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Kerr-Schild approach to the boosted Kerr solution
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Using a complex representation of the Debney-Kerr-Schild solutions and the Kerr theorem we analyze the
boosted Kerr geometries and give the exact and explicit expressions for the metrics, the principal null congru-
ences, the coordinate systems and the location of the singularities for an arbitrary value and orientation of the
boost with respect to the angular momentum. In the limiting, ultrarelativistic case we obtain lightlike solutions
possessing diverging and twisting principal null congruences and having, contrary to the kpewave
limiting solutions, a nonzero value of the total angular momentum. The implications of the above results in
various related fields are discussed.

PACS numbd(s): 04.20.Jb

I. INTRODUCTION tum. As a result, in the general cases of the boost, including
the ultrarelativistic cases, we determine the exact expressions
Recently, boosted black-hole solutions attracted renewetbr the metric, coordinate system, principal null congruence,
interest in connection with numerical simulations of black-and location of singularity. In the ultrarelativistic cases this
hole interaction§1]. On the other hand, the problem of find- method leads to a DKS class of solutions possessing diverg-
ing the ultrarelativistic limit of exact, particlelike solutions of ing and twisting principal null congruences contrary to the
the Einstein field equations received considerable attention iR P-wave limiting solutions which possess zero total angular
connection with nontrivial gravitational effects which are ex-momentum{7].
pected to occur in the interparticle interactions at extreme The paper is organized as follows. First, we briefly recall
energies due to the presence of gravitational shock wavel§e DKS formalism and the Kerr theorem in a form, in which
[2,3]. the Kerr solution is represented as being generated by a com-
First results in this field were obtained by Aichelburg andplex source. This approach was initiated by Lind and New-
Sex|[4], who considered the behavior of the Schwarzschildnan[12,13 and was considered in the DKS formalism in
metric under the ultrarelativistic boost. Because of sphericdl14] (& more complete description of this approach and of its
symmetry the results are in this case independent of the dBeometrical basis can be found|it6]). Using this represen-
rection of the boost. tation, the boosted Kerr solutions can be constructed simply
A similar treatment in the case of the Kerr geometry’by Considering straight lines in complexified Minkowski
which can be considered as a model of a spinning particle igpace as complex world lines of the sources. In this way, we
general relativity, has to take into account the orientation oPbtain explicit expressions for the metric and the singular
the angular momentum with respect to the boost. Unlike théegions in the most representative cases. We discuss various
simplest twist-free case the problem exhibits extra difficul-physical applications and some unusual features in the lim-
ties which enforce quite complicated and refined methods oiting behavior of the Kerr singular ring.
analysis and usually lead to very complicated or approximate
expressions before taking the ultrarelativistic lifBt7]. In
particular, difficulties appear when ultrarelativistic limits are
involved, due to the singular character of Lorentz transfor- In the notation we follow the work of Debney, Kerr, and
mations ats = c. We should note that this singularigypriori Schild[8] (see alsd9,16] for a review on DKS solutionsIn
can lead to different limiting results depending on the perthe four-dimensional space time with signature £ + +),
formed limiting procedure. let e;,e,,e3,6, be a null tetrad satisfying
The approach which we are going to formulate here deals
with a class ofourcelesgravitational solutions of the Kerr-
Schild class and it is based on the Debney-Kerr-Schild
(DKS) formalism [8] and on the Kerr theorerf@—-11]. It u
gives the possibility of obtaining exact and explicit expres- 9ab=€a€hu=
sions for the boosted Kerr geometry by arbitrary values and
orientations of the boost with respect to the angular momen-

Il. THE DKS FORMALISM AND THE KERR THEOREM
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The vectorse® ande” are real null vectors, while! ande?
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3.3
e.e,,

)

whereh is a scalar function and the principal null direction
e? is null also with respect to the auxiliary Minkowski space
with metric

9ur= NuyT2h

n=dx2+dy?+dZ—dt?=2dudv +2dzd{.

In the above formula, the null coordinatesZu,v are re-
lated to the Cartesian coordinates by

212 =x+iy, 2Y2r=x—iy,

21/2 (3)

2Y2y=z+t, v=2z—t.
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Ill. CONGRUENCES GENERATED BY A COMPLEX
WORLD LINE

Our approach is based on the complex world-line repre-
sentation of the Kerr solution which was initiated by New-
man and Lind[12,13. It allows us to represent the Kerr
solution as a retarded-time field, generated by a complex
source propagating along a complex world line. The struc-
ture of this representation in DKS formalism gives a very
convenient form of the functior, which turns out to be
dependent on the coordinates of the world ljad,15. For
the aim of convenience we give here a short review of this
approach.

Let x§(7) be a complex world line parametrized by a
complex time parameter=t+io. The coordinates of this

A general field of null directions in Minkowski space can beworld line are complexxy(7)=({o ,Zo,uo,vo) eCM*4, so

defined by

e3=du+YdZ+YdZ—YYdv,

whereY(x) is a complex function. The Kerr theorem gives a

thatzo and ¢, are not necessarily complex conjugates.
The functionF can be expressed in the form

rule to construct the geodesic, shear free congruences: the

space is defined by a functioviwhich is a solution of the
equation

4
F=(\1—ADKXA,— (A= AJ)KA 4, (10
general geodesic, shear-free null congruence in Minkowskivhere the twistor components with zero indices
(1) =Lo(m) = Yvo(r), AS(7)=Ug(7)+YEo(7),
(11

F(N1.A2,Y)=0, 5

where F is an arbitrary analytic function of thprojective
twistor coordinates
M=C-YV, A,=u+Y{,

Y (6)

[the above parameters can be written in twistor notation

(lu“;\/l(vl’A])v MA:XMU/ALAI//A as ()\l!)\Zlel):(Movﬂl!wbr
1)l ]

The Kerr theorem also allows us to obtain other important

parameters of the solution. In particular, the quantity

Ti=—dF/dY 7)

denote the values of; and\, on the points of the complex

world line xq(7), while K is a Killing vector of the solution,
whose action on a scaléiis defined by

Kf

X4(7)d,f, (12)

o

(a dot denotes derivative with respect#p

It has been showhl5] that the form ofF given by Eq.

(10) is equivalent to Eq(9). In this representation, the Kerr
congruence can be described via a retarded-time construction
(in particular, the Schwarzschild and the Kerr metrics corre-
spond to the world line of a particle at rest at the origin and

is a complex radial distance, which is connected with thelo the world line of a particle at rest “at a distanize from
complex representation of the Kerr solution, as will be ex-the origin,” respectively[13]). This one-to-one correspon-

plained below.

dence between straight lines in complex Minkowski space

The singularities of the metric can be defined as the cau2Nd the class of the DKS solutions having singularities con-

tics of the congruence given by the system of equations

F=0, dF/dY=0. (8

tained in a bounded region allows us to boost the Kerr solu-
tion via the DKS formalism. Indeed the complex Minkowski
space inherits the linear structure of the real Poingaoep,

and therefore the boosted Kerr metrics are the real slices of

The Kerr solution belongs to the subclass of solutions havinghe boosted solutions i@ M4. This is readily seen observing

singularities contained in a bounded regida,17. In this
case the functiofr must be at most quadratic ¥

F=ag+a;Y+a,Y2+(qY+C)h—(pY+qNo, (9)

where the coefficientsc and p are real constants and
ag,21,a,,0,q, are complex constants. The solutions of Eqs

that, in spite of the complex character of the world line, the
vector of its four velocity is actually real and has to follow
the real Lorentz transformations. Therefore, the boost yields
a complex world line with a real four velocity obtained by
the corresponding Lorentz transformation from the rest four
velocity.

It is worth noticing that a very similar situation occurs in

(8) can be found in this case in explicit form. It can be shownthe case of the Maxwell equations. Indeed applying a com-
that they correspond to the Kerr solution up to a Lorentzplex boost to the Coulomb field one obtains the general

boost and a shift of the origin.

boosted (Lienard-Wiecheit field [12]. Actually Newman
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was the first to suggest, on the base of this analogy, that
Kerr-Schild boosted solutions could eventually be found in

this way.
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Ni=xte), )\szﬂ(ez—VellL) (23

(the explicit form of the DKS tetra@? is given in the Ap-

To obtain the general case of a solution with a boost weyendix.
consider, therefore, a straight, complex world line with three

velocity V in CM*

X(T)=x6(0)+ &7, 4=(1V). (13
Writing the functionF in the form
F=AY2+BY+C, (14)
where
A=(Z~Lo)Vo~ (V—Vo)lo;
B=(u=Uo)Vo+({—Lo)do ({=Lo)bo—(V—vo)lg:  (15)

C=({—&o)Up—(U—Ug) Lo,

from F=0 we obtain the following explicit solutions for the
function Y(x):
Y112=(—BtA)/2A, (16)

where A =(B%2—4AC)*2 On the other hand, from Eq§7)
and(14) one obtains

Y=—(B+T)/2A, 17

and consequently

T=%(B?-4AC)Y2 (18)

This relation reflects the “twofoldedness” of the Kerr geom-

etry: the complex radial coordinatecan be expressed as

+ia cosf and the double sign corresponds to a transition

from the “positive” r sheet of the metric to the “negative”
one wherer <0.
In the DKS notation the metric can be written as

— 3 F\p3 a3
g,u.l/_ 77;/.V+(m/P )(ZJ’_Z)elu,eVy

(19
where
P=x4(7)e>,. (20)

The fielde® can be normalized by introduciné=e3*/P so

thatkglﬂzl, and this yields the following, equivalent form
of the metric:

9uv= 14t MP1Z+P1Z)1 1. (21)
The complex radial distand€) is given by
Pz 1=, (22)

and the twistor parameteks and\, may be represented in
the form

IV. BOOSTED KERR SOLUTION: EXAMPLES
AND BEHAVIOR OF SINGULARITIES

To analyze the DKS boosted Kerr solutions we represent
the world line in the formx%(7)={7,xo(0)+V7}, and ob-
serve that the complex parametemay be always chosen in
such a way that Re corresponds to the “real timd”(see
[13] for details on complex Minkowski spacélrhe complex

initial displacement can be decomposedxa60)=c+id,
wherec andd are real three-vectors with respect to the space
O(3) rotation. The real partE defines the initial shift of the

solution, and the imaginary pa& defines the size and the
position of the singular ring as well as the corresponding
angular momentum. It can be easily shown that in the rest

frame, wherV =0, d=d,, the singular ring lies in the plane
orthogonal tod and has a radiua=|dy|. The corresponding
angular momentum i§=md,.

In the case of a boost orthogonal to the directionl othis
vector is not altered by Lorentz contraction=d,, |d|
=a), while if d andV are collinear we have

dy=d/\1- V2.

This shows that the parameticoincides with its rest value
a, if d andV are orthogonal, while

(24)

a,=a/V1—|V|? (25)

if V andd are collinear.

In order to calculate the parameteksB,C it is conve-

nient to express the complex world line in null coordinates
220 0=xo+iyo, 2Y%5=Xo—iYo,

21/2 (26)

uO:ZO+t01 21/2\/0:Zo_t0.

The Killing vector of the solution will then be

=270V, Lo+ Lo, — (Lot {o) Up+ o}, (27)

while the functionP takes the form

The complex radial coordinate=PZ ! is given by Eqg.
(18). As for the standard Kerr solution, one can repre§ent
as a “sum” of the real radial distance and an angular
coordinate. Then Eq(18) can be used to fix the relation
between the polar coordinatessd, ¢ and the null Cartesian

coordinateg26) through the expressior(d5) for the coeffi-
cientsA,B,C. Because of the formulg’), the singular re-

gions are defined by the zeros of the functianin what
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follows, we present some examples of boosted Kerr solution$he functionY(x) takes the form
and then discuss the general features exhibited by them.

Example | A spinning particle moves with the speed of Y=(X—t—z+iy+ia)/(x—t+z—iy—ia). (33
light in the positive direction of the axis, and the three - .
vectord=(0,0a) is also directed along theaxis. The com- 1 ne functionr=PZ"* takes the form
plex world line is, therefore, given byy(7)=17, zy(7) PZ 1= _dF/dY=x—t. (34)

=ia+ 1, Xo(7)=Yo(7)=0. In null coordinates this yields

Vup=zo+ r=ia+27, \2vo=2zo—r=ia, {o={o=0,

S0 thatlig= /2, V=0, {o={,=0, and
u—u0=(z—ia+t—27)/\/§,
v—voz(z—ia—t)/\/z,
[~0=( {—L=¢

Formula(15) implies that the coefficient8,B,C are given

by
A=0, B=t—z+ia, C=x+iy.

As a result the functiofr acquires the form

F=x+iy—Y(z—ia—t), (29
and the solution of the equatidh=0 is

Y=(x+iy)l(z—ia—t), (30
so that

T=-dF/dY=z-ia—t, (3D

and, therefore, the metric has no singularifiégre is no real

This solution is, therefore, singular: there is a moving singu-
lar plane placed at=t.

Example IIl The absence of a smooth limit in the first
example may be better understood considering the general
case in which the value of the velocity is arbitrary as well as
its direction with respect to the angular momentum. Without
loss of generality, we can consider the boost performed with
a parameter in the z direction (@=v,/c), and a parameter
B in the x direction (8=v,/c), while the angular momen-
tum is defined byi= (0,0a). Denotingw?= o>+ 2 the fol-
lowing general formula for the coordinate relations can be
obtained:

(x—BHV1—a?+iyy1—w?=(r+ia\1— B?)e'?sin,
(35)
z—at=—r cosé/\1— B°.

The singular regiorr =0,cos#=0 is placed on the plane
= at and is described by

(1-a®)(x—Bt)*+(1-w’)y*=a’(1-p%).  (36)
Let us first consider the cases corresponding to the two ex-
amples above. 1{8=0 (the boost in the direction of the
angular momentuinthe singularity is a ring of radiugy
=a/\/1- a? located on the moving plane= — at. In this
case, the coordinate relations are the following:

solution to the system of Eq&)]. On the other hand, setting

a=0, we obtain the case of spinless particle, and a moving x+iy=(r+ia)e'?sin6/\1—a?, (37
singular plane is placed a=t. Therefore, there is no
smooth limit asa—0. Z— at=r cosé. (38

Example Il A spinning particle moves with the speed of _ _ .

light in the positive direction of th& axis, orthogonal to the The radius of the ring grows as increases, and for—1

three vectord which defines the direction and the value of the singularity goes at infinity. At first sight, this result looks

the angular momenturﬁzm(o 0a) a:|&| We have the strange. However, it is easy to check that the radius of ring is

complegx world Iineto(r)=x0(r,) :,aT, yo(r)=.0 2o(7)=ia. ag, the re;t value of. The pgsitipn of singular region be-

Correspondingly, the world line in null coordinates is comes a ring of cqnsta_nt radiag if we kee_pa0=cor_15t..
However, keepinga=const-0 and taking the limita

\/EVOZia_T, \/550:7', \/2§O:’T,

=1 we obtain that the singular region is going to infinity, so
there will not be a singularity in the finite region, in agree-
and the velocities arey2up=1, V2vo=—1, \2{o=1,
J27,=1. We have, therefore,

\/EUOZ ia+ T,
ment with the results of Example I. We will discuss this
situation later in connection with the problem of renormal-
ization of parameters.

In the casea=0, the boost is performed with a speed
orthogonal to the direction of angular momentum. The sin-
gular region is a moving ring oblate in tkedirection with a
Lorentz factory1— B2 and located on the plare=0. In this
case the coordinate relations are

(x—Bt)[J1—B2+iy=(r/J1—B>+ia)e'?sing, (39
z=r cosf/\1— 2.

V2(u—ug)=z+t—ia—7, 2(v—vg)=z—ia—t+r,

V2(0= o) =x+iy—7, 2({—Eo)=x—iy—T,
and the coefficient®\,B,C take the form
A=(—x+iy—z+t+ia)/l2, B=ia+tiy—z

(32

C=(x+iy—z—t+ia)/2. (40)
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As in the previous example, the lim@—1 is not smooth twist-free solution withJ=myay,—0. This corresponds to
since the singular region is a line parallel to thaxis placed the known results opp-wave limiting metricg{5-7,18,19

atx=t, z=0. with a finite size of the singular ring and, correspondingly,
In the general case described by E2f) the singularity is  vanishing total angular momentuf].
a moving ring on the= at plane, deformed in the direc- These arguments are not valid for Example Il since the

tion by a factory(1— 8%)/(1— ) and in they direction by  corresponding projection of angular momentum is initially
a factor/(1— 8%)/(1—w?). The ultrarelativistic limit corre-  zero, and we have here a twist-free solution with a finite
sponds tav=1 and the singular region is a couple of straightjocation of singularity.

lines parallel to they axis. Therefore, we can conclude tha.t The second application, which has led to the recently re-
the nonsmoothness and the noncommutativeness of the lifewed interest in this problem, consists in modeling the
iting procedure is a general feature of the boosted Kerr Sogravitational field of elementary particles with finite rest
lutions. Another peculiarity, which can be seen by the analyinass under the boost. A specific feature of this case is that
sis of the above examples is a nontrivial coordlnatethe rest massn, as well as the projection of the angular

dependence of the functionnwhich forms the prlnqpal null _momentumJ=mya,=ma have to be kept constant. This
congruence. As a consequence the congruence itself acquires

o . ads tomy=const, and consequently we obtain a finite po-
a nontrivial coordinate dependence and a nonzero expansioll. ' ' . larity which is determined by the valueaof:
0 and twist w. This property is conserved even in the ul- 9 y y X

trarelativistic limit. For instance, in the case of Example | theHowever, the parameter of the solutiamas to be scaled by

expansion and twist of the congruence are define@fy € boost a@=agyl-v®. ,
+iw [8] and are given byz/P=—(dF/dY) l=(z—t In both problems described above one deals with naked

+ia)/[(z—t)2+a?]. One sees that there is no singularity in Singularities rather than black holes, since the values of
this case, and expansion tends to zero only agztheplane ~ Mass, spin, and charge of elementary particles typically cor-

where the twist takes the constant valua.1/ respond to this kind of solution.
The third physical problem is connected with astrophysi-
V. CONCLUDING REMARKS cal applicationd 1] of the boosted black-hole solutions. In

this case also the behavior of the horizon and of the ergo-

There are three different physical situations which Sh0U|d3phere under the boost are of interest. A simple analysis
be described by the boosted Kerr solution. The first is Conusing the above suggested coordinates shows that the hori-
nected with the original Aichelburg-Sexl problem, namely zon as well as the ergosphere are simply given by the known
the description of the gravitational field of lightlike particles formulas for the Kerr case whera must be the relativistic
with or without spin. For this case the problem of “renor- ,o¢¢ parameter.
malization” of the parameters of the solution has been dis- Tha method proposed here allows us to describexin
cussed by many authof$,7]. Indeed the lightlike particle i form the metric and the behavior of the singular region

[)nouossttggvri:rgzler:tlﬂlrtnel/)\l/iﬁrgglIfirnei'?et né?r?wsilgrllsurcgnirvrvn?{i;g?itc)t: f the Kerr solution under arbitrary boost and with arbitrary
' Y, grientations of the angular momentum. In particular, we have

of other parameters, such as charge and angular momentughown that the Kerr theorem automatically allows us to ob-

has been discuss¢f,7], and there is not yet a unique agree- .. S .
ment concerning this renormalization procedure. The abovEiN the exact form of the boosted solution in an asymptoti-

considerations on the behavior of the singular ring under th&2!ly flat coordinate system and the equations describing the
boost in the orthogonal direction suggest, however, that tI,“g,ln?qular|t|es in these coordinates. The ultra_lrelanwstlc limit is
physical most satisfactory way to perform the renormaliza® sm_gular pom_t of the Lorer_ltz transformations, and we have
tion in this case should be to kedp-ma= const. In fact, in obtained a quite general picture of the nonsmoothness and
this way the projection of the angular momentum on thehoncommutativeness of the limits—0, v—1, andr—0.
direction of the boost is invariant with respect to the value ofThe method shows that lightlike limits of the Kerr geometry
the boost. One can come to this conclusion also by considexist which belong to the DKS class and have twisting prin-
ering spinning particles in a quantum context, since the proeipal null congruences and nonzero total angular momentum
jection of the spin on the boost direction is the helicity whichJ.
indeed must be considered as a constant. In terms of the rest We want to stress that the present work does not give a
valuesa, andmy we have to sef=ma=mya,=const. As  definitive answer to the ultrarelativistic limit of the Kerr so-
far as m=my/\J1—v? by the boost, this yieldsa, lution. Our aim here was rather to provide a unifying frame-
=alJ1-VZ work to be used to investigate various limits of the Kerr

Therefore, for finite values d the rest value, and the ~ 9eometry. All such limits are mathematically valid, but cor-
location of the singularityend to infinityin the ultrarelativ-  eSpond to different physical situations and therefore to dif-
istic limit, explaining the results of Example 1, and clarify- ferent behaviors of the physical quantities like mass and an-
ing the absence of the singularity in the ultrarelativistic limit
of Example I.

One should note that, keeping the valyg= const during 10ne sees that singular ring is not subjected to Lorentz contraction
the limit, one enforces a fixed size of the singular ring, sain this case since it lies in the plane orthogonal to the boost direc-
that putting in the limitmy=0, one obtains in fact a limiting tion.
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gular momentum, as well as to different locations and el=d/—Yadv,
behavior of the singularities.
The present results can be easily extended also to the e2=dZ—Vdv, (A1)

boost of the Kerr-Newman solution and of the Kerr-$26]
solution, generalizing the Kerr solution to low-energy string e*—dv—he3
theory. It was shown irf21] that one of the principal null :
congruences retains its properties to be geodesic and shear .

free, and that the Kerr theorem remains valid for the Kerr(—af%e inverse tetrad has the form
Sen solution tod22].
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APPENDIX It was shown in 8] that

Let e® be a null tetrad and define the Ricci rotation coef- a 4
ficients as I 4p=T 42,€°=—dY—hY,,e".

be=—€5..ebel. The _congruencee3 is geodesic ifT"4p4=—Y,4(1-h)=0,
and is shear free il" ;5= —Y,,=0. Thus, the functiony
The principal null congruence has tkd direction as the with the conditions
tangent. It will be geodesic if and only If,,,= 0, and shear

free if and only ifI",,,=0 (the corresponding complex con- Y,,=Y,,=0,
jugate terms ard’4;,=0 andI'4;;=0). The null tetrade
can be completed as follows: defines a shear free and geodesic congruence.
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