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Curvature dependence of running gauge coupling and confinement in AdS-CFT correspondence
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We construct a type 1IB supergravifyiewed as dilatonic gravijybackground with a nontrivial dilaton and
with curved four-dimensional space. Such a background may describe another vacuum of maximally super-
symmetric Yang-Mills theory or strong coupling regime (abn)supersymmetric gauge theory withower-
like) running gauge coupling which depends on curvature. A curvature dependent quark-antiquark potential is
calculated where the geometry type of hyperb@icde Sitter univergeshows(or does not shoythe tendency
of the confinement. A generalization of the type IIB supergravity background with a nonconstant axion is
presented. The quark-antiquark potential, being again curvature dependent, has the possibility to produce the
standard area law for large separations.

PACS numbd(s): 04.65+€, 11.15-q

[. INTRODUCTION very complicated here due to the double role of type 1IB SG

AdS conformal field theoryCFT) correspondencél] backgrounds. From one side they may indeed correspond to

) L : . IR gauge theory(deformation of the initial SUSY YM
may provide new insight into the understanding of nonper-theory). At the same time such a background may simply
turbative QCD. For example,

in frames of type O Strng gescribe another vacuum of the same maximally supersym-
theory the attempt§2] have been done to reproduce suchmetric YM theory with a nonzero vacuum expectation value

well-known QCD effects as running gauge coupling and pos(yEgy) of some operator. Because of the fact that operators
sibly confinement. It is among the first problems to get thecorresponding to deformation to another gauge theory are
description of well-known QCD phenomena from bulk or not known, it is unclear what the case under discussion is
boundary correspondence. (interpretation of SG backgroundOnly some indirect argu-

In another approach one can consider a type IIB supements as below may be given. As we see these arguments
gravity (SG vacuum which describes the strong couplingindicate that the type 1IB SG background discussed in this
regime of a nonsupersymmetric gauge theory. This can baork most probably corresponds to another vacuum of the
achieved by the consideration of deformed type [IB SGsuper-YM theory under consideration. Then renormalization
vacuums, for example, with a nonconstant dilaton whichgroup (RG) flow is induced in the theory via giving a non-
breaks conformal invariance and supersymmégySy) of  zero(VEV) to some operator.
boundary supersymmetric Yang-Mill&¥M) theory. Such a In the present paper, we continue the study of running
background will be the perturbation of Ad8Ss vacuum. dilaton and confinement from type IIB supergravity back-
The background of such a sofwith a nontrivial dilaton grounds with nontrivial dilaton. We generalize the solution
which interpolates between Ad®V) and flat space with Of Ref. [3] for nonzero curvature ad-dimensional space. As
singular dilaton(IR) has been found in Ref3] where also @ result, the type 1IB supergravity background is changed
conformal dimensions fodilaton couplediscalar have been drastically. The running dilatorigauge coupling depends
found. explicitly on the four-dimensional curvature. The structure of

This solution of I1B SG 3] has been used in Rd#] with quark-antiquark potential is modified. In a sense, confine-
the interpretation of it as the one describing the runningnent would become the characteristic of the Universe.
gauge couplingvia exponent of dilaton It has been shown  Let us remark on the AdS-CFT interpretation of the type
that running gauge coupling has a power law behavior witH!B SG background. Choosing the coordinates in the asymp-
an ultraviolet(UV) stable fixed point and a quark-antiquark totically AdS; spacetime as
potential[5] has been calculated. QCD properties of such a
background have been discussed in detail in Réfs Modi- 3
fications of the IIB SG solution with nonconstant dilatc] ds?2=do?+ (o) 2, midx‘dxj, (1)
due to the presence of an axipfl, constant self-dual vector i.j=0
[8], or world volume scalaf9] give further proof of the

possible confinement and asymptotic freedom of the boundg; ;s assume the scalar field e.g., dilaton, axion, or other
ary non-SUSY gauge theory. Unfortunately, the situation isfields, obeys the following equation:
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near the boundary. Hemd? is the “mass” of A ando—0 the last section. Additional solutions of type 1IB supergravity
corresponds to the boundary of AdS. Theris associated are presented in two Appendixes.
with the operator®, with conformal dimensionA=2

+/4+M?Z. The solution of Eq(2) is given by Il. SOLUTION, RUNNING GAUGE COUPLING
AND QUARK-ANTIQUARK POTENTIAL
A=Ae (4720 Be 4, ©)
We start from the following action of dilatonic gravity in
The solution corresponding t# is not normalizable but the d+1 dimensions:
solution toB is normalizable. According to the argument in

Ref.[19], the non-normalizable solution would be associated _ 1 f d+1 v

' == — JV-G(R—A—aG* .
with the deformation of théV=4 theory by®, but the nor- S 167G d V=G aG*d,$d,¢)
malizable solution would be associated with a different )

vacuum where?, has a nonzero vacuum expectation value. . N

The behavior of the dilaton found in this paper is normaliz-In the following, we assuma®=—A anda to be positive.
able and seems to be associated with the dimension 4 operhbe action(7) is very general. It contains the effective action
tor, say tr=2. Then the argument in Reff19] would indicate ~ Of type 11B string theo.ry. TheT type IIB supergravity, which is
that the solution found in this paper should correspond tdhe low energy effective action of the type IIB string theory,
another vacuum ofV=4 theory. Nevertheless, there might has @ vacuum with only a nonzero metric and the anti-self-
still be the possibility that the solution corresponds to non-dual five form. The latter is given by the Freund-Rubin-type
supersymmetric gauge theory. Since there occurs the cofSatz

densation of tF? in the usual nonsupersymmetric QCD,

however, the solution given here would describe some fea- F __ E 01 4

tures typical for the nonsupersymmetric theory. Hypr\ 2 Cwvprns MV TS
The situation is even more complicated due to limits of

validity of dual SG description. In order that the classical JA

supergravity description is valid, the curvature should be Fijkpa= ~ = €ijkpa> ihj,...=5....9. (8)

small and the string coupling should be also small. If the

curvature is large, thex' corrections from string theory' The vacuum has the topology of Ag8S®. Since AdS has
would appear. In the AdS'CFT correspondence, the radlua four-dimensional Minkowski space as a subspace, espe-
Rs of the curvature is given by cially on its boundary, AdShas the four-dimensional Poin-
caresymmetry I1S@1,3). S° has, of course, S@) symmetry.

As an extension, we can consider the solution where the
dilaton is nontrivial but the anti-self-dual five form is the
same as in Eq8). Furthermore if we require the solution has

Rs=(4mgN)*™. (4)

Here g is the string coupling andN is the number of the

coincident D-branes. Therefore we should require the symmetry of 1SO(1,3) SO(6), themetric should have
gN1. ®) the following form:
. . ds?=G,,,dx*dx"+gm,dx"dX", 9
On the other hand, the classical picture works when the
string coupling is small: whereg,,, is the metric of 8 and Ref/[3]:
g.<1. (6) d-1 o
G, dxkdx =f(y)dy?+y X, 7;dxdx. (10)
ij=0

In the solution given in this paper, there appears the curva-
ture singularity andys depends on the coordinates since the .
dilaton is nontrivial. If we concentrate on the behavior nearIn order to keep the symmetry of ISO(1;850(6), the di-

the boundary, which is asymptotically AdS and is far from 1o field 4 can only depend og. Then by integrating five

the Singularity the solution would be reliable and SG de_coordinates on % we obtain the effective five-dimensional

scription would be trusted. theory, which qorresponds tb=4_ andqz% case in I_Eq(?).
The work is organized as follows. In the next section weV€ keep working with above dilatonic gravity as it will be

give the type I1B supergravity background with nonconstan€2Sy 10 come to type IIB supergravitg€4, a=3) at any

dilaton and nonflat four-dimensional space. Via AdS-CFT itSteP- o _ _

gives the curvature dependeffiowerlike running gauge Fr_om the variation of the actiofiv) with respect to the

coupling and quark-antiquark potential where hyperbolic ge Metric G**, we obtairt

ometry seems to support confinement. In Sec. Il we gener-

alize the background of Sec. Il for the case when axion pre-

sents. (Curvature dependentquark-antiquark potential is  The conventions of curvatures are given IR=G*'R

found. It is shown that inflationary Universde Sittey with R, ,=-T%, +T -T2 T, +I'7T'} I7,=3G"(G

. . . " X . . M\, K [N A7
axion might predict confinement. Some outlook is given in+G,, ,—G

pv
78N
/J.)\,V)'
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1 A Substituting Eq(18) into Eq. (15), we can solve it algebra-
0=R,,— EGWR+ 5GW— a ically with respect td:
| dob— 26, G0 bo. b (11) f= dd-1) (19
pTTVE 2w TerTe 4y°N2(1+ ac®/ N2y +kdINy)

and from that of dilatonp Then we find from Eqs(18) and(19),

0=03,(V-GG""d,8). (12) d(d—1)

: ‘ﬁch YN 2520215 ac?in2yT1 kdin?y)

We assume thap depends only on one of the coordinates, y (1+ac y y)

sayy=x as in type IIB supergravity solution with the sym- (20
metry of ISO(1,3)X SO(6) and we also assume, as a gener- . .
alization of Eq.(10), thatG,,, has the following form: Wheny is small, f(y) in Eq. (19) behaves as
d d-1 d(d—l)yd‘z
d2,,= > G, dxdx’=f(y)dy?>+y > g;dXdx. f) =
w,v=0 i,j=0
(13

(21)

which makes a curvature singularityyat 0. The scalar cur-

Here g;; is the metric in the Einstein manifold, which is vature behaves whey~0 as
defined by
R~ac?y 4. (22)

rij=kg . (14 _ . .
The curvature singularity would be generated by the singular

Herer;; is the Ricci tensor given byg;; andk is a constant, behavior of the dilatorp wheny~0:

especiallyk>0 for sphere and&=0 for the flat Minkowski

space and<0 for hyperboloid. Such a solution generalizes _ /d(d—l)I 23

the previous solution of Ref3] (wherek=0) as boundary ¢(y)~sgnc) 4o ny. (23

gauge QFT lives now in four-dimensional curved spacetime.

The case ok=1 is especially interesting as it corresponds toHere sgn¢) expresses the sign of

gauge theory in de Sittdinflationary Universe.

The equations of motiofil1) and(12) take the following +1 if c¢>0,
forms: sgrie)=1 -1 it c<o, (24
1rf dd-1)1 N o
0= 2y 8 FJF ?H E(d’ )%, 19 The curvature singularity tells there should appear dfe
correction from the string theory and the supergravity de-
1 f scription would break down wheg~0. Conversely and
O=—(rij— Ergij) — hopefully, the curvature singularity might be apparent and
y vanish when we can include full string corrections. In any
d—1f (d—1)(d—4) 1 case, the solution would be valid if we investigate the behav-
[ 2 W_ 8 yg ior near the boundaryy(— + ).
We also note that the dilaton field behaves near the
AN o« boundary §— +=) as
+?f_§(¢,)2]giji (16)

d-1
¢~¢o—C\/W+“'- (25

The term of©(1/y%?) might tell that the solution given here
would correspond to the condensation of the dimenslon
operator, say, 2. In the usual norer lower-
)supersymmetric QCD, it is widely believed that there would
occur the condensation ofR?. Therefore not depending on
that the solution given here corresponds the real deformation
from the N=4 theory or the deformation of the vacuum, the
solution would possibly reflect the structure of nonsupersym-

, f metric QCD.
¢ _C\/);' (18) If we change the coordinateby p, which is defined by

o=<\/§¢')’. (17)

Here the prime expresses the derivative with respegtaiod
r=g"r;;=kd. Equation(15) corresponds to 4,v)=(d,d)

in Eq. (11) and Eq.(16) to (w,v)=(i,j). The case of
(w,v)=(0,) or (i,0) is identically satisfied. Integrating Eq.
(17), we find
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f(y) the metric in Eq(13) has the following form:
= oV

d-1
G, dx*dx’=do?+S(0) X, g;dxdx, (34
i,j=0

f . \/ d(d—1) 6
B 3y 2 27y 2,,d 20
4y"A (14 ac®/A Ty +kd/\y) whereS(o) is given by solvingy in Eq. (33) with respect to

the metric in Eq(13) has the following form: o: (o) =y(a). _ _ _
We now consider the case<O0. First let the dilaton field
d-1 to be constant or small. Then from E(L9), wheny de-

G, dx*dx'=Q%(p)

dp2+_2 gijdxidxj . (27 creases from the positive infinity, the functibimcreases and
hj=0 diverges at a finite value of : y=y, and after that the
signature of the metric seems to change. This is not, how-

2 . . . - .
HereQ~(p) is given by solvingy in Eq. (26) with respect to ever, real but apparent. Negi=y,, the functionf(y) be-

p: Q%(p)=y(p). Whenp is small,y is large and the struc-

ture of the spacetime becomes AdS asymptotically. From thaves as
(26), we find fo
f(y)~ : (39
Jd(d—1) ) Y=Yo
P=VI2 [1+O0(y )] (28 . _ _
y wheref is a constant. When we introduce a new coordinate
Therefore we find u by
R2 y=Yo=u? (36)
Q2%(p)= =—[1+0(p?)],
(P)=y(p) PZ[ (p°)] the metric has the following form wheyry,:
Jd(d—1) ot o
Re=—7— (29) ds§+l~4f0du2+y0i 12:0 mdx'dx. (37)

We can compare the above behavior with that of the previ
ous Ad$XS® solution in type IIB supergravityf4]. The
AdS; part in the solution has the form of

The metric in Eq.(37) is regular even when~0 (y~Yy)
and there is no curvature singularity. The change of coordi-
nates in Eq.(36) tells thaty increases again asincreases
1 d—1 whenu>0. Then when we write the solution by the coordi-
d2 .« =(47a.N)Y22| dp2+ dxidx |. (30 nateu, the solution connects two boundariesuat — and
s, = (47ON) P i,jZ:O i (30 u=+oo. The structure of the spacetime, however, changes

when the dilaton becomes large. Let us wrifgy) in the
Therefore we find following form:

Rs=(4mgsN)™™, 31 ‘ d(d—1) h ac? @8
Y= gonznrgy WY)=1+ 754+t 5-. (38

where g, is the string coupling andN is the flux of the 4y*\*h(y) Noye T \%y
five-form F in Eq. (8) through S, which is produced by the . . . . .
N coincident D3-branes. Using the definition Bf in Eq. We now investigate the conditidn(y) vanishes o (y) di-

20) th lutiong1 20) have the following form: verges and changes its sign. The minimbpg, of h(y) can
(29), the solutiong(19) and(20) have the following form be found by the equatiothh(y)/dy=0, which can be solved

R2 as follows:
f= >
4y?(1+c?R%/2d(d—1)yd+k/(d—1)y) ac?\ V@-1)
Y=Yo=| (39
Jan
=c . i
¢ YN ay# 211 2R2d(d—1)yo+ Ki(d—1)y) ~ andwefind
k(d=1)[ ac?|~Y0@-D
% e v
Here we puta=3 andd=4 in order to get explicitly 1B (40
supergravity background. On the other hand, if we change
the coordinate by Thereforeh(y) does not vanish ih,;,>0, that is,
k )\2 1-d
B X S S
a'—f dyVf(y), (33 c>cp= - k(d—l)) 41
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When 02>c§, the solution connects the boundaryyat ©
with the singular boundary at=0 as in thek=0 andk
>0 cases.

We now consider the running of the gauge coupling. Usu-
ally the AdS string coupling, which is the square of the cou- =—d(g—9s)—

pling in N=4 SU(N) super-Yang-Mills wher =4, is pro-
portional to an exponential of the dilaton fieft] which we
assume in the following. From EQO0), wheny is large and
d>2, we find that the dilaton field behaves as

- d(d-1)
¢—¢0+CT

2y~ 92 2 kd

- T \y—dre-1
d Tarz Y e

(42

Here the ellipsis expresses the higher order terms wf\We

PHYSICAL REVIEW D 61 044014

_yde
BU)=U g5

2kdgBecya
(d+2)\3

dn )2/d+1(g_gs)2/d+1

— + ...,

26ca " “

The leading behavior is identical with the previous works
[4,6—§ but the next to leading term contains the fractional
power of (@—gs) although the square ofj- gs) appears for
k=0 case. We should note that the qualitative behavior does
not depend orB which appears in the coupling3).

Hence, we found that beta function explicitly depends on
the curvature of four-dimensional manifold. Of course, cur-
vature dependence is not yet logarithmic as it happens with
usual quantum field theorig®QFTs9 (perturbative consider-

X

now assume the gauge coupling has the following formation) in curved spacetiml1]. The powerlike running of
[5-9] (of course, other ways to define running gauge couyauge coupling is much stronger tharkia 0 case. Note that

pling might be possible
g:gsezﬁ\sa;a(a_lj((ﬁ_‘ﬁo)

dx (d+2)\3
(43)
In the case of type 1IB supergravityrE 1),
__[d(d—-1) A
and using the definition dR in Eq. (29), we find
_ _CRs keRS —d/2-1
9_95(1 a’  T2ar2d-v’
(45)

The next-to-leading order term is proportionalktaf k+0.

previous discussion of powerlike running includes grand uni-
fied theoriedGUTs) with large internal dimensiongl2]. In
the case under investigation we get the gauge coupling beta
function as an expansion on fractional powers of gauge cou-
pling.

We now consider the static potential between “quark”
and “antiquark” [5]. We evaluate the following Nambu-
Goto action:

1
S=5- f drdo\delg},,d,x"dpx"), (48)
with the “string” metric gfw, which could be given by mul-

tiplying a dilaton functionk(¢) to the metric tensor in Eq.
(9). Especially we choosk(¢) by

()= @ T 0_ g 2V

d)\ydlz (49)
In the case of type IIB supergravity,
d(d—-1)

y=B=\—5— (50)

We consider the static configuratiod=r, x*=x=0, x?

This changes the renormalization group equations drasti=y3—...=xd-1=0 andy=y(x). We also choose the co-

cally. If we multiply N*2 with g, we obtain the 't Hooft
couplinggy=gN'"2 If we define a new coordinate by

y=U? (46)

U expresses the scale on tfimundary d dimensional space

ordinates on the boundary manifold so that the line given by
x%=const, x!=x and x?=x3=...=x9"1=0 is geodesic
and g;;=1 on the line. Substituting the configuration into
Eq. (48), we find

T f
S= Ef dxk(e(y))y (Ty)(ﬁxy)2+1. (51

(due to holography10]). Following the correspondence be-

tween long-distances and high-energy in the AdS-CFTHereT is the length of the region of the definition of The
schemelJ can be regarded as the energy scale of the boundsrbit of y can be obtained by minimizing the actid@or
ary field theory. Then from Eq43), we obtain the following  solving the Euler-Lagrange equation 8S/dy
renormalization group equation: —dyx(6SI 8(d,y))=0. The Euler-Lagrange equation tells that
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k(o (y))y Here E(L) expresses the total energy of the “quark-
0= > (520  antiquark” system. The enerdgg(L) in Eg. (58), however,
VIF()/Y1(axy)+1 contains the divergence due to the self-energies of the infi-

nitely heavy quark and antiquark. The sum of their self-

IS a constant. If we assunyehas a finite minimuny,, where energies can be estimated by considering the configuration

9Yly=y,=0. Eq Is given by x=r1, xt=x?=x3=...=x9"1=0, andy=y(0) (note that
X1 vanishes hepeand the minimum ofy is yp where brane
Eo=k[ &(Y0)1Yo- (53) Wwould lies. We divide the region foy to two ones,~>y
>y, andyy>y>yp . Using the parametrization of E¢G4)
Introducing a parametdr we parametrize by and identifyingt with o (t=0) for the region>y>y;,
we find the following expression of the sum of self-energies:
Y=Y, cosht. (54)
Then we find * f(p(y(D))) [y ()]
[ a0/ .
—= cosh ®2t{1+Bcosh 1ty, *+-- -}, Yo
T { Yot} +2 [ "ayko(\y Ty, (59
YD
O 2A ~ kd
A= dd-1) BZ_W' (59 Then the finite potential between quark and antiquark is

given by

Here we assume that is large enough and the orbit of the

string does not approach to the singularityatO, where the

supergravity description breaks down. Takihg + o, we E.q(L)=E(L)—Eqy
find the distancel between “quark” and “antiquark” is ad s

given by :E(Ciz)[ +B(C5,2D0+D)<i 2+...
Al AL Cap Csp ’
L Cslzy51’2+ Bcsfzy63’2+ -
A A . 4
Ddzzf dtcosh (4" 12te t+ 1
. 2@ Dr(a/2)? °
C,= fﬁwdtcosh at= T. 2(d=3)/2[ ((d— 1)/4)?

(56) T T(d=1)R) (60

We should note that the largg corresponds to small. As
one sees the next-to-leading correction to distance depengfre we neglected thie independent terms. Note that lead-

on the curvature of spacetime. ing and next-to-leading term does not depend on the param-
~ Equation(56) can be solved with respect ¥, and we  gtery in Eq.(49). The leading behavior is consistent with the
find previous works and attractive sin@,=—2.39628-- but
we should note that next-to-leading term is lineailir{for
Csp\2 2BCs)p[ AL \? k=0 it was cubig, which does not depend on the dimension
yo—(ﬁ) ( Can (@) o ] (57 d. SinceCs;,Do/Csp+ D,=3.49608>0 andB is negative if

k is positive and vice versa from E@55). Therefore the
Using Egs.(52), (54), and (56), we find the following ex- !lnear potential term in E((.E}O) is repulswe ifk>0 (s_phe_re,
pression for the actio: i.e., gauge theory in de Sitter Univejsand attractive ifk
<0 (hyperboloid.
Of course, the confinement depends on the largpehav-

S— lE(L) ior of the potential. Wherl is large, however, the orbit of
2 ' the string would approach to the curvature singularity at
=0, where the supergravity description would break down.
dx k 5 o Despite of this, it might be interesting to investigate the large
E(L)= J gt (py(V)7y (D) _ L behavior. Since the behavior d{y) and the dilatone
dt k(o(yo)yo wheny is small is given by Eqg21) and(23), the integrand

(58 in Eq. (51) behaves as
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f(y) J d(d—1
k(¢(y))y \/(Ty(&xy)2+ 1~y39“(°"“a‘a’1”2“\/ ;acz)y“"’*(ﬁxy)zﬂ

_ \/ dd-b) (9,0)2+(0)0 (61)
Aac?sgr(c)\d(d—1)/2+(d+1)/2]2 * '

Here

DEysgn(c)\@aw—_lde-%—l)/Z —_ 2sgric)vd(d—1)/2+2

_ _ 2
" sgr(c)Jd(d—1)/2+ (d+1)/2 62

Whend=4, 0<vy,<2 whenc>0 and y<0 whenc<0. For the static configuration’=r, x'=x=0, x*°=x3=...
According to the analysis in Ref19], the orbit of the string  =x9"1=0, andy=y(x), we find, instead of Eq(51)

goes straight to the region~0 whenc>0 (0<vy,<2) and

the potential becomes independentlofin this case, how- T y 1f(y) )

ever, the potential would receive tl€ correction from the S= ﬂj dxk(¢(y)) T(ﬂxy) +1. (64)
string theory. On the other hand, whert0 (y<<0), there

is an effective barrier which prevents the orbit of string fromwe should note thak(¢) is replaced by 1K(¢) compared
approaching into the curvature singularity and the potentiafyith the quark-antiquark cagg1), which corresponds to the
would not receive thex’ correction so much and the super- replacement ofy— — y. As the potential in E(60) does not
gravity description would be reliable. Furthermore  depend ony in the given order, we find the monopole anti-

<0 (y<0) case predicts the confinement. monopole potentiaEy,p, is identical with Eqq when L is
We can also evaluate the potential between monopole angimall:

antimonopole by using the Nambu-Goto action Edstring

instead of Eq(48) (see Ref[13]): Emm(L) =Eqq(L). (65)
1 1 If we consider, however, large behavior as in Eq61), we
— S ¥ v ) ) ' ’
S —wa deo—k((b)z\/de(gWaax dpx’). (63 g

d(d—1)

y iy . \/
vy —SgnE)Vd({d—1)2+1
(axy)"+1~y Zac

< 7 d—-3 2
k) Vy oy

- \/ dd-1) (3,02 4 (T 7" (66)
4ac?(—sgnc)\d(d—1)/2+ (d+1)/2)2" '

Here It is not difficult to study the curvature dependence in
more detail, for example, numerically for different choices of
T (M) =y~ sn) A@ 72+ (d+ 1)/2 parameters and regions. Nevertheless, we do not do this as

most qualitative features are clear.

m_ _ —2sgrc)yd(d—1)/2+2 67 IIl. AXIONIC BACKGROUND WITH NONZERO
~ —sgr(c)yd(d—1)/2+(d+1)/2° CURVATURE AND NONCONSTANT DILATON

Let us now present the generalization of the above type
We should note that sga) in Egs.(61) and(62) is replaced 1B SG background with nontrivial dilaton when nonconstant
by —sgn(c) in (66) and(67). Therefore the behavior of the axion is included into the action. Such a study for the case of
potential between monopole and antimonopole for ldrge  flat four-dimensional space has been presented earlier in Ref.
changed from that of the potential between quark and antit7] (for the effects of additional scalars, see also RRef).
quark, that is, monopole and antimonopole would be con- We include the axion fielgy into the action of type 1IB
fined forc>0 but would not be confined far<O0. supergravity &¢=3) in Eq. (7), following Ref.[14]:
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1
e T S N
S 16776] d®" *xy—G

X R+)\2—£G‘“’a bd ¢+£e2¢G’“’a x|
2 Y2 v 2 ,u,X vX

(68)

We work in the coordinate choicd3) and we assume that

the d-dimensional manifold is curvedl4) and y only de-
pends ory. Then, instead of Eq$15)—(17), we obtain

1rf d(d—1)1 N2 1 , 1
i E _ N2 _ _2¢r,1\2
0=37 5 y2+2f+4(¢) 7€)%

(69

d-1f (d-1)(d—4) 1
4 fy 8 y2

1 f
0=-— rij — Ergij )—/4‘

+§f—%(¢’)2+ %ezd)()(,)z]gij: (70
0=< \/?df . \/$62¢(X’)2, (7D
0:< \/$e2¢x’) ,. (72)

Equation(72) can be integrated to give
\/iewx' =c,. (73

Using Eq.(73), we can deletey in Eg. (71) and obtain

— y_ \/E ' ’ —2¢pA2
0= \/?( f¢ +e ““cl. (74)
Equation(74) gives another integral:
ye
cqg:T(d)’)z—cie*M. (75)

By using Eqs(73) and(75), we can deletg’ and ¢’ in Eq.
(69):
1 rf

did—1) 1 N?  c,f
T2y T8 Y2

+ 2y (76)
which can be solved algebraically with respectf{g):

. d(d—1)
4y?\2(1+c 42029+ kd/N2y) |

(77

The obtained metric is identical to that in E49), where the
axion vanishes, if we replace, in Eq. (77) with ac?/2.
Therefore there appears the curvature singularity a0
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again and the supergravity description would break down
when y~0. Note that as we work with type IIB SG we
assume thatl=4.

We now introduce a new coordinaig by

f
E— d \/7
n f y )71

B f g \/ d(d—1) 8
=] NGz 1T, iy kdny)y (P
Equations(73) and (75) can be written as follows:
dx
cX—ez"S%, (79
de)?
C¢_(ﬁ) —cle (80)
Equation(80) can be integrated to give
o Cx g
e’ =—=sin e (7= 70)]. (8D)

Vey

Here 7, is a constant of the integration. Substituting E&{L)
into Eq. (79) and integrating it, we find

X=Xo~ Jcﬂcoth(\/c—d,(n— 70))- (82
X

Here x, is a constant of the integration. Axion describes the
running theta angle.

Wheny— + o0, the geometry of the spacetime approaches
to AdS; asymptotically. Then E(q.78) can be integrated per-
turbatively

1 fd-1] 1 kd
n=— - — + ...
N d \ A2 o(d+2)\2yd2+1

y

(83

Here we have chosen the constant of the integration sojthat
vanishes whely goes to positive infinity. Whem vanishes,
¢ and y behave as

c
e?— — X sin Cy),
- \@ }’(770\/_(/))

Je,
X— Xo+ C—¢ coth( 7oV/Cy). (84)
X

We should note th&t dependence does not appeawsirand
x if we use the coordinate; because it is hidden in this
coordinate. If we choos@,=0, €’—0. Since 4re? can be
regarded as the Yang-Mills coupling constant ardQ (y
— +o) corresponds to the ultraviolet fixed point from the
viewpoint of AdS-CFT correspondence, the theory can be
regarded as asymptotically free.

We now compare the above results with those in R&f.
for k=0 andd=4. We introduce a new coordinateby

044014-8



CURVATURE DEPENDENCE OF RUNNING GAUE. ..

A
e NW<CeS=tanh —

\/§(r_r0) .

The coordinate transformatig85) can be given in terms of
y whenk=0 andd=4 by using Eqs(78) and(83),

2\
y?=K*(r)= \/%sim—(ﬁ(r—ro)) .

Then the metric in Eq13) for k=0 has the following form:

(85

(86)

d-1

ds?,,=dr?+ KZ(r)iJZ:O i dxidx. (87

By using Eq.(85), the dilaton and axion fields in Eq&31)
and(82) can be rewritten as follows:

o= X | cotr(L(r—ro))
24/c, V3

\ 1372
- tan}‘(ﬁ(r—ro)ﬂ e ”OVQ] ,

Ve {eoth(M3(r—ro))}¥+1
Cx  {coth\/3(r—rg))¥?-1 -

V372
e on

X=Xo— (88)

Then the solution in Ref[7] seems to be a special case

corresponding tay,= xo=0.

PHYSICAL REVIEW D 61 044014

8k E1| [ Cap| 2
e %7 3 ) IRL
)\ C3/2 S

(92

Here we assume again thai is large and_ is small and not
to break the supergravity description. Then using &®),
we obtain the following expression f&(L):

Rs(Csp k(Cap\ "% 16 4
E(L)=—+ > ( Crpot 2 R _§C9/2+ §E7/2
S
E1/2

* et
Capl 7512773

Note that the integral is finite before subtraction the self en-
ergy of quark and antiquark. We should note that the linear
potential appears in the next-to-leading term. The coefficient

4.

(93

16 4
- Ecglz+ 3 E7pp—

Cap

of the next-to-leading term is negative, sir€g,, Cs;, and
E,, are positive and- ¥ Cq,+ 5E-/, is negative, which can
be easily found is

16 4 4 (=
— 3 ContzEm=—3

cosht
cosht+1

dtcoshg’zt(4—

—o0

Let us consider the potential between quark and anti-

guark. As we are interested in the case of asymptotically free 4 (e o
theory, we put,=0 in Eq.(81) andd=4. Then we find <73 ﬂcdtCOSh t(4-1)
k <0. (94)
b — — ..
k(g(y))=e 4cy(1 m*’ ),
Therefore the linear potential in the next-to-leading term be-
R§ 4k comes attractive ik<<O and repulsive ik>0. The result is
f(y)=4—y2(1—m+ e (89  consistent to the potential without axion in E@O0). We

should note that Eqg$78) and(81) tell that the dilaton field

Then in a way similar to the discussion in the second sectioRehaves as

where axion is not present instead of E(g5) and (56), we
find

dx  Rs 2 2k 1 cosht
—= cosh >y 1+ ——| —
dt 2y, NYo\ cosht 3(cosht+1)
+oot, (90)
Rs [ 2k ( Eqifpp
L=—iC +oot,
\/2_y0 3/2 )\Zy 5/2 3
(91
f g ot cosh 2t
cosht+1°

Equation(91) can be solved with respect g as follows:

(95

fd(d—1
¢~— (2 )Iny,

which corresponds<0 case in the pure dilaton case in Eq.
(23). Since the behavior df(y) in Eq. (77) is essential iden-
tical with the pure dilaton case in E(L9), the supergravity
description would be valid even for largeand the confine-
ment for quarks would be predictédnd monopoles would
not be confinegd

We now investigate the supersymmetric background. For
k=0 it has been found in Ref[7]. We look for its
k-dependent generalization. Since we consider the back-
ground where the fermion fields, that is, dilatié@nd grav-
itino ¢, vanish, if the variation under some of the supersym-
metry transformations of these fermionic fields vanishes, the
corresponding supersymmetries are preserved. The super-
symmetry transformations of these fields are giverj b}

044014-9
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1 1
Sé=——(e®9,x— 9 ek —Xo— ———————. 101)
§=—5(e%,x WPy X— Xo (7= 7o) (101)
S = Lo z E in the limit, the th b totically f
3 ——E(e d X+ 3d,0) v e, ven in the limit, the theory becomes asymptotically free

when 7,=0 since the coupling is assumed to be given By e
vanishes in the ultraviolet limit corresponding #6=0. We
should also note that the potentiah=0 case between
quark and antiquark in Eq93) is not changed in the leading
and next-to-leading orders sin@g, is not included to the

1 " A
5lﬂ#: VM+Ze ﬁﬂx—m’y# €,

2

1 \ corresponding expression.
5$;=(Vﬂ— Zed’ﬂﬂ)(—m’y#) €*. (96)
IV. DISCUSSION
When substituting the solution in Eq®1) and(82) into §¢
and 5&* , we find In summary, we found the background of type IIB super-
gravity with nonconstant dilaton, nonzero curvature of four-
\/c_¢, 1—cosh \/c—¢,(77— 70)) dimensional space-time and witbr without) nontrivial ax-
06=— N . 7er, ion. By assuming the coupling is given by the exponential of
sinh(ye4(7— 770)) the dilaton field¢, AdS-CFT interpretation of such a solu-
tion gives the(powerlike) running gauge coupling and pre-
55*:_@ 1+ cosi \/C_(/,(77_ 770))) ” dicts its curvature dependence. In the presence of axion,

background may have half of the supersymmetries unbroken.
(97) In all cases, we calculated quark-antiquark potential and
showed that the term linear on distaricexplicitly depends
Therefore all the supersymmetries break down in generabn the curvature. Hence, there is the possibility that curva-
since oy and §x* do not vanish. In the limit ofc,—0,  ture of Universe might predict the confinement.
however, we find The complete interpretation of type IIB SG background
via AdS-CFT correspondence is not yet clear. We gave the
6¢—0, arguments that our background most probably corresponds to
another vacuum of maximally supersymmetric YM theory
7 with some nonzero VEV operator. However, the possibility
v7e. (998 , :
n— Mo that it may be deformation of theory to another less symmet-
) o ric (supej YM theory is not yet completely ruled out. The
Therefore there is a possibility that half of the supersymmenn|y possibility for understanding it now is to investigate all
trieS Corresponding t@* SUrViVeS in th|S ||m|t It Sh0u|d be properties of SG background and Compare |t W|th properties

sinh(/c4(7— 70))

SE* = —

noted that, in the limitf(y) in Eq. (77) becomes of corresponding QFT.
For example, it would be really interesting to find further
_ d(d—1) (99) development of such a scenario in order to present more
4y2\2(1+kd/\2y) ' realistic (logarithmig behavior for running gauge coupling.

Clearly, major modifications of background are necessary.
which tells that the metric of the spacetime becomes nothindlote in this respect the recent pap&¥] where it was shown
but the metric of AdSXS® although the dilaton and the that AdS orbifolds may describe the running gauge coupling.
axion fields are nontrivial. Then if we choose the spinor pa-
rametere* by using the Killing spinor in AdS;xS° as
follows [14,7]: ACKNOWLEDGMENTS

* _ adld 14, \1/4 We would like to thank H.B. Nielsen for discussion of
"= —c, (= m0) L, (100 “two-times” cosmology. We are also indebted to A. Tseyt-

87 vanishes in the limit ot,,—0, which tells that half of " @d A. Sugamoto for discussions.
the supersymmetry correspondingdb, in fact, survives in
this limit. This situation does not depend &nSuch a solu-
tion corresponds to some vacuum of maximally supersym-
metric YM theory where supersymmetry is broken\fe-2 . In this appendix, we point out that there are many kinds of
(Note that deformations alN'=4 super YM theory which Einstein manifolds which satisfy Eq.14). The Einstein
flow to fixed points as in Ref$15,16 may also define run- equations are given by

ning gauge coupling In the limit of c,— 0, the solution in

Egs.(81) and(82) has the following form:

APPENDIX A

1 1
- +— — matter.
e’—c (7=, Ruv= 59uR+ 540, =T, (A1)
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Here T2 is the energy-momentum tensor of the mattersome discussion of solutions with a few timelike signatures

fields. If we consider the vacuum solution whaig"®=0,  in various gravitational theories.
Eq. (A1) can be rewritten as In order to get the time dependent solution and consider a
kind of AdS cosmology, we perform the analytic continua-
A tion in the solution in Egs(19) and (20) with k=0 as fol-
R,uV:?gMV . (AZ) lows:
If we put A =2k, Eq.(A2) is nothing but the equation for the 1 [(d-1)
Einstein manifold(14). The Einstein manifolds are not al- c’——c%  $o— o >V g NC=D. (BY)

ways homogeneous manifolds like flat Minkowskinti—)de
Sitter space or Nariai space but they can be some black ho

solutions such as the Schwarzschild black hole, LF’nen we obtain the following metric and the dilaton field:

ds? i dx~d - Lo dt2+—2 CJIS%H:f(.\/)olyz+yd§_ll 7 dXdx! (B2)
= V= — _ — I 1
4 w,v=0 g,u,v xrax r (1_r0/r) i,j=0 !
+r2dQ?, (A3) d(d—1)
= , B3
or Kerr one fof k=0 or Schwarzschild@anti-de Sitter 4y?(N?— ac?lyY) (B3)
black hole
w2k . L1 /(d—l)l (—2ac2+1
= = n
dsﬁz—(l—;— gxz)dtz "2V da A2yd
dr2 _ 2acC 1 1 B4
+ +r2dQ?, (A4) \2yd =i (B4)

1- 2 2kz)x? . - :
X We can directly check that the solutiofB2)—(B4) satisfy

Egs.(11) and(12). When\?— ac?/y?<0, dilaton field¢ is
real andf(y) becomes negative, which tells thatcan be
regarded as another time coordinga&S time besides the
hysical time coordinate id-dimensional Minkowski space
orresponding tag;; in (B2). We have unusual signature of
the metric with two timelike coordinates. Changing the co-
ordinatey by

for k#0. In these solutions, the curvature singularityrat
=0 has a form of line penetrating Ad&nd the horizon
makes a tube surrounding the singularity. This configuratio
seems to express D-string whose boundary lies on the boun
ary of AdS; or possibly D3-brane. Especially in case of a
Kerr or Kerr{anti-)de Sitter solution, the object correspond-
ing to the singularity has an angular momentum.
We should note that the dilaton depends on the geometry
2

2\ 1/d

1 i, (B5)

of the boundary manifold only througk as in Eg.(20). —
Therefore the behavior of the running coupling or renormal- A

ization group equation is irrelevant with the existence of the . . . . .
black hgle sFi)ng?JIarity we obtain the following metric and the dilaton field:

APPENDIX B d-1 ac?| M - -
dsg_,_l:_Tdtz'F(F) SinZ/dt'z ﬂijdXIdXJ,

In this appendix we present one more solution of type 11B h=0 B6
supergravity with two timelike signatures of the metric. The (B6)
physical interpretation of this solution is not quite clear as -~ )
well as its dual interpretation. b= b 1 /(d-1) In( 1+C°St) (B7)

It was already a few times mentioned that AdS radial 2 d sint '

coordinate plays the role of energy coordinate via holo-

graphic correspondence. It is also known that in general reldNote thatt=0,7 corresponds ty=0. Therefore there is a
tivity there were attempts to identify the energy with time curvature singularity there. This indicates tlét expansion
flow. Then the following interesting question appears: Canin string theories becomes unreliable and we need to exclude
the same sort of AdS solution be reinterpreted as the onthe regiont~0,7. Equation(B7) indicates that the coupling
depending from extra time coordinates? In a sense one thdrecomeg-dependent, especially in the case of type IIB su-
has a new IIB SG solution with a few timelike signatures.pergravity we find

There was ‘
g sy [1Fcost V2=21d 58
g=gee’ o=gy — (B8)
2This type of solutions fok=0 case has been considered in Ref.
[18]. If we change the coordinateby 7 as
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d—1 dt Note thatt is solved with respect te by using Eq.(B9). It
=|—— f —a (B9)  follows from the above speculation that one can understand
deva) J sint/dt running of gauge coupling also as dependence on “second

time” (AdS time. It would be interesting to understand if
we have the metric in the following form: such a picture may have any physical meaning.

The conclusion drawn from such an interpretation is that
AdS solution may contain a few times. Then the possibility

d-1 of a kind of phase transition between these times should be
ds?, ,=0( T)( —d72+sir?/d tA.E nijdxidxj> , cons_ideredthis is, of course, high!y speculativerhe physi— .
ij=0 cal time should be naturally defined by observer living in

(B10) such a world. One possibility may be to introduce potential
depending on angles defining the sort of signature of any
where particular dimension. Then the minimum of this potential
may probably define the real physical time. In any case, the
0\ 1/d interpretation of the type IIB SG solution considered in this
c ) SirP/dt( 7). (B11) appendix could be understood simply as one more type 1IB

®(T)E(TT SG solution.
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