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Curvature dependence of running gauge coupling and confinement in AdS-CFT correspondence
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We construct a type IIB supergravity~viewed as dilatonic gravity! background with a nontrivial dilaton and
with curved four-dimensional space. Such a background may describe another vacuum of maximally super-
symmetric Yang-Mills theory or strong coupling regime of~non!supersymmetric gauge theory with~power-
like! running gauge coupling which depends on curvature. A curvature dependent quark-antiquark potential is
calculated where the geometry type of hyperbolic~or de Sitter universe! shows~or does not show! the tendency
of the confinement. A generalization of the type IIB supergravity background with a nonconstant axion is
presented. The quark-antiquark potential, being again curvature dependent, has the possibility to produce the
standard area law for large separations.

PACS number~s!: 04.65.1e, 11.15.2q
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I. INTRODUCTION

AdS conformal field theory~CFT! correspondence@1#
may provide new insight into the understanding of nonp
turbative QCD. For example, in frames of type 0 stri
theory the attempts@2# have been done to reproduce su
well-known QCD effects as running gauge coupling and p
sibly confinement. It is among the first problems to get
description of well-known QCD phenomena from bulk
boundary correspondence.

In another approach one can consider a type IIB sup
gravity ~SG! vacuum which describes the strong coupli
regime of a nonsupersymmetric gauge theory. This can
achieved by the consideration of deformed type IIB S
vacuums, for example, with a nonconstant dilaton wh
breaks conformal invariance and supersymmetry~SUSY! of
boundary supersymmetric Yang-Mills~YM ! theory. Such a
background will be the perturbation of AdS53S5 vacuum.
The background of such a sort~with a nontrivial dilaton!
which interpolates between AdS~UV! and flat space with
singular dilaton~IR! has been found in Ref.@3# where also
conformal dimensions for~dilaton coupled! scalar have been
found.

This solution of IIB SG@3# has been used in Ref.@4# with
the interpretation of it as the one describing the runn
gauge coupling~via exponent of dilaton!. It has been shown
that running gauge coupling has a power law behavior w
an ultraviolet~UV! stable fixed point and a quark-antiqua
potential@5# has been calculated. QCD properties of suc
background have been discussed in detail in Refs.@6#. Modi-
fications of the IIB SG solution with nonconstant dilaton@3#
due to the presence of an axion@7#, constant self-dual vecto
@8#, or world volume scalar@9# give further proof of the
possible confinement and asymptotic freedom of the bou
ary non-SUSY gauge theory. Unfortunately, the situation
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very complicated here due to the double role of type IIB S
backgrounds. From one side they may indeed correspon
IR gauge theory~deformation of the initial SUSY YM
theory!. At the same time such a background may simp
describe another vacuum of the same maximally supers
metric YM theory with a nonzero vacuum expectation val
~VEV! of some operator. Because of the fact that opera
corresponding to deformation to another gauge theory
not known, it is unclear what the case under discussion
~interpretation of SG background!. Only some indirect argu-
ments as below may be given. As we see these argum
indicate that the type IIB SG background discussed in t
work most probably corresponds to another vacuum of
super-YM theory under consideration. Then renormalizat
group ~RG! flow is induced in the theory via giving a non
zero ~VEV! to some operator.

In the present paper, we continue the study of runn
dilaton and confinement from type IIB supergravity bac
grounds with nontrivial dilaton. We generalize the soluti
of Ref. @3# for nonzero curvature ofd-dimensional space. As
a result, the type IIB supergravity background is chang
drastically. The running dilaton~gauge coupling! depends
explicitly on the four-dimensional curvature. The structure
quark-antiquark potential is modified. In a sense, confi
ment would become the characteristic of the Universe.

Let us remark on the AdS-CFT interpretation of the ty
IIB SG background. Choosing the coordinates in the asym
totically AdS5 spacetime as

ds25ds21S~s! (
i , j 50

3

h i j dxidxj , ~1!

let us assume the scalar fieldl, e.g., dilaton, axion, or othe
fields, obeys the following equation:

d2l

ds2 14
dl

ds
5M2l ~2!
©2000 The American Physical Society14-1
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near the boundary. HereM2 is the ‘‘mass’’ of l ands→0
corresponds to the boundary of AdS. Thenl is associated
with the operatorOl with conformal dimensionD52
1A41M2. The solution of Eq.~2! is given by

l5Ae2(42D)s1Be2Ds. ~3!

The solution corresponding toA is not normalizable but the
solution toB is normalizable. According to the argument
Ref. @19#, the non-normalizable solution would be associa
with the deformation of theN54 theory byOl but the nor-
malizable solution would be associated with a differe
vacuum whereOl has a nonzero vacuum expectation valu
The behavior of the dilaton found in this paper is normal
able and seems to be associated with the dimension 4 op
tor, say trF2. Then the argument in Ref.@19# would indicate
that the solution found in this paper should correspond
another vacuum ofN54 theory. Nevertheless, there mig
still be the possibility that the solution corresponds to no
supersymmetric gauge theory. Since there occurs the
densation of trF2 in the usual nonsupersymmetric QCD
however, the solution given here would describe some
tures typical for the nonsupersymmetric theory.

The situation is even more complicated due to limits
validity of dual SG description. In order that the classic
supergravity description is valid, the curvature should
small and the string coupling should be also small. If t
curvature is large, thea8 corrections from string theory
would appear. In the AdS-CFT correspondence, the ra
Rs of the curvature is given by

Rs5~4pgsN!1/4. ~4!

Here gs is the string coupling andN is the number of the
coincident D-branes. Therefore we should require

gsN@1. ~5!

On the other hand, the classical picture works when
string coupling is small:

gs!1. ~6!

In the solution given in this paper, there appears the cu
ture singularity andgs depends on the coordinates since t
dilaton is nontrivial. If we concentrate on the behavior ne
the boundary, which is asymptotically AdS and is far fro
the singularity, the solution would be reliable and SG d
scription would be trusted.

The work is organized as follows. In the next section
give the type IIB supergravity background with nonconst
dilaton and nonflat four-dimensional space. Via AdS-CFT
gives the curvature dependent~powerlike! running gauge
coupling and quark-antiquark potential where hyperbolic
ometry seems to support confinement. In Sec. III we gen
alize the background of Sec. II for the case when axion p
sents. ~Curvature dependent! quark-antiquark potential is
found. It is shown that inflationary Universe~de Sitter! with
axion might predict confinement. Some outlook is given
04401
d
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the last section. Additional solutions of type IIB supergrav
are presented in two Appendixes.

II. SOLUTION, RUNNING GAUGE COUPLING
AND QUARK-ANTIQUARK POTENTIAL

We start from the following action of dilatonic gravity in
d11 dimensions:

S52
1

16pGE dd11xA2G~R2L2aGmn]mf]nf!.

~7!

In the following, we assumel2[2L anda to be positive.
The action~7! is very general. It contains the effective actio
of type IIB string theory. The type IIB supergravity, which
the low energy effective action of the type IIB string theor
has a vacuum with only a nonzero metric and the anti-s
dual five form. The latter is given by the Freund-Rubin-ty
ansatz

Fmnrkl52
AL

2
emnrkl , m,n, . . . 50,1, . . . ,4,

Fi jkpq52
AL

2
e i jkpq , i , j , . . . 55, . . . ,9. ~8!

The vacuum has the topology of AdS53S5. Since AdS5 has
a four-dimensional Minkowski space as a subspace, e
cially on its boundary, AdS5 has the four-dimensional Poin
carésymmetry ISO~1,3!. S5 has, of course, SO~6! symmetry.

As an extension, we can consider the solution where
dilaton is nontrivial but the anti-self-dual five form is th
same as in Eq.~8!. Furthermore if we require the solution ha
the symmetry of ISO(1,3)3SO(6), themetric should have
the following form:

ds25Gmndxmdxn1gmndxmdxn, ~9!

wheregmn is the metric of S5 and Ref.@3#:

Gmndxmdxn5 f ~y!dy21y (
i , j 50

d21

h i j dxidxj . ~10!

In order to keep the symmetry of ISO(1,3)3SO(6), the di-
laton fieldf can only depend ony. Then by integrating five
coordinates on S5, we obtain the effective five-dimensiona
theory, which corresponds tod54 anda5 1

2 case in Eq.~7!.
We keep working with above dilatonic gravity as it will b
easy to come to type IIB supergravity (d54, a5 1

2 ) at any
step.

From the variation of the action~7! with respect to the
metric Gmn, we obtain1

1The conventions of curvatures are given byR5GmnRmn ,
Rmn52Gml,k

l 1Gmk,l
l 2Gml

h Gkh
l 1Gmk

h Glh
l , Gml

h 5
1
2 Ghn(Gmn,l

1Gln,m2Gml,n).
4-2
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05Rmn2
1

2
GmnR1

L

2
Gmn2a

3S ]mf]nf2
1

2
GmnGrs]rf]sf D ~11!

and from that of dilatonf

05]m~A2GGmn]nf!. ~12!

We assume thatf depends only on one of the coordinate
sayy[xd as in type IIB supergravity solution with the sym
metry of ISO(1,3)3SO(6) and we also assume, as a gen
alization of Eq.~10!, thatGmn has the following form:

dsd11
2 5 (

m,n50

d

Gmndxmdxn5 f ~y!dy21y (
i , j 50

d21

gi j dxidxj .

~13!

Here gi j is the metric in the Einstein manifold, which i
defined by

r i j 5kgi j . ~14!

Here r i j is the Ricci tensor given bygi j andk is a constant,
especiallyk.0 for sphere andk50 for the flat Minkowski
space andk,0 for hyperboloid. Such a solution generaliz
the previous solution of Ref.@3# ~wherek50) as boundary
gauge QFT lives now in four-dimensional curved spacetim
The case ofk51 is especially interesting as it corresponds
gauge theory in de Sitter~inflationary! Universe.

The equations of motion~11! and~12! take the following
forms:

05
1

2

r f

y
2

d~d21!

8

1

y2 1
l2

2
f 1

a

2
~f8!2, ~15!

052S r i j 2
1

2
rgi j D f

y

1H d21

4

f 8

f y
2

~d21!~d24!

8

1

y2

1
l2

2
f 2

a

2
~f8!2J gi j , ~16!

05SAyd

f
f8D 8

. ~17!

Here the prime expresses the derivative with respect toy and
r[gi j r i j 5kd. Equation~15! corresponds to (m,n)5(d,d)
in Eq. ~11! and Eq. ~16! to (m,n)5( i , j ). The case of
(m,n)5(0,i ) or (i ,0) is identically satisfied. Integrating Eq
~17!, we find

f85cA f

yd. ~18!
04401
,

r-

.

Substituting Eq.~18! into Eq. ~15!, we can solve it algebra
ically with respect tof:

f 5
d~d21!

4y2l2~11ac2/l2yd1kd/l2y!
. ~19!

Then we find from Eqs.~18! and ~19!,

f5cE dyA d~d21!

4yd12l2~11ac2/l2yd1kd/l2y!
.

~20!

Wheny is small, f (y) in Eq. ~19! behaves as

f ~y!;
d~d21!yd22

4ac2
, ~21!

which makes a curvature singularity aty50. The scalar cur-
vature behaves wheny;0 as

R;ac2y2d. ~22!

The curvature singularity would be generated by the singu
behavior of the dilatonf wheny;0:

f~y!;sgn~c!Ad~d21!

4a
ln y. ~23!

Here sgn(c) expresses the sign ofc:

sgn~c!5H 11 if c.0,

21 if c,0. ~24!

The curvature singularity tells there should appear thea8
correction from the string theory and the supergravity d
scription would break down wheny;0. Conversely and
hopefully, the curvature singularity might be apparent a
vanish when we can include full string corrections. In a
case, the solution would be valid if we investigate the beh
ior near the boundary (y→1`).

We also note that the dilaton field behaves near
boundary (y→1`) as

f;f02cA d21

dl2yd1•••. ~25!

The term ofO(1/yd/2) might tell that the solution given her
would correspond to the condensation of the dimensiod
operator, say, trF2. In the usual non-~or lower-
!supersymmetric QCD, it is widely believed that there wou
occur the condensation of trF2. Therefore not depending o
that the solution given here corresponds the real deforma
from theN54 theory or the deformation of the vacuum, th
solution would possibly reflect the structure of nonsupersy
metric QCD.

If we change the coordinatey by r, which is defined by
4-3



-
E

v

ng

ow-

ate

rdi-

i-

ges

SHIN’ICHI NOJIRI AND SERGEI D. ODINTSOV PHYSICAL REVIEW D61 044014
r[2E dyAf ~y!

y

52E dyA d~d21!

4y3l2~11ac2/l2yd1kd/l2y!
, ~26!

the metric in Eq.~13! has the following form:

Gmndxmdxn5V2~r!S dr21 (
i , j 50

d21

gi j dxidxj D . ~27!

HereV2(r) is given by solvingy in Eq. ~26! with respect to
r: V2(r)5y(r). Whenr is small,y is large and the struc
ture of the spacetime becomes AdS asymptotically. From
~26!, we find

r5
Ad~d21!

ly1/2 @11O~y21!#. ~28!

Therefore we find

V2~r!5y~r!5
Rs

2

r2 @11O~r2!#,

Rs[
Ad~d21!

l
. ~29!

We can compare the above behavior with that of the pre
ous AdS53S5 solution in type IIB supergravity@4#. The
AdS5 part in the solution has the form of

dsAdS5

2 5~4pgsN!1/2
1

r2S dr21 (
i , j 50

d21

h i j dxidxj D . ~30!

Therefore we find

Rs5~4pgsN!1/4, ~31!

where gs is the string coupling andN is the flux of the
five-form F in Eq. ~8! through S5, which is produced by the
N coincident D3-branes. Using the definition ofRs in Eq.
~29!, the solutions~19! and ~20! have the following form:

f 5
Rs

2

4y2~11c2Rs
2/2d~d21!yd1k/~d21!y!

,

f5cE dyA Rs
2

4yd12~11c2Rs
2/2d~d21!yd1k/~d21!y!

.

~32!

Here we puta5 1
2 and d54 in order to get explicitly IIB

supergravity background. On the other hand, if we cha
the coordinate by

s5E dyAf ~y!, ~33!
04401
q.

i-

e

the metric in Eq.~13! has the following form:

Gmndxmdxn5ds21S~s! (
i , j 50

d21

gi j dxidxj , ~34!

whereS(s) is given by solvingy in Eq. ~33! with respect to
s: S(s)5y(s).

We now consider the casek,0. First let the dilaton field
to be constant or small. Then from Eq.~19!, when y de-
creases from the positive infinity, the functionf increases and
diverges at a finite value ofy : y5y0 and after that the
signature of the metric seems to change. This is not, h
ever, real but apparent. Neary5y0, the function f (y) be-
haves as

f ~y!;
f 0

y2y0
, ~35!

wheref 0 is a constant. When we introduce a new coordin
u by

y2y05u2, ~36!

the metric has the following form wheny;y0:

dsd11
2 ;4 f 0du21y0 (

i , j 50

d21

h i j dxidxj . ~37!

The metric in Eq.~37! is regular even whenu;0 (y;y0)
and there is no curvature singularity. The change of coo
nates in Eq.~36! tells thaty increases again asu increases
whenu.0. Then when we write the solution by the coord
nateu, the solution connects two boundaries atu52` and
u51`. The structure of the spacetime, however, chan
when the dilaton becomes large. Let us writef (y) in the
following form:

f ~y!5
d~d21!

4y2l2h~y!
, h~y![11

ac2

l2yd1
kd

l2y
. ~38!

We now investigate the conditionh(y) vanishes orf (y) di-
verges and changes its sign. The minimumhmin of h(y) can
be found by the equationdh(y)/dy50, which can be solved
as follows:

y5y0[S 2
ac2

k D 1/(d21)

~39!

and we find

hmin511
k~d21!

l2 S 2
ac2

k D 21/(d21)

.

~40!

Thereforeh(y) does not vanish ifhmin.0, that is,

c2.c0
2[2

k

a S 2
l2

k~d21! D
12d

. ~41!
4-4
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When c2.c0
2, the solution connects the boundary aty5`

with the singular boundary aty50 as in thek50 and k
.0 cases.

We now consider the running of the gauge coupling. U
ally the AdS string coupling, which is the square of the co
pling in N54 SU(N) super-Yang-Mills whend54, is pro-
portional to an exponential of the dilaton fieldf, which we
assume in the following. From Eq.~20!, wheny is large and
d.2, we find that the dilaton field behaves as

f5f01c
Ad~d21!

2l

3H 2
2y2d/2

d
1

2

d12

kd

2l2 y2d/2211•••J . ~42!

Here the ellipsis expresses the higher order terms of 1/y. We
now assume the gauge coupling has the following fo
@5–9# ~of course, other ways to define running gauge c
pling might be possible!:

g5gse
2bAa/d(d21)(f2f0)

5gsH 12
2bcAa

dl
y2d/21

kdbcAa

~d12!l3
y2d/2211•••J .

~43!

In the case of type IIB supergravity (a5 1
2 ),

b5Ad~d21!

2
~44!

and using the definition ofRs in Eq. ~29!, we find

g5gsH 12
cRs

d
y2d/21

kcRs
3

2~d12!~d21!
y2d/2211•••J .

~45!

The next-to-leading order term is proportional tok if kÞ0.
This changes the renormalization group equations dra
cally. If we multiply N1/2 with g, we obtain the ’t Hooft
couplinggH5gN1/2. If we define a new coordinateU by

y5U2, ~46!

U expresses the scale on the~boundary! d dimensional space
~due to holography@10#!. Following the correspondence be
tween long-distances and high-energy in the AdS-C
scheme,U can be regarded as the energy scale of the bou
ary field theory. Then from Eq.~43!, we obtain the following
renormalization group equation:
04401
-
-

-

ti-

T
d-

b~U ![U
dg

dU

52d~g2gs!2
2kdbcAa

~d12!l3

3S 2
dl

2bcAa
D 2/d11

~g2gs!
2/d11

gs
2/d

1•••. ~47!

The leading behavior is identical with the previous wor
@4,6–8# but the next to leading term contains the fraction
power of (g2gs) although the square of (g2gs) appears for
k50 case. We should note that the qualitative behavior d
not depend onb which appears in the coupling~43!.

Hence, we found that beta function explicitly depends
the curvature of four-dimensional manifold. Of course, c
vature dependence is not yet logarithmic as it happens w
usual quantum field theories~QFTs! ~perturbative consider-
ation! in curved spacetime@11#. The powerlike running of
gauge coupling is much stronger than ink50 case. Note that
previous discussion of powerlike running includes grand u
fied theories~GUTs! with large internal dimensions@12#. In
the case under investigation we get the gauge coupling
function as an expansion on fractional powers of gauge c
pling.

We now consider the static potential between ‘‘quar
and ‘‘antiquark’’ @5#. We evaluate the following Nambu
Goto action:

S5
1

2pE dtdsAdet~gmn
s ]axm]bxn!, ~48!

with the ‘‘string’’ metric gmn
s , which could be given by mul-

tiplying a dilaton functionk(f) to the metric tensor in Eq
~9!. Especially we choosek(f) by

k~f!5e2gAa/d(d21)(f2f0)512
2gcAa

dlyd/2
1•••. ~49!

In the case of type IIB supergravity,

g5b5Ad~d21!

2
. ~50!

We consider the static configurationx05t, x1[x5s, x2

5x35•••5xd2150, andy5y(x). We also choose the co
ordinates on the boundary manifold so that the line given
x05const, x1[x and x25x35•••5xd2150 is geodesic
and g1151 on the line. Substituting the configuration in
Eq. ~48!, we find

S5
T

2pE dxk„f~y!…yAf ~y!

y
~]xy!211. ~51!

HereT is the length of the region of the definition oft. The
orbit of y can be obtained by minimizing the actionS or
solving the Euler-Lagrange equation dS/dy
2]x„dS/d(]xy)…50. The Euler-Lagrange equation tells th
4-5
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E05
k„f~y!…y

A@ f ~y!/y#~]xy!211
~52!

is a constant. If we assumey has a finite minimumy0, where
]xyuy5y0

50, E0 is given by

E05k@f~y0!#y0 . ~53!

Introducing a parametert, we parametrizey by

y5y0 cosht. ~54!

Then we find

dx

dt
5

y0
21/2

A
cosh23/2 t$11B cosh21 ty0

211•••%,

A[
2l

Ad~d21!
, B[2

kd

2l2 . ~55!

Here we assume thaty0 is large enough and the orbit of th
string does not approach to the singularity aty50, where the
supergravity description breaks down. Takingt→1`, we
find the distanceL between ‘‘quark’’ and ‘‘antiquark’’ is
given by

L5
C3/2y0

21/2

A
1

BC5/2y0
23/2

A
1•••,

Ca[E
2`

`

dt cosh2a t5
2(a21)G~a/2!2

G~a!
.

~56!

We should note that the largey0 corresponds to smallL. As
one sees the next-to-leading correction to distance dep
on the curvature of spacetime.

Equation~56! can be solved with respect toy0 and we
find

y05S C3/2

AL D 2H 11
2BC5/2

C3/2
S AL

C3/2
D 2

1•••J . ~57!

Using Eqs.~52!, ~54!, and ~56!, we find the following ex-
pression for the actionS:

S5
T

2p
E~L !,

E~L !5E
2`

`

dt
dx

dt

k„f„y~ t !……2y~ t !2

k„f~y0!…y0
.

~58!
04401
ds

Here E(L) expresses the total energy of the ‘‘quar
antiquark’’ system. The energyE(L) in Eq. ~58!, however,
contains the divergence due to the self-energies of the
nitely heavy quark and antiquark. The sum of their se
energies can be estimated by considering the configura
x05t, x15x25x35•••5xd2150, andy5y(s) ~note that
x1 vanishes here! and the minimum ofy is yD where brane
would lies. We divide the region fory to two ones,̀ .y
.y0 andy0.y.yD . Using the parametrization of Eq.~54!
and identifying t with s (t5s) for the region`.y.y0,
we find the following expression of the sum of self-energi

Eself5E
2`

`

dt k„f„y~ t !……y~ t !Af ~f„y~ t !…!@] ty~ t !#2

y

12E
yD

y0
dyk„f~y!…Ay f~y!. ~59!

Then the finite potential between quark and antiquark
given by

Eqq̄~L ![E~L !2Eself

5
1

A S C3/2

AL D H D01BS C5/2D0

C3/2
1D2D S AL

C3/2
D 2

1•••J ,

Dd[2E
0

`

dt cosh2(d11)2 t e2t1
4

d21

5
2(d23)/2G„~d21!/4…2

G„~d21!/2…
. ~60!

Here we neglected theL independent terms. Note that lea
ing and next-to-leading term does not depend on the par
eterg in Eq. ~49!. The leading behavior is consistent with th
previous works and attractive sinceD0522.39628••• but
we should note that next-to-leading term is linear inL ~for
k50 it was cubic!, which does not depend on the dimensi
d. SinceC5/2D0 /C3/21D253.49608.0 andB is negative if
k is positive and vice versa from Eq.~55!. Therefore the
linear potential term in Eq.~60! is repulsive ifk.0 ~sphere,
i.e., gauge theory in de Sitter Universe! and attractive ifk
,0 ~hyperboloid!.

Of course, the confinement depends on the largeL behav-
ior of the potential. WhenL is large, however, the orbit o
the string would approach to the curvature singularity ay
50, where the supergravity description would break dow
Despite of this, it might be interesting to investigate the lar
L behavior. Since the behavior off (y) and the dilatonf
wheny is small is given by Eqs.~21! and~23!, the integrand
in Eq. ~51! behaves as
4-6
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k„f~y!…yAf ~y!

y
~]xy!211;ysgn(c)Ad(d21)/211Ad~d21!

4ac2 yd23~]xy!211

5A d~d21!

4ac2@sgn~c!Ad~d21!/21~d11!/2#2
~]xŨ !21~Ũ !g0. ~61!

Here

Ũ[ysgn(c)Ad(d21)/21~d11!/2, g0[
2 sgn~c!Ad~d21!/212

sgn~c!Ad~d21!/21~d11!/2
. ~62!
m
tia
r-

a

ti-
When d54, 0,g0,2 when c.0 and g,0 when c,0.
According to the analysis in Ref.@19#, the orbit of the string
goes straight to the regiony;0 whenc.0 (0,g0,2) and
the potential becomes independent ofL. In this case, how-
ever, the potential would receive thea8 correction from the
string theory. On the other hand, whenc,0 (g,0), there
is an effective barrier which prevents the orbit of string fro
approaching into the curvature singularity and the poten
would not receive thea8 correction so much and the supe
gravity description would be reliable. Furthermorec
,0 (g,0) case predicts the confinement.

We can also evaluate the potential between monopole
antimonopole by using the Nambu-Goto action forD-string
instead of Eq.~48! ~see Ref.@13#!:

S5
1

2pE dtds
1

k~f!2Adet~gmn
s ]axm]bxn!. ~63!
e

n
on

04401
l

nd

For the static configurationx05t, x1[x5s, x25x35•••

5xd2150, andy5y(x), we find, instead of Eq.~51!

S5
T

2pE dx
y

k„f~y!…
Af ~y!

y
~]xy!211. ~64!

We should note thatk(f) is replaced by 1/k(f) compared
with the quark-antiquark case~51!, which corresponds to the
replacement ofg→2g. As the potential in Eq.~60! does not
depend ong in the given order, we find the monopole an
monopole potentialEmm̄ is identical with Eqq̄ when L is
small:

Emm̄~L !5Eqq̄~L !. ~65!

If we consider, however, largeL behavior as in Eq.~61!, we
find
y

k„f~y!…
Af ~y!

y
~]xy!211;y2sgn(c)Ad(d21)/211Ad~d21!

4ac2 yd23~]xy!211

5A d~d21!

4ac2~2sgn~c!Ad~d21!/21~d11!/2!2
~]xŨ

(m)!21~Ũ (m)!g0
(m)

. ~66!
in
of
is as

ype
nt
of

Ref.
Here

Ũ (m)[y2sgn(c)Ad(d21)/21(d11)/2,

g0
(m)[

22 sgn~c!Ad~d21!/212

2sgn~c!Ad~d21!/21~d11!/2
. ~67!

We should note that sgn(c) in Eqs.~61! and~62! is replaced
by 2sgn(c) in ~66! and ~67!. Therefore the behavior of th
potential between monopole and antimonopole for largeL is
changed from that of the potential between quark and a
quark, that is, monopole and antimonopole would be c
fined for c.0 but would not be confined forc,0.
ti-
-

It is not difficult to study the curvature dependence
more detail, for example, numerically for different choices
parameters and regions. Nevertheless, we do not do th
most qualitative features are clear.

III. AXIONIC BACKGROUND WITH NONZERO
CURVATURE AND NONCONSTANT DILATON

Let us now present the generalization of the above t
IIB SG background with nontrivial dilaton when nonconsta
axion is included into the action. Such a study for the case
flat four-dimensional space has been presented earlier in
@7# ~for the effects of additional scalars, see also Ref.@9#!.

We include the axion fieldx into the action of type IIB
supergravity (a5 1

2 ) in Eq. ~7!, following Ref. @14#:
4-7
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S52
1

16pGE dd11xA2G

3S R1l22
1

2
Gmn]mf]nf1

1

2
e2fGmn]mx]nx D .

~68!

We work in the coordinate choice~13! and we assume tha
the d-dimensional manifold is curved~14! and x only de-
pends ony. Then, instead of Eqs.~15!–~17!, we obtain

05
1

2

r f

y
2

d~d21!

8

1

y2 1
l2

2
f 1

1

4
~f8!22

1

4
e2f~x8!2,

~69!

052S r i j 2
1

2
rgi j D f

y
1H d21

4

f 8

f y
2

~d21!~d24!

8

1

y2

1
l2

2
f 2

1

4
~f8!21

1

4
e2f~x8!2J gi j , ~70!

05SAyd

f
f8D 8

1Ayd

f
e2f~x8!2, ~71!

05SAyd

f
e2fx8D 8

. ~72!

Equation~72! can be integrated to give

Ayd

f
e2fx85cx . ~73!

Using Eq.~73!, we can deletex in Eq. ~71! and obtain

05Ayd

f SAyd

f
f8D 8

1e22fcx
2 . ~74!

Equation~74! gives another integral:

cf5
yd

f
~f8!22cx

2e22f. ~75!

By using Eqs.~73! and~75!, we can deletex8 andf8 in Eq.
~69!:

05
1

2

r f

y
2

d~d21!

8

1

y2 1
l2

2
f 1

cf f

4yd , ~76!

which can be solved algebraically with respect tof (y):

f 5
d~d21!

4y2l2~11cf/2l2yd1kd/l2y!
. ~77!

The obtained metric is identical to that in Eq.~19!, where the
axion vanishes, if we replacecf in Eq. ~77! with ac2/2.
Therefore there appears the curvature singularity aty50
04401
again and the supergravity description would break do
when y;0. Note that as we work with type IIB SG w
assume thatd54.

We now introduce a new coordinateh by

h52E dyA f

yd

5E dyA d~d21!

4yd12l2(11cf /2l2yd1kd/l2y)
, ~78!

Equations~73! and ~75! can be written as follows:

cx5e2f
dx

dh
, ~79!

cf5S df

dh D 2

2cx
2e22f. ~80!

Equation~80! can be integrated to give

ef5
cx

Acf

sinh@Acf~h2h0!#. ~81!

Hereh0 is a constant of the integration. Substituting Eq.~81!
into Eq. ~79! and integrating it, we find

x5x02
Acf

cx
coth„Acf~h2h0!…. ~82!

Herex0 is a constant of the integration. Axion describes t
running theta angle.

Wheny→1`, the geometry of the spacetime approach
to AdS5 asymptotically. Then Eq.~78! can be integrated per
turbatively

h5
1

l
Ad21

d S 1

yd/2
2

kd

2~d12!l2yd/211
1••• D . ~83!

Here we have chosen the constant of the integration so thh
vanishes wheny goes to positive infinity. Whenh vanishes,
f andx behave as

ef→2
cx

Acf

sinh~h0Acf!,

x→x01
Acf

cx
coth~h0Acf!. ~84!

We should note thatk dependence does not appear inf and
x if we use the coordinateh because it is hidden in this
coordinate. If we chooseh050, ef→0. Since 4pef can be
regarded as the Yang-Mills coupling constant andr→0 (y
→1`) corresponds to the ultraviolet fixed point from th
viewpoint of AdS-CFT correspondence, the theory can
regarded as asymptotically free.

We now compare the above results with those in Ref.@7#
for k50 andd54. We introduce a new coordinater by
4-8



f

se

nt
fre

tio

en-
ear
ent

be-

q.

For

ck-

m-
the
per-

CURVATURE DEPENDENCE OF RUNNING GAUGE . . . PHYSICAL REVIEW D 61 044014
e2hA2cf/35tanhS l

A3
~r 2r 0!D . ~85!

The coordinate transformation~85! can be given in terms o
y whenk50 andd54 by using Eqs.~78! and ~83!,

y25K4~r ![A cf

2l2 sinhS 2l

A3
~r 2r 0!D . ~86!

Then the metric in Eq.~13! for k50 has the following form:

dsd11
2 5dr21K2~r ! (

i , j 50

d21

h i j dxidxj . ~87!

By using Eq.~85!, the dilaton and axion fields in Eqs.~81!
and ~82! can be rewritten as follows:

ef5
cx

2Acf
H FcothS l

A3
~r 2r 0!D G A3/2

e2h0Acf

2F tanhS l

A3
~r 2r 0!D G A3/2

e2h0AcfJ ,

x5x02
Acf

cx

$coth„~l/A3~r 2r 0!…%A3/211

$coth„l/A3~r 2r 0!…A3/221
. ~88!

Then the solution in Ref.@7# seems to be a special ca
corresponding toh05x050.

Let us consider the potential between quark and a
quark. As we are interested in the case of asymptotically
theory, we puth050 in Eq. ~81! andd54. Then we find

k„f~y!…[ef5
cfRs

4cxy2S 12
k

3l2y
1••• D ,

f ~y!5
Rs

2

4y2 S 12
4k

l2y
1••• D . ~89!

Then in a way similar to the discussion in the second sec
where axion is not present instead of Eqs.~55! and~56!, we
find

dx

dt
5

Rs

A2y0

cosh23/2tH 11
2k

l2y0
S 2

1

cosht
2

cosht

3~cosht11! D
1•••J , ~90!

L5
Rs

A2y0
H C3/21

2k

l2y0
S 2C5/22

E1/2

3 D1•••J ,

~91!

Ea[E
2`

`

dt
cosh2a t

cosht11
.

Equation~91! can be solved with respect toy0 as follows:
04401
i-
e

n

y05
1

2 S C3/2

RsL
D 2H 11

8k

l2C3/2
S 2C5/22

E1/2

3 D S C3/2

RsL
D 22

1•••J . ~92!

Here we assume again thaty0 is large andL is small and not
to break the supergravity description. Then using Eq.~58!,
we obtain the following expression forE(L):

E~L !5
Rs

2 S C3/2

RsL
D H C7/21

k

l2S C3/2

RsL
D 22S 2

16

3
C9/21

4

3
E7/2

2
4

C3/2
S C5/21

E1/2

3 D D1•••J . ~93!

Note that the integral is finite before subtraction the self
ergy of quark and antiquark. We should note that the lin
potential appears in the next-to-leading term. The coeffici

F2
16

3
C9/21

4

3
E7/22

4

C3/2
S C5/21

E1/2

3 D G
of the next-to-leading term is negative, sinceC3/2, C5/2, and
E1/2 are positive and2 16

3 C9/21
4
3 E7/2 is negative, which can

be easily found is

2
16

3
C9/21

4

3
E7/252

4

3E2`

`

dt cosh29/2 tS 42
cosht

cosht11D
,2

4

3E2`

`

dt cosh29/2 t~421!

,0. ~94!

Therefore the linear potential in the next-to-leading term
comes attractive ifk,0 and repulsive ifk.0. The result is
consistent to the potential without axion in Eq.~60!. We
should note that Eqs.~78! and ~81! tell that the dilaton field
behaves as

f;2Ad~d21!

2
ln y, ~95!

which correspondsc,0 case in the pure dilaton case in E
~23!. Since the behavior off (y) in Eq. ~77! is essential iden-
tical with the pure dilaton case in Eq.~19!, the supergravity
description would be valid even for largeL and the confine-
ment for quarks would be predicted~and monopoles would
not be confined!.

We now investigate the supersymmetric background.
k50 it has been found in Ref.@7#. We look for its
k-dependent generalization. Since we consider the ba
ground where the fermion fields, that is, dilatinoj and grav-
itino cm vanish, if the variation under some of the supersy
metry transformations of these fermionic fields vanishes,
corresponding supersymmetries are preserved. The su
symmetry transformations of these fields are given by@14#
4-9
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dj52
1

2
~ef]mx2]mf!gme* ,

dj* 52
1

2
~ef]mx1]mf!gme,

dcm5S ¹m1
1

4
ef]mx2

l

4A3
gmD e,

dcm* 5S ¹m2
1

4
ef]mx2

l

4A3
gmD e* . ~96!

When substituting the solution in Eqs.~81! and~82! into dj
anddj* , we find

dj52
Acf

2 S 12cosh~Acf~h2h0!!

sinh~Acf~h2h0!!
D ghe* ,

dj* 52
Acf

2 S 11cosh~Acf~h2h0!!

sinh~Acf~h2h0!!
D ghe.

~97!

Therefore all the supersymmetries break down in gen
since dx and dx* do not vanish. In the limit ofcf→0,
however, we find

dj→0,

dj* 52
1

h2h0
ghe. ~98!

Therefore there is a possibility that half of the supersymm
tries corresponding toe* survives in this limit. It should be
noted that, in the limit,f (y) in Eq. ~77! becomes

f 5
d~d21!

4y2l2~11kd/l2y!
, ~99!

which tells that the metric of the spacetime becomes noth
but the metric of AdS53S5 although the dilaton and th
axion fields are nontrivial. Then if we choose the spinor p
rametere* by using the Killing spinorz in AdS53S5 as
follows @14,7#:

e* 5ef/4z→cx
1/4~h2h0!1/4z, ~100!

dcm* vanishes in the limit ofcf→0, which tells that half of
the supersymmetry corresponding toe* , in fact, survives in
this limit. This situation does not depend onk. Such a solu-
tion corresponds to some vacuum of maximally supersy
metric YM theory where supersymmetry is broken toN52 .
~Note that deformations ofN54 super YM theory which
flow to fixed points as in Refs.@15,16# may also define run-
ning gauge coupling!. In the limit of cf→0, the solution in
Eqs.~81! and ~82! has the following form:

ef→cx~h2h0!,
04401
al

-

g

-

-

x→x02
1

cx~h2h0!
. ~101!

Even in the limit, the theory becomes asymptotically fr
whenh050 since the coupling is assumed to be given byf

vanishes in the ultraviolet limit corresponding toh50. We
should also note that the potential (h050 case! between
quark and antiquark in Eq.~93! is not changed in the leadin
and next-to-leading orders sincecf is not included to the
corresponding expression.

IV. DISCUSSION

In summary, we found the background of type IIB supe
gravity with nonconstant dilaton, nonzero curvature of fou
dimensional space-time and with~or without! nontrivial ax-
ion. By assuming the coupling is given by the exponential
the dilaton fieldf, AdS-CFT interpretation of such a solu
tion gives the~powerlike! running gauge coupling and pre
dicts its curvature dependence. In the presence of ax
background may have half of the supersymmetries unbrok
In all cases, we calculated quark-antiquark potential a
showed that the term linear on distanceL explicitly depends
on the curvature. Hence, there is the possibility that cur
ture of Universe might predict the confinement.

The complete interpretation of type IIB SG backgrou
via AdS-CFT correspondence is not yet clear. We gave
arguments that our background most probably correspond
another vacuum of maximally supersymmetric YM theo
with some nonzero VEV operator. However, the possibil
that it may be deformation of theory to another less symm
ric ~super! YM theory is not yet completely ruled out. Th
only possibility for understanding it now is to investigate a
properties of SG background and compare it with proper
of corresponding QFT.

For example, it would be really interesting to find furth
development of such a scenario in order to present m
realistic ~logarithmic! behavior for running gauge coupling
Clearly, major modifications of background are necessa
Note in this respect the recent paper@17# where it was shown
that AdS orbifolds may describe the running gauge coupli
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APPENDIX A

In this appendix, we point out that there are many kinds
Einstein manifolds which satisfy Eq.~14!. The Einstein
equations are given by

Rmn2
1

2
gmnR1

1

2
Lgmn5Tmn

matter. ~A1!
4-10
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Here Tmn
matter is the energy-momentum tensor of the mat

fields. If we consider the vacuum solution whereTmn
matter50,

Eq. ~A1! can be rewritten as

Rmn5
L

2
gmn . ~A2!

If we put L52k, Eq.~A2! is nothing but the equation for th
Einstein manifold~14!. The Einstein manifolds are not a
ways homogeneous manifolds like flat Minkowski,~anti–!de
Sitter space or Nariai space but they can be some black
solutions such as the Schwarzschild black hole,

ds4
2[ (

m,n50

3

gmndxmdxn52S 12
r 0

r Ddt21
dr2

~12r 0 /r !

1r 2dV2, ~A3!

or Kerr one for2 k50 or Schwarzschild~anti–!de Sitter
black hole

ds4
252S 12

m

x
2

2k

3
x2Ddt2

1
dr2

F12
m

x
2~2k/3!x2G 1r 2dV2, ~A4!

for kÞ0. In these solutions, the curvature singularity ar
50 has a form of line penetrating AdS5 and the horizon
makes a tube surrounding the singularity. This configurat
seems to express D-string whose boundary lies on the bo
ary of AdS5 or possibly D3-brane. Especially in case of
Kerr or Kerr-~anti–!de Sitter solution, the object correspon
ing to the singularity has an angular momentum.

We should note that the dilaton depends on the geom
of the boundary manifold only throughk as in Eq. ~20!.
Therefore the behavior of the running coupling or renorm
ization group equation is irrelevant with the existence of
black hole singularity.

APPENDIX B

In this appendix we present one more solution of type
supergravity with two timelike signatures of the metric. T
physical interpretation of this solution is not quite clear
well as its dual interpretation.

It was already a few times mentioned that AdS rad
coordinate plays the role of energy coordinate via ho
graphic correspondence. It is also known that in general r
tivity there were attempts to identify the energy with tim
flow. Then the following interesting question appears: C
the same sort of AdS solution be reinterpreted as the
depending from extra time coordinates? In a sense one
has a new IIB SG solution with a few timelike signature
There was

2This type of solutions fork50 case has been considered in R
@18#.
04401
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some discussion of solutions with a few timelike signatu
in various gravitational theories.

In order to get the time dependent solution and consid
kind of AdS cosmology, we perform the analytic continu
tion in the solution in Eqs.~19! and ~20! with k50 as fol-
lows:

c2→2c2, f0→f02
1

2
A~d21!

da
ln~21!. ~B1!

Then we obtain the following metric and the dilaton field:

dsd11
2 5 f ~y!dy21y (

i , j 50

d21

h i j dxidxj , ~B2!

f 5
d~d21!

4y2~l22ac2/yd!
, ~B3!

f5f01
1

2
A~d21!

da
lnH 22ac2

l2yd 11

7AS 2ac2

l2yd 11D 2

21J . ~B4!

We can directly check that the solutions~B2!–~B4! satisfy
Eqs.~11! and~12!. Whenl22ac2/yd,0, dilaton fieldf is
real and f (y) becomes negative, which tells thaty can be
regarded as another time coordinate~AdS time! besides the
physical time coordinate ind-dimensional Minkowski space
corresponding toh i j in ~B2!. We have unusual signature o
the metric with two timelike coordinates. Changing the c
ordinatey by

y5S ac2

l2 D 1/d

sin2/d t, ~B5!

we obtain the following metric and the dilaton field:

dsd11
2 52

d21

dl2 dt21S ac2

l2 D 1/d

sin2/d t (
i , j 50

d21

h i j dxidxj ,

~B6!

f5f01
1

2
A~d21!

da
lnS 17cost

sint D 2

. ~B7!

Note thatt50,p corresponds toy50. Therefore there is a
curvature singularity there. This indicates thata8 expansion
in string theories becomes unreliable and we need to exc
the regiont;0,p. Equation~B7! indicates that the coupling
becomest-dependent, especially in the case of type IIB s
pergravity we find

g5gse
f2f05gsS 17cost

sint D A222/d

. ~B8!

If we change the coordinatet by t as
.

4-11
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t5S d21

dcAa
D E dt

sin1/d t
, ~B9!

we have the metric in the following form:

dsd11
2 5Q~t!S 2dt21sin2/d t (

i , j 50

d21

h i j dxidxj D ,

~B10!

where

Q~t![S ac2

l2 D 1/d

sin2/d t~t!. ~B11!
d

u

h
.

ev

04401
Note thatt is solved with respect tot by using Eq.~B9!. It
follows from the above speculation that one can underst
running of gauge coupling also as dependence on ‘‘sec
time’’ ~AdS time!. It would be interesting to understand
such a picture may have any physical meaning.

The conclusion drawn from such an interpretation is t
AdS solution may contain a few times. Then the possibil
of a kind of phase transition between these times should
considered~this is, of course, highly speculative!. The physi-
cal time should be naturally defined by observer living
such a world. One possibility may be to introduce poten
depending on angles defining the sort of signature of
particular dimension. Then the minimum of this potent
may probably define the real physical time. In any case,
interpretation of the type IIB SG solution considered in th
appendix could be understood simply as one more type
SG solution.
J.

er,

,

@1# J.M. Maldacena, Adv. Theor. Math. Phys.2, 253 ~1998!; E.
Witten, ibid. 2, 253 ~1998!; S. Gubser, I.R. Klebanov, an
A.M. Polyakov, Phys. Lett. B428, 105~1998!; for an excellent
review, see O. Aharony, S. Gubser, J. Maldacena, H. Oog
and Y. Oz, hep-th/9905111.

@2# I.R. Klebanov and A.A. Tseytlin, Nucl. Phys.B546, 155
~1999!; B547, 143 ~1999!; J. High Energy Phys.03, 015
~1999!; J.A. Minahan,ibid. 01, 020 ~1999!; G. Ferretti and D.
Martelli, Adv. Theor. Math. Phys.3, 119 ~1999!; A. Armoni,
E. Fuchs, and J. Sonnenshein, J. High Energy Phys.06, 027
~1999!; M. Alishahiha, A. Brandhuber, and Y. Oz,ibid. 05,
024 ~1999!; K. Ghoroku, hep-th/9907143.

@3# S. Nojiri and S.D. Odintsov, Phys. Lett. B449, 39 ~1999!.
@4# A. Kehagias and K. Sfetsos, Phys. Lett. B454, 270 ~1999!.
@5# J. Maldacena, Phys. Rev. Lett.80, 4859~1998!.
@6# L. Girardello, M. Petrini, M. Porrati, and A. Zaffaroni, J. Hig

Energy Phys.05, 026 ~1999!; S. Gubser, hep-th/9902155; S
Nojiri and S.D. Odintsov, Phys. Lett. B458, 226~1999!; R. de
Mello Koch, A. Paulin-Campbell, and J. Rodriques, Phys. R
D 60, 106008~1999!; Ghoroku@2#.

@7# A. Kehagias and K. Sfetsos, Phys. Lett. B456, 22 ~1999!.
@8# H. Liu and A.A. Tseytlin, Nucl. Phys.B553, 231 ~1999!.
@9# N. Constable and R.C. Myers, hep-th/9905081.
ri,

.

@10# L. Susskind and E. Witten, hep-th/9805114; A.W. Peet and
Polchinski, Phys. Rev. D59, 065011~1999!.

@11# I.L. Buchbinder, S.D. Odintsov, and I.L. Shapiro,Effective Ac-
tion in Quantum Gravity~IOP, Bristol, 1992!.

@12# T.R. Taylor and G. Veneziano, Phys. Lett. B212, 147 ~1988!;
I. Antoniadis, ibid. 246, 377 ~1990!; E. Witten, Nucl. Phys.
B471, 135 ~1996!; J. Lykken, Phys. Rev. D54, 3693 ~1996!;
K.R. Dienes, E. Dudas, and T. Gherghetta, Phys. Lett. B436,
55 ~1998!; C. Bachas, J. High Energy Phys.23, 9811~1998!.

@13# D.J. Gross and H. Ooguri, Phys. Rev. D58, 106002~1998!.
@14# G.W. Gibbons, M.B. Green, and M.J. Perry, Phys. Lett. B370,

37 ~1996!; A. Tseytlin, Phys. Rev. Lett.78, 1864 ~1997!; C.
Chu, P. Ho, and Y. Wu, Nucl. Phys.B541, 179 ~1999!.

@15# J. Distler and F. Zamora, Adv. Theor. Math. Phys.2, 1405
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