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Kerr-Schild approach to the boosted Kerr solution
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Using a complex representation of the Debney-Kerr-Schild solutions and the Kerr theorem we analyze the
boosted Kerr geometries and give the exact and explicit expressions for the metrics, the principal null congru-
ences, the coordinate systems and the location of the singularities for an arbitrary value and orientation of the
boost with respect to the angular momentum. In the limiting, ultrarelativistic case we obtain lightlike solutions
possessing diverging and twisting principal null congruences and having, contrary to the knownpp-wave
limiting solutions, a nonzero value of the total angular momentum. The implications of the above results in
various related fields are discussed.

PACS number~s!: 04.20.Jb
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I. INTRODUCTION

Recently, boosted black-hole solutions attracted rene
interest in connection with numerical simulations of blac
hole interactions@1#. On the other hand, the problem of find
ing the ultrarelativistic limit of exact, particlelike solutions o
the Einstein field equations received considerable attentio
connection with nontrivial gravitational effects which are e
pected to occur in the interparticle interactions at extre
energies due to the presence of gravitational shock wa
@2,3#.

First results in this field were obtained by Aichelburg a
Sexl @4#, who considered the behavior of the Schwarzsch
metric under the ultrarelativistic boost. Because of spher
symmetry the results are in this case independent of the
rection of the boost.

A similar treatment in the case of the Kerr geomet
which can be considered as a model of a spinning particl
general relativity, has to take into account the orientation
the angular momentum with respect to the boost. Unlike
simplest twist-free case the problem exhibits extra diffic
ties which enforce quite complicated and refined method
analysis and usually lead to very complicated or approxim
expressions before taking the ultrarelativistic limit@5–7#. In
particular, difficulties appear when ultrarelativistic limits a
involved, due to the singular character of Lorentz transf
mations atv5c. We should note that this singularitya priori
can lead to different limiting results depending on the p
formed limiting procedure.

The approach which we are going to formulate here de
with a class ofsourcelessgravitational solutions of the Kerr
Schild class and it is based on the Debney-Kerr-Sch
~DKS! formalism @8# and on the Kerr theorem@9–11#. It
gives the possibility of obtaining exact and explicit expre
sions for the boosted Kerr geometry by arbitrary values
orientations of the boost with respect to the angular mom
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tum. As a result, in the general cases of the boost, includ
the ultrarelativistic cases, we determine the exact express
for the metric, coordinate system, principal null congruen
and location of singularity. In the ultrarelativistic cases th
method leads to a DKS class of solutions possessing div
ing and twisting principal null congruences contrary to t
pp-wave limiting solutions which possess zero total angu
momentum@7#.

The paper is organized as follows. First, we briefly rec
the DKS formalism and the Kerr theorem in a form, in whic
the Kerr solution is represented as being generated by a c
plex source. This approach was initiated by Lind and Ne
man @12,13# and was considered in the DKS formalism
@14# ~a more complete description of this approach and of
geometrical basis can be found in@15#!. Using this represen-
tation, the boosted Kerr solutions can be constructed sim
by considering straight lines in complexified Minkows
space as complex world lines of the sources. In this way,
obtain explicit expressions for the metric and the singu
regions in the most representative cases. We discuss va
physical applications and some unusual features in the
iting behavior of the Kerr singular ring.

II. THE DKS FORMALISM AND THE KERR THEOREM

In the notation we follow the work of Debney, Kerr, an
Schild@8# ~see also@9,16# for a review on DKS solutions!. In
the four-dimensional space time with signature (2111),
let e1 ,e2 ,e3 ,e4 be a null tetrad satisfying

gab5ea
mebm5S 0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

D . ~1!

The vectorse3 ande4 are real null vectors, whilee1 ande2

are complex conjugates. The general Kerr-Schild metric
be written as
©2000 The American Physical Society17-1
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gmn5hmn12hem
3 en

3 , ~2!

whereh is a scalar function and the principal null directio
e3 is null also with respect to the auxiliary Minkowski spa
with metric

h5dx21dy21dz22dt252dudv12dz̄dz.

In the above formula, the null coordinatesz,z̄,u,v are re-
lated to the Cartesian coordinates by

21/2z5x1 iy , 21/2z̄5x2 iy ,
~3!

21/2u5z1t, 21/2v5z2t.

A general field of null directions in Minkowski space can
defined by

e35du1Ȳdz1Ydz̄2YȲdv, ~4!

whereY(x) is a complex function. The Kerr theorem gives
rule to construct the geodesic, shear free congruences
general geodesic, shear-free null congruence in Minkow
space is defined by a functionY which is a solution of the
equation

F~l1 ,l2 ,Y!50, ~5!

where F is an arbitrary analytic function of theprojective
twistor coordinates

l15z2Yv, l25u1Yz̄, Y ~6!

@the above parameters can be written in twistor notat

(mA,c Ȧ), mA5xmsm
AȦc Ȧ as (l1 ,l2 ,Y,1)5(m0,m1,c 0̇ ,

c 1̇)/c 1̇] .
The Kerr theorem also allows us to obtain other import

parameters of the solution. In particular, the quantity

r̃ª2dF/dY ~7!

is a complex radial distance, which is connected with
complex representation of the Kerr solution, as will be e
plained below.

The singularities of the metric can be defined as the ca
tics of the congruence given by the system of equations

F50, dF/dY50. ~8!

The Kerr solution belongs to the subclass of solutions hav
singularities contained in a bounded region@14,17#. In this
case the functionF must be at most quadratic inY:

F[a01a1Y1a2Y21~qY1c!l12~pY1q̄!l2 , ~9!

where the coefficientsc and p are real constants an
a0 ,a1 ,a2 ,q,q̄, are complex constants. The solutions of E
~8! can be found in this case in explicit form. It can be sho
that they correspond to the Kerr solution up to a Lore
boost and a shift of the origin.
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III. CONGRUENCES GENERATED BY A COMPLEX
WORLD LINE

Our approach is based on the complex world-line rep
sentation of the Kerr solution which was initiated by New
man and Lind@12,13#. It allows us to represent the Ker
solution as a retarded-time field, generated by a comp
source propagating along a complex world line. The str
ture of this representation in DKS formalism gives a ve
convenient form of the functionF, which turns out to be
dependent on the coordinates of the world line@14,15#. For
the aim of convenience we give here a short review of t
approach.

Let x0
m(t) be a complex world line parametrized by

complex time parametert5t1 is. The coordinates of this
world line are complex,x0(t)5(z0 ,z̄0 ,u0 ,v0)PCM4, so
that z̄0 andz0 are not necessarily complex conjugates.

The functionF can be expressed in the form

F[~l12l1
0!K̂l22~l22l2

0!K̂l1 , ~10!

where the twistor components with zero indices

l1
0~t!5z0~t!2Yv0~t!, l2

0~t!5u0~t!1Yz̄0~t!,
~11!

denote the values ofl1 andl2 on the points of the complex
world line x0(t), while K̂ is a Killing vector of the solution,
whose action on a scalarf is defined by

K̂ f 5 ẋ0
m~t!]m f , ~12!

~a dot denotes derivative with respect tot).
It has been shown@15# that the form ofF given by Eq.

~10! is equivalent to Eq.~9!. In this representation, the Ker
congruence can be described via a retarded-time constru
~in particular, the Schwarzschild and the Kerr metrics cor
spond to the world line of a particle at rest at the origin a
to the world line of a particle at rest ‘‘at a distanceia from
the origin,’’ respectively@13#!. This one-to-one correspon
dence between straight lines in complex Minkowski spa
and the class of the DKS solutions having singularities c
tained in a bounded region allows us to boost the Kerr so
tion via the DKS formalism. Indeed the complex Minkows
space inherits the linear structure of the real Poincare´ group,
and therefore the boosted Kerr metrics are the real slice
the boosted solutions inCM4. This is readily seen observin
that, in spite of the complex character of the world line, t
vector of its four velocity is actually real and has to follo
the real Lorentz transformations. Therefore, the boost yie
a complex world line with a real four velocity obtained b
the corresponding Lorentz transformation from the rest f
velocity.

It is worth noticing that a very similar situation occurs
the case of the Maxwell equations. Indeed applying a co
plex boost to the Coulomb field one obtains the gene
boosted ~Lienard-Wiechert! field @12#. Actually Newman
7-2
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KERR-SCHILD APPROACH TO THE BOOSTED KERR SOLUTION PHYSICAL REVIEW D61 044017
was the first to suggest, on the base of this analogy,
Kerr-Schild boosted solutions could eventually be found
this way.

To obtain the general case of a solution with a boost
consider, therefore, a straight, complex world line with thr
velocity VW in CM4

x0
m~t!5x0

m~0!1jmt; jm5~1,VW !. ~13!

Writing the functionF in the form

F5AY21BY1C, ~14!

where

A5~ z̄2 z̄0!v̇02~v2v0!zG 0 ;

B5~u2u0!v̇01~z2z0!zG 02~ z̄2 z̄0!ż02~v2v0!u̇0 ; ~15!

C5~z2z0!u̇02~u2u0!ż0 ,

from F50 we obtain the following explicit solutions for th
function Y(x):

Y1,25~2B6D!/2A, ~16!

whereD5(B224AC)1/2. On the other hand, from Eqs.~7!
and ~14! one obtains

Y52~B1 r̃ !/2A, ~17!

and consequently

r̃ 57~B224AC!1/2. ~18!

This relation reflects the ‘‘twofoldedness’’ of the Kerr geom
etry: the complex radial coordinater̃ can be expressed asr
1 ia cosu and the double sign corresponds to a transit
from the ‘‘positive’’ r sheet of the metric to the ‘‘negative’
one wherer<0.

In the DKS notation the metric can be written as

gmn5hmn1~m/P3!~Z1Z̄!em
3 en

3 , ~19!

where

P5 ẋo
m~t!em

3 . ~20!

The fielde3 can be normalized by introducingl m5e3m/P so
that ẋ0

ml m51, and this yields the following, equivalent form
of the metric:

gmn5hmn1m~P21Z1P21Z̄!l ml n . ~21!

The complex radial distance~7! is given by

PZ215 r̃ , ~22!

and the twistor parametersl1 andl2 may be represented i
the form
04401
at

e
e

n

l15xmem
1 , l25xm~em

3 2Ȳem
1 ! ~23!

~the explicit form of the DKS tetradea is given in the Ap-
pendix!.

IV. BOOSTED KERR SOLUTION: EXAMPLES
AND BEHAVIOR OF SINGULARITIES

To analyze the DKS boosted Kerr solutions we repres
the world line in the formx0

m(t)5$t,xW0(0)1VW t%, and ob-
serve that the complex parametert may be always chosen in
such a way that Ret corresponds to the ‘‘real time’’t ~see
@13# for details on complex Minkowski space!. The complex
initial displacement can be decomposed asxW0(0)5cW1 idW ,
wherecW anddW are real three-vectors with respect to the spa
O~3! rotation. The real partcW defines the initial shift of the
solution, and the imaginary partdW defines the size and th
position of the singular ring as well as the correspond
angular momentum. It can be easily shown that in the r
frame, whenVW 50, dW 5dW 0, the singular ring lies in the plane
orthogonal todW and has a radiusa5udW 0u. The corresponding
angular momentum isJW5mdW 0.

In the case of a boost orthogonal to the direction ofdW , this
vector is not altered by Lorentz contraction (dW 5dW 0 , udW u
5a), while if dW andVW are collinear we have

dW 05dW /A12uVW u2. ~24!

This shows that the parametera coincides with its rest value
a0 if dW andVW are orthogonal, while

a05a/A12uVW u2, ~25!

if VW anddW are collinear.
In order to calculate the parametersA,B,C it is conve-

nient to express the complex world line in null coordinate

21/2z05x01 iy0 , 21/2z̄05x02 iy0 ,
~26!

21/2u05z01t0 , 21/2v05z02t0 .

The Killing vector of the solution will then be

jm5221/2$u̇02 v̇0 ,ż01zG 0 ,2 i ~ ż01zG 0!,u̇01 v̇0%, ~27!

while the functionP takes the form

P5em
3 ẋ0

m5u̇01Ȳż01YzG 02YȲv̇0 . ~28!

The complex radial coordinater̃[PZ21 is given by Eq.
~18!. As for the standard Kerr solution, one can represenr̃
as a ‘‘sum’’ of the real radial distancer and an angular
coordinate. Then Eq.~18! can be used to fix the relatio
between the polar coordinatesr ,u,f and the null Cartesian
coordinates~26! through the expressions~15! for the coeffi-
cientsA,B,C. Because of the formula~7!, the singular re-
gions are defined by the zeros of the functionr̃ . In what
7-3
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ALEXANDER BURINSKII AND GIULIO MAGLI PHYSICAL REVIEW D 61 044017
follows, we present some examples of boosted Kerr soluti
and then discuss the general features exhibited by them

Example I. A spinning particle moves with the speed
light in the positive direction of thez axis, and the three
vectordW 5(0,0,a) is also directed along thez axis. The com-
plex world line is, therefore, given byt0(t)5t, z0(t)
5 ia1t, x0(t)5y0(t)50. In null coordinates this yields

A2u05z01t5 ia12t, A2v05z02t5 ia, z05 z̄050,

so thatu̇05A2, v̇050, ż05zG 050, and

u2u05~z2 ia1t22t!/A2,

v2v05~z2 ia2t !/A2,

z2z05z, z̄2 z̄05 z̄.

Formula ~15! implies that the coefficientsA,B,C are given
by

A50, B5t2z1 ia, C5x1 iy .

As a result the functionF acquires the form

F5x1 iy2Y~z2 ia2t !, ~29!

and the solution of the equationF50 is

Y5~x1 iy !/~z2 ia2t !, ~30!

so that

r̃ 52dF/dY5z2 ia2t, ~31!

and, therefore, the metric has no singularities@there is no real
solution to the system of Eqs.~8!#. On the other hand, settin
a50, we obtain the case of spinless particle, and a mov
singular plane is placed atz5t. Therefore, there is no
smooth limit asa→0.

Example II. A spinning particle moves with the speed
light in the positive direction of thex axis, orthogonal to the
three vectordW which defines the direction and the value
the angular momentumJW5m(0,0,a), a5udW u. We have the
complex world linet0(t)5x0(t)5t, y0(t)50, z0(t)5 ia.
Correspondingly, the world line in null coordinates is

A2u05 ia1t, A2v05 ia2t, A2z05t, A2z̄05t,

and the velocities areA2u̇051, A2v̇0521, A2ż051,
A2zG 051. We have, therefore,

A2~u2u0!5z1t2 ia2t, A2~v2v0!5z2 ia2t1t,

A2~z2z0!5x1 iy2t, A2~ z̄2 z̄0!5x2 iy2t,

and the coefficientsA,B,C take the form

A5~2x1 iy2z1t1 ia !/2, B5 ia1 iy2z;
~32!

C5~x1 iy2z2t1 ia !/2.
04401
s
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The functionY(x) takes the form

Y5~x2t2z1 iy1 ia !/~x2t1z2 iy2 ia !. ~33!

The functionr̃[PZ21 takes the form

PZ2152dF/dY5x2t. ~34!

This solution is, therefore, singular: there is a moving sing
lar plane placed atx5t.

Example III. The absence of a smooth limit in the fir
example may be better understood considering the gen
case in which the value of the velocity is arbitrary as well
its direction with respect to the angular momentum. Witho
loss of generality, we can consider the boost performed w
a parametera in thez direction (a5vz /c), and a paramete
b in the x direction (b5vx /c), while the angular momen
tum is defined bydW 5(0,0,a). Denotingw25a21b2 the fol-
lowing general formula for the coordinate relations can
obtained:

~x2bt !A12a21 iyA12w25~r 1 iaA12b2!eif sinu,
~35!

z2at52r cosu/A12b2.

The singular regionr 50,cosu50 is placed on the planez
5at and is described by

~12a2!~x2bt !21~12w2!y25a2~12b2!. ~36!

Let us first consider the cases corresponding to the two
amples above. Ifb50 ~the boost in the direction of the
angular momentum! the singularity is a ring of radiusa0

5a/A12a2 located on the moving planez52at. In this
case, the coordinate relations are the following:

x1 iy5~r 1 ia !eif sinu/A12a2, ~37!

z2at5r cosu. ~38!

The radius of the ring grows asa increases, and fora→1
the singularity goes at infinity. At first sight, this result look
strange. However, it is easy to check that the radius of rin
a0 , the rest value ofa. The position of singular region be
comes a ring of constant radiusa0 if we keepa05const.

However, keepinga5constÞ0 and taking the limita
51 we obtain that the singular region is going to infinity,
there will not be a singularity in the finite region, in agre
ment with the results of Example I. We will discuss th
situation later in connection with the problem of renorm
ization of parameters.

In the casea50, the boost is performed with a spee
orthogonal to the direction of angular momentum. The s
gular region is a moving ring oblate in thex direction with a
Lorentz factorA12b2 and located on the planez50. In this
case the coordinate relations are

~x2bt !/A12b21 iy5~r /A12b21 ia !eif sinu, ~39!

z5r cosu/A12b2. ~40!
7-4
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As in the previous example, the limitb→1 is not smooth
since the singular region is a line parallel to they axis placed
at x5t, z50.

In the general case described by Eq.~37! the singularity is
a moving ring on thez5at plane, deformed in thex direc-
tion by a factorA(12b2)/(12a2) and in they direction by
a factorA(12b2)/(12w2). The ultrarelativistic limit corre-
sponds tow51 and the singular region is a couple of straig
lines parallel to they axis. Therefore, we can conclude th
the nonsmoothness and the noncommutativeness of the
iting procedure is a general feature of the boosted Kerr
lutions. Another peculiarity, which can be seen by the ana
sis of the above examples is a nontrivial coordin
dependence of the functionY which forms the principal null
congruence. As a consequence the congruence itself acq
a nontrivial coordinate dependence and a nonzero expan
u and twist v. This property is conserved even in the u
trarelativistic limit. For instance, in the case of Example I t
expansion and twist of the congruence are defined byZ5u
1 iv @8# and are given byZ/P52(dF/dY)215(z2t
1 ia)/@(z2t)21a2#. One sees that there is no singularity
this case, and expansion tends to zero only at thez5t plane
where the twist takes the constant value 1/a.

V. CONCLUDING REMARKS

There are three different physical situations which sho
be described by the boosted Kerr solution. The first is c
nected with the original Aichelburg-Sexl problem, name
the description of the gravitational field of lightlike particle
with or without spin. For this case the problem of ‘‘reno
malization’’ of the parameters of the solution has been d
cussed by many authors@5,7#. Indeed the lightlike particle
must have an infinitely small rest mass in such a way that
boosted momentum will be finite. Similarly, renormalizatio
of other parameters, such as charge and angular momen
has been discussed@6,7#, and there is not yet a unique agre
ment concerning this renormalization procedure. The ab
considerations on the behavior of the singular ring under
boost in the orthogonal direction suggest, however, that
physical most satisfactory way to perform the renormali
tion in this case should be to keepJ5ma5const. In fact, in
this way the projection of the angular momentum on
direction of the boost is invariant with respect to the value
the boost. One can come to this conclusion also by con
ering spinning particles in a quantum context, since the p
jection of the spin on the boost direction is the helicity whi
indeed must be considered as a constant. In terms of the
valuesa0 andm0 we have to setJ5ma5m0a05const. As
far as m5m0 /A12v2 by the boost, this yieldsa0

5a/A12v2.
Therefore, for finite values ofa the rest valuea0 and the

location of the singularitytend to infinityin the ultrarelativ-
istic limit, explaining the results of Example III, and clarify
ing the absence of the singularity in the ultrarelativistic lim
of Example I.

One should note that, keeping the valuea05const during
the limit, one enforces a fixed size of the singular ring,
that putting in the limitm050, one obtains in fact a limiting
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twist-free solution withJ5m0a0→0. This corresponds to
the known results onpp-wave limiting metrics@5–7,18,19#
with a finite size of the singular ring and, corresponding
vanishing total angular momentum@7#.

These arguments are not valid for Example II since
corresponding projection of angular momentum is initia
zero, and we have here a twist-free solution with a fin
location of singularity.

The second application, which has led to the recently
newed interest in this problem, consists in modeling
gravitational field of elementary particles with finite re
mass under the boost. A specific feature of this case is
the rest massm0 as well as the projection of the angula
momentumJ5m0a05ma have to be kept constant. Thi
leads tom05const, and consequently we obtain a finite p
sition of singularity which is determined by the value ofa0.1

However, the parameter of the solutiona has to be scaled by
the boost asa5a0A12v2.

In both problems described above one deals with na
singularities rather than black holes, since the values
mass, spin, and charge of elementary particles typically c
respond to this kind of solution.

The third physical problem is connected with astrophy
cal applications@1# of the boosted black-hole solutions. I
this case also the behavior of the horizon and of the er
sphere under the boost are of interest. A simple anal
using the above suggested coordinates shows that the
zon as well as the ergosphere are simply given by the kno
formulas for the Kerr case wherem must be the relativistic
mass parameter.

The method proposed here allows us to describe inex-
plicit form the metric and the behavior of the singular regi
of the Kerr solution under arbitrary boost and with arbitra
orientations of the angular momentum. In particular, we ha
shown that the Kerr theorem automatically allows us to o
tain the exact form of the boosted solution in an asympt
cally flat coordinate system and the equations describing
singularities in these coordinates. The ultrarelativistic limit
a singular point of the Lorentz transformations, and we ha
obtained a quite general picture of the nonsmoothness
noncommutativeness of the limitsa→0, v→1, and r→0.
The method shows that lightlike limits of the Kerr geomet
exist which belong to the DKS class and have twisting pr
cipal null congruences and nonzero total angular momen
J.

We want to stress that the present work does not giv
definitive answer to the ultrarelativistic limit of the Kerr so
lution. Our aim here was rather to provide a unifying fram
work to be used to investigate various limits of the Ke
geometry. All such limits are mathematically valid, but co
respond to different physical situations and therefore to
ferent behaviors of the physical quantities like mass and

1One sees that singular ring is not subjected to Lorentz contrac
in this case since it lies in the plane orthogonal to the boost di
tion.
7-5
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gular momentum, as well as to different locations a
behavior of the singularities.

The present results can be easily extended also to
boost of the Kerr-Newman solution and of the Kerr-Sen@20#
solution, generalizing the Kerr solution to low-energy stri
theory. It was shown in@21# that one of the principal nul
congruences retains its properties to be geodesic and s
free, and that the Kerr theorem remains valid for the Ke
Sen solution too@22#.

ACKNOWLEDGMENTS

The authors gratefully acknowledge Professor Elisa Br
Udeschini for interesting discussions. A.B. is grateful to P
fessor Elisa Brinis Udeschini for hospitality at Politecnico
Milano and to G. Alekseev for useful conversations.

APPENDIX

Let ea be a null tetrad and define the Ricci rotation co
ficients as

Gbc
a 52em;n

a eb
mec

n .

The principal null congruence has thee3 direction as the
tangent. It will be geodesic if and only ifG42450, and shear
free if and only ifG42250 ~the corresponding complex con
jugate terms areG41450 andG41150). The null tetradea

m

can be completed as follows:
k,

o-

04401
d

he

ear
-

s
-
i

-

e15dz2Ydv,

e25dz̄2Ȳdv, ~A1!

e45dv2he3.

The inverse tetrad has the form

]15]z2Ȳ]u ,

]25]z̄2Y]u ,
~A2!

]35]u2h]4 ,

]45]v1Y]z1Ȳ]z̄2YȲ]u .

It was shown in@8# that

G425G42aea52dY2hY,4e4.

The congruencee3 is geodesic ifG42452Y,4(12h)50,
and is shear free ifG42252Y,250. Thus, the functionY
with the conditions

Y,25Y,450,

defines a shear free and geodesic congruence.
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