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Geometrical aspects of light propagation in nonlinear electrodynamics
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We analyze the propagation of light in the context of nonlinear electrodynamics, as it occurs in modified
QED vacua. We show that the corresponding characteristic equation can be described in terms of a modifica-
tion of the effective geometry of the underlying spacetime structure. We present the general form for this
effective geometry and exhibit some new consequences that result from such an approach.

PACS numbeis): 12.20.Ds, 11.10.Wx, 41.20.Jb

[. INTRODUCTION The general approach of all these theories is based on a
gauge invariant effective action, which takes into account
modifications of Maxwell electrodynamics induced by dif-
Modifications of light propagation in different vacua ferent sorts of processes. Such a procedure is intended to
states haVe I’ecenﬂy been a SUbjeCt of intereSt. SUCh inVeSH'ea| with the quantum vacuum as if it were a classical me-
gation shows that, under distinct nontrivial vaduelated to  dium. Another important consequence of such a point of
several circumstances such as temperature effects, particulgeyw is the possibility to interpret all such vacua
boundary conditions, quantum polarization, gtthe motion  modifications—with respect to the photon propagation—as
of light can be viewed as electromagnetic waves propagatingn effective change of the spacetime metric properties. This
thrOUgh a classical diSperSive medium. The medium induceﬁgsu“ allows one to appea| to an ana]ogy with the electro-

modifications on the equations of motion, which are de'magnetic wave propagation in curved Spacetime due to
scribed in terms of nonlinearities of the field. In order to gravitational phenomena.

apply such amedium interpretatiorwe consider modifica-
tions of electrodynamics due to virtual pair creation. In this

A. Introductory remarks

: - " B. Synopsis
case the effects can be simulated by an effective Lagrangian ) o o )
which depends only on the two gauge invariafitand G of In this paper we deal with light propagation in nonlinear
the electromagnetic fielflL,2]. electrodynamics. The origin of such nonlinearity is not

One of the main achievements of such investigation is th&/Nidue. It can be a consequence of modified QED vacua
understanding that, in such nonlinear framewakotons 7-9| or dea] to nonlinear response of a dielectric medmm.
propagate along geodesics that are no more null in the actu%here are different ways to evaluate the characteristic sur-
Minkowski spacetime but in another effective geometry. Al- aces of the wave propagation. However, there seems to be
though the basic understanding of this fact—at least for th&'© better and elegant manner than the one proposed by Had-

specific case of Born-Infeld electrodvnamics—has bee amard. We briefly review its main lines in Sec. Il. First, we
P y "Yeal only with one-parameter Lagrangians, which means that

known for along time{S], it has been scarcely noticed in the ajose theories depend only upon the gauge invaRaht the
literature. Moreovgr, its consequences were not explo!te ubsequent section we generalize for the full dependence
any further. In particular, we emphasize the general applicagnon the two algebraic invariants of electrodynamics. We
tion and the corresponding consequences of the method @how an elegant property of such nonlinear theories: the
the effective geometry outlined here. electromagnetic wave propagation can be described as if the
The exam of the photon propagation beyond Maxwellmetric structure of the background were changed from its
eIeCtrodynamics has a rather diversified hiStOfy: it has beeMinkowskian value into another effective metric, which de-
investigated in curved spacetime, as a consequence of nopends on the dynamics of the background electromagnetic
minimal coupling of electrodynamics with gravif,5] and  field. Thus this equivalence property mimics the correspond-
in nontrivial QED vacua, as an effective modification in- ing properties of the photon propagation in gravitational
duced by quantum fluctuatiof6,1,2. As a consequence of fields. Indeed, as we will show in Sec. Ill, photons described
this examination some unexpected results appear. Just tiy nonlinear electrodynamics propagate as null geodesics in
point one out, we mention the possibility fafster-than-light —an effective metric that is distinct from the Minkowskian
photons! one. We show a remarkable consequence of such interpreta-
tion: the possibility of generating a compact domain in
which photons are trapped by the nonlinear electromagnetic
*Electronic address: novello@lafex.cbpf.br field. This suggests the possibility that an analogy with a
"Electronic address: lorenci@cpd.efei.br gravitational black hole—which we should name electro-
The meaning of such expression is that the wave discontinuitieghagnetic black hole—could exist. In addition, we show that
propagate along spacelike characteristic surfaces in the Minkowskane can find a similar phenomenon inside a dielectric me-
background. dium that responds nonlinearly to an external stimulus. In
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Sec. IV we analyze the light velocity dependence on theepresents the discontinuity of the arbitrary functidn
scale anomaly of the field. We show that there is not a deefhrough the surfac& characterized by the equatidyx*)
interconnection between such scale anomaly and the phe=const. The tensof ,, is called the discontinuity of the
nomenon of birefringence. Finally, we end with some com-field, and

ments concerning the new effects that are to be expected for

such nonlinear photons. Typical Riemannian calculations are ky= X (6)
presented in Appendix A, in which it is shown that the stan-, i

dard geodesic assumption for photons also holds for the nof the Propagation vector.

linear case. Connections with Rainich-Wheeler formalism
[10] are also provided in Appendix B. Il. THE METHOD OF THE EFFECTIVE GEOMETRY

nv

A. One-parameter Lagrangians
C. Definitions and notations . . . . . .
Our generic purpose in this paper is to investigate the

We call the electromagnetic tensbr,,, while its dual  effects of nonlinearities in the equation of evolution of elec-

* tromagnetic waves. We will restrict the analysis in this sec-
Fuis tion to the simple class of gauge invariant Lagrangians de-
fined by
* 1
Faﬁizﬁaﬁuvl:,uv! (1) L:L(F) (7)

. , . . ... From the least action principle we obtain the field equation
where 7,4, is the completely antisymmetric Levi-Civita

tensor; the Minkowski metric tensor is represented by its d,(LgF#)=0. (8)
standard form»*”. The two invariants constructed with
these tensors are defined as Applying conditions(4) and (5) for the discontinuity of the
field equation(8) through, we obtain
F=F*F,,, (2
LFf#VkV+ 2LFF§F’U'VkV:O, (9)
* where¢ is defined by
G=F*F,,. (3)

E=FPE . (10
Once the modifications of the vacuum which will be dealt ) o o _
with here do not break the gauge invariance of the theory_The consequence of such discontinuity in the cyclic identity
the general form of the modified Lagrangian for electrody-!S
namics may be written as a functional of the above invari-

antS, that IS, f;LVk)\+fV)\kﬂ+f)\;LkV:0 (11)
In order to obtain a scalar relation we contract this equation
L=L(F,G). with k,»“*F#?, resulting
We denote by  andL g the derivatives of the Lagrangidn ék K, m"" + ZFWfV"k)\kMZO. (12

with respect to the invariarit andG, respectively; and simi-
larly for the higher order derivatives. We are particularly Let us consider the case in whighdoes not vanisf.From
interested in the derivation of the characteristic surface&ds.(9) and(12) we obtain the propagation equation for the
which guide the propagation of the field discontinuities. ~ field discontinuities as given by

Let 3 be a surface of discontinuity for the electromagnetic , e
field. Following Hadamard11] we assume that the field it- (Len*"—4LeeF F )k, k,=0. (13
self is continuous when crossiy while its first derivative

presents a finite discontinuity. We accordingly set Expression(13) suggests that one can interpret the self-

interaction of the background fiel#*”, in what concerns the

[F. ]s=0 @ propagation of electromagnetic discontinuiti€s, as if it
prvds— Y

and
2For the case in whicli=0, the quantityf ,, is a singular two-

(5) form. Following LichnerowicZ12], it can be decomposed in terms
of the propagating vectdk, and a spacelike vecta,=ae, or-
thogonal tok,, , in which €, is the normalized polarization vector.
Hence, we can writé,,,=k,a,—k,a, on . From Eq.(9) it fol-
lows that f#*k,=0, and contracting Eq(11) with 7Pk, yields

[Jls= lim (Jsis—Is_») f,.,7*Pk,kz=0. Therefore, such modes propagate along standard
607" null geodesics in Minkowski spacetime.

[a)\F,uV]E: fMVk)\ '

in which the symbol
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had induced a modification on the spacetime mefjg,, g“rg,\ = 8. (19)
leading to the effective geometry
This calculation is simplified if we take into account the well
Oer = Len""—ALgeFH F7. (14 known properties:

A simple inspection of this equation shows that only in the * 1
particular case of linear Maxwell electrodynamics the dis- FFh=— —(35;, (20)
continuity of the electromagnetic field propagates along null 4
paths in the Minkowski background.
The general expression of the effective geometry can bgnd
equivalently written in terms of the vacuum expectation

_ . * * 1
value (VEV) of the energy-momentum tensor, given by FMF”— FM)\F)\VZEF(SZ' 21)
T 2 2 (15 hus th f f th b
=—— ; Thus the covariant form of the metric can be written in
v ¥y
V= Oy the form
wherel is the effective action 9uv=2an,,+tbT,,, (22
Fif d*x\— L, (16)  inwhichaandb are given in terms of the Lagrangian and its
corresponding derivatives by
andvy,, is the Minkowski metric written in an arbitrary co- L2 1
ordinate systemy is the corresponding determinant. In the a= —b(L—F+L+ ET , (23
FF

case of one-parameter Lagrangiabs; L(F), we obtain
T = —4LeF,F o= L7y, (17 and

where we have chosen an Euclidean coordinate system in Ler  co, ~2y 2 27-1
. : b=16 Fe+G)Lg—16(L+FL , (24
which y,,, reduces top,,,. In terms of this tensor the effec- Le A JLee—16Le FE)] (29
tive geometry(14) can be rewritten ds

whereT=T¢ is the trace of the energy-momentum tensor.

LL L
FF) P+ — TR, (18)
F Le

g“’=|Lgt

B. Two parameter Lagrangians

In this section we will go one step further and deal with
e general case in which the effective action depends upon

We remark that, once the modified geometry along which th(?n
photon propagates depends upon the energy-momentum t

sor distribution of the background electromagnetic field, it is oth invariants, that is

tempting to search for an analogy with the corresponding L=L(F,G). (25)
behavior of photons in a gravitational fild\ve will return
to this question in Sec. llI. The equations of motion are

Therefore, the field discontinuities propagate along null
geodesicsin an effective geometry which depends on the %
field energy distribution. Let us point out that, as it is explic- 9,(LEF#+LgF#") =0. (26)
itly shown from the above equation, the stress-energy distri-
bution of the field is the true responsible for the deviation ofOur aim is to examine the propagation of the discontinuities
the geometry, as felt by photons, from its Minkowskianin such case. Following the same procedure as presented in

form.® the previous section one gets
In order to show(see Appendix Athat the photon path is
actually a geodesic curve, it is necessary to know the inverse *
g*" of the effective metriag,, , defined by [Lef*7+2AF*"+2BF#*"k,=0, (27)

*
and contracting this expression witfk, and withF* Kk,

3For simplicity, we will denote the effective metric g&" instead . ;
respectively, yields

of g&% from now on.
4Let us emphasize that it is no more than a simple analogy.
5The proof that such curve is in fact a geodesic line is given in [gLF+ EBG
Appendix A.
6ForTW=O, the conformal modification in E¢18) clearly leaves
the photon paths unchanged. and

77K K, — 2AF" F Kk k,=0  (28)
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77K K, — 2BF” ,F#k k,=0.

1
[gLF—BH 5AG

(29)
In these expressions we have set
A=2(ELret{Lrg),
B=2({Lrct{Llce),
and ¢ is defined by
*
{=FBf . (30

In order to simplify our equations it is worth defining the

quantity Q=¢/¢. From Eqgs.(28) and(29) it follows
020,+00,+Q,3=0, (31
with the quantitied},;, i=1,2,3 given by
Q1= Lelpg+2FLpgloet G(LEg—LEg), (32
Qp=(Lg+2GLre)(Lge—Lrr) +2F(LreLlce
+LEo), (33

Qs=Leleet2FLeelpgt+ G(LEg—LEe).
(34)

PHYSICAL REVIEW D61 045001

faB:a(pakﬁ_ pﬁka)! (38)

wherea in the strength of the wavelet am, represents the
polarization vector, which is orthogonal tg, and normal-
ized to unity:

p“k,=0, (39

papa: -1 (40)

For a given wave vectdk, there will be two linearly inde-
pendent polarization vectons,, which satisfy the above
conditions. Introducingf .z in the field equationg27) we
obtain the expression that describes the states of polarization,
that is,

4 * * *
k?p#= — —[LeeF “F P+ LR F P+ Leg(FAF P
F

*
+FHeFEYB) Tk kgp,, . (41

This equation must be solved using each solution of the
wave vector coming from Eq36) when the effective met-
rics g4” are used.

From the general expression of the energy-momentum
tensor for an electromagnetic thedry=L(F,G) we have

Tu=—4LeF,“F o, —(L=GLg) 7y, (42

The quantityQ) has two solutions and is given by the alge- The scale anomaly is given by the trace

braic expression

—0,+=\A

= 35)

where

A=(0,)2-40,Q5.

Thus, in the general case we are concerned with here, the

photon paths are kinematically described by
g4’k,k,=0, (36
where the effective metricg’” are given by

04" =Len* =4[ (Lee+ Qo Leg) F{FM+ (Leg

*
+Q. Lo FRFMI. (37

When the Lagrangian does not depend on the inva&nt

expression(37) reduces to the fornil4).

T=4(—-L+FLg+GLg). (43

We can then rewrite the effective geometry in a more appeal-
ing form in terms of the energy momentum tensor, that is,

gH'= M+ NLTH, (44)
where the functions\i.. and \V.. are given by

Mo=Le+G(Legt+Q4Lge)

1
+L_F(LFF+QiLFG)(L_GLG)y (45
1
N::L_F(LFF+QtLFG)- (46)

As a consequence of this, the Minkowskian norm of the
propagation vectok,, reads

*

M.

7K K= — TR K, 47)

As we see, from Eq(35), there will be two possible so-
lutions for the paths of light, which are related to its different
modes of polarization, indicating that birefringence phenom-
ena could be described here, in a general way, depending on It seems worth noting that E€37) contains a remarkable

C. Exceptional Lagrangians

the particular theory we shall consider.

The tensor of discontinuities, given by E€), can be

decomposed as

result: the velocities of the photon are, in general, doubled.
There are some exceptional cases, however, for which the
unigueness of the path is guaranteed by the equations of

045001-4



GEOMETRICAL ASPECTS OF LIGHT PROPAGATION IN . .. PHYSICAL REVIEW b1 045001

motion [13,14]. Such uniqueness occurs for those dynamicsThe corresponding effective geometiyd) is given by
described by Lagrangialn that satisfy the condition
g"=—g"=Lg—4LgeE? (52
A=0.
while the remaining nonzero components have values pro-
The most known example of such uniqueness for the phoportional to those of Minkowski geometry,
ton velocity in a nonlinear theory is the Born-Infeld electro-
dynamics. Let us pause for a while in order to make the

following remark. In the case of the Born-Infeld theory all g%'=- FLF, (53
quantitiesQ;, i=1,2,3 vanish identically. Hence, in this

situation we cannot obtain the effective geometry from Eq. 1

(37). In this very exceptional case we proceed as follows. Let gee=— i - (54)
us return to the original equatig@8). Now, the Lagrangian resincd

for the Born-Infeld model is provided by the expression ) o ) )
From Eq.(52) it follows that it is possible to envisage the

1 1 existence of a regio® defined by some finite radius=r
L= \/b4+ EbZF— EGZ—bZ. (48)  such thatg" (r.) vanishes. The metric componegt also
vanishes atD. Then, coordinates andt interchange their
roles when crossingD, that is g"(r>r.)>0, g"(r>r,)
<0, andg'(r<ry)<0,g"(r<r.)>0. Let us note, however,
that the existence of suah, implies that there is a further
undesirable consequence concerning the value of the electric

Substituting this form ot into Eq.(28) we obtain the unique
characteristic equation

1 - .
Al b%+ EF *r+ FH FNY k,k,=0. (49  field. Indeed, Eq(51) yields
" ar Q
thus yielding(for A#0 —_—_ T g
yielding( ) = (55)
1
gh’=|b%+ EF '+ FEFMY (500 Thus it follows from this that, aD, there is a possibility of

the existence of a field barrier, that is a limitation of the
domain of its existence due to the possibility of the inverse
function r=r(E) to have an extremum. In order to avoid
such limitation of the domain of definition for the electric
field, the theory must be such that the second derivative van-

which does not show birefringence. This formula was ob
tained for the first time by Plebanskg].

Ill. SOME REMARKABLE CONSEQUENCES ishes afr, that is
A. Electromagnetic traps Pt
The possibility of writing the characteristic equation for agE =0.
nonlinear electrodynamics in terms of an effective modifica- D

tion of the spacetime metric has some unexpected and wide- ) N
ranging consequences. One of these concerns to the exi3esides, one must impose the supplementary condition
tence of trapped photons in a compact domain. Such a

configuration is made possible due to the nonlinearity of E 40

electrodynamics, and has a striking resemblance to gravita- JE? __

tional black holes, although not presenting all properties of

the latter. Thus, if the theoryL=L(F) allows this kind of solution,

We will concentrate here on a toy model, just to exhibitthen three typical properties of a trapped region appear.
the possibility of new phenomena induced by the nonlineari- There exists a null surfac®, defined byr=r, in the
ties. The well known solutiom*"k k, =0, that also appears effective geometry.
in this case, will not be considered. Let us start with a static Coordinated andr interchange their role when crossing
and spherically symmetric field for the cake=L(F). The .
source is an electric monopole located at the origin of the

spherical coordinate system,i(,6,¢). We set for the non- Light cones inside the region bounded Byare directed
zero components of the electromagnetic field the form towards the origin of the-coordinate which plays the role,
in this domain and only for photon propagation, of a timelike
Fu=E(r). coordinate.
) ) _ o These theories should be further examined, since from
The equation of motion are easily solved, yielding what we have seen above, they may be the germ of the
existence of the electromagnetic version of the gravitational
L.E= 92 (51) black hole. Let us now turn our examination to a very similar

re’ situation inside material media.
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B. Wave propagation in nonlinear dielectric media

PHYSICAL REVIEW D61 045001

(67)

LFHE,

It is possible to describe the wave propagation, governed = =~ =
by Maxwell electrodynamics, inside a dielectric, in terms of Which implies
a modification of the underlying spacetime geometry using ,

the framework developed above. The electromagnetic field is
represented by two antisymmetric tensors, the electromag-
netic fieldF,, and the polarizatio®,, . These tensors are .
decomposed, in the standard way, into their correspondin

electric and magnetic parts as seen by an observer whi
moves with velocityv,, . We can write

(56)

(57)

FW= EMV,,— EVVM-F nP“M,,vaU,

P.,=D,v,—D,v,+7"7,Vv,B,.

€

4E’ (68)

Ler——

which €’ =de/dE. Therefore, the simple class of effective
grangiang7) may be used as a convenient description of
Maxwell theory inside isotropic nonlinear dielectric media;
conversely, results obtained in the latter context can as well
be similarly restated in the former one.

In a nonlinear dielectric medium the polarization induced
by an external electric field is described by expressing the
scalar functione as a power series in terms of the field

Following Hadamard, we consider the discontinuities onstrengthE:

the fields as given by
[V)\E,U,]E:kxepﬂ
[V)\DM]E:k)\d;u

[V)\HM]EZ k)\h,u ’

For the simplest linear case, in which we have
D,=¢€E,, (59)
H,
B,=—, (60)
)7
it follows that
d,=ee,, (61)
.
b,=— (62
)7
After a straightforward calculation one obtains
K. K[ y*"+(ep—1)v*v"]=0. (63

€=x1+ x2E+ x3E*+ x4E3+- -+, (69
where the constantg, are known as th@&-order nonlinear
optical susceptibility. Note that we are using the standard
convention[3] which relatesy, with the expansion of the
polarization vector. For this case the effective geometry is
given by

!

€
gh’=enti+ S FHF (70)
It can also be rewritten in the form
6!

g””=677”“”—E(E”E”—E28{‘5t"), (71

whereE?=—E_E*>0. In other words,
g'=e+¢€'E, (72

. €

gl=—edl- EE'El. (73

This shows that the discontinuities of the electromagnetic
field inside a nonlinear dielectric medium propagates along

Let us generalize this situation for the nonlinear case. MaxPull cones of an effective geometry which depends on the

well equations are given by

J'F ,,=0, (64)

J"P,,=0. (65)

For electrostatic fields inside isotropic dielectrics it follows

that P*” andF#" are related by

P,,=e(E)F (66)

uvo

wheree is the electric susceptibility. In the general case, for

e=¢e(E) we simplify our calculation if we note that we can

characteristics of the medium given by EFO). It seems
worth investigating under what conditions of tliedepen-
dence onE a kind of horizon barrier should appear for the
photon inside a dielectric. We will return to this problem
elsewhere.

C. Photon path

From what we have learned above it follows that the
equation of motion of the photon in a nonlinear regime is
given by the variational principle

5[ ds=0.

(74)

relate the equation of wave propagation to the previous

analysis on vacuum polarizatidid) by means of the identi-
fication

in which the fundamental length is constructed with the ef-
fective metric, ds’=g wadx“dx”. For the particular case
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which was examined in the previous section concerning thén a general framework. In other words, let us analyze the
static and spherically symmetric configuration it becomes photon velocity in an arbitrary case, without specifying a
particular theory. From what we have learned above one

5f (gn't2+g,,'r2+gggl92+g ©?)ds=0 (75) coulc'i'expect that the regime of nonlinearity induced by th_e

ee ' modification of the electrodynamic vacuum to be the suffi-

cient condition to modify the photon velocity. However, this

in which a dot means derivative with respect to the fundaig not true in general, as it can be seen below.

mental length variable. The equation for the angular vari-

able # shows that we can choose conveniently the initial
condition such that? remains constant. From an analogy
with the planetary motion we sét=7/2. The corresponding An important example of modification of the action oc-

A. Conformal vacuum

equations of the remaining variables are curs for the case in which the quantity.. vanishes. In this
5. case the net effect of this action on the photon velocity is
r<e=ho, (76) indistinct from the one produced by the classical vacuum.
) Could this occur for the case in which#07? This is an-
gut=Eo, (77 swered by the following lemma.

) ) Lemma A There exist nonlinear modifications of electro-
whereh, andE, are constants of motion. It is rather conve- gynamics which present a nonidentically null anomaly such
nient to obtain the equation ferby making use of the fact that the field discontinuities propagate along Minkowskian
that we are dealing with a null curve, and set paths. The proof is immediate. From E@4), the general
condition for such statement to hold is expressed by

ut?+9n 2+ g,,$?=0. (78)
LFF+QiLFG:0' (82)
Thus, using the above equations for the evolutiot, efand
¢ we obtain Any nonlinear action which satisfies this condition is such
P that the photon propagation occurs in an effective geometry
Fe=E;—V(r), (79 g~, which is conformal to the Minkowskian one. In this

theory, the photon presents the same light-cone structure as it

in which the potentiaV/(r) takes the form does in the linear Maxwell electrodynamics. The important

2 2 point to consider here is that this situation occurs even in the
V(r)= 2° + °2 +E2, (80)  presence of a nonvanishing scale anomgly.
O Gul InsertingQ . = —Lge/Lgg from Eq.(82) into Eq.(31) we

obtain, after some algebra, the condition
Circular orbits

2 12 V1=
The above set of equations allows the possibility of the ~ (LFFLec Leg)[Lrlre+G(Lrrlec—LEG)]=0.

existence of circular orbits=r,=const for the photon. In (83
this case, it is sufficient for the value of tktecomponent for ¢ remains to show that the spectrum of common solutions of

the effective metric at the poimt, to take the value Egs.(82) and(83) does not implyT=0. This can be explic-
1 ity shown for the particular class of nonlinear Lagrangians
9u(ro)= 2%, (81)  given by
- : . . 1
in which we have, for comparison with the planetary motion, L=- 1 F+f(G), (84)

defined the impact parameteth,/E,. It is a rather simple
and straightforward matter to show that such orbits are ung,. \vnich Lep=

0 andLgs=0. Th I I§A3) f
stable, as one should suspect. and ro e scale anomali3) for

the class shown in Eq84) takes the form

IV. NONTRIVIAL VACUA

o]
T=4{G =1, (89

There have been some comments in the literature regard-
ing a possible connection between the change of light veloc- , . : . . . .
ity in modified vacua and the scale anomaly. The first one tg/hich vanishes only iff (G) is a linear f“”gt'on 2fG' Ex-
speculate upon such a correlation was Shateand Dittrich prgssmr(SS) y|eI'dsQ+ =0 andQ)_=1/(4G5"f/3G"), f.rom
and Gies[1] disproved, using the sum over polarization which Eq.(45) g.lvesM_t=. —1/A andM.. =0, respectlve!y.
states method, the existence of such correlation for the cagd'® @PParent singularity in E¢44) for M. =0 can be cir-
of a general Lagrangiah(F,G). cumven;ed by carefglly returning to the original expression

Using the method of the effective geometry we are able t<§27)’ which reduces in this case to
show that there is no deep correlation between the existence
of the velocity shifts induced by the nonlinear quantum fluc- fFur _2X’|‘:,wk (86)
tuation and the scale anomaly. We will consider this problem v v

G
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It follows that 7"k k,=0, thus adequately describing both 2 [ & 3 1
solutions associated with E¢4). =35 mc) mec? (94)
B. Nonanomalous vacuum where« is the fine-structure constant.

There is no better way to demonstrate the independence The trace of the corresponding modified energy-
of the concepts of light velocity modification and the momentum tensor reads
anomaly than to consider the converse situatioheshma A
for which there is no anomaly at all. This is provided by the T=u
following.

Lemma B In the absence of scale anomaly the effectiver,, coefficientsM.. and\.
metric is not necessarily conformally flat. < o
Indeed, let us set

7
F2+ ZG2 . (95)

of the associated metric tensor
at the first order of approximation in constant are

1
T=0. (87 M_=->+L2F (96
4 2
From Eq.(43) it follows
_ 1 5u
L=FLr+GLg, (89 My==2+=F, 97
which leads to Ni=-2pu. (99)
FLrr+GLge=0, (89 We note that only in the case where both invaridhtnd G
vanish does the trace anomaly disappear. In this case the
and above coefficients becom¢t_=—3, M,=—1 and N,
_ =—2u.
GlgetFLrc=0. (90 The effective geometries yield
In order for the effective metric to be conformally flat the 1
Lagrangian should obey, besides the above relations, the g’”z(—ZJr,uF) = 2uTHY, (99
condition (82). Then, it is straightforward to show that
Lagrangians satisfying all these requirements must satisfy 1
the condition gh'= ( —3 + MF) = 2uTH?, (100
LFF:O' (91)

This implies that there exist two paths of light, one for each

Hence, when there is no anomaly, the unique case in whicRolarization mode. In other words, birrefringence effects are
the effective geometry coincides with the Minkowski one ispresent in Euler-Heisenberg electromagnetism, as it is well
the linear Maxwell theory. This property allows us to con- known in literature. From Eq47) we can write the associ-
clude that in the framework of the effective actitvere is no  ated expressions for the wave vector propagation:
need for a scale anomaly to induce light velocity shifts 5 "

It remains to be shown that the spectrum of solutions of kZ=-8uT*"k.k,, (10D
Eq. (87) does not necessarily reduce to the linear case. It is 5 )
interesting to point out that not only one but a particular set ki =—14uT*"k kK, . (102

of nonlinear Lagrangians can be obtained. Indeed, it is im:l_ King th larizati d btain th
mediately shown that aking the average over polarization modes we obtain the

well known formula
L=Gf(F/G) (92 _ Y
k?=—11uT "k K, . (103
satisfies Eq(88) for arbitrary functionsf(F/G).
V. CONCLUSION

C. Euler-Heisenberg vacuum From what we have learned in this paper we can state that

The effective action for electrodynamics due to one-loopthe propagation of discontinuities of electromagnetic field in
guantum corrections was calculated by Heisenberg and Eulernonlinear regiméas it occurs, for instance, in dielectrics or
[15]. For the low-frequency limiv<m.c?/h the effective in modified QED vacupcan be described in terms of an
Lagrangian takes the form effective modification of the Minkowskian geometry of

spacetime. Such interpretation is an immediate consequence

L—_ EF+ M = ZGZ) 93 of the analysis we presented here. We would like to point out

4 4 4 ' that it is not impossible to envisage the case in which the

characteristic surfaces along which photons propagate, in
with nonlinear electrodynamics, could appear as spacelike hyper-
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surfaces in Minkowski spacetime. We will return to this As the propagation vectdr, =2, , is an exact gradient one

question in a forthcoming paper. can write k,.,=k,.,. With this identity and defining
This description also allows us to recognize a strikingk#=g*"k, Eq. (A4) reads

analogy between photon propagation in nonlinear electrody-

namics and its behavior in an external gravitational field. For Knk*=0, (A5)

in both cases the geometry is modified by a nonlinear pro- , . h states that i desi tor. B bering it
cess. It is clear that such an analogy cannot be pushed veYy"C states p IS @ geodesic vector. By remembering |

far, since in the gravitational case the modified geometry is M?ISO. a null vectokwith respect to the effective geometry
observed by any kind of matter and enefgycluding gravi- g”"), it follows that its integral curves are therefore null
tational energy—at least in the general relativity thépand ~ 980desics.

in the electromagnetic case this modified geometry is ob-

served only by the nonlinear photons. Moreover, we would APPENDIX B: GENERALIZATION OF THE RAINICH-

like to stress that we proved the existence of Minkowski WHEELER ALREADY UNIFIED PROGRAM

geodesics at nonvanishing scale anomaly and vice versa.  \ye show a remarkable property of the class of nonlinear
This analogy certainly deserves further examination, sinCeneqries which are free of anomaly. From the definition of

it may provide for the existence of an electromagnetic anat i, the case of two parameter Lagrangians we have
logue of the gravitational black hole, as was shown. mr

Tu=—4LeF,“F o, —(L=GLg) 7y, (B1)
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APPENDIX A: THE EFFECTIVE NULL GEODESICS

The geometrical relevance of the effective geoméid) Tpo T =mé, + %TT;, (B2)
goes beyond its immediate definition. Indeed, as follows it
will be shown that thg integfal curves of th.e veckor(i.e., in which m is given by
the photons trajectori¢sare in fact geodesics. In order to
achieve this result an underlying Riemannian structure for T2
the manifold associated with the effective geometry will be m=L2(F2+G?)— 16’ (B3)

required. In other words this implies a set of Levi-Civita

cormection co_efficie_ntEijz_ Iy, by means of wh?ch there and the tracd = T takes the value

exists a covariant differential operat®, (the covariant de-

rivative) such that T=4(FLg+GLg—L). (B4)

Vaghr=gt",\=g"" \ +T# 07"+ T7,97#=0. (Al)  From expressioriB2) follows the interesting result that the

. ) ) squareproperty remains valid for the class of theories which
From Eq.(Al) it follows that the effective connection coef- do not present scale anomaly.

ficients are completely determined from the effective geom- \y/o can thus state the Rainich-Wheeler conditions
etry by the usual Christoffel formula.
Contracting Eq(A1) with k Kk, results in RM,,RV“=% RanMst' (B5a)

kp,kvgl“},)\: _2kMkVFM0')\gUV' (AZ) R= 0, (BSb)

Differentiating Eq.(36) we have whereR=RY is the curvature Ricci scalar, and the assump-

2k, \k,9""+k,k,g*" ,=0. (A3) tion that

Inserting Eq.(A2) for the last term on the left hand side of (Ruapn ™R (RGR™M 71 (B50)

Eqg. (A3) we obtain ) ) i )
is a gradient. It is straightforward to show that property

9“7k k,=09""(k, \—T'7 1K)k, =0. (A4)  (B50) holds also for the nonlinear casR,,, is the curvature
Ricci tensor, which satisfies Einstein equations

For the recent proposal of NDL theory of gravitys] this would
not be the case. 8See for instancgl7,10.
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Ry>0. (B7)

1
RMV_ERg,U«V:_KT (B6)

uvs

where « is Einstein’s gravitational constant. Relations

(B5a—(B50c) hold for a general nonlinear electromagnetic Thus we conclude that Rainich-Wheeler conditions for the
theory which does not present scale anomaly. If, in addition@lready unified program characterize both linear and nonlin-
the theory is such thatz <0 (that is, if the energy density is ear electromagnetic fields as the source of the given gravita-

positive definitg, then tional field.
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