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Geometrical aspects of light propagation in nonlinear electrodynamics
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We analyze the propagation of light in the context of nonlinear electrodynamics, as it occurs in modified
QED vacua. We show that the corresponding characteristic equation can be described in terms of a modifica-
tion of the effective geometry of the underlying spacetime structure. We present the general form for this
effective geometry and exhibit some new consequences that result from such an approach.

PACS number~s!: 12.20.Ds, 11.10.Wx, 41.20.Jb
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I. INTRODUCTION

A. Introductory remarks

Modifications of light propagation in different vacu
states have recently been a subject of interest. Such inv
gation shows that, under distinct nontrivial vacua~related to
several circumstances such as temperature effects, parti
boundary conditions, quantum polarization, etc.!, the motion
of light can be viewed as electromagnetic waves propaga
through a classical dispersive medium. The medium indu
modifications on the equations of motion, which are d
scribed in terms of nonlinearities of the field. In order
apply such amedium interpretationwe consider modifica-
tions of electrodynamics due to virtual pair creation. In th
case the effects can be simulated by an effective Lagran
which depends only on the two gauge invariantsF andG of
the electromagnetic field@1,2#.

One of the main achievements of such investigation is
understanding that, in such nonlinear framework,photons
propagate along geodesics that are no more null in the ac
Minkowski spacetime but in another effective geometry. A
though the basic understanding of this fact—at least for
specific case of Born-Infeld electrodynamics—has be
known for a long time@3#, it has been scarcely noticed in th
literature. Moreover, its consequences were not explo
any further. In particular, we emphasize the general appl
tion and the corresponding consequences of the metho
the effective geometry outlined here.

The exam of the photon propagation beyond Maxw
electrodynamics has a rather diversified history: it has b
investigated in curved spacetime, as a consequence of
minimal coupling of electrodynamics with gravity@4,5# and
in nontrivial QED vacua, as an effective modification i
duced by quantum fluctuations@6,1,2#. As a consequence o
this examination some unexpected results appear. Ju
point one out, we mention the possibility offaster-than-light
photons.1

*Electronic address: novello@lafex.cbpf.br
†Electronic address: lorenci@cpd.efei.br
1The meaning of such expression is that the wave discontinu

propagate along spacelike characteristic surfaces in the Minko
background.
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The general approach of all these theories is based o
gauge invariant effective action, which takes into acco
modifications of Maxwell electrodynamics induced by d
ferent sorts of processes. Such a procedure is intende
deal with the quantum vacuum as if it were a classical m
dium. Another important consequence of such a point
view is the possibility to interpret all such vacu
modifications—with respect to the photon propagation—
an effective change of the spacetime metric properties. T
result allows one to appeal to an analogy with the elec
magnetic wave propagation in curved spacetime due
gravitational phenomena.

B. Synopsis

In this paper we deal with light propagation in nonline
electrodynamics. The origin of such nonlinearity is n
unique. It can be a consequence of modified QED va
@7–9# or deal to nonlinear response of a dielectric mediu
There are different ways to evaluate the characteristic
faces of the wave propagation. However, there seems to
no better and elegant manner than the one proposed by
amard. We briefly review its main lines in Sec. II. First, w
deal only with one-parameter Lagrangians, which means
those theories depend only upon the gauge invariantF. In the
subsequent section we generalize for the full depende
upon the two algebraic invariants of electrodynamics. W
show an elegant property of such nonlinear theories:
electromagnetic wave propagation can be described as i
metric structure of the background were changed from
Minkowskian value into another effective metric, which d
pends on the dynamics of the background electromagn
field. Thus this equivalence property mimics the correspo
ing properties of the photon propagation in gravitation
fields. Indeed, as we will show in Sec. III, photons describ
by nonlinear electrodynamics propagate as null geodesic
an effective metric that is distinct from the Minkowskia
one. We show a remarkable consequence of such interp
tion: the possibility of generating a compact domain
which photons are trapped by the nonlinear electromagn
field. This suggests the possibility that an analogy with
gravitational black hole—which we should name elect
magnetic black hole—could exist. In addition, we show th
one can find a similar phenomenon inside a dielectric m
dium that responds nonlinearly to an external stimulus.
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Sec. IV we analyze the light velocity dependence on
scale anomaly of the field. We show that there is not a d
interconnection between such scale anomaly and the
nomenon of birefringence. Finally, we end with some co
ments concerning the new effects that are to be expected
such nonlinear photons. Typical Riemannian calculations
presented in Appendix A, in which it is shown that the sta
dard geodesic assumption for photons also holds for the n
linear case. Connections with Rainich-Wheeler formali
@10# are also provided in Appendix B.

C. Definitions and notations

We call the electromagnetic tensorFmn , while its dual

F
*

mn is

F
*

ab8
1

2
habmnFmn , ~1!

where habmn is the completely antisymmetric Levi-Civit
tensor; the Minkowski metric tensor is represented by
standard formhmn. The two invariants constructed wit
these tensors are defined as

F8FmnFmn , ~2!

G8FmnF
*

mn . ~3!

Once the modifications of the vacuum which will be de
with here do not break the gauge invariance of the theo
the general form of the modified Lagrangian for electrod
namics may be written as a functional of the above inva
ants, that is,

L5L~F,G!.

We denote byLF andLG the derivatives of the LagrangianL
with respect to the invariantF andG, respectively; and simi-
larly for the higher order derivatives. We are particula
interested in the derivation of the characteristic surfa
which guide the propagation of the field discontinuities.

Let S be a surface of discontinuity for the electromagne
field. Following Hadamard@11# we assume that the field it
self is continuous when crossingS, while its first derivative
presents a finite discontinuity. We accordingly set

@Fmn#S50, ~4!

and

@]lFmn#S5 f mnkl , ~5!

in which the symbol

@J#S[ lim
d→01

~JuS1d2JuS2d!
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represents the discontinuity of the arbitrary functionJ
through the surfaceS characterized by the equationS(xm)
5const. The tensorf mn is called the discontinuity of the
field, and

kl5]lS ~6!

is the propagation vector.

II. THE METHOD OF THE EFFECTIVE GEOMETRY

A. One-parameter Lagrangians

Our generic purpose in this paper is to investigate
effects of nonlinearities in the equation of evolution of ele
tromagnetic waves. We will restrict the analysis in this se
tion to the simple class of gauge invariant Lagrangians
fined by

L5L~F !. ~7!

From the least action principle we obtain the field equati

]m~LFFmn!50. ~8!

Applying conditions~4! and ~5! for the discontinuity of the
field equation~8! throughS we obtain

LF f mnkn12LFFjFmnkn50, ~9!

wherej is defined by

j8Fab f ab . ~10!

The consequence of such discontinuity in the cyclic iden
is

f mnkl1 f nlkm1 f lmkn50. ~11!

In order to obtain a scalar relation we contract this equat
with kahalFmn, resulting

jknkmhmn12Fmn f n
lklkm50. ~12!

Let us consider the case in whichj does not vanish.2 From
Eqs.~9! and~12! we obtain the propagation equation for th
field discontinuities as given by

~LFhmn24LFFFmaFa
n!kmkn50. ~13!

Expression~13! suggests that one can interpret the se
interaction of the background fieldFmn, in what concerns the
propagation of electromagnetic discontinuities~5!, as if it

2For the case in whichj50, the quantityf mn is a singular two-
form. Following Lichnerowicz@12#, it can be decomposed in term
of the propagating vectorkm and a spacelike vectoram5aem or-
thogonal tokm , in which em is the normalized polarization vector
Hence, we can writef mn5kman2knam on S. From Eq.~9! it fol-
lows that f mnkn50, and contracting Eq.~11! with hlpkr yields
f mnhabkakb50. Therefore, such modes propagate along stand
null geodesics in Minkowski spacetime.
1-2
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GEOMETRICAL ASPECTS OF LIGHT PROPAGATION IN . . . PHYSICAL REVIEW D61 045001
had induced a modification on the spacetime metrichmn ,
leading to the effective geometry

geff
mn5LFhmn24LFFFm

aFan. ~14!

A simple inspection of this equation shows that only in t
particular case of linear Maxwell electrodynamics the d
continuity of the electromagnetic field propagates along n
paths in the Minkowski background.

The general expression of the effective geometry can
equivalently written in terms of the vacuum expectati
value ~VEV! of the energy-momentum tensor, given by

Tmn[
2

A2g

dG

dgmn , ~15!

whereG is the effective action

G8E d4xA2gL, ~16!

andgmn is the Minkowski metric written in an arbitrary co
ordinate system;g is the corresponding determinant. In th
case of one-parameter Lagrangians,L5L(F), we obtain

Tmn524LFFm
aFan2Lhmn , ~17!

where we have chosen an Euclidean coordinate system
which gmn reduces tohmn . In terms of this tensor the effec
tive geometry~14! can be rewritten as3

gmn5S LF1
LLFF

LF
Dhmn1

LFF

LF
Tmn. ~18!

We remark that, once the modified geometry along which
photon propagates depends upon the energy-momentum
sor distribution of the background electromagnetic field, i
tempting to search for an analogy with the correspond
behavior of photons in a gravitational field.4 We will return
to this question in Sec. III.

Therefore, the field discontinuities propagate along n
geodesics5 in an effective geometry which depends on t
field energy distribution. Let us point out that, as it is expl
itly shown from the above equation, the stress-energy dis
bution of the field is the true responsible for the deviation
the geometry, as felt by photons, from its Minkowski
form.6

In order to show~see Appendix A! that the photon path is
actually a geodesic curve, it is necessary to know the inve
gmn of the effective metricgnl , defined by

3For simplicity, we will denote the effective metric asgmn instead
of geff

mn from now on.
4Let us emphasize that it is no more than a simple analogy.
5The proof that such curve is in fact a geodesic line is given

Appendix A.
6For Tmn50, the conformal modification in Eq.~18! clearly leaves

the photon paths unchanged.
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gmngnl5dl
m . ~19!

This calculation is simplified if we take into account the we
known properties:

F
*

mnFnl52
1

4
Gdm

l , ~20!

and

F
*

mlF
*

ln2FmlFln5
1

2
Fdm

n . ~21!

Thus the covariant form of the metric can be written
the form

gmn5ahmn1bTmn , ~22!

in which a andb are given in terms of the Lagrangian and
corresponding derivatives by

a52bS LF
2

LFF
1L1

1

2
TD , ~23!

and

b516
LFF

LF
@~F21G2!LFF

2 216~LF1FLFF!2#21, ~24!

whereT5Ta
a is the trace of the energy-momentum tenso

B. Two parameter Lagrangians

In this section we will go one step further and deal w
the general case in which the effective action depends u
both invariants, that is

L5L~F,G!. ~25!

The equations of motion are

]n~LFFmn1LGF
* mn!50. ~26!

Our aim is to examine the propagation of the discontinuit
in such case. Following the same procedure as presente
the previous section one gets

@LF f mn12AFmn12BF
* mn#kn50, ~27!

and contracting this expression withFm
aka and withF

* a
mka ,

respectively, yields

FjLF1
1

2
BGGhmnkmkn22AFn

aFamknkm50 ~28!

and

n

1-3
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FzLF2BF1
1

2
AGGhmnkmkn22BFn

aFamknkm50.

~29!

In these expressions we have set

A82~jLFF1zLFG!,

B82~jLFG1zLGG!,

andz is defined by

z8F
* ab f ab . ~30!

In order to simplify our equations it is worth defining th
quantityV8z/j. From Eqs.~28! and ~29! it follows

V2V11VV21V350, ~31!

with the quantitiesV i , i 51,2,3 given by

V152LFLFG12FLFGLGG1G~LGG
2 2LFG

2 !, ~32!

V25~LF12GLFG!~LGG2LFF!12F~LFFLGG

1LFG
2 !, ~33!

V35LFLFG12FLFFLFG1G~LFG
2 2LFF

2 !.
~34!

The quantityV has two solutions and is given by the alg
braic expression

V65
2V26AD

2V1
, ~35!

where

D8~V2!224V1V3 .

Thus, in the general case we are concerned with here,
photon paths are kinematically described by

g6
mnkmkn50, ~36!

where the effective metricsg6
mn are given by

g6
mn5LFhmn24@~LFF1V6LFG!Fl

mFlm1~LFG

1V6LGG!Fl
mF
*

ln#. ~37!

When the Lagrangian does not depend on the invarianG,
expression~37! reduces to the form~14!.

As we see, from Eq.~35!, there will be two possible so
lutions for the paths of light, which are related to its differe
modes of polarization, indicating that birefringence pheno
ena could be described here, in a general way, dependin
the particular theory we shall consider.

The tensor of discontinuities, given by Eq.~5!, can be
decomposed as
04500
he

t
-
on

f ab5a~pakb2pbka!, ~38!

wherea in the strength of the wavelet andpa represents the
polarization vector, which is orthogonal tokm and normal-
ized to unity:

paka50, ~39!

papa521. ~40!

For a given wave vectorkm there will be two linearly inde-
pendent polarization vectorspm , which satisfy the above
conditions. Introducingf ab in the field equations~27! we
obtain the expression that describes the states of polariza
that is,

k2pm52
4

LF
@LFFFmaFnb1LGGF

* maF
* nb1LFG~FmaF

* nb

1F
* maFnb!#kakbpn . ~41!

This equation must be solved using each solution of
wave vector coming from Eq.~36! when the effective met-
rics g6

mn are used.
From the general expression of the energy-momen

tensor for an electromagnetic theoryL5L(F,G) we have

Tmn524LFFm
aFan2~L2GLG!hmn . ~42!

The scale anomaly is given by the trace

T54~2L1FLF1GLG!. ~43!

We can then rewrite the effective geometry in a more app
ing form in terms of the energy momentum tensor, that i

gmn5M6hmn1N6Tmn, ~44!

where the functionsM6 andN6 are given by

M65LF1G~LFG1V6LGG!

1
1

LF
~LFF1V6LFG!~L2GLG!, ~45!

N65
1

LF
~LFF1V6LFG!. ~46!

As a consequence of this, the Minkowskian norm of t
propagation vectorkm reads

hmnkmkn52
N6

M6
Tmnkmkn . ~47!

C. Exceptional Lagrangians

It seems worth noting that Eq.~37! contains a remarkable
result: the velocities of the photon are, in general, doubl
There are some exceptional cases, however, for which
uniqueness of the path is guaranteed by the equation
1-4
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GEOMETRICAL ASPECTS OF LIGHT PROPAGATION IN . . . PHYSICAL REVIEW D61 045001
motion @13,14#. Such uniqueness occurs for those dynam
described by LagrangianL that satisfy the condition

D50.

The most known example of such uniqueness for the p
ton velocity in a nonlinear theory is the Born-Infeld electr
dynamics. Let us pause for a while in order to make
following remark. In the case of the Born-Infeld theory a
quantitiesV i , i 51,2,3 vanish identically. Hence, in thi
situation we cannot obtain the effective geometry from E
~37!. In this very exceptional case we proceed as follows.
us return to the original equation~28!. Now, the Lagrangian
for the Born-Infeld model is provided by the expression

L5Ab41
1

2
b2F2

1

16
G22b2. ~48!

Substituting this form ofL into Eq.~28! we obtain the unique
characteristic equation

AF S b21
1

2
F Dhmn1Fm

lFlnGkmkn50. ~49!

thus yielding~for AÞ0)

gmn5S b21
1

2
F Dhmn1Fm

lFln, ~50!

which does not show birefringence. This formula was o
tained for the first time by Plebansky@3#.

III. SOME REMARKABLE CONSEQUENCES

A. Electromagnetic traps

The possibility of writing the characteristic equation f
nonlinear electrodynamics in terms of an effective modifi
tion of the spacetime metric has some unexpected and w
ranging consequences. One of these concerns to the
tence of trapped photons in a compact domain. Suc
configuration is made possible due to the nonlinearity
electrodynamics, and has a striking resemblance to gra
tional black holes, although not presenting all properties
the latter.

We will concentrate here on a toy model, just to exhi
the possibility of new phenomena induced by the nonline
ties. The well known solutionhmnkmkn50, that also appear
in this case, will not be considered. Let us start with a sta
and spherically symmetric field for the caseL5L(F). The
source is an electric monopole located at the origin of
spherical coordinate system (t,r ,u,w). We set for the non-
zero components of the electromagnetic field the form

Ftr5E~r !.

The equation of motion are easily solved, yielding

LFE5
Q

r 2 . ~51!
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The corresponding effective geometry~14! is given by

gtt52grr 5LF24LFFE2, ~52!

while the remaining nonzero components have values p
portional to those of Minkowski geometry,

guu52
1

r 2 LF , ~53!

gww52
1

r 2 sin2u
LF . ~54!

From Eq.~52! it follows that it is possible to envisage th
existence of a regionD defined by some finite radiusr 5r c
such thatgrr (r c) vanishes. The metric componentgtt also
vanishes atD. Then, coordinatesr and t interchange their
roles when crossingD, that is gtt(r .r c).0, grr (r .r c)
,0, andgtt(r ,r c),0, grr (r ,r c).0. Let us note, however
that the existence of suchr c implies that there is a furthe
undesirable consequence concerning the value of the ele
field. Indeed, Eq.~51! yields

r
]r

]E
5

Q

2LF
2E2 grr . ~55!

Thus it follows from this that, atD, there is a possibility of
the existence of a field barrier, that is a limitation of th
domain of its existence due to the possibility of the inve
function r 5r (E) to have an extremum. In order to avo
such limitation of the domain of definition for the electr
field, the theory must be such that the second derivative v
ishes atr c , that is

]grr

]E U
D

50.

Besides, one must impose the supplementary condition

]2grr

]E2 U
D
Þ0.

Thus, if the theoryL5L(F) allows this kind of solution,
then three typical properties of a trapped region appear.

There exists a null surfaceD, defined byr 5r c in the
effective geometry.

Coordinatesl and r interchange their role when crossin
D.

Light cones inside the region bounded byD are directed
towards the origin of ther-coordinate which plays the role
in this domain and only for photon propagation, of a timeli
coordinate.

These theories should be further examined, since fr
what we have seen above, they may be the germ of
existence of the electromagnetic version of the gravitatio
black hole. Let us now turn our examination to a very simi
situation inside material media.
1-5
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B. Wave propagation in nonlinear dielectric media

It is possible to describe the wave propagation, gover
by Maxwell electrodynamics, inside a dielectric, in terms
a modification of the underlying spacetime geometry us
the framework developed above. The electromagnetic fie
represented by two antisymmetric tensors, the electrom
netic fieldFmn and the polarizationPmn . These tensors ar
decomposed, in the standard way, into their correspond
electric and magnetic parts as seen by an observer w
moves with velocityvm . We can write

Fmn5Emvn2Envm1hrs
mnvrHs , ~56!

Pmn5Dmvn2Dnvm1hrs
mnvrBs . ~57!

Following Hadamard, we consider the discontinuities
the fields as given by

@¹lEm#S5klem ,

@¹lDm#S5kldm ,

@¹lHm#S5klhm ,

@¹lBm#S5klbm . ~58!

For the simplest linear case, in which we have

Da5eEa , ~59!

Ba5
Ha

m
, ~60!

it follows that

da5eea , ~61!

ba5
ha

m
. ~62!

After a straightforward calculation one obtains

kmkn@gmn1~em21!vmvn#50. ~63!

Let us generalize this situation for the nonlinear case. M
well equations are given by

]nF
*

mn50, ~64!

]nPmn50. ~65!

For electrostatic fields inside isotropic dielectrics it follow
that Pmn andFmn are related by

Pmn5e~E!Fmn , ~66!

wheree is the electric susceptibility. In the general case,
e5e(E) we simplify our calculation if we note that we ca
relate the equation of wave propagation to the previ
analysis on vacuum polarization~7! by means of the identi-
fication
04500
d
f
g
is
g-

g
ch

n

-

r

s

LF→e, ~67!

which implies

LFF→2
e8

4E
, ~68!

in which e8[de/dE. Therefore, the simple class of effectiv
Lagrangians~7! may be used as a convenient description
Maxwell theory inside isotropic nonlinear dielectric medi
conversely, results obtained in the latter context can as w
be similarly restated in the former one.

In a nonlinear dielectric medium the polarization induc
by an external electric field is described by expressing
scalar functione as a power series in terms of the fie
strengthE:

e5x11x2E1x3E21x4E31¯ , ~69!

where the constantsxn are known as then-order nonlinear
optical susceptibility. Note that we are using the stand
convention@3# which relatesxn with the expansion of the
polarization vector. For this case the effective geometry
given by

gmn5ehmn1
e8

E
Fm

aFan. ~70!

It can also be rewritten in the form

gmn5ehmn2
e8

E
~EmEn2E2d t

md t
n!, ~71!

whereE2[2EaEa.0. In other words,

gtt5e1e8E, ~72!

gi j 52ed i j 2
e8

E
EiEj . ~73!

This shows that the discontinuities of the electromagne
field inside a nonlinear dielectric medium propagates alo
null cones of an effective geometry which depends on
characteristics of the medium given by Eq.~70!. It seems
worth investigating under what conditions of thee depen-
dence onE a kind of horizon barrier should appear for th
photon inside a dielectric. We will return to this proble
elsewhere.

C. Photon path

From what we have learned above it follows that t
equation of motion of the photon in a nonlinear regime
given by the variational principle

dE ds50. ~74!

in which the fundamental length is constructed with the
fective metric, ds25gmndxmdxn. For the particular case
1-6
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GEOMETRICAL ASPECTS OF LIGHT PROPAGATION IN . . . PHYSICAL REVIEW D61 045001
which was examined in the previous section concerning
static and spherically symmetric configuration it becomes

dE ~gtt ṫ
21grr ṙ

21guuu̇21gwwẇ2!ds50, ~75!

in which a dot means derivative with respect to the fun
mental length variables. The equation for the angular var
able u shows that we can choose conveniently the ini
condition such thatu remains constant. From an analog
with the planetary motion we setu5p/2. The corresponding
equations of the remaining variables are

r 2ẇ5h0 , ~76!

gtt ṫ5E0 , ~77!

whereh0 andE0 are constants of motion. It is rather conv
nient to obtain the equation forr by making use of the fac
that we are dealing with a null curve, and set

gtt ṫ
21grr ṙ

21gwwẇ250. ~78!

Thus, using the above equations for the evolution oft, u and
w we obtain

ṙ 25Eo
22V~r !, ~79!

in which the potentialV(r ) takes the form

V~r !5
2Eo

2

gtt
2 1

ho
2

gttr
2 1Eo

2. ~80!

Circular orbits

The above set of equations allows the possibility of
existence of circular orbitsr 5r o5const for the photon. In
this case, it is sufficient for the value of thett component for
the effective metric at the pointr 0 to take the value

gtt~r o!5
1

l 2 r o
2, ~81!

in which we have, for comparison with the planetary motio
defined the impact parameterl 8ho /Eo . It is a rather simple
and straightforward matter to show that such orbits are
stable, as one should suspect.

IV. NONTRIVIAL VACUA

There have been some comments in the literature reg
ing a possible connection between the change of light ve
ity in modified vacua and the scale anomaly. The first one
speculate upon such a correlation was Shore@2#, and Dittrich
and Gies@1# disproved, using the sum over polarizatio
states method, the existence of such correlation for the
of a general LagrangianL(F,G).

Using the method of the effective geometry we are able
show that there is no deep correlation between the existe
of the velocity shifts induced by the nonlinear quantum flu
tuation and the scale anomaly. We will consider this probl
04500
e

-

l

e

,

-

d-
c-
o

se

o
ce
-

in a general framework. In other words, let us analyze
photon velocity in an arbitrary case, without specifying
particular theory. From what we have learned above o
could expect that the regime of nonlinearity induced by
modification of the electrodynamic vacuum to be the su
cient condition to modify the photon velocity. However, th
is not true in general, as it can be seen below.

A. Conformal vacuum

An important example of modification of the action o
curs for the case in which the quantityN6 vanishes. In this
case the net effect of this action on the photon velocity
indistinct from the one produced by the classical vacuu
Could this occur for the case in whichTÞ0? This is an-
swered by the following lemma.

Lemma A. There exist nonlinear modifications of electr
dynamics which present a nonidentically null anomaly su
that the field discontinuities propagate along Minkowski
paths. The proof is immediate. From Eq.~44!, the general
condition for such statement to hold is expressed by

LFF1V6LFG50. ~82!

Any nonlinear action which satisfies this condition is su
that the photon propagation occurs in an effective geom
gmn, which is conformal to the Minkowskian one. In th
theory, the photon presents the same light-cone structure
does in the linear Maxwell electrodynamics. The importa
point to consider here is that this situation occurs even in
presence of a nonvanishing scale anomaly.

InsertingV652LFF /LFG from Eq.~82! into Eq.~31! we
obtain, after some algebra, the condition

~LFFLGG2LFG
2 !@LFLFG1G~LFFLGG2LFG

2 !#50.
~83!

It remains to show that the spectrum of common solutions
Eqs.~82! and~83! does not implyT50. This can be explic-
itly shown for the particular class of nonlinear Lagrangia
given by

L52
1

4
F1 f ~G!, ~84!

for which LFF50 andLFG50. The scale anomaly~43! for
the class shown in Eq.~84! takes the form

T54S G
] f

]G
2 f D , ~85!

which vanishes only iff (G) is a linear function ofG. Ex-
pression~35! yieldsV150 andV251/(4G]2f /]G2), from
which Eq.~45! givesM6521/4 andM650, respectively.
The apparent singularity in Eq.~44! for M650 can be cir-
cumvented by carefully returning to the original express
~27!, which reduces in this case to

f mnkn5
2x

G
F
* mnkn . ~86!
1-7
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It follows that hmnkmkn50, thus adequately describing bo
solutions associated with Eq.~84!.

B. Nonanomalous vacuum

There is no better way to demonstrate the independe
of the concepts of light velocity modification and th
anomaly than to consider the converse situation ofLemma A,
for which there is no anomaly at all. This is provided by t
following.

Lemma B. In the absence of scale anomaly the effect
metric is not necessarily conformally flat.
Indeed, let us set

T50. ~87!

From Eq.~43! it follows

L5FLF1GLG , ~88!

which leads to

FLFF1GLGF50, ~89!

and

GLGG1FLFG50. ~90!

In order for the effective metric to be conformally flat th
Lagrangian should obey, besides the above relations,
condition ~82!. Then, it is straightforward to show tha
Lagrangians satisfying all these requirements must sa
the condition

LFF50. ~91!

Hence, when there is no anomaly, the unique case in w
the effective geometry coincides with the Minkowski one
the linear Maxwell theory. This property allows us to co
clude that in the framework of the effective actionthere is no
need for a scale anomaly to induce light velocity shifts.

It remains to be shown that the spectrum of solutions
Eq. ~87! does not necessarily reduce to the linear case.
interesting to point out that not only one but a particular
of nonlinear Lagrangians can be obtained. Indeed, it is
mediately shown that

L5G f~F/G! ~92!

satisfies Eq.~88! for arbitrary functionsf (F/G).

C. Euler-Heisenberg vacuum

The effective action for electrodynamics due to one-lo
quantum corrections was calculated by Heisenberg and E
@15#. For the low-frequency limitv!mec

2/h the effective
Lagrangian takes the form

L52
1

4
F1

m

4 S F21
7

4
G2D , ~93!

with
04500
ce

e

he

fy

h

f
is
t
-

p
ler

m8
2

45
a2S \

mec
D 3 1

mec
2 , ~94!

wherea is the fine-structure constant.
The trace of the corresponding modified energ

momentum tensor reads

T5mS F21
7

4
G2D . ~95!

The coefficientsM6 andN6 of the associated metric tenso
at the first order of approximation inm constant are

M252
1

4
1

m

2
F, ~96!

M152
1

7
1

5m

7
F, ~97!

N6522m. ~98!

We note that only in the case where both invariantsF andG
vanish does the trace anomaly disappear. In this case
above coefficients becomeM252 1

4 , M152 1
7 and N6

522m.
The effective geometries yield

g2
mn5S 2

1

4
1mF Dhmn22mTmn, ~99!

g1
mn5S 2

1

7
1mF Dhmn22mTmn. ~100!

This implies that there exist two paths of light, one for ea
polarization mode. In other words, birrefringence effects
present in Euler-Heisenberg electromagnetism, as it is w
known in literature. From Eq.~47! we can write the associ
ated expressions for the wave vector propagation:

k2
2 528mTmnkmkn , ~101!

k1
2 5214mTmnkmkn . ~102!

Taking the average over polarization modes we obtain
well known formula

k25211mTmnkmkn . ~103!

V. CONCLUSION

From what we have learned in this paper we can state
the propagation of discontinuities of electromagnetic field
a nonlinear regime~as it occurs, for instance, in dielectrics o
in modified QED vacua! can be described in terms of a
effective modification of the Minkowskian geometry o
spacetime. Such interpretation is an immediate consequ
of the analysis we presented here. We would like to point
that it is not impossible to envisage the case in which
characteristic surfaces along which photons propagate
nonlinear electrodynamics, could appear as spacelike hy
1-8
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surfaces in Minkowski spacetime. We will return to th
question in a forthcoming paper.

This description also allows us to recognize a striki
analogy between photon propagation in nonlinear electro
namics and its behavior in an external gravitational field. F
in both cases the geometry is modified by a nonlinear p
cess. It is clear that such an analogy cannot be pushed
far, since in the gravitational case the modified geometr
observed by any kind of matter and energy~including gravi-
tational energy—at least in the general relativity theory7! and
in the electromagnetic case this modified geometry is
served only by the nonlinear photons. Moreover, we wo
like to stress that we proved the existence of Minkow
geodesics at nonvanishing scale anomaly and vice versa

This analogy certainly deserves further examination, si
it may provide for the existence of an electromagnetic a
logue of the gravitational black hole, as was shown.
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APPENDIX A: THE EFFECTIVE NULL GEODESICS

The geometrical relevance of the effective geometry~14!
goes beyond its immediate definition. Indeed, as follow
will be shown that the integral curves of the vectorkn ~i.e.,
the photons trajectories! are in fact geodesics. In order t
achieve this result an underlying Riemannian structure
the manifold associated with the effective geometry will
required. In other words this implies a set of Levi-Civi
connection coefficientsGmn

a 5Gnm
a , by means of which there

exists a covariant differential operator¹l ~the covariant de-
rivative! such that

¹lgmn[gmn
;l[gmn

,l1Gm
slgsn1Gn

slgsm50. ~A1!

From Eq.~A1! it follows that the effective connection coe
ficients are completely determined from the effective geo
etry by the usual Christoffel formula.

Contracting Eq.~A1! with kmkn results in

kmkngmn
,l522kmknGm

slgsn. ~A2!

Differentiating Eq.~36! we have

2km,lkngmn1kmkngmn
,l50. ~A3!

Inserting Eq.~A2! for the last term on the left hand side o
Eq. ~A3! we obtain

gmnkm;lkn[gmn~km,l2Gs
mlks!kn50. ~A4!

7For the recent proposal of NDL theory of gravity@16# this would
not be the case.
04500
y-
r
-
ry

is

-
d
i

e
-

.
e

it

r

-

As the propagation vectorkm5S ,m is an exact gradient one
can write km;l5kl;m . With this identity and defining
km8gmnkn Eq. ~A4! reads

km;lkl50, ~A5!

which states thatkm is a geodesic vector. By remembering
is also a null vector~with respect to the effective geometr
gmn), it follows that its integral curves are therefore nu
geodesics.

APPENDIX B: GENERALIZATION OF THE RAINICH-
WHEELER ALREADY UNIFIED PROGRAM

We show a remarkable property of the class of nonlin
theories which are free of anomaly. From the definition
Tmn in the case of two parameter Lagrangians we have

Tmn524LFFm
aFan2~L2GLG!hmn . ~B1!

In the linear case it follows that the squareTmaTan of this
tensor is proportional to the identity matrixdm

n . This square
property was used by Rainich and Wheeler8 to set a basis of
an extension of the geometrization program beyond grav
tional interaction, the so-calledalready unified program. It is
important to remark that this property no longer holds fo
general nonlinear Lagrangian. Indeed, a straightforward
culation gives

TmaTan5mdm
n 1

1

2
TTm

n , ~B2!

in which m is given by

m5LF
2~F21G2!2

T2

16
, ~B3!

and the traceT8Ta
a takes the value

T54~FLF1GLG2L !. ~B4!

From expression~B2! follows the interesting result that th
squareproperty remains valid for the class of theories whi
do not present scale anomaly.

We can thus state the Rainich-Wheeler conditions

RmnRna5 1
4 RlhRlhdm

a , ~B5a!

R50, ~B5b!

whereR8Ra
a is the curvature Ricci scalar, and the assum

tion that

~Rma;bhabrnRr
m!~RelRal!21 ~B5c!

is a gradient. It is straightforward to show that prope
~B5c! holds also for the nonlinear case.Rmv is the curvature
Ricci tensor, which satisfies Einstein equations

8See for instance@17,10#.
1-9
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Rmn2
1

2
Rgmn52kTmn , ~B6!

where k is Einstein’s gravitational constant. Relation
~B5a!–~B5c! hold for a general nonlinear electromagne
theory which does not present scale anomaly. If, in additi
the theory is such thatLF,0 ~that is, if the energy density is
positive definite!, then
-

04500
,

Rtt.0. ~B7!

Thus we conclude that Rainich-Wheeler conditions for
already unified program characterize both linear and non
ear electromagnetic fields as the source of the given grav
tional field.
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