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This is the first in a series of papers on the construction and validation of a three-dimensional code for
general relativistic hydrodynamics, and its application to general relativistic astrophysics. This paper studies
the consistency and convergence of our general relativistic hydrodynamic treatment and its coupling to the
spacetime evolutions described by the full set of Einstein equations with a perfect fluid source, complimenting
a similar study of thévacuum spacetime part of the code. The numerical treatment of the general relativistic
hydrodynamic equations is based on high resolution shock capturing schemes, specifically designed to solve
non-linear hyperbolic systems of conservation laws. These schemes rely on the characteristic information of
the system. A spectral decomposition for general relativistic hydrodynamics suitable for a general spacetime
metric is presented. Evolutions based on different approximate Riemann s@lversplitting, Roe, and
Marquina are studied and compared. The coupling between the hydrodynamics and the spébetinght
and left hand side of the Einstein equatipisscarried out in a treatment which is second order accuratetim
space and time. The spacetime evolution allows for a choice of different formulations of the Einstein equations,
and different numerical methods for each formulation. Together with the different hydrodynamical methods,
there are twelve different combinations of spacetime and hydrodynamical evolutions. Convergence tests for all
twelve combinations with a variety of test beds are studied, showing consistency with the differential equations
and correct convergence properties. The test-beds examined include shock tubes, Friedmann-Robertson-
Walker cosmology tests, evolutions of self-gravitating comg@€V) stars, and evolutions of relativistically
boosted TOV stars. Special attention is paid to the numerical evolution of strongly gravitating objects, e.g.,
neutron stars, in the full theory of general relativity, including a simple, yet effective treatment for the surface
region of the stafwhere the rest mass density is abruptly dropping to)zero

PACS numbegps): 04.25.Dm, 47.75tf, 95.30.Sf, 97.60.Jd

[. INTRODUCTION tary presentation on thezacuun spacetime evolution part
of the code has been given [4,2]. In the following we
The field of computational astrophysics is entering an exbegin by discussing the background of our code development
citing and challenging era. The large amount of observaeffort.
tional data involving general relativistic phenomena requires
the integration of numerical relativity with the traditional
tools of astrophysics, such as hydrodynamics, magneto- A. Motivation

hydrodynamics, nuclear astrophysics, and radiation trans- Twg of the major directions of astronomy in the next

port. General relativistic astrophysics — astrophysics involV¢entury are high energy astrophysiosray and y-ray as-

ing gravitational fields so strong and dynamical that the fullyonomy) and gravitational wave astronomy. The former is

Einstein field equations are required for its accurate descringriven by advanced x-ray ang-ray satellite observations,

tion, is quickly becoming a promising area of research. ¢ g CGRO, AXAF, GLAST[3], XMM, INTEGRAL, that

As a first step in our study of “computational general gre either current or planned in the next few years. High

relativistic astrophysics,” our collaboratiofthe NCSA— gnergy radiation is often emitted by highly relativistic events

Potsdam—Wash University Numerical Relativity Collabora-j, regions of strong gravitational fields, e.g., near black holes

tion) is building a code called €AcTusS’ for solving the full (BHs) and neutron star€NSS. One of the biggest mysteries

set of Einstein field equations coupled to a perfect fluidof modern astronomyy-ray bursts, is likely related to pro-

source. Such a code will have many applications for astrogesses involving interactions of compact binaf@si-NS or

physical processes involving neutron stars and black holesyS-NS or highly explosive collapse to a black hal¢hy-

In this paper we present the formulation and methods of th@ernova’) (see, e.g.[4] and references therginSuch high

3D general relativistic hydrodynamic part of the code, and itsenergy astrophysical events often involve highly dynamical

coupling to the spacetime part of the code. We also presenjravitational fields, strong gravitational wave emissions, and

various tests for the validation of the code. The complimen-ejecta moving at ultrarelativistic speeds with relativistic Lor-
entz factors up to £8-10*. The modeling of such events can
only be achieved by means of hydrodynamical simulations in

*Corresponding author. the full theory of general relativity.
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The second major direction, gravitational wave as-most relevant talynamicalspacetimes with the matter flows
tronomy, involves the dynamical nature of spacetime in Ein-acting as sources to the Einstein equations.
stein’s theory of gravity. The tremendous recent interest in The pioneering work dates back to the one-dimensional
this frontier is driven by the gravitational wave observatoriessupernova core-collapse code by May and WHitH. It was
presently being built or planned in the U.S., Europe, andased on a Lagrangiane., coordinates co-moving with the
outer space, e.g., Laser Interferometric Gravitational Wavdluid) finite difference scheme with artificial viscosity terms
Observatory(LIGO), VIRGO, GEO600, Laser Interferom- included in the equations to damp the spurious numerical
eter Space Antenn@ISA), LAGOS[5], and the Lunar Out- oscillations caused by the presence of shock waves in the
post Astrophysics Prograf]. The American LIGO and its flow solution. Numerous astrophysical simulations were
European counterparts VIRGO and GEO600 are scheduldohsed on this approach. One drawback is that the Lagrangian
to be on line in a few years], making gravitational wave character of the code makes it difficult to be extended to the
astronomy a reality. The space detector LISA has been sénultidimensional case.
lected as one of the three “cornerstone missions” of the The pioneering Euleriafi.e., coordinates not co-moving
European Space Agen¢y] These observatories provide a with the f|UId) finite difference GR-HydI’O code was devel-
completely new window on the universe: existing observa2Ped by Wilson[12] in the early 1970s. It used a combina-
tions are mainly provided by the electromagnetic spectrumt,'on of artificial viscosity (AV) and upwind techniques. It _
emitted by individual electrons, atoms, or molecules, and ar@ecame the kemel of a large number of codes developed in
easily absorbed, scattered, and dispersed. Gravitation:tsne _19805' Many different astrophysmal scenarios were n-
waves are produced by the coherent bulk motion of matte estigated with these codes, ranging from axisymmetric stel-
and travel nearly unscathed through space, coming to us ¢ i core-collapsé13—1§, to accretion onto compact O.b]eCtS
rying the information of the strong field regions where they 16’13’ and to numerl_cal cosmolog{;lS]. In the foIIowmg,_

g . . . : we give a short overview of this large body of work, paying

were qr|g|nally_genera§eEB]. This new W'F‘dOW wil prpwd_e more attention to the numerical methods used than to the
very different information about our universe that is either

., . . ) " physical results obtained.
difficult or impossible to obtain by traditional means. While there are a large number of numerical investiga-

The numericaltheoretical determination of gravitational  jons in pre-determined background spacetimes based on the
wave forms is crucial for gravitational wave astronomy. ay approach(e.g.,[12,19,16,17,2]), we focus on those us-
Physical information in the data is to be extracted throughng a fully self-consistent treatment evolving the spacetime
template matching techniqué$], which presupposeshat  dynamically with the Einstein equations coupled to a hydro-
reliable wave forms are known. Accurate wave form deteC-dynamic source. Although there is much recent interest in
tions are important both as probes of the fundamental natungis direction, only the spherically symmetric ca44®) can
of gravity and for the unique physical and astronomical in-be considered essentially solvg2i1-25. In axisymmetry,
formation they carry, ranging from nuclear physitthe i.e. 2D, only a few attempts have been made, with most of
equation of state of NS®]) to cosmology(direct determi- them devoted to the study of the gravitational collapse and
nation of the Hubble constant without going through thebounce of rotating stellar cores and the subsequent emission
“cosmic distance ladder[10]). In most situations, the wave of gravitational radiatiori26,14,15,2T. Reference 26] was
form cannot be calculated without a numerical 5imu|ati0nthe first to calculate a general relativistic stellar core col-

based on the full theory of general relativity. This need forlapse. The computation succeeded in tracking the evolution
wave form templates is an important motivation of our ef-Of matter and the formation of a black hole but the numerical

fort. scheme was not accurate enough to compute the emitted

In short, both of these frontiers of astronomy call for com-dravitational radiation. The code [14] used a radial gauge

putational general relativistic astrophysics, i.e., the integraSelnd ?. mixture of p|0|a(; af?f'h mtaxu(;nal ds;!c[?g. d'_l;?e GR—hydrt(;
tion of numerical relativity with traditional tools of compu- equations were solved with standard finite difierence metn-

tational astrophysics, e.g., computational hydrodynamicsOds with AV terms. In[15] the numerical scheme for the

radiation transport, nuclear astrophysics, and magnetd)p.atter fields was more sophisticated, using monotonic up-

hydrodynamics. If we are to fully understand the observa—Wmd reconstruction procedures and flux limiters, with dis-

tional data generated by the non-linear and dynamical gravf-:Ontlnuous solutions handled by adding AV terms in the

tational fields, detailed modeling taking dynamic generalequat'on.s‘ Ir[_27], a numerical study of the s.tatlnhty O.f star
relativity into full account must be carried out. clusters in axisymmetry was performed. In this investigation,

the source of the gravitational field was assumed to be a
configuration of collisionlesgdusy particles, which reduces
the hydrodynamic computation to a straightforward integra-
We begin by briefly reviewing some of the significant tion of the geodesic equations.

existing investigations in the field of numerical general rela- Three-dimensional extensions of these AV based GR-
tivistic hydrodynamics(GR-Hydro in the following to set  Hydro treatments have been attempted over the last few
the stage for the description of our own work. While thereyears. Wilson’s original scheme has been applied to the
has been much effort in the study of relativistic hydrodynam-study of NS binary coalescence[i28,29 under the assump-
ics in pre-determinedfixed, or with its time evolution speci- tion of a conformally flat spacetime, which leads to a con-
fied) background spacetimes, we focus on studies that arsiderable simplification of the gravitational field equations. A

B. Existing work in general relativistic hydrodynamics
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code employing thdull set of Einstein equations and self- methods are well known for having extraordinary accuracy
gravitating matter fields is currently being developad]. In in smooth regions of the solution. The numerical error is
this work the complete set of the equations, spacetime anevanescent, i.e., it decreasesad with N being the number
hydrodynamics, are finite differenced in a uniform Cartesiarof coefficients in the spectral expansion. The main drawback
grid using van Leer’s schenj81] with total variation dimin-  of pseudospectral methods has been, traditionally, the inac-
ishing (TVD) flux limiters (see, e.g.[32] for definitiong.  curate modeling of discontinuous solutions due to the ap-
Shock waves are spread out using a tensor AV algorithmpearance of the so-called Gibbs phenomenon. In the presence
With this code they have studied the gravitational collapse obf discontinuities, the numerical approximation of the solu-
a rotating polytrope to a black holeomparing to the origi- tion does not converge at the discontinuity and spurious os-
nal axisymmetric computation of Rdfl4]) and the coales- cillations appear. Recently, however, an innovative pseu-
cence of a binary NS system. Further work to achieve longetiospectral method based on a multidomain decomposition
term stability is under way30]. has been developdd1] which circumvents the Gibbs phe-
The success of the artificial ViSCOSity approach is We”nomenon_ This new approach has a|ready been shown to

ultrarelativistic regime33]. In Wilson’s formulation of the et aurin and Roche equilibrium models.

GR-hydro equations, there are explicit spacetime derivatives
of the pressure in the source terms. This breaks the conser-
vative character of the system and introduces complications
into the numerical treatment. This motivated, in recent years, In this subsection we discuss the main issues we consid-
the effort of extending to relativistic hydrodynamics high- ered in choosing our approach, building on the existing work
resolution shock-capturinfHRSQO schemes originally de- discussed above. The main aim of our program is to study
veloped in classicalNewtoniar) computational fluid dynam- violent and highly-energetic astrophysical processes like
ics. Such schemes are based on the solution of local RiemaiiS-NS coalescence within the framework of general relativ-
problems, exploiting the hyperbolicity of the hydrodynamic ity. These scenarios involve strong gravitational fields, mat-
equations. To use such numerical treatments, the hydrodyer motion with(ultra) relativistic speeds and/or strong shock
namic equations are first cast into a first ordeyperbolio ~ waves. These features make the numerical integration of the
system of conservatiofor balancg laws. The characteristic hydrodynamic equations a very demanding task. The diffi-
fields of the system are then determined which allows theulty is exacerbated by the intrinsic multidimensional char-
construction of numerical schemes which propagate the inacter of these astrophysical systems, and by the inherent
formation along the fluid characteristics. We refer the readecomplexities in Einstein theory of gravity, e.g., coordinate
to [32] for a review of these methods for general hyperbolicdegrees of freedom and the possible formation of curvature
systems of conservation laws. singularities(e.g., collapse of matter configurations to black
HRSC schemes were first introduced into GR-Hydro inholes. These complications call for the use of advanced nu-
[34], and applied in(spherical dynamical spacetimes (185]  merical methodology, a flexible code construction which al-
and[36]. The latter investigation focused on, among otherlows for the use of different treatments, and a large amount
problems, the study of supernova core collagseluding  of careful testbed studies. In the following we discuss these
the infall epoch, bounce, and shock propagatidrhe nu-  issues in more detail.
merical code was based on the radial-gauge and polar-slicing Two major issues in GR-Hydro which are purely hydro-
coordinate condition$37]. In [38] the GR-Hydro equations dynamical in origin are the numerical modeling of flows with
were analyzed in the “31” formalism and the theoretical large Lorentz factors and strong shock waved.38] it was
building blocks to construct a HRSC scheme in multidimen-shown that the AV based schemes have difficulties in han-
sions were presented. Axisymmetric studies using HRSG@ling ultrarelativistic velocity flows with Lorentz factoes2.
schemes are currently being carried ouf38]. This inves- As a result,[33] proposed using implicit finite difference
tigation focussed on the study of accretion phenomena ontschemes to handle the GR-Hydro equations in the ultrarela-
(dynamig rotating black holes and the associated emissiortivistic regime. However, investigations during the last de-
of gravitational radiation induced by the presence of the mateade have provided increasing evidence that the most appro-
ter fields. Axisymmetric studies will also provide useful priate schemes to deal with ultra-relativistic flow with strong
“test beds” in forthcoming investigations with the present shocks are those based @approximate or exactRiemann
3D code discussed in this paper. As will be discussed in latesolvers, i.e., HRSC schemes. These methods have high ac-
sections of this paper, our present code is based on the sameracy (second order or moyein regions where the flow
HRSC algorithmic machinery as in the aforementionedsolution is smooth, and at the same time are able to resolve
works. We extend the treatment to 3D, and develop a coddiscontinuities in the solutiofe.g., shock waveswith little
that makes no assumptions on the nature of the spacetimsmearing. They have been extensively tested and found to be
the form of the metric, or the slicing and spatial coordinatesapplicable in the ultra-relativistic reginisee, e.g.42] for a
We refer the interested reader to the above references forracent review.
first understanding of the numerical schemes used in our While we believe HRSC schemes may be capable of pro-
work. viding the technology for treating the hydrodynamic part of
We also want to mention a completely different approachthe evolution, the field of computational GR-Hydro still con-
for GR-Hydro based on pseudospectral metHa@d§. These tains many issues that are as yet unexplored, especially for

C. Issues of general relativistic hydrodynamics
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cases where the relativistic fluid is coupled to a dynamicathe numerical code we constructed for solving the GR-Hydro
spacetime. For a fully dynamical spacetime, one major issuequations, and(3) to compare the different numerical
is the handling of the gauge degrees of freedom. This probschemes we used.
lem is exacerbated in 3D simulations without symmetry as- The set of differential equations we are attempting to
sumptions. In a general 3D problem, there is no preferredolve consists of very complicated, coupled partial differen-
choice of gauge to restrict the metric functions as in lowertial equations involving thousands of terms. Considering the
dimension simulationée.g., radial gauge and polar slicing in complexity and generality of the code, along with the fact
spherically symmetric simulationsLagrangian coordinate that the solution space of the differential equations is largely
systems are inappropriate for complicated 3D flows. The inunexplored, it is essential that any physical result produced
evitable lower resolution in 3D simulations also makes theby a 3D GR-Hydro code be preceded by a series of tests such
problem more acute. Even in vacuum spacetime studies, thes the ones we report here, in order to insure the fidelity of
choice and implementation of appropriate gauge conditionshe discretization to the original differential equations. In
for a general dynamical evolution is a largely unexploredfact, we consider the tests presented here to be a minimal set:
territory [43]. How will the gauge choices be affected by the any 3D GR-Hydro code should be able to reproduce these
presence of relativistic fluid flows or by the existence ofresults. Further tests, especially those related to the long term
strong shocks which create sharp features in the sources sfability of the code and detailed comparisons of 3D and 1D
the metric evolution? For example, what will be a usefulresults will be presented in a forthcoming paper.
gauge condition for a process like the inspiral of a NS-NS In exploring the very complex system of the GR-Hydro
binary? These are completely open issues. In order to praquations, it is also essential to have the capability to com-
vide the capability to investigate these problems, the code wpare results based on different mathematical formulations
construct here is designed to allow arbitrary gauge condiand different numerical schemes. Our code is currently set up
tions, making no assumptions on the lapse function or theo allow two different formulations of the Einstein equations:
shift vector. the standard Arnowitt-Deser-MisnefADM) formulation
Another class of problems involves the connection of the[45] and the Bona-MassBM) hyperbolic formulation[1]
numerical integration of the hydrodynamic equations to thaisther hyperbolic formulations will be included and reported
of the spacetime equations. What is the best set of variablagiep The code allows for two different choices for finite
to use, locally measured quantities, coordinate variablegitterencing the ADM equations: a standard leapfrog scheme

densitized quantities or some combination? With the spacé; ap jterative Crank-Nicholson scheme. The BM equations
time metric an evolved variable, there are many choices

. ; are finite differenced using a Strang split to separate the
What is the best way to connect the hydrodynamics and thgource and flux updates. The latter are performed using a

spacetime finite differencing steps to achieve not only a sec- )
ond order accurate scheme in both space and time, but aégacCormack method. As for the numerical treatment of the

in a way that is suitable for long term evolutions? Even in ydrodynamic equations, the code hgs the capability of usin_g
Newtonian strong field evolutions, coupling the hydrody-three dn‘ferer_lt HRSC schemgs: thg f|r'st'one is the flux spht
namic integration to the gravitational potential calcuiation inMethod, mainly chosen for its simplicity. The second is
different ways can yield different long term behavi@s]. ~ Roe’s method46] [note that contrary t§47], we do not use
As a consequence of the different character of the equatiorf30€'s averaging but instead employ arithmetic averaging
governing the geometry of the spacetime and the evolutiofis€e Sec. Il below for details The third scheme we use is
of the matter fields, the numerical methods to handle thenthe recently developed Marquina’s methptB]. All three

are drastically different. What are the effects of combiningschemes are coupled to the spacetime evolution solver in a
different methods, and is there a best combination for a pamay which is second order accurate in both space and time.
ticular class of problems? With the recent development of In this code we also allow for arbitrary spacetime coordi-
hyperbolic formulations in GR, an interesting possibility nate conditions. As mentioned previously, this enables the
would be to consider all of the dynamical variables, bothinvestigation of gauge choices in GR-Hydro and allows the
spacetime and matter fields, to be members of one mastese of different coordinate systems for different astrophysi-
state vector. The entire system of equations could then beal simulations. This capability is built into our development,
written as a singldévecton conservationor balancgé equa- and we have carried out tests with non-trivial lapses and
tion. One could then apply the same HRSC schemes to th&hifts in this paper. However, more investigation is needed in
entire system. What advantages would this bring? These athis direction.

some of the issues that we have in mind in choosing our

approach in developing the code as will be discussed next. E. Computational issues

As the aim of our program is to studgalistic astrophysi-
cal systems, which often require full 3D simulations and in-
Our overall goal is to develop an efficient, flexible, com- volve many different time and length scales, it is important
putational tool for general relativistic astrophysics. Specifi-that the computer code we develop be capable of carrying
cally for this paper, the aims af@) to establish the formu- out large scale simulations. This requires the use of mas-
lation, including the spectral decomposition of the GR-sively parallel supercomputers. ThecACTus’ code was
Hydro equations, on which our code is bas@,to validate  built with this in mind. Here we give a brief overview of the

D. Outline of our approach

044011-4



THREE-DIMENSIONAL NUMERICAL GENERAL ... PHYSICAL REVIEW D61 044011

computational infrastructure of the code and its performance. F. Organization of this paper

For a more extensive review, spé9]. The organization of the paper is as follows: the formula-
The cACTus code achieves parallelism through the MP! tion of the differential equations are given in Sec. II. A spec-
message passing interfa¢60]. This allows high perfor-  tra| decomposition of the GR-Hydro equations suitable for a
mance portable parallelism using a distributed memonyeneral non-diagonal spatial metric is presented. The details
model. All major high performance parallel architectures, in-of the discretization of the equations and of the coupling of
cluding the SGI Origin 2000, Cray T3E, HP/Convex Exem-the spacetime and hydrodynamics are given in Sec. Ill.
plar, and IBM SP-2 support this programming model. TheShock tube tests are performed in Sec. IV for shocks along
MPI layer of Cactus also allows computing on clusters ofthe coordinate axes and along the diagonal. These test the
networked workstations and PC’s. Parallelism in Cactus isqwydrodynamic part of the code, with the background geom-
based on a generic domain decomposition, distributing unietry held flat. We then go on to test the coupling of the
form grid functions across multiple processors and providinghydrodynamics to curved and dynamical spacetimes. Section
ghost-zone based communications for a variety of stenci\/ is on tests using Friedmann-Robertson-Walker cosmolo-
widths and grid staggerings. The code can also compile withgies with dust. Section VI contains tests using static spheri-
out MPI, allowing the same source code to be run on a singleal star solutions with a polytropic equation of state. We
processor workstation and on massively parallel superconpresent a practical procedure which gives stable evolution of
puters. The platforms currently supported and tested includehe surface region of the star. Section VII contains tests using
the SGI Origin 200Qup to 256 nodegs the Cray T3Eup to  the spherical star solutions described in Sec. VI but now
1024 nodek SGI O2 clusters, NT clusters, DEC alphas, andrelativistically boosted along the diagonaty+z. This is a
SGI workstations. We have recently benchmarked a versiogtrong test of the fully coupled spacetime and hydrodynam-
of the code(the “GR3D” version, constructed for the NASA  jcs system, with all possible terms in the equations activated
Neutron Star Grand Challenge Project, see http:/and with a non-trivial lapse and shift. Finally, Sec. VIII con-
wugrav.wustl.edu/Relativ/nsgc.htmbn a 1024 node T3E- tains a brief summary.
1200, achieving over 140 GFlop/sec and a scaling efficiency Al tests presented in Secs. V-VII contain convergence
of over 95% (for details of the benchmark, see http:// studies performed in the following way: errors are obtained
wugrav.wustl.edu/Codes/GR3DBesides the floating point py subtracting the exact solution at a specific time from the
and Scaling efﬂCiency, it is also nOteWOfthy that a r8|ative|ycomputed solution for a number of dynamica| variables.
large grid size(644x644x1284 grid points for 32 bit accu- These errors are produced at three different resolutidrs,
racy, and 508500<996 grid points for 64 bit accurafy Ax/2 andAx/4. To demonstrate they have the correct con-
were used for the benchmarked run on the T3E-1200. This i§ergence properties for a second order accurate discretization
made possible by the efficient memory usage of the codgye check that each error function decreases by a factor of
With the full set of the Einstein equations coupled to thefoyr for each factor of two increase in resolution. This is
relativistic hydrodynamics equations, a large number of 3Dgemonstrated by plotting the various error functions along

arrays are required to evolve the system. In order to havgp Jjines. These convergence tests are an essential part in
reasonable resolutions for realistic simulations, it is essentiajalidating the code.

that the code make efficient use of available memory. It is

also essential that the code be highly optimized in order for

these large simulations to be carried out in a reasonable time.
During the code development, special attention was also A. General relativistic hydrodynamic equations

g_iven to software engineeri_ng problems, such as collabora- |, this subsection we present the hydrodynamic equations
tive code development, maintenance, and management. Thg, 5 general curved spacetime in a form suitable for ad-

code was developed to be shared by the entire communityanced numerical treatment. The equations for the evolution
for the investigation of general relativistic astrophysics. Tout the spacetime, including the hydrodynamic source, will be
minimize barriers associated with collaborative deve|°p'presented in a later subsection.

ment, the code was constructed to haig:A modular code The general relativistic hydrodynamic equations, written

structure that allows new code modules to easily plug in &g, the standard covariant form, consist of the local conserva-

“thorns™ to the core part of the codethe “flesh”). The  iqn |aws of the stress-energ§#*, and the matter current
“flesh” contains the parallel domain decomposition soft- density,J#
ware, /O, and various utilitieg2) A consistency test suite ’
library to make sure that new thorns will not conflict with v, T#'=0, (1)
other parts of the codé3) Various code development tools,
such as: documentation, elliptic solvers, and visualization
tools, which provide a complete environment for code devel-
opment, and testing. For detailed discussions of these and
other features of collaborative infrastructure of the code, sewhere J*=pu*, p is the rest mass density and* the
[51,49 4-velocity of the fluid.V , stands for the covariant derivative
These computational features of the code significantly enwith respect to the 4-metric of the underlying spacetime.
hance our effort in constructing a multi-purpose code forThroughout this paper we are using, unless otherwise stated,
general relativistic astrophysics. natural units G=c=1). Greek(Latin) indices run from 0 to

Il. FORMULATION

V,J#=0, @)
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3 (1 to 3. In what follows we will neglect viscous effects, - 1 N\ .
assuming the stress-energy tensor to be that of a perfect fluid CY(V'— ;/3' D
- . i
T#'=phu*u’+Pg"’, ) Fi=| af [V —B'|S+Pg] |. ®
: . : : . o1 A ,
whereP is the fluid pressure angt*” is the 4-metric describ- al(v'——p8"|7+ yv'P)
a -

ing the spacetime. In addition, the relativistic specific en- -

thalpy, h, is given b _ -
by g 4 Finally, the source vectds is given by

h=1+¢€+Plp, (4) 0
é: a yTMVgV(rF”ﬂ] ’ (9)
heree is the rest frame specific internal energy density of v
W €l pecitc | gy Ity L CY\/;(T#O&MCY_CYT# Foluv)

the fluid.
The equations written in this covariant form aret suit- wherel'*,,, is the 4-Christoffel symbol

able for the use of advanced numerical schemes. In order to

carry out numerical hydrodynamic evolutions, and in par- N 1. 8

ticular to take advantage of the benefits of HRSC methods, I=59%(9,9u8% 9.9,8~ p9u)- (10

the hydrodynamic equations after the B split must be writ-

ten as a hyperbolic system of first order flux conservative A technical point must be included here. While the nu-

equations. We introduce coordinatee’t,x,x*x%) and  merical code updates the state vedibforward in time it

write Egs.(1) and(2) in terms of coordinate derivatives. We makes use, internally, of the set of primitive variables de-

project Eq.(1) and Eq.(2) onto the basign*, (d/dx')*}, with  fined above, ¢,v',€). Those are used throughout, e.g., in the

n* being a timelike vector normal to a given hypersurface. Acomputation of the characteristic fiel¢see below. These

straightforward calculation yields the set of equations in th&,ariables cannot be obtained from the evolved ones in a

desired form closed functional form. Instead, they must be recovered

through some appropriate root-finding proceduem ex-

atL7+ Pr= ) ample of this can be found if52]).

B. Spectral decomposition and characteristic fields

whered; denotes a partial derivative with respect to time and . . .
d; indicates a partial derivative with respect to the spatial The use of H.RSC schemes, aS.W'" be presented in detail
coordinatex.. in the next section, depends crucially on the knowledge of

. . .. the spectral decomposition of the Jacobian matrix of the sys-
The evolved state vectdf is given, in terms of the primi- o,

tive variables p,v',€), as

IF! )
D \/;Wp au
U= él \/;PhWZVj , (6)  The characteristic speeg@sigenvaluesand fields(eigenvec-
pe \/;(phWZ— P—Wp) tors) are the key ingredients of any HRSC scheme. The spec-

tral decomposition of the Jacobian matrices of the general
relativistic hydrodynamic equations with general equation of
state was first reported {138] (for polytropic EOS se@47)).

However, we have found that the eigenvectors reported in
[38] are correct only in the case of a diagonal spatial metric.
In this section we display the full spectral decomposition
valid for a generic spatial metric. We focus on tkeirec-

tion, hence presenting the spectral decomposition of

A o (JF*/ 3, as the other two directions can be found by simple
u'=W'-g'"a), (7)  permutation of indices.
We start by considering an equation of state in which the

wherea and8' are, respectively, the lapse function and thef;rt?cszu;d: J%?nggﬁg?r? ,:?]fg f?Sf;IS Pijei(f),zélh: re[lgg]\;-
shift vector of the spacetime. Also notice that we are using a P 9 y €0

slightly different set of variables as those used38]. We op
are now “densitizing” the evolved quantitie®, S; and 7, c2=— :%Jr

with the factor\/y. The three flux vectorg' are given by IEls

wherey is the determinant of the 3-metrig; , v; is the fluid
3-velocity, and W is the Lorentz factor, W=au’=(1
—7;v'vl) Y2 Notice that the spatial components of the
4-velocity u' are related to the 3-velocity by the following
formula:

” (12
p2 N’
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where y=0dP/dp|., k=0dPl/de|,, S is the entropy per par- The solution contains a triply degenerate eigenvalue
ticle, andE is the total rest energy density which in our case

is E=p+pe. We require a complete set of eigenvect[(frg

_ _ _ X__ pX
and corresponding eigenvalugsalong thex direction, i.e. M=ho=hg=avi— B (14)
=X
—|[ri1=N\[ri], i=1,...5. (13 A setof linearly independent vectors that span this degener-
ou ate space is given by
|
T
= . 1 - (15)
r - —!V Yv !V 1 - 5 1
C MW= ped) T hWk— pe?)
F2=[Wvy,h(yyy+ 2W2V,vy) N yyy+ 2WAv v y) (gt 2WPr v ) vy W(2Wh—1)]T, (16)
F3=[WV,,h( ¥t 2WAV,v,) (g4 2WA0 V) Ny 2WPV,v,) v, W(2Wh—1)TT. (17)

The superscripT denotes transpose. The other two eigenvalues are given by

Mo = K1) = AL VA YN —vED) V(- DT} - BY (19)
1-v“cg

with corresponding eigenvectors

N VA= (\s+ B a hW( = v*v¥) !
r.=|1hW v,— Wy hWy,, -1 . (19
YE VNt B a Y* Vst B a
|
C. Equations for a dynamical spacetime two kinematic variables which describe the evolution be-
with a hydrodynamic source tween these surfaces: the lapse functigrwhich describes
The dynamics of the gravitational field in general relativ- the rate of advance of time along a timelike unit veaér
ity theory is described by Einstein’s field equations normal to a surface, and the spacelike shift vegiorthat
describes the motion of coordinates. The line element is writ-

G,,=87T,,, (200  tenas

IR SR ISR S didxd
which relate theten) metric components,,,(=g,,) of the ds’=—(a®~ BB dt?+2B,dX dt+ y;dx'dx. (21)

spacetime to the stress energy teribgy. Here,G,,, is the The ADM formulation casts the Einstein equations into a

Einstein tensor which involves second derivatives, in bothfirst order (in time) quasi-linear[56] system of equations.

space s time, qf the de_penden.t varialglgs. A fo_rmula— The dependent variables are the 3-mefricand the extrin-
tion of the Einstein equations suitable for numerical evolu-_. ) 7
sic curvatureK;; . The evolution equations read

tions has been known for more than three decddg&§ In

recent years, many new formulations have been proposed

(for a review, se¢54,55 and references thergiseeking to

expose the hyperbolicity of the evolution components of the

Einstein field equations. oKj==VV,a+a
In the present paper, we discuss the mathematical and

dvyij=—2aK;j+ Vi B+ V;B;, (22)

Rj+K Kij—2KpK"

algorithmic issues related to the coupling of the hydrody-

namic equations to two different formulations of the Einstein —877( Si— 1%15) —4mp

equations. We start with the more commonly used ADM 2 ADM

formulation [45]. Then we discuss the BM hyperbolic for- + 8™, K, + K, Vi B+ K, V, 8" (23)
miNij imVj mj Vi ’

mulation of the Einstein equationf4].

_ _ _ whereV,; denotes a covariant derivative with respect to the
1. Arnowitt-Deser-Misner formulation 3-metric y;; andR;; is the Ricci curvature of the 3-metric.

In the ADM formulation[45], spacetime is foliated into a ~ In addition to the evolution equationg;; ,Ki;,p, . and
set of non-intersecting spacelike hypersurfaces. There afi¢ must satisfy the Hamiltonian constraint
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CIR+ KZ—Kinii—leprDM=o, (24) 1
Dyij= 5 iy » (32)
and the momentum constraints
o o : A=dIn a, 32
VK~ 1V K~ 8mj'=0. (25) KT A (32
V;=D},-Dlj;. (33)

Here,p, . .i',Sj,S=7"S; are the components of the stress

energy tensor projected onto the 3D hypersurfamea more  We use the following notation to describe the fluxg&;y;;
detailed discussion, s¢&7]). In this paper we use the stress- denotes thé& component of the flux in the evolution equation

energy tensor of a perfect flujéq. (3)]. Hence, explicitly in  for 4, . Using this notation, the fluxes are
terms of the primitive hydrodynamic variables,

, F* %;=0, (34)
pADMthW -P, (26)
_ _ Fka=0, (35)
j'=phwWAv', (27)
FXKjj= — BKjj + a[ D} — n/2Vky;; + 1125/ (A; + 2V,
SiJ-:pthViVj-l-yijP, (28) Dr K '
_ —Dj,)+1/25;(Ai+2V;=Dj,)], (36
S=phWv,v'+3P. (29
F¥Dyij= — B'Dyij + a(Kj; —sij), (37)
2. Bona-Massohyperbolic formulation K ;
FCA=—B"A +aQ, (39

In the BM hyperbolic formulatior{58,1], the evolution
equations are written as a first order balance law with, for- FRV,=— gV, + B~ BK, (39)
mally, the same mathematical structure as the hydrodynamic
equations, Eq.(5). Now, the state vector, containing the where
evolved quantities for the spacetime, has the following 37

. 1 .
components: BL=§(9k,3'a (40)
U= (i ,a,Ki; ,Diij A, Vi), (30)
Y ke Tk is calculated from the user supplied shift vector. Finally, the
where source terms read
S_vij=—2a(Kj;—s;j)+2B' Dy, (41
S_a=-a’Q+aB'A, (42)

S_Kij=2(K;;B] +K;B{ = K;B}) + a[ - 2K{K; + tr KK;; =T\ '} ;+ 2D}, D + 2D}, Dy + ', ', — (2D}, — A, ) (Dj; + D))

+AI(V) = 1/2DK) +Aj(Vi = 12D ) + Aj(V; = 1/2D{f) = VKD, — 4mr(2S;; — v [S+p+(n—1)p,  1)]
+n/4ay;[ — DT fs+ D DE— 2VKA + K™K s — (trK)?], (43)
S_Dy;;=0, (44)
S_A=0, (45)
S_Vi=a[8mj;+A(K|—trK&))+K{(D§, —2D5) — K[ (D}~ 2D3) 1+ 2(B{ - §{tr B)V, +2(D5;— 87D}, ) B, (46)

[
where Ill. DISCRETIZATION OF THE EQUATIONS
s;j=(Bj; + B/, (47) A. Modern HRSC schemes for the GR-Hydro equations

As stated previously, the main aim of this work is to
is used to simplify the equations. The free parameted-  confirm theconsistencyof the coded finite difference equa-
lows one to select a specific evolution systétris zero for  tions with the partial differential equations and tbenver-
the “Ricci” system and one for the “Einstein” systemas  genceof three independent discretizations of the GR-Hydro
discussed irf58]. equations. All three approaches are based on finite-difference
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schemes employing HRSC schemes to account, explicitly, JEX
for the characteristic information of the equations. The meth- —=MAM 1, (54)
ods considered are a flux split meth@ll], Roe’s approxi- ou

mate Riemann solvgd6], and Marquina’s recently devel- . . . .
oped schem@48]. where M is the matrix whose columns are the right eigen-

To simplify the discussion, let us examine the update fovectors of the system antl is a diagonal matrix constructed

h T flux in thex direction: from the corresponding eigenvalugse Sec. Il B
the state vecto¥ for a flux in thex direction: Given the characteristic information, we can now split the

flux into the part that is moving to the right and the part that

au  oF* . .
- = is moving to the left:
pn + X 0. (48)
F*=(F)"+(F)"=(MA"M ™ H+(MA~M~HY,
The discretization of this equation takes the form (55)
At (), 1 (), whereAT=3(A+|A]), andA~=3(A—]|A|). The numeri-
ek i1/ =12, (49)  cal flux which corresponds to an upwind methdidst order
at Ax in spacg is then simply
where *);. 1 is the “numerical flux” function calculated (F¥. 1) first order (F); + (F¥)i 41« (56)

at the interfaces =1/2 of the spatial celi. The different )

methods we are using simply differ in the way the numericalOne could attempt to construct a numerical flux based on
fluxes are calculated. The way the source terms are inteane-sided derivatives that were second order accurate in
grated in time is explained later in this section. We point outSPace:

that, although we are interested in the specific application of -
the fluxes in Eq(8), the methods presented here can be used (¥4 1/2) second order—non TvD
with any advection equation, provided one has the spectral 1
decomposition of the fluxes in hand. :(f*i+1/2)first order+§(Fi _(f*i—1/2)first orde)
1. Flux split method (57)

The first scheme is a flux split method, where the flux is 1
decomposed into the part contributing to the eigenfields with + 2 (Fi— (T s tirst orde)- (59)
positive eigenvalueffields moving to the rightand the part 2
with negative eigenvalue@ields moving to the lejt These
fluxes are then discretized with one sided derivatives whos
side depends on the sign of the particular eigenvalue.

For the flux split method, one makes the assumption th :

E|owever, the method would not have ttreimerically desir-

ablg total variation diminishing(TVD) property (see, e.g.

32] for definition) unless flux limiters are used in front of
e second order correction terms:

=X N — X7/ >
Fol)=oF(U), (50 (f* + 1/2) second order
for any constant-. This is only true for the fluxes of E{8) _ 1 R
if the equation of state has the following functional form: =(f* i1 1first ordeﬁril//it 12Fi = (F%i — 12 first orded
59
P=P(p,e)=pf(e), (51 59
for some functionf(€). For the flux split method we there- +§¢r+3/2(ﬁi+1_(F*i+3/2)firstorde>a (60)
fore assume the equation of state to be in the following form:
with
P=(I'-1)pe, (52)
'E'X+2_ (F*'+3/2)
with T being the(constank adiabatic index of the fluid. It is Ui 1= '/f( ﬁ . (61
easy to show that, under the above assumptions, the flux i+1 7 (Fiv)
vector FX can be written BX L (F* .
_ i—1 1=
N biv12= w( | (62
Fr= aFX)?ff (53) ) R
a) where we are using van Leer flux limiter89]
Using the spectral decomposition of Sec. Il B one can ex- o+|o]
P(o)= (63)

press the Jacobian matE*/ i as 140
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2 Roe's method oP=TPWh)-Uy,  $P=TPWh)-F(Th),
The second scheme we use to integrate the hydrodynamic
equations makes use of Roe’s approximate Riemann solver oP=TPU) U, P=TP(U,)-F(U,), (66)

[46]. This is undoubtedly the most established method for
the accurate integration of non-linear hyperbolic systems ofgr p=12 ... 5.HereP(t4), [P(Z1.), are the(normalized

conservation laws. The suitability of Roe’s method for the|eft gigenvectors of the Jacobian matrices of the system. Let
relativistic hydrodynamic equations have been shown Ir}\l(ljﬁ), N ,)\5(5{') and)\l(zflr), o ’)\S(Z:[r) be their corre-

[60,47,38. This method makes no assumption on the equa: ; . _ :
tion of state, and, in this respect, is more flexible than th sponding eigenvalues. Fér=1, ...,5 theprocedure is the

flux split methods. As the method is well documented in the oIIowmg; . N

literature(see, e.g.61]) it will only be briefly outlined here. T M(4) does not change sign |84 ,4 ], then the scheme
As mentioned in the Introduction, all simulations reported in!S UPWind.

this paper using Roe’s scheme are performed employing If A(Z4)>0 then

arithmetic averages. For the use of Roe’s averaging in GR-

k _ 4k
Hydro sed47]. L=,
A monotonic piecewise-constafgiecewise-linegrrecon- ‘
struction of the cell centered values of the primitive variables ¢-=0, (67)

to the cell interfaces provides first-ordeecond-orderac-

curacy in spac¢59]. In order to get second-order conver- else
gence we have implemented a standard minmod piecewise- #* =0
linear reconstruction algorithr59]. The numerical fluxes A
across interfaces are calculated according to
J ¢ =gt (68)
- 1 .. =, I I ~ Otherwise, the scheme is switched to the more viscous,
()iv12=5| Frt FL_mZ:l Am/Aonlm|, (64 entropy-satisfying, local-Lax-Friedrichs scheme

where R and L indicate the right and left sides of a cell a=maAM(], UL Uh),

interface. In addition{X\,,,Mmim=1..5 are, respectively, the = 5(Pf+ aywl), (69)
eigenvalues and right-eigenvectors of the Jacobian matrix of
the system calculated at the cell interfaces as the arithmetic = 5P — aywh),

mean of the left and right reconstructédterpolatedl primi-

tive variables. Averaged quantities in E@4) are identified  I'(¢4,74,) is a curve in phase space connectihg@ndi/, . In
by a “tilde.” Finally, the quantities{Aw,},1_ 5 the jumps  addition, ¢, can be determined as

of the characteristic variables across each characteristic field, . .

are obtained from ae=max |\ (U)|, [N }- (70)

o . Marquina’s flux formula is then
Us—UL=2, Aoplm. (65)
m

m
(F)lae= 2 (P + 2P, (7D
3. Marquina’s Method P

In [48] Donat and Marquina proposed a new flux formulawhere,rP(4), rP(Z4,), are the right(normalized eigenvec-
to compute the numerical flux at a cell interface. The newtors of the system. For further technical information about
flux formula has a clear flux splitting structure, and leads tothis solver we refer the reader [48]. The suitability of this
an upstream scheme. The novelty of Marquina’s approackcheme for the accurate integration of the hydrodynamic
lies in the extension of Shu and Osher’s entropy-satisfyingequations and many of its desirable properties can be found
numerical flux[62] to systems of hyperbolic conservation in [48] (Newtonian hydrodynamigsand[63,64] (relativistic
laws. In this scheme there are no artificial intermediate statelsydrodynamick
constructed at each cell interface. This implies that there are

no Riemann solutions involvedeither exact or approxi- B. Discretization techniques for the spacetime

mate; moreover, the scheme has been proven to alleviate and spacetime-hydrodynamics coupling

several numerical pathologies associated to the introduction _ _ o

of an averaged statéas Roe’s method dogsn the local 1. Spacetime discretization

diagonalization proceduresee[48,63). In this section we outline the discretization techniques

To compute the numerical flux at a given interface, sepaused in the vacuum spacetime part of the code. For a more
rating the state& andifg, we compute first the sided local detailed discussion we refer the readef1d Here we give
characteristic variables and fluxes: the essential formulas for completeness and discuss in detail

044011-10



THREE-DIMENSIONAL NUMERICAL GENERAL ...

PHYSICAL REVIEW D61 044011

TABLE I. This table summarizes the abbreviations used for the various methods used for the spacetime
and hydrodynamical evolutions.

Abbreviation Spacetime formulation/evolution scheme Hydrodynamics update method
ADMLEAP_ROE ADM / leapfrog Roe
ADMLEAP_FLUX ADM / leapfrog flux split
ADMLEAP_MAR ADM / leapfrog Marquina
ADMICN_ROE ADM / iterative Crank-Nicholson Roe
ADMICN_FLUX ADM / iterative Crank-Nicholson flux split
ADMICN_MAR ADM / iterative Crank-Nicholson Marquina
BMEIN_ROE BM (Einstein / MacCormack Roe
BMEIN_FLUX BM (Einstein / MacCormack flux split
BMEIN_MAR BM (Einstein / MacCormack Marquina
BMRIC_ROE BM (Ricci) / MacCormack Roe
BMRIC_FLUX BM (Ricci) / MacCormack flux split
BMRIC_MAR BM (Ricci) / MacCormack Marquina

only the issues relevant to its coupling to hydrodynamicsorder method. The solution at stepsand n+1 are then
described in the next subsection. averaged to obtain the solution on the half time steps.

The BM system uses the so-called Strang splitfiés] to  This solution at the half time step+ 3 is then used in a
separate Eq(5) into two evolution steps. In the first step, leapfrog step to re-update the solution at the final time step
only the source terms are used to update the variables  n+1. This process is then iterated. The error is defined as

the difference between the current and previous solutions on

aU=S, (72)  the half time stem+ 3. This error is summed over all grid

points and all evolved variables. This process is repeated
while in the second step, only the flux terms are used for theintil some desired tolerance is reached. Care is taken to
update make sure that at least two iterations are taken to make the

process second order accurate.

U+ 9 F' =0, (73 , : -
2. Spacetime-hydrodynamics coupling

To ensure second order accuracy in both space and time, this Our code evolves the spacetime geometry and the matter
is done by first evolving the source terms forward in timefields separately. This allows different methods to be used
half a time step, then evolving with only the flux terms a full for each systen{spacetime and hydrodynamjcShe cou-
time step, and finally evolving with only the source termspling of those different evolution algorithms in a way that is
another half time step. The source terms are evolved forwargecond order accurate in both space and time is highly
using a second order accurate predictor-corrector methognethod dependent. We will therefore discuss the coupling of
while the flux terms are evolved using a second order accueach system, ADM or BM, with hydrodynamics, separately.
rate MacCormack scheme. Specific details of these methods summary of the different combined schemes appears in
are discussed ifl]. Table I.

The ADM system supports the use of several different The coupling between the BM systedifor both the “Ein-
numerical schemes. Currently, a leapfrogn-staggered in stein” (BMEIN) and “Ricci” (BMRIC) systems with the
time) and iterative Crank-Nicholson scheme have beerhydrodynamic solver is fairly straightforward as both sys-
coupled to the hydrodynamic solver. tems of equations take a similaffirst-order flux-

The leapfrog method assumes that all variables exist ogonservativie form. The steps involved in the coupling are
both the current time step and the previous time step  outlined in Fig. 1. In step 1 we simultaneously update the
—1. Variables are updated from—1 ton+1 (future time spacetime and hydrodynamic variables with the source terms
evaluating all terms in the evolution equations on the currentia a two-step predictor-corrector schelisecond order ac-
time stepn. curate in time to the half-time stem+ 1/2. In step 2, the

The iterative Crank-Nicholson solver first evolves thespacetime variables are updated with the flux terms using a
data from the current time stapto the future time stem MacCormack schemeésecond order accurate in tipnagain
+1 using a forward in time, centered in spd€dC9 first  to the half-time stem+ 1/2. In step 3, we update the hydro-
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FIG. 1. This figure represents the coupling between the hydro- L .
dynamics and the MacCormack evolution scheme with the BM for-d FlG.’ 2. ThdlstI]lgulre ripresentf ihe cour;])hng betwde?n ﬂ:ﬁ hﬁ)rﬁ/l_
mulation of the field equationgither BMEIN or BMRIQ. STEP 1: ynan:_lcs an t'e e%)h;igE:;o usl%rgpsi.eg_le t:tse or ed ¢
Simultaneous update of the spacetime and hydrodynamic variable?ace ime equationi )- - Simullaneous update

with the source terms via a two-step predictor-corrector scheme t§ the ADM equations via a leapfrog stegecond order accurate in

the half-time stem+1/2. STEP 2: Update of the spacetime vari- _tlme) and of the hydrodynamic equations vidfast order accurate

ables with the flux terms via a MacCormack scheme to the half!" time) Euler-predictor step using_the metho_d of Iings. STEP 2:
time stepn+1/2. STEP 3: Update of the hydrodynamic variables Update of the hydrodynamic equations to a virtnal 2 time step

with the flux terms via a two-step predictor-corrector scheme to the@ @ first orde.r n time Euler-corrector step. ST.EP 3.: A sepond
n+1 step. STEP 4: Same as step 2 but the update is to the finglr_oler accurate in time update of the hydrodynamic variables is ob-

time n+1. STEP 5: Same as step 1 but updating both sets of Varit_alned by averaging the corrected quantities obtained in step 2 with

ables to the finah+1 step. the original state of step.

) . . ) namic equations via the second half of the Euler-predictor
dynamic variables with the flux terms via a two-step step(first half applied in step Jlusing a method of lines. In
predictor-corrector scheme to tiet1 step. In step 4 the siep M+2 the hydrodynamic equations are updated to a vir-
spacetime variables are updated with the flux terms via g,a] n+2 time step via an Euler-corrector step using a
MacCormack scheme to tiret- 1 step. Finally, in step 5, the  method of lines. Finally, in step M3 we obtain a(second
spacetime and hydrodynamic variables are simultaneouslyqer in timé hydrodynamics update by averaging the cor-

updated with the source terms via a two-step predictorrgcted variables obtained in stip+2 and the original state
corrector scheme to the finah-1 step. of stepn.

In Fig. 2 we display the coupling between the ADM leap-
frog evolution(ADMLEAP) and the hydrodynamical evolu-
tion. In step 1 we simultaneously update the ADM equations
via a leapfrog stefgsecond order accurate in tijnand up- We start testing the code with one of the standard tests in
date the hydrodynamic equations with an Euler-predictofluid dynamics, the shock tubisee Refs[52,33,66,63for a
step(first order in time using the method of lines. In step 2, sample of previous relativistic simulationdn this test, the
we update the fluid variables to a virtual- 2 time step with ~ fluid initially has two different thermodynamical states on
a first order in time Euler-corrector step using the method ogither side of an interface. When this interface is removed,
lines. Finally, in step 3, we obtain a second order accurate ithe fluid evolves in such a way that four states appear. Each
time update of the hydrodynamic variables by averaging thetate is separated by one of three elementary waves: a shock
corrected quantities obtained in step 2 with the original statevave, a contact discontinuity, and a rarefaction wave. This
of stepn. time-dependent problem has an exact solution to which our

Our last combination appears plotted in Fig. 3. Here wenumerical integration can be compared. This problem only
display the coupling between the iterative Crank-Nicholsonchecks the hydrodynamical part of the code, as it assumes a
evolution scheme for the ADM equatiofdDMICN) and  flat background metric. However, it provides a good test of
the hydrodynamical evolution. First, in step 1, we simulta-the shock capturing properties of any HRSC scheme. The
neously update the ADM and hydrodynamic equations usingntegration of the hydrodynamic equations in each of the
an Euler-predictor step, which is first-order order accurate irthree spatial directions can be tested independently by plac-
time, to the half time step+1/2. In step 2 through M, we ing the initial discontinuity along each of the coordinate axes
update the ADM equations via an iterative Crank-Nicholsonor in the fully multidimensional case when the interface is
scheme(second order in timeto the n+1 time step and placed along the main diagonal of the computational domain.
average then+1 andn states to produce a corrected The initial state of the fluid is specified By, =13.3, p.
+1/2 state. The solution is guaranteed to be second order 10 on the left side of the interface amk=0.66x10"°,
accuratgin time) for M=2. In step M1 we simultaneously pg=1 on the right side. The local sound speed in the high
update the ADM equations via a leapfrog stepcond order density region is only moderately relativistic,=0.72. The
in time) based on the andn+ 1/2 states and the hydrody- fluid is assumed to be initially at rest on both sides of the

IV. SHOCK TUBE TESTS
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=1/200) evolutions. Also noticeable are the large errors

found with the flux split method for the coarse grid although

they are drastically reduced when the resolution is doubled.

All errors reported in Table Il are measured taking into ac-
count the whole domain of integration, i.e., including the
' A discontinuities. Obviously, the smooth parts of the solution,
e.g., the rarefaction wave, have less numerical error.

We next test the code by placing the initial discontinuity

along the diagonal of the computational domain. With this
setup we are checking the finite-differencing of all three di-
e rections simultaneously. We consider a grid of 128nes,
’ spanning an interval of length {3 in every direction. The
diagonal of the cube therefore has unit length. We evolve to

A2 the same time as in the 1D tests; 0.4, using a CFL factor
At/Ax=2+/3/25. This corresponds to 640 update iterations.
i a2 The results of the evolution for Marquina’s method are de-

picted in Fig. 4(additional figures showing the results for the
other two methods appear in the supplemiéji. We find
a2 good agreement between the numerical and analytic results.
’ Notice that, due to the lack of resolution, some features such
as the constant intermediate state in density, are less resolved
than in the one dimensional case. The errors of the hydrody-
D"GR UFDATE () - HYDRO UPDATE namic quantities for this run are also contained in Table II.
o _ By inspection of this table, we observe that, although the
FIG. 3. This figure represents the coupling between the hydrogyqrs are very similar for all schemes, the flux split method
dynamic evolution scheme and the iterative Crank-NlchoIsonis slightly more accurate than both Roe and Marquina’s
method used for the integration of the ADM equatidA®MICN). method. However, the existence of a “kink” in the leading
STEP 1: Simultaneous update of the ADM and hydrodynamic equabart of the rarefa,ction wavéwhich is more clear in one-
tions via/a Euler-predri]ctor Sr;[e@rSt oorlder "} the)/_\tg'\tAhe half time dimesional simulations; see the corresponding figure in the
stepn+1/2. STEP 2 through M: Update of the equations via . oo . :
an piterative Crank-NichoIzon schpen(eecond order a?ccurate in Su[\)/sgergirr]rgﬂ;:iszgtlItlhri]stlcs:eezgl)enmb?es?rl:axs;iﬁlg The(:h(;?l.ock

time) to then+ 1 time step, then compute a corrected 1/2 state . I . .
by averaging then+1 andn states. STEP M1: Simultaneous capturing capabilities of the different numerical schemes we

update of the ADM equations via a leapfrog stepcond order in  US€ 10 integrate the hydrodynamic equations. Such capabili-
time) based on then and n+1/2 states and the hydrodynamics {i€S are essential to our final goal of performing accurate
equations via the second half of the Euler-predictor fiest half ~ Simulations of interesting astrophysical scenarios, such as
applied in step Lusing a method of lines. STEP M2: Update of ~ coalescing NS binaries.
the hydrodynamic equations to a virtual 2 time step via dfirst
order in timg Euler-corrector step using method of lines. STEP
M++3: A second ordefin time) hydrodynamics update is obtained
by averaging the corrected quantities of skép-2 and the original
variables of stem. For the first testbed of the coupled GR-Hydro code with
dynamical spacetimes, we use the Friedmann-Robertson-

interface. We use a perfect fluid equation of std&e; (I’ Walker (FRW) model of an expanding cosmology. We use
—1)pe with I'=5/3. the standard form of the FRW metric

We have first tested the code for each directigry, and
z, separately. The integration domain extends fred.5 to
0.5 and att=0 the interface is placed at=0 (similarly ds?=—dt?+ R?(1)
when testing in thgy andz directiong. We use a grid of 400 1-kr?
zones along the relevant direction. Figures showing one- (74
dimensional shock tube tests with the three different hydro-
dynamical methods we are using can be found in the supplesorresponding to an operk€ —1), flat (k=0), or closed
ment to this papef2]. The L1-norm errors of the different (k=1) universe, with scale factd(t). For the special case
hydrodynamical quantities for each method, at a final evoluk=0, each constant time slice is spatially flat. For this case,
tion time t=0.4, are presented in Table II. From this table all terms involving spatial derivatives drop out of both the
(and the accompanying figures of the supplenightwe see  spacetime and hydrodynamic evolution equations. Although
that Marquina’s scheme gives better results than the othewe still use the fully general form of the evolution equations
two schemes. The improvement with respect to the Rogo evolve the initial data, this allows us to concentrate on the
solver is not too sensitive for high resolutionsx=1/400).  coupling of the two codes in time. We note that the clse
It is however quite relevant for the coarse gridx =0 has been extensively used in the literature for calibration

n

V. FRIEDMANN-ROBERTSON-WALKER COSMOLOGY
TESTS

dr?

+r2(d02+sin20d¢2)1,
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TABLE II. L1-norm errors of different hydrodynamical quantities, density, velocity, and pressure for the
shock tube tests. The results correspond to the three different schemes we employ to integrate the hydrody-
namic equations. The waves along the axis use either 200 of 400 grid zones in the direction of propagation,
and one zone in the remaining two directions. This allows our 3D code to be effectively run as a 1D code.
The diagonal shock tube test is run with 128 grid zones in each direction. All three solvers are found to
perform nicely in the multidimensional case.

Dimension Ax=Ay=Az= Solver [IE(p)|2 IIEMW)I|2 IIE(P)I2

Along axis 2_30 Flux-Split 1.99%x 10° 3.46x10°1 2.88x10°

Roe 1.1% 10! 1.36x10°2 8.15x10°2

Marquina 7.65%10 2 8.13x 103 4.60x10 2

4_30 Flux-Split 6.61x10 2 6.67x10°° 4.25x10 ?

Roe 6.90<10 2 7.7210°2 433102

Marquina 4.6%10 2 4.84x10°3 2.41x10?

diagonal 13 Flux-Split 7.95¢10 2 8.35x10° 2 6.62<10°2
128

Roe 9.1%10°? 9.39x10° 3 7.53x10°2

Marquina 9.2% 102 9.66x10°° 7.98x10 2

of cosmological codes. We also study the non-spatially flatvhile the Einstein equations take the form

casek= —1, which involves non-trivial spatial derivatives.
We take the matter to be collisionless d3t e=0. Un-

der these assumptions, the hydrodynamic evolution equa-

tions reduce to

8w
(;R)2+k= ?pRz (76)

(see, for exampld,67]).
It is important to stress that we are using flad set of

a(pR3) =0, 75 ; _ . -
(PR 79 evolution equations to integrate the initial data. The only
e . assumption we make is that the stress-energy tensor take the
Relativistic Shock Tube form of a perfect fluid with zero pressure and internal en-
Marquina Solver [nx,ny,nz]=[128,128,128] t=0.4 ergy. We only use the simplified solutions given by Egs.
12 ' ' ' ' (75), (76) to check the validity of our numerical evolutions.
analytic solution
1.0 1 + density/10 g A. k=0 convergence tests
o pressure/20 . .
o total velocity For thek=0 case we have a flat spatial geometry. Notice
0.8 1 that Eq.(75) implies that the evolved “densitized” variable
“““ D is a constant of motion
0.6 o .
D= /yWp=pR3=const. (77)
04 .
+ This, combined with the fact that no fields have any spatial
02 | dependence, results in the hydrodynamical finite difference
) equations becoming exact for our choice of variables. There-
fore, we see no difference between the three methods which
L -Smm—— we use to integrate the hydrodynamical variables. Because of
this, we only present results for the flux split hydrodynamics
-0.2 : : . . method, and note that the results for Roe and Marquina
-0.5 -0.3 -0.1 0.1 0.3 0.5

methods are equivalent. We concentrate on the spacetime
evolution as driven by the hydrodynamic source. This is the
first direct test of the spacetime-hydrodynamics coupling as-

main diagonal

FIG. 4. Numericalsymbols versus analyti¢solid lineg results
for the three-dimensional shock tube test$-a0.4 using Marqui-  Pects of our code.
na’s method. Shown are normalized profiles of rest-mass depsity, ~ Since numerical error only comes from finite differencing
pressureP, and velocity,v = (y"v;v;) 2 as functions of the coor- ~€rrors in time, we could run the convergence tests by simply
dinate distance along the main diagonal. A uniform Cartesian gridlecreasing the CFL number. However, to minimize bound-
of 128 zones was used. ary effects, we run the convergence tests at three different
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TABLE lII. Different run parameters for the FRW=0 convergence tests.

No. of points
Resolution in each AX At No. of time steps
— CAx
direction
low 10 0.01 0.25 1
medium 20 0.05 0.25 2
high 40 0.025 0.25 4

resolutions: 48,20°,10° with a fixed CFL factor as summa- to time step. We have seen evidence of this solution only
rized in Table IIl. For initial conditions we choos®(t=0)  when using the ADMLEAP system, both in vacuum evolu-
=1, andp(t=0)=0.01. tions, and when coupled to hydrodynamics. It does not ap-
In Fig. 5 we display the Hamiltonian constraint violations pear with any other system. For comparison, see the RMS
for the BMEIN_FLUX scheme. We see classical second orHamiltonian for the BMEIN_FLUX evolution in Fig. 7. The
der convergence of the Hamiltonian constraint. Similardegree to which this “loused” solution occurs depends
graphs for other schemes can be foundidh strongly on the initial data and choice of gauge.
We turn next to evolutions with ADM based evolution It is important to note that this “loused” solution is a
schemes. In Fig. 6 we compare the Hamiltonian constrainsolution to the finite difference equationst to the differ-
for the ADMICN _FLUX (iterative Crank-Nicholson ential equations. Thus, it must converge away with increased
and ADMLEAP_FLUX (leapfrog systems. For the resolution. In Fig. 8 we show the RMS Hamiltonian at each
ADMICN_FLUX system we get second order convergenceteration for three different resolutions: @0, and 18. Its
with some “noise” at the boundaries. This noise propagatevalue has been scaled by a factor of sixteen for the finest
into the grid more quickly than with other methods, due toresolution grid, and a factor of four for the medium resolu-
the iterative nature of the ICN scheme. tion grid, so that if the solution is converging to second or-
The ADMLEAP_FLUX system doesiot appear to be der, the value graphed should remain constant. The iteration
converging at second order. When we plot the root meamumber refers to the finest grid. Since the “loused” solution
squargRMS) Hamiltonian as a function of time step for this oscillates between a maximum and minimum value every
system, Fig. 7, we observe an oscillatory behavior. This aptime step, at iteration number four the fine and medium grid
pears to be a “loused” solution to the finite difference equa-correspond to a minimurtthey have evolved an even num-
tions, as described by Neet al. [68], occurring when non- ber of time stepswhile the coarse grid is at a maximum
staggered leapfrog methods are used to evolve certain nofhaving evolved an odd number of time stepgdence, itera-
linear systems of equations. The “loused” solution is a non-tion eight is the first time when all three grids correspond to
physical solution characterized by oscillations from time stepa minimum. At this point we see that the solution is indeed
converging at second order.
- To summarize this subsection, we have verified that the
3*10 ' ' ‘ coupling between the spacetime and hydrodynamic methods,
BMEIN_FLUX —— 40’ (*16) described in Sec. Ill, yield second order convergence in time.
— 20° (*4) We have seen evidence of a “loused” solution in the
——= 10’ (*1) ADMLEAP system. This “loused” solution produces a non-
2#10°% 1 physical oscillation in time. By comparing this oscillation at
three resolutions, and at the same stage of oscilldtidren
/ / ™1 all three resolutions are at a minimynwe see that it is
i

converging away.

Hamiltonian

i
/ \
1#10°H [/ \
[ \ B. k=—1 convergence tests
\
\

!
/
/ ] rate coupling in time between the spacetime and hydrody-
0 il s . ‘ ! namical evolutions, we next test the spatial derivatives by
-2 -1 0 1 2 studying the non-spatially fldk=—1 FRW solution. Since
z we now have to resolve spatial gradients, we increase the
FIG. 5 The Hamiltonian constraint violation for the Orid resolution using 16080°, and 46 zones. The different

BMEIN_FLUX system. Since the hydrodynamic code gives the ex-'uns are summarized in Table IV. For initial conditions we
act solution for the special caselo 0 initial data, there is no need ChooseR(t=0)=1, andp(t=0)=0.01.

to monitor the errors in the matter field evolutions, or to compare 10 monitor the correctness of the spacetime evolution we
different hydrodynamic methods. We find that the BMEIN_FLUX cut off our grid atx=y=z= *1 and ignore errors caused by
system converges to second order. boundary effects. To analyze the spacetime, we look at the

\ Having confirmed the fidelity of thésecond order accu-
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%107 : — 3107 ‘
|
: : ADMLEAP_FLUX —— 40° (*16)
|
810" l ] — 20" (*4)
! ! ——= 10°(*1)
! I I 10"
g v | | g zoy
£ 61107 | i g
8 l___ | 8 lr— - o
—6|
4*10 H ! \
2 I ool ) \
3 \
ioc6 — 40°(*16) ] \
2*10 — 20" (*4) / !
ADMICN_FLUX |~~~ 10°¢) | | ! \
0 ‘ ‘ ‘ ! 0o & ‘ ‘ ‘ AN
-2 -1 0 1 2 -2 -1 0 1 2
(a) z (b) z

FIG. 6. Comparison of the Hamiltonian constraint values for the ADMICN_FL{& plot) and ADMLEAP_FLUX systems. For the
ADMICN_FLUX system we obtain second order convergence apart from some numerical “noise” at the boundaries. The

ADMLEAP_FLUX system doesiot appear to be converging.

Hamiltonian constraintH, and the x component of the mo- VI. TOLMAN-OPPENHEIMER-VOLKOFF TESTS

mentum constrain®™. Cor.respondlmgly, to address the ac- The FRW tests analyzed in the previous section assumed
curacy of the 3hydrodyr31am|c 63V0|utI03n we IOOK_ at the CONS€lihe matter fields to be dust, i.&2=e=0. We now turn to a
vation of pR®, A(pR%)=pRi—pR%|i—y,. This quantity  ase \where the pressure gradients play a central role. We
should remain constant for a matter dominated FRW soluevolve a static star in the general relativistic setting, that is, a
tion. self-gravitating matter distribution satisfying thequilib-
In Fig. 9 we plotH, M*, and the error in the conserved rium structur¢ Tolman-Oppenheimer-VolkoffTOV) equa-
quantity pR® (A(pR®)) for the ADMLEAP_ROE system. tions.
We find second order convergence for all variables, and for The ability to numerically evolve a compact, strongly
all systems[2]. We also find little difference between the gravitating object is crucial for our program of developing a
various hydrodynamic methods for this initial 4. general purpose code for general relativistic astrophysics. Al-
To summarize, we find second order convergence for a“hOUgh the TOV solution is static, we evolve it with the full

systems, even when non-trivial spatial gradients are preserit€t of evolution equations for the hydrodynamics and the

The FRWk=—1 spacetime tests out many of the terms inSPacetime. To maintain the static solution during the numeri-

the spacetime evolution, however, the assumption that the?l €volution, the pressure gradient must exactly balance the
ravitational force in the general relativistic setting where

matter be composed of dust excludes many of the terms i th th Jensit q ¢ it
e ycodramical equatons. Due o i, e see 1 2o 1 1Ty Serely and biessute s sourees gy
ference between the three different hydrodynamical methods .. gh ne ex : :
: o ._Initially zero, finite differencing errors will allow these quan-

when evolving this initial data. In Table V, we summarize ... | f
the errors for all combinations of evolution systems obtainec}ItIeS to evolve away from zero. :

he | lution. We find that the BMEIN , Besides the complexity of the full GR-Hydro equations,
at the lowest resolution. We find that the SYStem ISihere are two other difficulties in numerically evolving this

slightly more accurate for this initial data. strongly gravitating stellar configuratioft) the treatment of
2+10"
ADMLEAP_FLUX o0—o40° BMEIN_FLUX o—o40°
D
g 1107 g
8 2
g E 1*10
= =
[72] =5 7]
g s} 2
D
0 0 &
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
(a) iteration (b) iteration

FIG. 7. Plot of the RMS Hamiltonian as a function of the time step for the ADMLEAP_FL(IgX) and BMEIN_FLUX systems. We
observe that the Hamiltonian is oscillating only for the ADMLEAP_FLUX scheme. This has been reported in the literature as a non-physical
“loused” solution. The degree to which the oscillations occur depends strongly on the initial data and gauge choice.
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' i — is used) Under these assumptions, the Einstein equations,
| ADMLEAP_FLUX — 403 (*16) along with the hydrodynamic equations, reduce to
2%10 - — 20" (*4)
——= 10’ (*1) IP(r)  (ptpet P)(m+47r3P) 79
g ar r(r—2m) :
2
; dina(r)) m+4qrs
E N N ( ar( )): r(r—Zm;O’ (80)
O1K0 | , N 1
4 ~
am(r
E -~ h o &I(’ ):47Tr2(p+p6), (81
Ve N
// \\
// \\ 2 (r) -1
/, m
0 A N —— r=|[1- ) , 82
0 1 2 3 4 5 6 1 8 yur(r) ( r (82
iteration (fine grid)

wherem=m(r) is the mass energy contained inside a sphere
FIG. 8. The convergence of the “loused” oscillations appearingOf circumferential radius. To determine the initial data, the

for the ADMLEAP_FLUX system is examined by plotting the above coupled ordinary differential equations are integrated

RMS Hamiltonian at each iteration for three different resolutions:using a 4th order Runge-Kutta method, supplemented by a

40°,20%, and 16. The value is scaled by a factor of sixteen for the polytropic equation of statétEOS

finest resolution grid, and a factor of four for the medium resolution

grid. The iteration number refers to the finest grid. As explained in

the text, iteration eight is the first time when all three grids coincide . . .
to a minimum value. At this point we see that the solution con-e note that in the dynamical evolution we use the more

verges at second order. generic EOP=(I'—1)pe. In the simulations shown in this
section, we usd'=2, £=5.380x10° cm/g?3seé, and a
central mass density gf.=5x 10 gcn?. This configura-
tion corresponds, roughly, to a neutron $tat]. Other initial

P=Kp". (83

the surface of the star, arid) providing a coordinate condi-

tion which maintains the long term stability of the evolution. i howi tially th foat th
We will discuss the first difficulty, including our numerical parameters, showing essentially tn€ same features as the one

treatment, later in this section. We will defer discussing thep:eser;te%ll h?re, h_?\éevalsci ti.een t?tited'tTth'ls Xg?\;lce of par?m-
problem of long term stability to the second paper in thisE'ers 'eads 1o a solution with a tota mass o

series 0.568M, and a circumferential coordinate radius of 14.9
) P - ; . km. The TOV solution is then matched at the star’s surface
We begin with a discussion of the initial data. The TOV ior Sch hild , ith th :
equations[69,70 are the Einstein equations coupled to al0 an exterior Schwarzschild spacetime with the appropriate

perfect fluid stress-energy tensor under the assumptions thg{iss _anldtcogrdltnat_@%Z]. A c(;)_or(:ma'Fe ttLansforn;atlon;rE[)m b
the solution is static and spherically symmetric. Specifically SP1€rcal 10 Lartesian coordinates is then periormed 1o 0b-

the metric is given by tain initial data for the 3D evolution code. The evolutipn is
performed with  “harmonic slicing,” that is «

= a\yyK;;. While this configuration represents a com-
pactness ratio oR/2M ~9, we note that we have performed
tests using TOV configurations with compactness ratios of
2.5=R/2M <100. We have verified strict second order con-
vergence for this range of compactness ratio for the TOV
primitive hydrodynamic variablesp(r) and e(r), are as- configurations and for the boosted TOV configurations of
sumed to depend only on the circumferential radiuéVNe  Sec. VII.

note that this form of the metric is only used in computing \We now present convergence tests for the evolution code.
the initial data,not in our dynamic evolution code, where a These tests are performed with the parameters described in
general form of the metric in a Cartesian coordinate systenTable VI. As the initial data exhibits octant symmetry, only
one octant is evolve@with appropriate boundary conditions
used at the inner faces of the computational domdihis is

ds?=—a(r)?dt?+ y, (r)dr?+r2d 6?+ r2sirf 0d ¢2,
(78

where the metric functiongy(r) and y,,(r), along with the

TABLE IV. Run parameters for the FRW= —1 convergence

tests. an important capability of the code, in that it enables us to
achieve a higher resolution and make more efficient use of
No. of points available computational resources when allowed by the sym-
Resolution in each Ax cﬁ No. of time steps  metry of the problem. The initial data is then evolved up to
direction Ax t=0.986 us. We calculaté p= p, m— Pexact: the difference
low 40 0.05 0.25 2 between the ngmerically computed mass denﬁ;ym', anq
medium 80 0.025 0.25 4 the exa_ct solutionpgyac: We also monitor the_ Har)r(ultonlan
high 160 0.0125 025 8 constraint, H, and the x-momentum constraintM*. The

maximum values of these errors obtained at the lowest reso-
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of the spacetime and hydrodynamics integrations, is demon-

strated as before. 00
For the TOV solution, we have tested the consistency of 5.0%10"

the flux-split, Roe, and Marquina methods both with and

lution (excluding the region near the surface of the )stae 404107 g ___ ADMLEAP 1}0E
summarized in Table VII for each evolution system. The 1 : p—prp
order of convergence of the code, for various combinations oy 5 4s192 '/\ —— 80 (4)
: ! e |
| [
| ) |

S~

{ f

! 1
without the limiting functions. We note that the limiters re- S 2.5%107" ! \
sult in a truncation error that is first order &x at points that ] \
attain minimum and maximum in the hydrodynamical vari- 0.0 '
ables, while all other points have truncation errors which are 40410y 1
second order i\ x. For the convergence tests in this section ‘“2 B : !
we will only present results without the flux limiters. Spe- S 2010y 1
cifically, we have built a switch in the code that will sgt < \ /
=1 for the limiting of the flux split method, Eq63), and 00 0 1
turn off the minmod function for the Roe and Marquina x

methods, so that we can perform tests with and without lim- ot of th iton W (th
iters to ensure that all components of our code have the ex- cglr?p;ogﬁe(r:n(t)2¥?;1%e;%em%ﬁi§mtcir:l?rrzilnt,noglagncdor;:;? p’i étt fgr
pected convergence properties. - the conserved quantityR® (A(pR®)) for the ADMLEAP_ROE
A typical convergence plot is shown in Fig. (€e€[2] for .
convergence plots of all combinations of the different nu-SYStem- All variables show second order convergence for every
ical th Notice that all it . combination of systemg2]. We also find little difference between
merical me qu 9 Ice .a a' quantities are Converging as y,q \arious hydrodynamic methods for this initial df2
second order im\x in the interior of the starf <14.9 km.
The treatment of the surface of the star will be discussed ithe ADMLEAP_FLUX system with two times the spatial

detail later. resolution as described in Table VI. A clear indication of
Notice that the rest mass density for all systems using theecond order convergence is observed at this resolution.
flux-split hydrodynamical evolution schentELUX) is con- We also note that for the same resolution, the BMRIC

verging at a rate that is higher than second order forAtke spacetime evolution scheme is slightly more accurate than
used here. This is due to the fact that, for the resolutions usetthe other spacetime evolution scheniem a standpoint of
here, the truncation error terms that are proportionalxd  the absolute value of the error functions plojteéliso, the
have a magnitude comparable to the truncation error termRoe and Marquina schemes for evolving the hydrodynamics
that are proportional tdx?. This causes the appearance ofare more accuratéy an order of magnitudethan the flux-
“hyper-convergence” as seen in Fig. 11. To confirm this split method(see[2] for details.

point, we plot in Fig. 12 the results of a convergence test for Next we turn to the star's surface treatment. There are

TABLE V. This table summarizes the magnitudes of the errors for the different evolution systems when
evolving the FRWk= —1 spacetime. These values correspond to the lowest resolution listed in Table IV.

Abbreviation maxH) max (M%) max (A (pR%))
ADMLEAP_ROE 2x 1072 4x10°4 2x1078
ADMLEAP_FLUX 2x1072 4x104 2x10°8
ADMLEAP_MAR 2x10°2 4x10°4 2x10°8
ADMICN_ROE 2x10°2 4x10°4 2x10°8
ADMICN_FLUX 2%x10°? 4x104 2x10°8
ADMICN_MAR 2%10 2 4x10°* 2x10°8
BMEIN_ROE 2x107? 5x10°° 1x10°8
BMEIN_FLUX 2Xx10 2 5%x10°° 1x10°8
BMEIN_MAR 2x10 2 5%x10°° 1x10°8
BMRIC_ROE 2x10°2 1x10°* 2x1078
BMRIC_FLUX 2x10°? 1x10°4 2x10°8
BMRIC_MAR 2Xx10°2 1x10°% 2x10°8
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TABLE VI. Computational grid parameters for the TOV tests.

No. of points Total
Resolution in each Ax (km) At No. of time steps evolved time
coordinate direction CAx 4S)
low 16 1.182 0.125 2 0.986
medium 32 0.591 0.125 4 0.986
high 64 0.2955 0.125 8 0.986

three related issues in the numerical evolution of the surfacsity orders of magnitude smaller than that of the interior of
region of a compact self-gravitating object in general relativ-the star and should have a negligible effect on the dynamics
ity. (1) At the surface of the star, the second normal deriva-of the system. In our simulations, we typically pick the at-
tives of some of the hydrodynamic quantities, e.g., the denmosphere to be 10 to 10 ° of the central density,. of the

sity, are discontinuous for most equations of state. ThisTOV star and with the same EOS as the star. This is suffi-
discontinuity is also present in the TOV solution with  cient to ensure that the GR-Hydro equations are neither sin-
=5/3 studied in this section. The Einstein equations implygular nor degenerate in our treatment, while having negli-
that the curvature tens@which contains second derivatives gible effect on the actual dynamical evolution of the stay.

of the metric functionshas a kink at the stellar surface. The In regions of low density, especially in the atmosphere near
curvature tensor enters explicitly in the evolution equation otthe surface of the star, there are two related difficultigst

the extrinsic curvature. This makes the numerical treatmeris difficult to accurately recover the pressumghich is a

of the stellar surface considerably more difficult in the rela-power of the densityfrom the evolved variables,S; ,7),
tivistic framework than in the Newtonian case. Accordingly, and (ii) it is easy to develop high velocity flows due to the
the numerical evolutions are less stable in the re'atiViSti(Tstrong gravitationa| field there. In par[icu|ar, the atmosphere
case.(2) In the exterior of the star there is vacuum and(r>14.9 km) is not part of the equilibrium TOV initial data,
hence, the density must drop to zero. As the density apand the gravitational field is driving it to collapse onto the
proaches zero, the transformation from the evolved variablesyrface of the star. Numerically, it is problematic to have the
(D,Si,7) to the primitive variables,v',€) becomes singu- atmosphere colliding with the surface of the star, creating a
lar. The “standard” treatment of this problem is to add an adshock, and leaving the specific internal energy densitg

hoc “atmosphere,” with some choice of thermal propertiesthe atmosphere behind plunging to zero. These difficulties
in the exterior region. This atmosphere typically has a deneventually cause the code to crash. An explicit demonstration

TABLE VII. This table summarizes the magnitudes of the errors for the different evolution systems when
evolving the TOV spacetime. These values correspond to the lowest resolution listed in Table VI, and errors
near the surface of the star are ignored.

A
max| )
Abbreviation Pc max(H) max (M*)
ADMLEAP_ROE 8x10°© 8x1074 2x10°°
ADMLEAP_FLUX 2x10°4 8x10°4 2x10°°
ADMLEAP_MAR 8x10°© 8x10°4 2Xx10°°
ADMICN_ROE 8x10°6 8x10°4 2Xx10°°
ADMICN_FLUX 2x10°4 8x10 4 2X10°°
ADMICN_MAR 8x10°© 8x10°4 2X10°°
BMEIN_ROE 5x10°° 8x1074 5x10°©
BMEIN_FLUX 2x10°* 8x10 4 5x10 ¢
BMEIN_MAR 5x10 © 8x10 4 5x10 ¢
BMRIC_ROE 1x10°® 8x10* 1x10°°
BMRIC_FLUX 2x10°4 8x10* 1x10°°
BMRIC_MAR 1x10°© 8x10°4 1x10°°
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Lov10” __ADMLEAP_ROE 6.0%10” _ADMLEAP_FLUX
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x (km) FIG. 12. We demonstrate the convergence of the evolved rest

mass density with the ADMLEAP_FLUX evolution system for a
set of grids with twice the resolution as that displayed in Table VI.
S,’D\II results are shown at=0.493 us which corresponds to eight
|tserations at the highest resolution. The graphs are taken along the

FIG. 10. We demonstrate the convergence of the
ADMLEAP_ROE evolution system for three different error func-
tions: the difference between the analytic and computed rest ma
dens_lty(n_ormallzed by the central rest mass den;ag)/Ap_/pC; the axis (results on they and z axes are identical, and results on the
Hamiltonian constrainH, and thex-momentum constraint1*. In diagonal axis are similar
each of the three cases, we multiply the high resolution result by

sixteen and the medium resolution by four to show second order - L. - R
convergence. All results are shown t;/to.986 s which corre- of these difficulties is exhibited in Figs. 13 and 14. For these

sponds to eight iterations at the highest resolution. The graphs ariMPle tests, we evolve a TOV configuration as described

taken along the axis (results on they andz axes are identical, and aboves. We implemen.t an atmosphere with den?_i&/mos
results on the diagonal axis are similar =10 p.. The resulting atmosphere has a specific internal

energy ofe,imoe~4.6X10"% .. We then evolve the con-
figuration with the ADMLEAP_FLUX evolution scheme.
We first evolve this configuratiowithout implementing the

2-0*104—\\ ADMLEAF_FLUX surface treatment described belomhich is implemented for
& B N :g;:gi)@ all other runs in this papgr The code crashes after only
a LoM0 f N -8 | ] 0.043 ms, due to the specific internal energy dropping to
< ‘\\ /f\\ zero near the surface of the star. Figure 13 shows a 3D iso-
00 == : : surface plot ofe corresponding to a value @&f=0.87¢4imo0s
10*10 at timet=0.04 ms. These regions indicate where the spe-
» cific internal energy is dropping significantly in this short
T 5040 time interval. Figure 14 shows a 1D plot efe.. Clearly,
the specific internal energy is dropping to zero rapidly in an
(3"8*10.5 ' ' unstable fashion near the surface of the stan4.9 km.
’ ‘ ' / To circumvent these problems, we have found a simple,
5 Ls*107) TN | yet effect_ive treatment f(_)r th_e stabl_e numericgl evolution of
S~ low density regions. Again, since this scheme is enacted only
00 ‘ , z N for very low density flow, it has a negligible effect on the
Y 5 10 15 dynamics of the system. It is important to note that the first
x (km) indication of problems is in the recovery of the primitive

FIG. 11. We demonstrate the convergence of thevVariables p,v',e) from the evolved variablesy,S;,7),
ADMLEAP_FLUX evolution system for three different error func- 9iven by Eq.(6). In regions where the rest mass dengitis
tions: the difference between the analytic and computed rest madess than some specified minimum density  (typically
density(normalized by the central rest mass denpify Ap/p., the  some fraction of the atmosphere rest mass densitythe
Hamiltonian constrain, and thex-momentum constraint1*. In recovery of the primitive variablesp(vi,e) from the evolved

T e e o o s Jariabes B.5 7 resls i  negaiv specic encrgy den
y fou . Sity €, then the primitive variables are solved again, with the
convergence. Note that the rest mass derisify frame is converg-

ing faster than second order ixx (see text for explanation All condition for adiabatic flow
results are shown at=0.986 ws which corresponds to eight itera-

—t T
tions at the highest resolution. The graphs are taken alongadkis P=Kp, (84)
(results on they andz are identical, and results on the diagonal axis _
are similaj. replacing the definition of [the fifth component of Eq6)].

044011-20



THREE-DIMENSIONAL NUMERICAL GENERAL ... PHYSICAL REVIEW D61 044011

X X

FIG. 13. A 3D isosurface of
constant internal specific energy
density at timet=0.04 ms is
shown. This value ofe=4.1
X10™% €, corresponds to 87% of
the atmosphere specific internal
energy density. Notice that the
troublesome regions are not along
the coordinate or diagonal axes
and hence would not be observ-
able in 1D plots along these axes.

To demonstrate the stability of this scheme, we show irfields, and a non-trivial coordinate condition for both the
Fig. 15 the final rest mass density profile for numerical evodapse and shift. In addition, this test has an analytic solution
lutions of the TOV configuration described above. The thre@o compare against. We simulate a neutron star moving with
different hydrodynamics evolutions schentgsx-split, Roe, 5 high velocity along tha+y+ 2 diagonal of the computa-
and Marquina are used to evolve the same TOV configura-ijona| domain. We find that in such a simulation, every term

tion to 1.0 mslapproximately 8000 time stepsNote that for in both the Einstein equations and the GR-Hydro equations is

Roe’s method, the f'”‘?".mass d(_ansny_ conflgu_ratlon IS IndISI';1ctivated; each evolved variable is a nontrivial function of
tinguishable from the initial configuration profile.

space and time. We obtain an analytic solution of a boosted
neutron star by applying a coordinate transformation that
VIl. BOOSTED TOV TESTS corresponds to a Lorentz boost at spatial infinity on a solu-
The final test case we present is the most stringent. Thiion to the TOV equations. Specifically, if the solution to the
boosted TOV solution effectively tests many of the featuresfOV equations(see Sec. Vl is expressed in Cartesian
one requires of a general relativistic hydrodynamical spacett.x,y,z) coordinates, we transform to another set of coordi-
time code: relativistic fluid motion, strong gravitational nates {’,x’,y’,z") via the transformation

Yo ExVb &y &7
(m=DE| [ Dé&E (1o~ Déks
vy | B (H G ) ( 7 y) ( v ) t
e (v~ Dbk (-DE|  [(m-Dge)| || 85
y’ = fy')’b ( b . X y) (1+ Yb . y) ( Yb . y z) vyl (85)
) 3 3 13
z z
(v~ D&, (D& (y— D&
where&?= £+ £+ £ and yp=(1— ¢~ 2 The resulting metric and stress-energy tensor in the primed frame,
(t/ ! ! /) axa aX‘B (86)
AT ,X y ,Z = T 7 alB
Jurv Y axk axv O
Tty =20 2 (87
AT ,X y ,Z = T 7 aB
r Y ax® ox” b

are also solutions to the Einstein equations coupled to the GR-Hydro equations. Notice that the shift in the(poostdd
coordinates is non-zero. For example, theomponent of the shift vector is given by
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(vo— 1)§x§y

gz (gxyxy+ gy'yyy

(89)

where @ and y;; are the lapse and 3-metric, respectively, left panel of the figure contains plots of the difference be-

computed in the rest fram@nprimed coordinate®valuated

tween the numerically evolved rest mass density and the ana-

at coordinatest(x,y,z) that correspond to the primed coor- lytic solution, normalized by the central density4/p.), the
dinates {’,x’,y’,z'). In the tests performed in this section, Hamiltonian constraintif), and thex component of the mo-
we specify the lapse and shift to be given by these values angientum constraintNI*). The right panel of the figure con-
check that all evolved variables converge to the analytic sotains plots of the difference between the numerically evolved
lution. For the pre-boosted TOV solution, we use the sameépecific energy density and the analytic solutipormalized

configuration used in the previous section.

by the central specific energy densjtk e/ €., the difference

In Fig. 16 we plot the evolution of the rest mass densitybetween thexx component of the extrinsic curvature and the

along the direction of boosk(+y+ z diagonal as a function

analytic solution,AK,,, and the difference between tixe

of time. The boosted star is evolved for 0.4 ms, and iscomponent of the momentum and the analytic solutio®;.

boosted with a velocity ofr/c=0.3. As can be seen, the

To provide adequate resolution for the convergence tests,

neutron star has traversed approximately 36 km during th¥/€ move the boundaries of our computational domain inside

0.4 ms, maintaining its original profile.

of the star. We ignore errors caused by the boundary, and

For completeness, we also present convergence tests ft#cus on the convergence properties of the interior solution.
the boosted star. The grid parameters for the tests are given [N comparing the absolute value of the errors for the dif-
in Table VIII. The initial data is evolved with the three dif- ferent schemes, we notice no significant difference between

ferent resolutions. To test the code in the highly relativisticthe two  spacetime evolution schemeADMLEAP,

regime, we use the boost parametgys £,= £,=0.5 giving

ADMICN). However, there is clearly a difference between

a Lorentz factory,=2. These boost parameters correspondh€ hydrodynamical evolution schemes, where the Roe and

to a neutron star moving in the+y+z diagonal direction

with a velocity ofv/c=0.87.

Marquina methodsROE,MAR) are equally more accurate
than the flux-split methodFLUX) for the resolutions used.
The maximum values of the errors are summarized in

Figure 17 shows convergence plots of various eVO|VedrabIe IX

variables for a typical numerical schereee[2] for conver-
gence plots for all of the different numerical methpdbhe

" ADMLEAP_FLUX

5.0"10 T T T
—4

ol
W 25"10 | B
W

0.0 1 1 1 1 1

-30 -20 -10 10 20 30

0
X (km})

FIG. 14. 1D plot of e/e. for the ADMLEAP_FLUX system
evolving a TOV configuration. The lines are plotted in thdirec-

_\\\\\ —— solution
1 R Rl (-]
---- fluxsplit
——- marquina
0.75 | 1
Ul
(=X
a
05 | 1
0.25 | 1

10 20
x (km)

FIG. 15. Long term(1.0 mg evolution of TOV initial data. The
final rest mass density is plotted for the ADMLEAP_ROE,
ADMLEAP_FLUX, and ADMLEAP_MAR systems, along
with the static analytic solution. The evolution with the
ADMLEAP_ROE system is indistinguishable from the analytic so-

tion at time intervals of 0.002 ms, and correspond to coordinatdution. The resolution used for these runs correspondAto

valuesz=4.6 km,y=-—6.4 km. The final time ig=0.042 ms.
The code crashes shortly afterwards.

=0.2954 km, with At/Ax=0.125t. 8000 time steps were re-
quired to evolve to 1.0 ms.
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axis, the Roe and Marquina methods were superior to the
flux split method. For an evolution where the shockfront is
along the diagonal, the flux split method was slightly more
accurate than both the Roe and Marquina method. For the
FRW evolutions, the spacetime evolution is the main source
of error. The BM system tends to be more accurate than the
ADM system. For the TOV tests, we find that the Roe and
Marquina methods are more accurate than the flux split
method, and the BM system is more accurate than the ADM
system. For the boosted TOV test, the Roe and Marquina
methods are again superior to flux split. We caution that
these statements could depend on the resolution used and the
duration of evolution.

The hydrodynamic evolution is coupled to the spacetime

FIG. 16. A plot of the evolution of the rest mass density
scaled by the central rest mass densgityalong the diagonal as a

function of time. The initial data corresponds to the TOV configu- - b -
ration from Sec. VI boosted in the+y+ z diagonal direction with evolution in a manner which is second order accurateoih

velocity v/c=0.3. The star is evolved for 0.4 ms. The spatial reso-SPace and time. The coupled code was subjected to a series
lution corresponds to approximately 30 points across the star. ~ Of convergence tests, with different combinations of the
spacetime and hydrodynamics finite differencing schemes,
VIIl. CONCLUSIONS demonstrating the consistency of the discrete equations with
the differential equation§73]. The extensive convergence
In this paper we present a new three-dimensional, Euletests performed are important not only for the validation of
rian, general relativistic hydrodynamical code constructedhe code, but have also been important debugging tools dur-
for general relativistic astrophysics. This code is capable oing the code development process. We consider the tests pre-
evolving the coupled system of the Einstein and hydrodysented to be a minimal set that any 3D GR-Hydro code
namic equations. The code is constructed for a completelghould pass before actual applications. The test-beds that we
general spacetime metric based on a Cartesian coordinateport on in this paper include: special relativistic shock
system, with arbitrarily specifiable lapse and shift conditionstubes, Friedmann-Robertson-Walker cosmology tests, evolu-
This paper discussed the general relativistic hydrodynamicgon of equilibrium configurations of compact stdsslutions
part of the code, and its coupling to the spacetime code, ito the Tolman-Oppenheimer-Volkoff equatignsaand the
parallel to the presentation of the spacetifwacuum part of  evolution of relativistically boosted TOV stars transversing
the code in1]. diagonally across the computational domain. The degree of
We have derived a spectral decomposition for the GRcomplexity presented in these tests increases from purely
Hydro equations valid for general spatial metrics, generalizspecial relativistic flows in flat backgrounds to fully general
ing the results of38] which were only valid for the case of relativistic flows in dynamical spacetimes. In particular, the
a diagonal metric. Based on this spectral decompositionast test-bedthe boosted staiinvolvesall possible terms in
three different approximatélinearized Riemann solvers, the coupled set of GR-Hydro evolution equations and were
flux-split, Roe and Marquina, were used to integrate the relaearried out with a non-trivial lapse and shift vector.
tivistic hydrodynamic equations. We tested these methods We found a simple, yet effective treatment for handling
individually and compared the results against one anothethe surface region of a general relativistic self-gravitating
While we found all methods converging to second order incompact object. The key idea is to replace the energy equa-
the discretization parameter, we also compared the absolut®n update by the condition of adiabatic flow in regions of
values of errors of the different methods. low density. While the surface region is not changing the
Which method produced the smallest absolute error, andverall dynamics of the star, numerical instabilities there
whether the spacetime or hydrodynamical evolution was theould halt the numerical evolution if uncontrolled. The capa-
dominant source of error, depends on the initial data beindility to handle the surface region in a stable fashion is im-
evolved. For the shocktube problem, only the hydrodynamiportant for the application of the code to the study of neutron
cal evolution was relevant since the evolution took place orstar astrophysics. We have demonstrated this capability in
a flat background metric. For an evolution along a coordinatehe equilibrium and boosted star test-beds. Refinement of this

TABLE VIII. Computational grid parameters for boosted TOV tests.

No. of points Total
Resolution in each Ax (km) At No. of time steps evolved time
coordinate direction CAx AS)
low 16 0.3545 0.125 2 0.296
medium 32 0.1772 0.125 4 0.296
high 64 0.0886 0.125 8 0.296
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FIG. 17. We demonstrate the convergence of the ADMLEAP_ROE evolution system for six different error functions. On the left panel,
we plot the difference between the analytic and computed rest mass demsityalized by the central rest mass dengity Ap/p., the
Hamiltonian constraint, and thex-momentum constrairit1*. On the right panel, we plot the difference between the analytic and computed
specific energy densitjnormalized by the central specific energy denskty/e., the difference between thex component of the extrinsic
curvature and the analytic solutidvK,,, and the difference between tkesomponent of the momentum and the analytic soluist. In
each case, we multiply the high resolution result by sixteen and the medium resolution by four to show second order convergence. All results
are shown at=0.296 us which corresponds to eight iterations at the highest resolution. The graphs are taken aloqg the diagonal
axis[results on the coordinate axig,(y,z) are similaf.

treatment for long term stability is presently being investi-interferometric detectors. The strongest signal will come
gated. from the highly dynamic “plunge” during the final phase of
Additional code calibrations that are underway includethe inspiral; a fully general relativistic code provides the only
long-term stability analysis of single neutron stars, compariway to calculate this portion of the wave form. A version of
sons of wave forms from perturbed neutron stars, and comhe code which passed the milestone requirement of the
parisons with one-dimensional and axisymme(@D) inde-  NASA Grand Challenge project, has recently been released
pendent GR-Hydro codes that weogether with our g the community75]. This code has been benchmarked at
collaboratorg constructed 74,39. Those will be reported in over 140 GFlop/sec on a 1024 node Cray T3E with a scaling

later papers in this series. . 0 : .
The formulation of the coupled set of equations and theefﬂmency of over 95%, showing the potential for large scale

numerical code reported in this paper were used for the corsP simulations of realistic astrophysical systems. Further de-
struction of the milestone code “GR3D” for the NASA velopment of our general relativistic code, and its application

Neutron Star Grand Challenge projeéor a description of to the specific study of the neutron star coalescence scenario,
the project, see http://wugrav.wustl.edu/Relativ/nsgc.htm| Will be described in later papers in this series.

The goal of this project is to develop a code for general TO summarize, this paper presents the fiestd neces-
relativistic astrophysics, and in particular, one that is capabléary steps towards constructing an accurate and reliable tool
of simulating the inspiral coalescence of a neutron star bifor the numerical study of astrophysical phenomena involv-
nary system. The coalescences of neutron star binaries aigy matter at relativistic speeds and strong gravitational
expected to be important sources of gravitational waves fofields.

TABLE IX. This table summarizes the magnitudes of the errors for the different evolution systems used
in the boosted NS test.

w{Ap) ){Ae
max — max —
Abbreviation Pc maxH) max(M*) €

ADMLEAP_ROE 6x10° 5x10* 5x10° 2x10°4 1x10°° 6x10°8

max@AKy,) max(A S¥)

ADMLEAP_FLUX 1x10% 5x104 5x10° 1x10° 1x10°° 1x10°7

ADMLEAP_MAR 6x10°° 5x10% 5x10° 2x10°* 1x10°° 6x10°8
ADMICN_ROE 6x10°° 5x10% 5x10°°  2x1074 1x10°° 6x10°8
ADMICN_FLUX 1x1074 5x10* 5x10° 1x10°3 1x10°° 1x10°7
ADMICN_MAR 6x10° 5x10* 5x10°° 2x10°4 1x10°° 6x10°8
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