!
~3.20!

and the spectrum of quantum states is described by
bosonic and one fermionic function depending on W
spinor variables.

At a51 x(1) becomes a real Clifford variable and th
field ~3.20! becomes a Clifford algebra valued function. W
shall discuss this case in detail in Secs. III A4, V B, and
04500
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Appendix. To understand what kind of physical states
described by the function~3.20! in the caseaÞ0,1 we shall
first consider the well known casea50.

2. a50

At a50 the dynamics of the system is subject to t
first-class constraint~3.15! which at the quantum level is
imposed on the wave function~3.20!4

S D (0)1x
]

]x
2sDF~lA ,l̄ Ȧ ;x!50, ~3.21!

where

D (0)5lA

]

]lA
2l̄ Ȧ

]

]l̄ Ȧ

is the supertwistor representation of the bosonic part of
U(1) generator,x5x(0) @see Eqs.~3.4!–~3.6!# ands is an
integer constant which appears due to the ambiguity in
dering the operators in Eq.~3.21! ~see Refs.@30,22,32#, and
references therein for details, here we only note that
quantization ofs follows from the requirement for the wav
function to be single valued!. The~half-!integer values ofs/2
describe helicities of massless quantum states.

Let us consider first the cases50. Equation~3.21! re-
quires the bosonic and fermionic components of the sup
field ~3.20! to be homogeneous functions ofl,l̄ of the de-
gree 0 and21, respectively,

D (0)f~lA ,l Ȧ!50, D (0)c~lA ,l Ȧ!52c~lA ,l Ȧ!.
~3.22!

The solution is5

f5f0~pm!, c5l̄ Ȧc̄ Ȧ~pm!, ~3.23!

4In this section we basically follow the quantization procedure
references@21#. The operatorD5D (0)1x]/]x is the superhelicity
operator.

5A rigorous approach@32,33# consists of the consideration of th

decomposition of the wave functionf(lA ,l̄ Ȧ) in the basis of the
functions on C22$0% formed by homogeneous infinite

differentiable functionsfn1 ,n2
(zlA ,z̄l̄ Ȧ)5zn1z̄n2fn1 ,n2

(lA ,l̄ Ȧ) of
a homogeneity indexx5(n1 ,n2) @34#. The homogeneous function
are defined by the Mellin transformation

fn1 ,n2
~lA ,l̄Ȧ!5

i

2Edz dz̄zn111z̄n211f~zlA ,z̄l̄Ȧ!.

The decomposition

f~lA ,l̄Ȧ!5S2`
1`E

2`

1`

dr f(n1ir)/2,(2n1 ir)/2~lA ,l̄ Ȧ!

can be substituted into Eq.~3.22! instead of the power series inlA ,
l Ȧ to obtain the general solution. We refer the reader to@32,33# for
further details and to@34# for an excellent presentation of relate
mathematics and, for simplicity, use a physical ‘‘shortcut’’ of th
rigorous approach.
2-8
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where, by definition,pm is a lightlike vector composed ofl
and l̄ @see also Eq.~2.30!#

pAȦ5pmsAȦ
m

5lAl̄ Ȧ . ~3.24!

We see that the spectrum of the Ferber-Shirafuji mode
s50 consists of a masslessN51, D54 ~anti!chiral super-
multiplet containing a complex scalar field of zero helic
and a Weyl fermion field of helicity2 1

2 . This supermultiplet
can be described either by the set of bosonic and fermio
wave functions depending on the bosonic Weyl spinor v
ableslA ,l Ȧ in accordance with the formula~3.23!,~3.24!, or
as a set of the unrestricted bosonic scalar functionf0(pm)
and the fermionic spinor functionc̄ Ȧ(pm) depending on the
lightlike vector pmpm50 which we identify with the mo-
mentum of the massless superparticle. In such a way
establish the relation of the supertwistor formulation with t
space-time description of the massless superparticle, and
dual description can be extended to the case of more gen
model with nonvanishing central charge coordinates.

Finally, let us consider the case of the nonvanishing
erator ordering constants in Eq. ~3.21! which we shall call
the superhelicity parameter, characterizing the helicity pr
erties of the superfield solutions. The component form of
constraint~3.21! now reads

D (0)f~lA ,l Ȧ!5sf~lA ,l Ȧ!,

D (0)c~lA ,l Ȧ!5~s21!c~lA ,l Ȧ!. ~3.25!

For integers.0 the solution of Eq.~3.25! is

f5lA1 . . . lAsfA1 . . . As
~pm!,

c5lA1 . . . lAs21cA1 . . . As21
~pm!. ~3.26!

We thus obtain supermultiplets whose components have
helicities s/2 ands/221/2, respectively. The choice of th
statistics of the superfields~3.26! should be made in accor
dance with the general spin-statistics theorem, such tha
the even values ofs ~integer superhelicities! the superfields
~3.26! are bosonic and for odds ~half-integer superhelicities!
they are fermionic.

Notice that the Grassmann parity of the superfieldF
~3.21! ~and its componentsf andc) is related to the parity
of F(l,l̄,x) under the changel→2l (l parity! which
implies x→2x. If F(2l,2l̄,2x)5F(l,l̄,x) then from
Eq. ~3.26! follows thats is even~integer superhelicities! and
such a superfield is Grassmann even (f is bosonic andc is
fermionic!. Analogously if the superfieldF(l,l̄,x) changes
the sign under thel parity, thens is odd~half-integer super-
helicities! and the superfield is Grassmann odd (f is fermi-
onic, andc is bosonic!.

For integers,0 the solution of Eq.~3.25! is

f5l Ȧ1
•••l Ȧ2sf̄ Ȧ1 . . . Ȧ2s

,

c5l Ȧ1
•••l Ȧ2s11c̄ Ȧ1 . . . Ȧ2s11

~3.27!
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and thus the spectrum of the quantum states of the mod
represented by a supermultiplet of helicity@2s/2,(2s
11)/2#.

3. aÅ0,1

Let us return to the genericaÞ0,1 models. Their spec
trum is defined by arbitrary scalar bosonic and fermio
functions of the Weyl bosonic spinorsf(lA ,l Ȧ) and
c(lA ,l Ȧ) which, in contrast to thea50 case, are not sub
ject to any constraints. The bosonic spinor components
be regarded to be defined through the components of
lightlike vectorpmpm50 ~3.24! up to the phase transforma
tions

lA→eia(t)lA , l Ȧ→e2 ia(t)l Ȧ . ~3.28!

Thus for aÞ0 we can consider the bosonic and fermion
wave functions to depend on the lightlike vector and aU(1)
angle variablea;a12pk

f~lA ,l Ȧ!5f~pm ,a!, c~lA ,l Ȧ!5c~pm ,a!.
~3.29!

Hence, in contrast to the Ferber-Shirafuji model, the wa
function of the generic dynamical system~3.1! with aÞ0
depends onone additional variablewhich parametrizes a
compact manifold U(1)5S1. This means that the function
f andc, as the single valued functions, can be expanded
the Fourier series

f~pm ,a!5SkPZeikafk~pm!,

c~pm ,a!5SkPZeikack~pm!. ~3.30!

The meaning of this series expansion becomes clear if
use the Lorentz-covariant representation off andc as single
valued functions oflA ~3.20! wherelAl̄ Ȧ are replaced by
pm . Then the series~3.30! acquires the form

f~l,l̄ !5f0~pm!1SkPZ1
@lA1 . . . lAkfA1 . . . Ak

~pm!

1l̄ Ȧ1 . . . l̄ Ȧkf̄ Ȧ1 . . . Ȧk
~pm!#, ~3.31!

c~l,l̄ !5c0~pm!1SkPZ1
@lA1 . . . lAkcA1 . . . Ak

~pm!

1l̄ Ȧ1 . . . l̄ Ȧkc̄ Ȧ1 . . . Ȧk
~pm!#.

We therefore conclude that the most general solution of
model with aÞ0 describes an infinite doubly degenera
spectrum of massless fields of an arbitrary helicity, with t
additional compactS1 coordinate in the momentum spac
conjugate to the discrete helicity variable.

If we assume the validity of spin-statistics theorem t
bosonic fields should have positivel parity, and fermionic
fields should have oddl parity. Thus, thel-even part
F1(l,l̄,x)[F1(2l,2l̄,2x)5f1(l,l̄)1 ixc2(l,l̄)
of the general superfield solutionF(l,l̄,x)5f(l,l̄)
1 ixc(l,l̄) @see Eqs.~3.20! and~3.31!# should be regarded
as bosonic~i.e., Grassmann–even!. Consequently this im-
2-9
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plies that the wave functionf1(l,l̄) has positivel parity
~even powers ofl) i.e., it is bosonic, and the fermionic wav

function c2(l,l̄) has negativel parity ~odd powers ofl).
Another sector of the full quantum state spectrum is

scribed by the fermionicl-odd superfieldF2(l,l̄,x)[

2F2(2l,2l̄,2x)5f2(l,l̄)1xc1(l,l̄) which is com-

posed of the fermionicl-odd fieldf2(l,l̄) and the bosonic

l-even fieldc1(l,l̄).
We, therefore, see that in order to obtain physically me

ingful solutions described by the superfieldsF1(l,l̄,x) and

F2(l,l̄,x) with definite Grassmann parity one should d
vide the general solution~3.20! into two parts with even and
odd l parity. Note that the superfield solutions with defin
even/oddl parity have the even/odd superhelicities, but ea
of them contains a complete nondegenerate spectrum
states with both even and odd helicities.

It is instructive to compare the consequences of the p
ence of the ‘‘internal’’ compact coordinate in our case and
Kaluza-Klein theories. In the Kaluza-Klein theories the co
pact variables arise in an extension of space time with e
directions and lead to the quantization of corresponding ‘
ternal’’ momenta in the extended momentum space. T
‘‘internal’’ quantized momenta describe masses and ga
charges of Kaluza-Klein fields in the dimensionally reduc
theory.6 In our case the compactification is achieved by e
pressing the generalized momenta in terms of bosonic sp
~twistor! componenta. Thus, we have the opposite situat
the compact ‘‘internal’’ manifold is in the extendedmomen-
tum ~twistor! space and aquantized (discrete)central charge
coordinate is in the extendedcoordinatespace~space-time1
central charge coordinates!. The Fourier transform of the
compact ‘‘internal’’ momentum results in the discrete valu
of the conjugate coordinate, which are described by an i
gers. From the physical point of view the~half!integer num-
bers/2 describes the possible helicities of the massless q
tum states.

The quantum states of our model form a reduci
~infinite-dimensional! representation of target space sup
symmetry. Indeed, as the bosonic spinor is inert under glo
supersymmetry, the fields~3.31! can be collected into the
superfield series expansion with each term having defi
superhelicity

F@lA,l̄ Ȧ,x~a!#5F0@pm ,x~a!#

1SkPZ1
lA1

•••lAkFA1•••Ak
@pm ,x~a!#

1SkPZ1
l̄ Ȧ1

•••l̄ ȦkF̄ Ȧ1•••Ȧk
@pm ,x~a!#.

~3.32!

6It is worth mentioning that ‘‘usual’’ Lorentz-scalar centra
charges can be interpreted as Kaluza-Klein momenta@35#
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It is easy to see that each term is separately invariant un
supersymmetry.7

In the casea50 the additionalU(1) constraint~3.21!
appears. It singles out one irreducible superfield with a d
nite superhelicity out of the infinite series~3.32!.

4. a51

Consider now a peculiarity of the model ata51. In this
case the action~3.1!, ~3.2! contains only one real fermionic
variablex1. The corresponding term in the action is

Sx524i E x1dx1 x15
1

2
~Ql1Q̄l̄ !. ~3.33!

From Eq.~3.33! we conclude that the odd momentum ofx is
proportional tox itself

Sx5px1
24ix150. ~3.34!

Equation~3.34! is the second-class constraint being typic
of any free fermion theory

$Sx ,Sx%P528i . ~3.35!

It can be regarded to be satisfied in the strong sense@28# after
we pass from the Poisson brackets to the Dirac brackets

@ f ,g%D5@ f ,g%P2
i

8
@ f ,Sx%P@Sx ,g%P ~3.36!

which imply

$x1 ,x1%D52i . ~3.37!

Hence, upon quantizationj becomes a Clifford variable o
odd Grassmann parity

~ x̂1!251. ~3.38!

The Clifford algebra generated by this variable consists
two elements, the unit element andx̂1. Hence, all functions
of x̂1 can be written as a ‘‘Clifford algebra valued supe
field’’ having two components@27#

F~ĵ !5f1 i x̂1c, ~3.39!

wheref and c do not depend onx̂1. We conclude thatat
a51 the wave functions (3.20), (3.32) become Clifford ‘‘s
perfields’’ whose components again (as in the case aÞ0,1)
describe an infinite tower of fields of all possible helicitie.
We can decompose the superfields~3.39! into the even and
odd parts with respect tol parity and thus have the wav
functions with definite Grassmann parity~bosonic and fermi-
onic superfields!.

7Remember that the supersymmetry transformations of the su
field ~3.32! are generated by the transformations ofx as functions
of Q @Eqs.~3.4!#.
2-10
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We see that ata51 the model has the same spectrum
quantum physical states as in the generic case. The di
ence with the generic case (aÞ1) is only in the transforma-
tion properties of the field components with respect to tar
space supersymmetry—thea51 supersymmetry multiplets
are shortened~see Ref.@1#, Sec. 2!. Note also that in the
models witha>1 one can impose additional reality cond
tion on the quantum wave functions. In the Appendix w
shall present another way of quantizing a single class
fermionic variablex1 @see Eq.~3.33!# which allows to treat it
as a usual Grassmann variable and quantum superwave
tions as standard superfields.

IV. QUANTIZATION BY USING THE CONVERSION
METHOD

In order to justify the results of the supertwistor quantiz
tion of the model presented in Sec. III and to clarify t
space-time structure of the quantum wave functions, in
section we shall perform the quantization directly in the c
ordinate representation. Because of the appearance of a
ticular mixture of fermionic first and second class constrai
there appears a problem of quantizing the system cov
antly. However, there exists a powerful method to han
this problem@19,17,18#, which is based on the conversion
the second class constraints into the first class ones.

The quantization of the Ferber-Shirafuji model by t
conversion method was considered in Refs.@20–23#. In Ref.
@22# a D510 supersymmetric particle with extra tensor
coordinates has been also discussed. In the present p
however, the relation between spinor variables and the
sorial central charges, as well as their physical interpretat
goes far beyond the results presented in Ref.@22#.

A. Conversion degrees of freedom

To convert the second class constraints into the first c
ones we introduce additional~conversion! phase space de
grees of freedom, whose number is equal to the numbe
the second class constraints.

Thus, for theaÞ0,1 models we need8b12f conversion
degrees of freedom. For this purpose we introduce bos

spinorsrA , r̄ Ȧ plus its canonical momentaP(r)
A , P̄( r̄)

Ȧ

@P(r)
A ,rB#P5dB

A, @ P̄r̄
Ȧ ,r̄ Ḃ#P5d Ḃ

Ȧ , ~4.1!

and two real fermionic variablesf 1 and f 2 whose Poisson
brackets form a Clifford algebra

$ f 1 , f 1%P52 i ~12a!, $ f 1 , f 2%P50,

$ f 2 , f 2%P52 i ~11a!. ~4.2!

Instead off 1 and f 2 we shall also use two conjugate ferm
onic variables

S5A~11a! f 12 iA~12a! f 2 ,

S̄5A~11a! f 11 iA~12a! f 2 , ~4.3!
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$S,S%P50, $S̄,S̄%P50, $S,S̄%P522i ~12a2!.
~4.4!

Note, thatS̄ is complex conjugate ofS only for the case
0,a,1, while for a.1, where A(12a)5 iAu12au is
imaginary, bothS and S̄ are independent real variables. F
aÞ1 S̄ can be regarded as the momentum conjugate toS.

B. Conversion of the constraints

We use the additional degrees of freedom~4.1! and ~4.2!
in order to convert the mixture of first and second class c
straints ~2.30!–~2.35! into the first class ones. As it wa
shown in Ref.@26#, in twistorlike formulations of particle
mechanics it is convenient to perform conversion of t
whole set of primary constraints, without dividing them in
the sets of first and second class constraints.

For anya the first class constraints obtained as the res
of conversion are8

FAḂ[PAḂ2~lA1rA!~ l̄ Ḃ1 r̄ Ḃ!50, ~4.5!

FAB[ZAB2a~lA1rA!~lB1rB!50, ~4.6!

F̄ ȦḂ[Z̄ȦḂ2a~ l̄ Ȧ1 r̄ Ȧ!~ l̄ Ḃ1 r̄ Ḃ!50, ~4.7!

FA[P(l)
A 1P(r)

A 50, F̄ Ȧ[ P̄(l̄)
Ȧ

1 P̄( r̄)
Ȧ

50, ~4.8!

P(l)
A 2P(r)

A 50, P̄(l̄)
Ȧ

2 P̄( r̄)
Ȧ

50, ~4.9!

DA[2pA1 iPAḂQ̄ Ḃ1 iZABQB1~ f 11 i f 2!~lA1rA!50,
~4.10!

D̄Ȧ[p̄ Ȧ2 iQBPBȦ2 i Z̄ ȦḂQ̄ Ḃ1~ f 12 i f 2!~ l̄ Ȧ1 r̄ Ȧ!50.
~4.11!

The algebra of the first class constraints~4.5!–~4.11! is
quite simple. The only nonvanishing brackets~in the strong
sense! appear in the fermionic sector and have the form

Dab[S $DA ,DB%P $DA ,D̄Ḃ%P

$D̄Ȧ ,DB%P $D̄Ȧ ,D̄Ḃ%P
D 52i S 2FAB FAḂ

FBȦ 2F̄ ȦḂD .

~4.12!

The RHS of Eq.~4.12! vanishes weakly, i.e., on the con
straint surface~4.5!–~4.7!.

Note that the expressions~4.5!–~4.7!, ~4.10!, and ~4.11!
contain only the combination (l1r) of the commuting
spinors. We denote this combination byl̃

l̃A5lA1rA , l! Ȧ5l̄ Ȧ1 r̄ Ȧ , ~4.13!

while the linearly independent variables

8We denote the converted constraints with the same letters a
original ones.
2-11
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r̃A5lA2rA , r! Ȧ5l̄ Ȧ2 r̄ Ȧ ~4.14!

completely decouple and have vanishing canonical mom
~4.9!. Hence, the variables~4.14! can be excluded from the
consideration, since the wave functions will not depend
these variables.

C. Quantization of the converted system: equations for the
wave function

Now it is straightforward to quantize the system by usi
the Dirac method@28#. For this purpose let us choose th
~super-!Shrödinger representation for the superspace coo
nates and the bosonic spinor variables

P̂AḂ52 i
]

]XAḂ
,

ẐAB52 i
]

]yAB
,

ZC ȦḂ52 i
]

] ȳȦḂ
, ~4.15!

P̂l̃
A
52 i

]

]l̃A
, PC

l!
Ȧ
52 i

]

]l! Ȧ
,

p̂A51 i
]

]QA
, pC Ȧ51 i

]

]Q̄ Ȧ
. ~4.16!

The fermionic variablesf 1 and f 2 become Clifford algebra
operators

~ f̂ 1!25
1

2
~12a!, ~ f̂ 2!25

1

2
~11a!, $ f̂ 1 , f̂ 2%50.

~4.17!

The Grassmann parity off 1 and f 2 must be odd because th
constraints~4.10! and ~4.11! should have definite parity.

Note that the linear combinations~4.3! of fermionic quan-
tum variablesf 1 and f 2 satisfy the commutation relations

$Ŝ,Ŝ%50, $ S̄̂,S̄̂%50, $Ŝ,S̄̂%52~12a2!. ~4.18!

So one can chooseS as an odd coordinate andS̄̂ as its mo-
mentum operator

SC52~12a2!
]

]S
, Ŝ5S.

Despite the fact that such a representation makes hermit
condition nonmanifest, it is convenient since it simplifies t
calculations and provides the possibility of treating the ca
0,a,1 anda.1 on an equal footing.

After quantization the first-class constraints~4.5!–~4.8!,
~4.10!, and~4.11! are imposed on the wave function
04500
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C5C~xAȦ;yAB,ȳȦḂ;l̃A,l! Ȧ;QA,Q̄ Ȧ,S! ~4.19!

@we recall that we have consistently removed the variab
~4.14! from the consideration#. Thus, the wave function o
the system satisfies the first order differential equations

S ]

]xAḂ
2 i l̃Al! ḂD C50, ~4.20!

S 1

2

]

]yAB
2 ial̃Al̃BD C50, ~4.21!

S 1

2

]

] ȳȦḂ
2 ial! Ȧl! ḂD C50, ~4.22!

S ]

]QA 1 i
]

]xAḂ
Q̄ Ḃ1

i

2
a

]

]yAB
QB2 i ~ f 11 i f 2!l̃AD C50,

~4.23!

S ]

]Q̄ Ȧ
1 i

]

]xBȦ
QB1

i

2
a

]

] ȳȦḂ
Q̄ Ḃ1 i ~ f 12 i f 2!l̄ ȦD C50.

~4.24!

The solution of Eqs.~4.20!–~4.22! is

C5eilAl̄ȦxAȦ1 ialAlByAB1 ial̄Ȧl̄ḂȳȦḂ
g~ l̃A,l! Ȧ;QA,Q̄ Ȧ,S!.

~4.25!

Because of the constraints~4.23! and~4.24! the functiong
~4.25! satisfies the conditions

S ]

]QA 2l̃A@~Q̄l̄ !2a~Ql!2 i ~ f 11 i f 2!# Dg50,

~4.26!

S ]

]Q̄ Ȧ
2l̄ Ȧ@~Ql!2a~Q̄l̄ !1 i ~ f 12 i f 2!# D g50.

~4.27!

An evident consequence of Eqs.~4.26! and~4.27! is thatg
depends only on the composite Grassmann variablex

5QBlB and x̄5Q̄ Ḃl̄ Ḃ introduced in Eq.~3.4!

g~ l̃A,l! Ȧ;QA,Q̄ Ȧ,S!5g~ l̃A,l! Ȧ;QBlB ,Q̄ Ḃl̄ Ḃ ,S!.
~4.28!

Then Eqs.~4.26! and ~4.27! reduce to

S ]

]x
2x̄2ax2 i ~ f 11 i f 2! Dg~lA ,l̄ Ȧ ;x,x̄,S!50,

~4.29!

S ]

]x̄
2x2ax̄1 i ~ f 12 i f 2! D g~lA ,l̄ Ȧ ;x,x̄;S!50.

~4.30!
2-12



:

f

r-

e

d

-

su

tio
e

s

l
-

-
-

l
rdi-

e

-

om

he
n

udo-

to
bli-

SUPERPARTICLE MODELS WITH TENSORIAL CENTRAL . . . PHYSICAL REVIEW D61 045002
D. Quantization of the converted system: dependence on the
fermionic variables

To find the solution of Eqs.~4.29! and~4.30! we take their
linear combinations and rewrite them in the following form

FA12a2S ]

]x̄~a!
2x~a! D 2SGg50, ~4.31!

FA12a2S ]

]x~a!
2x̄~a! D22~12a2!

]

]SGg50,

~4.32!

wherex(a) were introduced in Eqs.~3.5!, ~3.6! and S are
defined in Eq.~4.3!.

Equations~4.31! and ~4.32! are easily solved in terms o
the components of the superfunctiong(S)

g~S!5g0~x,x̄ !1 iSg1~x,x̄ ! ~4.33!

which satisfies the conditions

S ]

]x̄~a!
2x~a! D g050

⇒g0~x,x̄ !

5e2x̄(a)x(a)F@lA ,l̄ Ȧ ;x~a!#,

~4.34!

2A12a2g1~x,x̄ !52 i S ]

]x~a!
2x̄~a! Dg0 . ~4.35!

We see that whenaÞ1 the componentg1 of the superfunc-
tion ~4.33! is expressed in terms ofg0 which is specified by
the condition~4.34! in terms of a single independent supe
field F@lA ,l̄ Ȧ ;x(a)#.

Hence, the independent wave function~4.19! which de-
scribes the general solution of Eqs.~4.20!–~4.24! is

C5eilAl̄ȦxAȦ1 ialAlByAB1 ial̄Ȧl̄ḂȳȦḂ2x̄(a)x(a)F@l̃A,l! Ȧ;x~a!#.

~4.36!

At the critical valuea51 the result is the same though th
proof is slightly changed since in such a case~as in Sec.
III A 4 ! we should deal with a single conversion Cliffor
variablef instead off 1 and f 2 ~and/orS and S̄). More pre-
cisely, in Eqs.~4.29! and ~4.30! one should puta51, x̄
5x, and f 15S50, and then follow the quantization pre
scription described in the Appendix.

One should notice that the wave functionF@l̃A,l! Ȧ;x(a)#
in Eq. ~4.36! has exactly the same structure as in the
pertwistor case~3.20!, but where nowx(a) are the compos-
ite Grassmann coordinates defined by Eqs.~3.5!, ~3.6!. We
therefore conclude that the direct supertwistor quantiza
and the quantization with the use of conversion of the sup
particle model based on the generic action~2.1! result in the
same supersymmetric spectrum of the quantum states.

The supersymmetry transformations of the component
F@l̃A,l! Ȧ;x(a)# are easily derived from Eq.~4.36! using the
04500
-

n
r-

of

supersymmetric variations~2.7! of the coordinates. The
higher dimensional generalization of thea51 model and its
quantization will be the subject of the next section.

V. THE a51 MODEL IN HIGHER DIMENSIONS AND
INTERNAL DEGREES OF FREEDOM

A generalization of theD54, a51 superparticle mode
has been proposed in Ref.@1#. In higher space-time dimen
sionsD we consider an extension of anN51 supersymmetry
algebra by tensorial central charges

$Qa ,Qb%5Pab , @Pab ,Qg#50, ~5.1!

where, depending on space–time dimensionD, the super-
chargesQa (a51, . . . 2k) are real Majorana, or Majorana
Weyl spinors9 andPab is a symmetric generalized ‘‘momen
tum’’ generator conjugate to 2k(2k11) symmetric spin-
tensor coordinatesXab, which can be split into the usua
space-time coordinates and tensorial central charge coo
nates, as we shall demonstrate below.

We assume thatPab is defined by the Cartan-Penros
relation

Pab5lalb , ~5.2!

where the real bosonic spinorla has the same spinor prop
erties as the superchargeQa . The expression~5.2! implies
the Bogomol’nyi-Prasad-Sommerfield~BPS! condition
detPab50 and can be obtained as a primary constraint fr
the action functional@1#

S5E
M 1

lalbPab, ~5.3!

Pab5dXab2 idQ (aQb)5dt Pt
ab ,

a51, . . . ,2k.

For any value ofk the model possesses 2k global target
space supersymmetries generated by Eq.~5.1!

dSUSYX
ab5 iQ (aeb), dSUSYQ

a5ea, dSUSYla50,

as well as 2k21 k symmetries. To show the presence of t
2k21 k symmetries let us write the variation of the actio
~5.3!

dS5E
M 1

~2dlalbPab1d~lalb!i dPab

22i dQalalbdQb!1~lalbi dPab!ut i

t f , ~5.4!

where

9In the general case one can also consider the cases of pse
Majorana, simplectic-Majorana and Dirac~complex! supercharges
@36#. Technical details of the extension of the results of Sec. V
arbitrary type of supercharges will be considered in another pu
cation.
2-13
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i dPab5dXab2 idQ (aQb).

One can see that only one linear combinationlbdQb of 2k

independent variations of Grassmann coordinatesdQb is ef-
fectively involved into the variation of the action.

Hence, other 2k21 Grassmann coordinate variation
@which do not appear in Eq.~5.4!# can be identified with the
parameters of local fermionick –symmetry. They can be
written in the form

k I5ub
I dQb,

where ub
I (I 51, . . . ,2k21) and lb form a set of 2k lin-

early independent bosonic spinors. Identifying thek symme-
try with the part of target space supersymmetry which
preserved by the particle or brane configuration, we cla
that the model~5.3! describes the dynamics of BPS stat
preserving all but one target space supersymmetries in sp
time of a dimensionD.

Examples. In D53 ~where k51) the action~5.3! de-
scribes the standard massless superparticle

k51↔D53: Xab5Xmgm
ab , Pab5Pmgm

ab .

On the other hand the casek51 can be regarded as a mod
in a ‘‘minimal’’ D5212 superspace with self-dual tensori
central charge coordinatesXab5ymnsmn

ab , ymn5 1
2 emnklykl .

The case ofk52 corresponds to theD54, a51 model
considered in Secs. II–IV but written in the Majorana rep
sentation.

The construction also holds inD56 wherek53, but here
we should use the@SU(2) –Majorana-Weyl# ‘‘reality’’ con-
ditions. In addition to the four-dimensional spinor indexa
the complex eight-component spinorsQa

i and la
i carry the

SU(2) index i 51,2 and they are theSU(2) Majorana-Weyl
spinors~see for details Ref.@36#!. The number of tensoria
central charges in this model is 30.

The casek54 can be regarded as describing aD510
massless superparticle with 126 composite~self-dual! tenso-
rial central chargesZm1•••m5

@1# ~cf. with Refs.@2,22#!. The

real superchargesQa satisfy the Majorana-Weyl reality con
dition.

The action~5.3! with k55 corresponds to a 0-superbra
model in D511 superspace with 517 tensorial cent
charges composed from 32 components of one real bos
Majorana spinor. In contrast to the cases ofD53, 4, 6, and
10, in such a model the superparticle is not massless,
mass of the 0-brane being generated dynamically in a
similar to the mechanism generating the tension of sup
strings and superbranes@41#.

On the other hand it is possible to use the twelve dim
sionalD52110 32332 gamma matrices to treat thek55
model from the point of view of two-time physics@4#. The
bosonic coordinatesXab are decomposed into two-index an
self-dual six-index central charge coordinatesymn,ym1•••m6

51/6!em1•••m6n1•••n6yn1•••n6
.
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A. OSp„1z2k
… supertwistor representation

of the D-dimensional model

Performing the integration by parts we can rewrite t
action ~5.3! in the OSp(1u2k) invariant form @i.e.,
OSp(1u16) for D510 andOSp(1u32) for D511] in terms
of a supertwistorYA5(ma,z)

S52E ~madla1 i dz z!, a51, . . . ,2k. ~5.5!

The generalized Penrose-Ferber correspondence betwee
supertwistors and the generalized superspace looks as
lows

Pab5lalb , ma5Xablb2 iQa~Qblb!, z5Qala
~5.6!

and does not imply other constraints.

B. Quantization of the higher dimensional model with the use
of conversion

The quantization of the supertwistor formulation~5.3! is
straightforward and is completely analogous to the quant
tion of the D54 model considered in Sec. III A 4 and th
Appendix. The spectrum of quantum states is described
the superfield

F5F~la ,z!5f~la!1 i zc~la! ~5.7!

depending on the bosonic spinorla and one Grassmann~or,
equivalently, Clifford! variable z. For completeness we
briefly describe the quantization of the higher dimensio
model ~5.3! with the use of conversion.

The primary constraints of the model~5.3! are

Fab[Pab2lalb50, ~5.8!

Da[pa1 iQbPba50, ~5.9!

P(l)
a 50, ~5.10!

where the momenta are defined in such a way that the n
vanishing Poisson brackets have the following form:

@Pab ,Xgd#P52d (a
(gdb)

d) , $pa ,Qb%P5da
b ,

@P(l)
a ,lb#P5db

a. ~5.11!

This set of 2k(2k11)/2 bosonic and 2k fermionic constraints
obeys the algebra

@Fab ,P(l)
g #P52l (adb)

d ,

$Da ,Db%P52iPab[2i ~Fab1lalb!, ~5.12!

all other brackets50,

and thus contains 2k bosonic and 1 fermionic second cla
constraints. Therefore, our system with 2k(2k11)/2 bosonic
and 2k fermionic configuration space variables containk
2-14
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bosonic and 1 fermionic physical degrees of freedom wh
can be identified with the components ofOSp(1u2k) su-
pertwistor.

Exactly as in theD54 case, to perform the conversio
~see Refs.@15–18#! of the second class constraints into t
first class ones we introduce additional ‘‘conversion’’ d
grees of freedom~two for each pair of the bosonic secon
class constraints and one self-conjugate fermionic varia
for each fermionic second class constraint!

@P(r)
a ,rb#P5da

b , $j,j%52
i

2
, ~5.13!

and transform the second–class constraints into the first-c
ones extending the former with the new coordinates and
menta

F̃ab[Pab2l̃al̃b50, ~5.14!

D̃a[Da12l̃aj[pa1 iQbPba12l̃aj50, ~5.15!

Pr̃
a
50, ~5.16!

where

l̃a5la1ra , r̃a5la2ra . ~5.17!

Following the Appendix we obtain the superwave fun
tion describing the first-quantized states of the model de
mined by the single superfield~5.7! depending onl̃a and
one Grassmann variablex5(Ql). We have

C@l̃a ,~Ql̃!#5e
i
2l̃al̃bXab

@f~l̃a!1 i ~Ql̃!c~l̃a!#.
~5.18!

In the sector with evenl-parity of the wave function (C
5C1) the spectrum of the quantum states of the model~5.3!
is described by one bosonicf1(l̃) and one fermionic
c2(l̃) function, while in thel-odd sector (C5C2) we
have the fermionic fieldf2(l̃) and the bosonic fieldc1(l̃).
This is in complete correspondence with the result of
quantization of the free supertwistor model~5.5!.

C. Properties of the wave function with arbitrary helicity
spectrum

To clarify the meaning of the wave function~5.7! @or Eq.
~5.18!#, let us consider its bosonic limit atQa50

C5e
i
2l̃al̃bXab

f~l̃a!, a51, . . . ,2k, ~5.19!

and use the decomposition of the product of the spinor r
resentations in the basis ofD-dimensional gamma matrices
For the simplest casek51 (a51,2), where our model co
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incides with a D53 counterpart of the usual~Ferber-
Shirafuji! model @9,10#, the Fierz identity reads10

D53: lalb5
1

2
gab

a ~lgal!5
1

2
gab

a Pa ,

and we can identify the matrix coordinatesXab and their
momentaPab with the usual vector coordinates and m
menta

D53: Xa5
1

2
gab

a Xab, Xab5Xagaab ,

Pa5
1

2
gab

a Pab, Pab5Pagaab .

Thus, inD53 Eq. ~5.19! describes a plane wave solution11

D53: C5eipmXm
f~pm!. ~5.20!

The casek52, D54 has been analyzed in detail in Sec
II–IV. To transform the wave function~5.19! to the wave
function ~4.36! ~at a51, andQ50) one should perform the
similarity transformation from the real Majorana to the com
plex Weyl representation of theD54 gamma–matrices an
replace the Majorana spinor by the pair of complex con
gate Weyl spinors

l̃a↔S l̃A

lS Ȧ
D . ~5.21!

In the momentum representation the wave functionf(la)
differs from the usual one given byf0(pm) by the presence
of additional dependence on the angle variablea which de-
scribes the common phase factor of the Weyl spin
lA (l15ei (a1b)ul1u, l25ei (a2b)ul2u) and parametrizes
the one-dimensional sphereS1

D54: f~la!5f~lA ,l̄ Ḃ!5f~pm ,a!, aP@0,2p!,

where pm5 1
4 lgml5 1

2 lAsAȦl̄ Ȧ ~see also Ref.@10#!. The
additional internal momentum variablea is the only inde-
pendent degree of freedom contained in theD54 tensorial
central charges composed of the bosonic spinor

aP@0,2p!⇔Zmn5
1

4
lgmnl.

10We use the matricesgab
a which are symmetric and obtaine

from standard Dirac matrices (ga)a
b, by lowering one of the indi-

ces with the charge conjugation matrixC5g05 i t2, which plays
the role of the metric in the spinor space.

11More precisely, inD53 f(la)5c@pm ,sgn(l)#, where sgn(l)
denotes the sign factor (61) of the bosonic spinor. This is a ‘‘pa
rameter’’ of the residualZ2 symmetry, whose action onl does not
changepm .
2-15
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It describes theD54 helicity spectrum of the quantum stat
of the superparticle.

In the general case ofk.2 with 2k equal to the dimension
of an irreducible spinor representation ofSO(1,D21) in
D53,4,6, 10~mod 8! ~i.e., k53,4, . . . ) thediscussion is
similar. For example, in the casek54, D510 we can use
the basis of symmetrics matricessm ,sm1 . . . m5

to make the
decomposition

lalb[Pab5Pmsab
m 1Zm1•••m5

sab
m1•••m5, ~5.22!

where

Pm5
1

16
lasm

ablb⇒PmPm50 ~5.23!

is an ordinary lightlike momentum vector inD510 and

Zm1•••m5
5

1

1635!
lasm1•••m5

ab lb ~5.24!

is the momenta canonically conjugate to the126 tensorial
central charge coordinatesym1•••m5.

It was demonstrated that theD510 model contains the
local symmetries~first class constraints! and second-clas
constraints which reduce the number of the classical bos
degrees of freedom to the ones described by the
component bosonic spinorla and its momentum plus on
Grassmann degree of freedom. In the quantum theory th
reflected in the dependence of the ‘‘momentum space re
sentation’’ of the wave function on 16 bosonic spinor va
ables and one Grassmann variable only.

Due to the identities (sm)(ab(sm)g)d50 theD510 mo-
mentum ~5.23! is lightlike. Hence, the tensorial centra
charge momentaZm1•••m5

contain 162957 additional de-
grees of freedom which are not determined by the lightl
momentum.

We now show that these additional internal degrees
freedom parametrize anS7 sphere. For this purpose we pe
form a Lorentz transformation to the frame where the lig
like momentum~5.23! acquires the form

Pm5~p,0,0,0,0,0,0,0,0,p!. ~5.25!

Then in this frame we make anSO(8) invariant split of the
bosonic spinorl̃a

l̃a5S Lq

S q̇
D , q51, . . . 8, q̇51, . . . 8, ~5.26!

and choose theSO(8)3SO(1,1) covariant representatio
for the D510 s matrices

sab
0

5diag~dqp ,d q̇ṗ!5s̃0 ab ,

sab
9

5diag~dqp ,2d q̇ṗ!52s̃9ab ,
04500
ic
6-

is
e-

e

f

-

sab
i 5S 0 gqṗ

i

g̃ q̇p
i 0

D 52s̃ iab , ~5.27!

sab
11[~s01s9!ab5diag~2dqp ,0!

52~ s̃02s̃9!ab5s̃22ab ,

sab
22[~s02s9!ab5diag~0,2d q̇ṗ!

5~ s̃01s̃9!ab5s̃11ab .

In the frame~5.25! the Cartan-Penrose representation~5.23!
looks as follows:

LqLq5p, 2S q̇S q̇50, Lqgqṗ
i

S ṗ50. ~5.28!

The general solution of Eqs.~5.28! is

S q̇50, ⇒l̃a5S Lq

0 D , ~5.29!

and the only nonvanishing component of the moment
~5.25! is given by the norm of theSO(8) spinorLq

p5LqLq . ~5.30!

The expression~5.30! is invariant under theSO(8) rotations

Lq→LpSpq , SST5I .

But not all SO(8) transformations act onLq effectively.
Indeed, if one fixes theSO(8) gauge

Lq5S 6Ap

0

. . .

. . .

. . .

0

D ~5.31!

one finds that~i! this gauge is invariant under theSO(7)
transformations and~ii ! any form of the spinorLq can be
obtained from Eq.~5.31! by a transformation from the cose
spaceSO(8)/SO(7) isomorphic to the sphereS7. Thus, the
16 components of the bosonic spinorla in D510 can be
split into ~i! degrees of freedom which characterize the lig
like momentumPm and ~ii ! 7 coordinates of the sphereS7.
The variables parametrizing the sphereS7 correspond to
‘‘helicity’’ degrees of freedom of the quantum states of t
masslessD510 superparticle.

It is worth mentioning that the appearance of extra co
pact dimensions in the momentum spaces of the super
ticle models considered above is related to the well kno
fact that inD53, 4, 6, and 10 the commuting spinors~twist-
ors! with n52(D22)52, 4, 8, and 16 components param
etrize, modulo scale transformations,S1, S3, S7, and S15

spheres, respectively. These spheres are Hopf fibrations~fi-
ber bundles! which are associated with the division algebr
2-16
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R, C, H, andO. Their bases are the spheresS1, S2, S4, and
S8, and the fibers areZ2, S15U(1), S35SU(2), andS7,
respectively. The base spheres are parametrized~up to a scal-
ing factor which, due to the Cartan-Penrose representatio
identified with the square of spinor components! by the light-
like vectors~massless particle momenta! in D53, 4, 6, and
10, respectively. We see that the fibers are extra ‘‘mom
tum dimensions’’ which we have in our models with cent
charges~at aÞ0). This is the geometrical ground for th
appearance ofS1 in D54 andS7 in D510.

VI. CONCLUSION AND DISCUSSION

We have performed the detailed analysis and quantiza
of the massless superparticle model with tensorial cen
charges associated with twistorlike commuting spinors
space-times of dimensionD53, 4, 6, and 10. The physica
phase space degrees of freedom of this model have a na
description in terms of supertwistors which form a fund
mental representation of a corresponding maximal su
group of conformal type underlying the dynamics of the s
perparticle.

A peculiarity of thea51 model is that it possessesn
52[D/2]21 k symmetries, while the standard massless
perparticles haven52[D/2]21 k symmetries. The presence o
such a large number ofk symmetries in thea51 models
means that the superparticle breaks only one of the 2[D/2]

supersymmetries of the target space vacuum. This resul
very short two-component supermultiplets describing
quantum states of thea51 superparticle, since the corre
sponding target space superfields depend only on one G
mann coordinate. The existence of these short Lore
covariant superfields is made possible because the ta
superspace has been enlarged by commuting spinor co
nates, whose role is in singling out a ‘‘small’’ covariant su
superspace in the extended target superspace. Let us com
this situation with well known cases.

In the case of the ordinary massless superparticle inN
51, D54 superspace the quantum states of the super
ticle are described by a chiral scalar superfield@42#. The
chirality constraint is a consequence of first-class fermio
constraints generatingk symmetries. Consequently the chir
superfield effectively depends on only two Grassmann co
dinates, which reflects the fact that the ordinary superpart
preserves half~i.e., two out of four! supersymmetries ofN
51, D54 superspace.

In the case of anN52, D54 superparticle in harmonic
superspace@43# which also breaks half of the target spa
supersymmetries,SU(2)-harmonic variables allow one t
pick a harmonic analytic subsuperspace out of the gen
N52, D54 superspace@44#, and quantum states of the s
perparticle are described by analytic superfields which
pend on four Grassmann coordinates singled out from
original eight Grassmann coordinates by the use of the
monic variables. In the analogous way, in the case of
generalized superparticle model~2.1!, ~5.3! at a51, when
only one target space supersymmetry is broken, one fin
Lorentz covariant subsuperspace of the target supersp
which has only one Grassmann direction parametrized by
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Lorentz scalaruala . The ‘‘short’’ superfields~4.36!, ~5.18!,
which exist only due to the presence of the auxiliary spin
variable, describe the quantum states of the generalized
perparticle.

We have shown that in contrast to standard superparti
the considered model possesses additional compact ph
space variables which describe helicity degrees of freed
of the superparticle and which upon quantization paramet
infinite tower of free states with arbitrary~half-!integer he-
licities. Due to this property it would be interesting to co
sider the possibility of treating our generalized superpart
model as a classical mechanics counterpart of the theor
higher-spin fields developed by Vasiliev@13#. Since the non-
trivially interacting higher spin fields should live in a spac
time of ~anti!–de Sitter geometry a natural generalization
the results of this paper would be to consider a superpar
model on supergroup manifolds describing isometries of c
responding AdS superspaces. ForD54 the supergroup
OSp(1u4) is the isometry of aD54 AdS superspace
OSp(1u4)/SO(1,3) which in addition to four bosonic direc
tions has four Grassmann fermionic directions. Six boso
coordinates corresponding to the groupSO(1,3) @which ex-
tends the coset superspaceOSp(1u4)/SO(1,3) to the super-
group manifoldOSp(1u4)] are a non-Abelian generalizatio
of the central charge coordinates of theD54 model consid-
ered above. It appears that our model with central char
can be regarded as an appropriate truncation of
OSp(1u4) model. Work in this direction is now in progres

We should also remark that tensorial central charges
usually associated with brane charges, which are topolog
and take discrete~quantum! values. In contrast, in the supe
particle models considered in this paper the central cha
take continuous values and parametrize compact manifo
while their Fourier conjugate coordinates are quantized.
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APPENDIX

1. Quantization of one fermionic degree of freedom
by a ‘‘half-conversion’’ prescription

Here we shall present a method of quantizing a sin
fermionic variable alternative to that used in Sec. III A 4, b
which leads to the same spectrum of quantum states. Le
convert the second-class constraint~3.34! into the first-class
constraint by introducing one more Clifford-like variablej8
2-17
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$j8,j8%P52
i

2
. ~A1!

Using j8 we replace Eq.~3.34! by the first class constraint

A[j2 ip (j)12j850, $A,A%P50, ~A2!

where instead ofx1 of Eq. ~3.34! we have introducedj
52x1.

Let us quantize the model using the coordinate repres
tation for the original Grassmann variablej

ĵ5j, p̂j5 i
]

]j

and a real 232 matrix representation

ĵ85
1

2
t5

1

2S * *

* * D t25I ~A3!

for the new Clifford algebra valued variableĵ8

ĵ8251/4.

Then the wave function is regarded as a column

Ca5S f~j!

c~j!
D ~A4!

and the quantum counterpart of the first class constraint~A2!

Â[S j2
]

]j D t81t ~A5!

should be imposed on the wave function

ÂabCb[F S j2
]

]j D tab8 1tabGFb~j!50. ~A6!

In Eqs.~A5! and ~A6! the second 232 matrix

tab8 5S * *

* * D , ~t8!25I ~A7!

was introduced. It is required to ensure the anticommuta
ity of the Grassmann and Clifford part of the first class co
straint ~A6!. Indeed, let us calculate the square of the qu
tum constraint~A5!

Â2[
1

2
$Â,Â%5t21S j2

]

]j D 2

~t8!21S j2
]

]j D $t8,t%.

~A8!

Since

S j2
]

]j D 2

5
1

2 H S j2
]

]j D ,S j2
]

]j D J 521 ~A9!

and

t25I 5~t8!2,
04500
n-

-
-
-

one easily finds that the first two terms in~A8! cancel and
arrives at

Â25S j2
]

]j D1

2
$t8,t%. ~A10!

The last input vanishes if and only if$t8,t%50. This result
cannot be reached if one choset8 to be the unit matrix.t and
t8 can be chosen to be two Pauli matrices.

Let us stress that the necessity to introduce the sec
matrix t8 is a peculiarity of the quantization of the odd num
ber of Clifford variables.t8 can be the unit matrix in the cas
of even number of Clifford variables~see, e.g., Ref.@45#, and
references therein!.

To fix the representation for the matricest andt8 one has
to note that the conservation of the Grassmann parity in
form of the first class constraint~A6! requires the following.

The componentsf(j) and c(j) of ~A3! must havedif-
ferent Grassmann parity. For instance, if we choosef(j) to
be bosonic superfield thenc(j) is fermionic.

If the diagonal representation is chosen for one of
matrices, sayt8, then another matrixt is antidiagonal.

Keeping these in mind we choose

t85t3[S 1 0

0 21D , t5t1[S 0 1

1 0D . ~A11!

Then the quantum constraints~A6! acquire the form

ÂabCb[S ~j2]/]j! 1

1 2~j2]/]j!
D S f~j!

c~j!
D

b

5S ~j2]/]j!f~j!1c~j!

f~j!2~j2]/]j!c~j!
D 50, ~A12!

which splits into two equations

S j2
]

]j Df~j!52c~j!, ~A13!

f~j!5S j2
]

]j Dc~j!.

Using Eq.~A9!, we notice that the second equation is a co
sequence of the first one. The first equation

S j2
]

]j Df~j!52c~j! ~A14!

expresses the fermionic superfield through the bosonic o
That is, if we writef(j) in components

f~j!5f01 i jc1 ,

then from Eq.~A14! it follows that

c~j!5 ic12jf0 .
2-18
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Thus, we can represent the spectrum of states carrying
Clifford degree of freedom by one~either bosonic or fermi-
onic! superfieldf(j) depending on the singleGrassmann
variablej

j* 5j, j250.

This result is in accordance with that of Sec. III A 4~see also
Ref. @27#!, and both methods of quantizing a single fermion
variable result in the same field content of quantum sta
~one boson and one fermion!.

2. Quantization of the high-dimensional model with the use
of conversion

Here we present some details of getting the wave func
~5.18! from the converted system of constraints~5.14!,
~5.15!, and ~5.16! describing the high-dimensional genera
zation of the first-quantizeda51 model. Let us choose th
~super!coordinate representation for supercoordinates
bosonic spinors

P̂ab52 i
]

]Xab
, P̂(l̃)

a
52 i

]

]l̃a
, ~A15!

p̂a5 i
]

]Qa
, ~A16!

and use the 232 matrix representation

ĵ5
1

2
t25S 0 1

1 0D , $ĵ,ĵ%5
1

2
~A17!

for the Clifford variablej.
Then the wave function is a column
o
d
ła

8
y
.K

04500
ne

s

n

d

Ca5Ca~Xab,l̃b!5S f~Xab,l̃b!

c~Xab,l̃b!
D ~A18!

with the elements carrying opposite Grassmann parity~e.g.,
f is bosonic andc is fermionic! and the quantum first clas
constraints~5.14!, ~5.15!, ~5.16! should be taken in the form

F̂̃ab52 i ~]ba2 i l̃al̃b!I , ~A19!

D̂̃a5D̂a1l̃aĵ5 i ~]a2 iQb]ba!t31l̃at2 . ~A20!

The incorporation of thet3 matrix is necessary to provid
the properties of the first class constraints to form the clo
algebra

$D̂̃a ,D̂̃b%522i F̂̃ab . ~A21!

This is a peculiarity of the quantization of the models w
odd number of phase space Grassmann variables~see Sec. 1
of this appendix!.

The further steps of the quantization procedure exa
repeat the steps of theD54 case~see Sec. IV!. The wave
function describing the spectrum of the quantum states i

C̃a5e( i /2)l̃al̃bXabS C~l̃a ,Ql!

2 i @]/]~Ql!1Ql#C~l̃a ,Ql!
D .

~A22!

As the second element in the column is expressed thro
the first one, we can describe the spectrum of the quan
states by the single superfield~5.18! depending on bosonic
l̃a and fermionicx5(Ql) coordinates.
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