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This is the first in a series of papers on the construction and validation of a three-dimensional code for
general relativistic hydrodynamics, and its application to general relativistic astrophysics. This paper studies
the consistency and convergence of our general relativistic hydrodynamic treatment and its coupling to the
spacetime evolutions described by the full set of Einstein equations with a perfect fluid source, complimenting
a similar study of the~vacuum! spacetime part of the code. The numerical treatment of the general relativistic
hydrodynamic equations is based on high resolution shock capturing schemes, specifically designed to solve
non-linear hyperbolic systems of conservation laws. These schemes rely on the characteristic information of
the system. A spectral decomposition for general relativistic hydrodynamics suitable for a general spacetime
metric is presented. Evolutions based on different approximate Riemann solvers~flux-splitting, Roe, and
Marquina! are studied and compared. The coupling between the hydrodynamics and the spacetime~the right
and left hand side of the Einstein equations! is carried out in a treatment which is second order accurate inboth
space and time. The spacetime evolution allows for a choice of different formulations of the Einstein equations,
and different numerical methods for each formulation. Together with the different hydrodynamical methods,
there are twelve different combinations of spacetime and hydrodynamical evolutions. Convergence tests for all
twelve combinations with a variety of test beds are studied, showing consistency with the differential equations
and correct convergence properties. The test-beds examined include shock tubes, Friedmann-Robertson-
Walker cosmology tests, evolutions of self-gravitating compact~TOV! stars, and evolutions of relativistically
boosted TOV stars. Special attention is paid to the numerical evolution of strongly gravitating objects, e.g.,
neutron stars, in the full theory of general relativity, including a simple, yet effective treatment for the surface
region of the star~where the rest mass density is abruptly dropping to zero!.

PACS number~s!: 04.25.Dm, 47.75.1f, 95.30.Sf, 97.60.Jd
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I. INTRODUCTION

The field of computational astrophysics is entering an
citing and challenging era. The large amount of obser
tional data involving general relativistic phenomena requi
the integration of numerical relativity with the tradition
tools of astrophysics, such as hydrodynamics, magn
hydrodynamics, nuclear astrophysics, and radiation tra
port. General relativistic astrophysics — astrophysics invo
ing gravitational fields so strong and dynamical that the
Einstein field equations are required for its accurate desc
tion, is quickly becoming a promising area of research.

As a first step in our study of ‘‘computational gener
relativistic astrophysics,’’ our collaboration~the NCSA–
Potsdam–Wash University Numerical Relativity Collabo
tion! is building a code called ‘‘CACTUS’’ for solving the full
set of Einstein field equations coupled to a perfect fl
source. Such a code will have many applications for as
physical processes involving neutron stars and black ho
In this paper we present the formulation and methods of
3D general relativistic hydrodynamic part of the code, and
coupling to the spacetime part of the code. We also pre
various tests for the validation of the code. The complim
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tary presentation on the~vacuum! spacetime evolution par
of the code has been given in@1,2#. In the following we
begin by discussing the background of our code developm
effort.

A. Motivation

Two of the major directions of astronomy in the ne
century are high energy astrophysics~x-ray andg-ray as-
tronomy! and gravitational wave astronomy. The former
driven by advanced x-ray andg-ray satellite observations
e.g., CGRO, AXAF, GLAST@3#, XMM, INTEGRAL, that
are either current or planned in the next few years. H
energy radiation is often emitted by highly relativistic even
in regions of strong gravitational fields, e.g., near black ho
~BHs! and neutron stars~NSs!. One of the biggest mysterie
of modern astronomy,g-ray bursts, is likely related to pro
cesses involving interactions of compact binaries~BH-NS or
NS-NS! or highly explosive collapse to a black hole~‘‘hy-
pernova’’! ~see, e.g.,@4# and references therein!. Such high
energy astrophysical events often involve highly dynami
gravitational fields, strong gravitational wave emissions, a
ejecta moving at ultrarelativistic speeds with relativistic Lo
entz factors up to 103– 104. The modeling of such events ca
only be achieved by means of hydrodynamical simulations
the full theory of general relativity.
©2000 The American Physical Society11-1
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The second major direction, gravitational wave a
tronomy, involves the dynamical nature of spacetime in E
stein’s theory of gravity. The tremendous recent interes
this frontier is driven by the gravitational wave observator
presently being built or planned in the U.S., Europe, a
outer space, e.g., Laser Interferometric Gravitational W
Observatory~LIGO!, VIRGO, GEO600, Laser Interferom
eter Space Antenna~LISA!, LAGOS @5#, and the Lunar Out-
post Astrophysics Program@5#. The American LIGO and its
European counterparts VIRGO and GEO600 are sched
to be on line in a few years@6#, making gravitational wave
astronomy a reality. The space detector LISA has been
lected as one of the three ‘‘cornerstone missions’’ of
European Space Agency@7#. These observatories provide
completely new window on the universe: existing obser
tions are mainly provided by the electromagnetic spectru
emitted by individual electrons, atoms, or molecules, and
easily absorbed, scattered, and dispersed. Gravitati
waves are produced by the coherent bulk motion of ma
and travel nearly unscathed through space, coming to us
rying the information of the strong field regions where th
were originally generated@8#. This new window will provide
very different information about our universe that is eith
difficult or impossible to obtain by traditional means.

The numerical~theoretical! determination of gravitationa
wave forms is crucial for gravitational wave astronom
Physical information in the data is to be extracted throu
template matching techniques@9#, which presupposesthat
reliable wave forms are known. Accurate wave form det
tions are important both as probes of the fundamental na
of gravity and for the unique physical and astronomical
formation they carry, ranging from nuclear physics~the
equation of state of NSs@9#! to cosmology~direct determi-
nation of the Hubble constant without going through t
‘‘cosmic distance ladder’’@10#!. In most situations, the wav
form cannot be calculated without a numerical simulat
based on the full theory of general relativity. This need
wave form templates is an important motivation of our
fort.

In short, both of these frontiers of astronomy call for co
putational general relativistic astrophysics, i.e., the integ
tion of numerical relativity with traditional tools of compu
tational astrophysics, e.g., computational hydrodynam
radiation transport, nuclear astrophysics, and magn
hydrodynamics. If we are to fully understand the obser
tional data generated by the non-linear and dynamical gr
tational fields, detailed modeling taking dynamic gene
relativity into full account must be carried out.

B. Existing work in general relativistic hydrodynamics

We begin by briefly reviewing some of the significa
existing investigations in the field of numerical general re
tivistic hydrodynamics~GR-Hydro in the following! to set
the stage for the description of our own work. While the
has been much effort in the study of relativistic hydrodyna
ics in pre-determined~fixed, or with its time evolution speci
fied! background spacetimes, we focus on studies that
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most relevant todynamicalspacetimes with the matter flow
acting as sources to the Einstein equations.

The pioneering work dates back to the one-dimensio
supernova core-collapse code by May and White@11#. It was
based on a Lagrangian~i.e., coordinates co-moving with th
fluid! finite difference scheme with artificial viscosity term
included in the equations to damp the spurious numer
oscillations caused by the presence of shock waves in
flow solution. Numerous astrophysical simulations we
based on this approach. One drawback is that the Lagran
character of the code makes it difficult to be extended to
multidimensional case.

The pioneering Eulerian~i.e., coordinates not co-moving
with the fluid! finite difference GR-Hydro code was deve
oped by Wilson@12# in the early 1970s. It used a combina
tion of artificial viscosity ~AV ! and upwind techniques. I
became the kernel of a large number of codes develope
the 1980s. Many different astrophysical scenarios were
vestigated with these codes, ranging from axisymmetric s
lar core-collapse@13–15#, to accretion onto compact objec
@16,17#, and to numerical cosmology@18#. In the following,
we give a short overview of this large body of work, payin
more attention to the numerical methods used than to
physical results obtained.

While there are a large number of numerical investig
tions in pre-determined background spacetimes based on
AV approach~e.g.,@12,19,16,17,20#!, we focus on those us
ing a fully self-consistent treatment evolving the spaceti
dynamically with the Einstein equations coupled to a hyd
dynamic source. Although there is much recent interes
this direction, only the spherically symmetric case~1D! can
be considered essentially solved@21–25#. In axisymmetry,
i.e. 2D, only a few attempts have been made, with mos
them devoted to the study of the gravitational collapse a
bounce of rotating stellar cores and the subsequent emis
of gravitational radiation@26,14,15,27#. Reference@26# was
the first to calculate a general relativistic stellar core c
lapse. The computation succeeded in tracking the evolu
of matter and the formation of a black hole but the numeri
scheme was not accurate enough to compute the em
gravitational radiation. The code in@14# used a radial gauge
and a mixture of polar and maximal slicing. The GR-hyd
equations were solved with standard finite difference me
ods with AV terms. In@15# the numerical scheme for th
matter fields was more sophisticated, using monotonic
wind reconstruction procedures and flux limiters, with d
continuous solutions handled by adding AV terms in t
equations. In@27#, a numerical study of the stability of sta
clusters in axisymmetry was performed. In this investigati
the source of the gravitational field was assumed to b
configuration of collisionless~dust! particles, which reduces
the hydrodynamic computation to a straightforward integ
tion of the geodesic equations.

Three-dimensional extensions of these AV based G
Hydro treatments have been attempted over the last
years. Wilson’s original scheme has been applied to
study of NS binary coalescence in@28,29# under the assump
tion of a conformally flat spacetime, which leads to a co
siderable simplification of the gravitational field equations.
1-2
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code employing thefull set of Einstein equations and se
gravitating matter fields is currently being developed@30#. In
this work the complete set of the equations, spacetime
hydrodynamics, are finite differenced in a uniform Cartes
grid using van Leer’s scheme@31# with total variation dimin-
ishing ~TVD! flux limiters ~see, e.g.,@32# for definitions!.
Shock waves are spread out using a tensor AV algorit
With this code they have studied the gravitational collapse
a rotating polytrope to a black hole~comparing to the origi-
nal axisymmetric computation of Ref.@14#! and the coales-
cence of a binary NS system. Further work to achieve lon
term stability is under way@30#.

The success of the artificial viscosity approach is w
known. However, it has inherent difficulties in handling t
ultrarelativistic regime@33#. In Wilson’s formulation of the
GR-hydro equations, there are explicit spacetime derivat
of the pressure in the source terms. This breaks the con
vative character of the system and introduces complicat
into the numerical treatment. This motivated, in recent ye
the effort of extending to relativistic hydrodynamics hig
resolution shock-capturing~HRSC! schemes originally de
veloped in classical~Newtonian! computational fluid dynam-
ics. Such schemes are based on the solution of local Riem
problems, exploiting the hyperbolicity of the hydrodynam
equations. To use such numerical treatments, the hydr
namic equations are first cast into a first order~hyperbolic!
system of conservation~or balance! laws. The characteristic
fields of the system are then determined which allows
construction of numerical schemes which propagate the
formation along the fluid characteristics. We refer the rea
to @32# for a review of these methods for general hyperbo
systems of conservation laws.

HRSC schemes were first introduced into GR-Hydro
@34#, and applied in~spherical! dynamical spacetimes in@35#
and @36#. The latter investigation focused on, among oth
problems, the study of supernova core collapse~including
the infall epoch, bounce, and shock propagation!. The nu-
merical code was based on the radial-gauge and polar-sli
coordinate conditions@37#. In @38# the GR-Hydro equations
were analyzed in the ‘‘311’’ formalism and the theoretica
building blocks to construct a HRSC scheme in multidime
sions were presented. Axisymmetric studies using HR
schemes are currently being carried out in@39#. This inves-
tigation focussed on the study of accretion phenomena o
~dynamic! rotating black holes and the associated emiss
of gravitational radiation induced by the presence of the m
ter fields. Axisymmetric studies will also provide usef
‘‘test beds’’ in forthcoming investigations with the prese
3D code discussed in this paper. As will be discussed in l
sections of this paper, our present code is based on the s
HRSC algorithmic machinery as in the aforemention
works. We extend the treatment to 3D, and develop a c
that makes no assumptions on the nature of the space
the form of the metric, or the slicing and spatial coordinat
We refer the interested reader to the above references
first understanding of the numerical schemes used in
work.

We also want to mention a completely different approa
for GR-Hydro based on pseudospectral methods@40#. These
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methods are well known for having extraordinary accura
in smooth regions of the solution. The numerical error
evanescent, i.e., it decreases ase2N with N being the number
of coefficients in the spectral expansion. The main drawb
of pseudospectral methods has been, traditionally, the in
curate modeling of discontinuous solutions due to the
pearance of the so-called Gibbs phenomenon. In the pres
of discontinuities, the numerical approximation of the so
tion does not converge at the discontinuity and spurious
cillations appear. Recently, however, an innovative ps
dospectral method based on a multidomain decomposi
has been developed@41# which circumvents the Gibbs phe
nomenon. This new approach has already been show
work remarkably well in the 3D numerical construction
McLaurin and Roche equilibrium models.

C. Issues of general relativistic hydrodynamics

In this subsection we discuss the main issues we con
ered in choosing our approach, building on the existing w
discussed above. The main aim of our program is to st
violent and highly-energetic astrophysical processes
NS-NS coalescence within the framework of general rela
ity. These scenarios involve strong gravitational fields, m
ter motion with~ultra! relativistic speeds and/or strong sho
waves. These features make the numerical integration of
hydrodynamic equations a very demanding task. The d
culty is exacerbated by the intrinsic multidimensional ch
acter of these astrophysical systems, and by the inhe
complexities in Einstein theory of gravity, e.g., coordina
degrees of freedom and the possible formation of curva
singularities~e.g., collapse of matter configurations to bla
holes!. These complications call for the use of advanced
merical methodology, a flexible code construction which
lows for the use of different treatments, and a large amo
of careful testbed studies. In the following we discuss th
issues in more detail.

Two major issues in GR-Hydro which are purely hydr
dynamical in origin are the numerical modeling of flows wi
large Lorentz factors and strong shock waves. In@33# it was
shown that the AV based schemes have difficulties in h
dling ultrarelativistic velocity flows with Lorentz factors>2.
As a result,@33# proposed using implicit finite difference
schemes to handle the GR-Hydro equations in the ultrar
tivistic regime. However, investigations during the last d
cade have provided increasing evidence that the most ap
priate schemes to deal with ultra-relativistic flow with stro
shocks are those based on~approximate or exact! Riemann
solvers, i.e., HRSC schemes. These methods have high
curacy ~second order or more! in regions where the flow
solution is smooth, and at the same time are able to res
discontinuities in the solution~e.g., shock waves! with little
smearing. They have been extensively tested and found t
applicable in the ultra-relativistic regime~see, e.g.,@42# for a
recent review!.

While we believe HRSC schemes may be capable of p
viding the technology for treating the hydrodynamic part
the evolution, the field of computational GR-Hydro still co
tains many issues that are as yet unexplored, especially
1-3
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cases where the relativistic fluid is coupled to a dynam
spacetime. For a fully dynamical spacetime, one major is
is the handling of the gauge degrees of freedom. This pr
lem is exacerbated in 3D simulations without symmetry
sumptions. In a general 3D problem, there is no prefer
choice of gauge to restrict the metric functions as in low
dimension simulations~e.g., radial gauge and polar slicing
spherically symmetric simulations!. Lagrangian coordinate
systems are inappropriate for complicated 3D flows. The
evitable lower resolution in 3D simulations also makes
problem more acute. Even in vacuum spacetime studies
choice and implementation of appropriate gauge conditi
for a general dynamical evolution is a largely unexplor
territory @43#. How will the gauge choices be affected by th
presence of relativistic fluid flows or by the existence
strong shocks which create sharp features in the source
the metric evolution? For example, what will be a use
gauge condition for a process like the inspiral of a NS-
binary? These are completely open issues. In order to
vide the capability to investigate these problems, the code
construct here is designed to allow arbitrary gauge con
tions, making no assumptions on the lapse function or
shift vector.

Another class of problems involves the connection of
numerical integration of the hydrodynamic equations to t
of the spacetime equations. What is the best set of varia
to use, locally measured quantities, coordinate variab
densitized quantities or some combination? With the spa
time metric an evolved variable, there are many choic
What is the best way to connect the hydrodynamics and
spacetime finite differencing steps to achieve not only a s
ond order accurate scheme in both space and time, but
in a way that is suitable for long term evolutions? Even
Newtonian strong field evolutions, coupling the hydrod
namic integration to the gravitational potential calculation
different ways can yield different long term behavior@44#.
As a consequence of the different character of the equat
governing the geometry of the spacetime and the evolu
of the matter fields, the numerical methods to handle th
are drastically different. What are the effects of combini
different methods, and is there a best combination for a p
ticular class of problems? With the recent development
hyperbolic formulations in GR, an interesting possibili
would be to consider all of the dynamical variables, bo
spacetime and matter fields, to be members of one ma
state vector. The entire system of equations could then
written as a single~vector! conservation~or balance! equa-
tion. One could then apply the same HRSC schemes to
entire system. What advantages would this bring? These
some of the issues that we have in mind in choosing
approach in developing the code as will be discussed ne

D. Outline of our approach

Our overall goal is to develop an efficient, flexible, com
putational tool for general relativistic astrophysics. Spec
cally for this paper, the aims are~1! to establish the formu-
lation, including the spectral decomposition of the G
Hydro equations, on which our code is based,~2! to validate
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the numerical code we constructed for solving the GR-Hy
equations, and~3! to compare the different numerica
schemes we used.

The set of differential equations we are attempting
solve consists of very complicated, coupled partial differe
tial equations involving thousands of terms. Considering
complexity and generality of the code, along with the fa
that the solution space of the differential equations is larg
unexplored, it is essential that any physical result produ
by a 3D GR-Hydro code be preceded by a series of tests s
as the ones we report here, in order to insure the fidelity
the discretization to the original differential equations.
fact, we consider the tests presented here to be a minima
any 3D GR-Hydro code should be able to reproduce th
results. Further tests, especially those related to the long
stability of the code and detailed comparisons of 3D and
results will be presented in a forthcoming paper.

In exploring the very complex system of the GR-Hyd
equations, it is also essential to have the capability to co
pare results based on different mathematical formulati
and different numerical schemes. Our code is currently se
to allow two different formulations of the Einstein equation
the standard Arnowitt-Deser-Misner~ADM ! formulation
@45# and the Bona-Masso´ ~BM! hyperbolic formulation@1#
~other hyperbolic formulations will be included and report
later!. The code allows for two different choices for finit
differencing the ADM equations: a standard leapfrog sche
and an iterative Crank-Nicholson scheme. The BM equati
are finite differenced using a Strang split to separate
source and flux updates. The latter are performed usin
MacCormack method. As for the numerical treatment of
hydrodynamic equations, the code has the capability of us
three different HRSC schemes: the first one is the flux s
method, mainly chosen for its simplicity. The second
Roe’s method@46# @note that contrary to@47#, we do not use
Roe’s averaging but instead employ arithmetic averag
~see Sec. III below for details!#. The third scheme we use i
the recently developed Marquina’s method@48#. All three
schemes are coupled to the spacetime evolution solver
way which is second order accurate in both space and ti

In this code we also allow for arbitrary spacetime coor
nate conditions. As mentioned previously, this enables
investigation of gauge choices in GR-Hydro and allows
use of different coordinate systems for different astrophy
cal simulations. This capability is built into our developme
and we have carried out tests with non-trivial lapses a
shifts in this paper. However, more investigation is needed
this direction.

E. Computational issues

As the aim of our program is to studyrealistic astrophysi-
cal systems, which often require full 3D simulations and
volve many different time and length scales, it is importa
that the computer code we develop be capable of carry
out large scale simulations. This requires the use of m
sively parallel supercomputers. The ‘‘CACTUS’’ code was
built with this in mind. Here we give a brief overview of th
1-4
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computational infrastructure of the code and its performan
For a more extensive review, see@49#.

The CACTUS code achieves parallelism through the M
message passing interface@50#. This allows high perfor-
mance portable parallelism using a distributed mem
model. All major high performance parallel architectures,
cluding the SGI Origin 2000, Cray T3E, HP/Convex Exe
plar, and IBM SP-2 support this programming model. T
MPI layer of Cactus also allows computing on clusters
networked workstations and PC’s. Parallelism in Cactus
based on a generic domain decomposition, distributing u
form grid functions across multiple processors and provid
ghost-zone based communications for a variety of ste
widths and grid staggerings. The code can also compile w
out MPI, allowing the same source code to be run on a sin
processor workstation and on massively parallel superc
puters. The platforms currently supported and tested inclu
the SGI Origin 2000~up to 256 nodes!, the Cray T3E~up to
1024 nodes!, SGI O2 clusters, NT clusters, DEC alphas, a
SGI workstations. We have recently benchmarked a vers
of the code~the ‘‘GR3D’’ version, constructed for the NASA
Neutron Star Grand Challenge Project, see htt
wugrav.wustl.edu/Relativ/nsgc.html! on a 1024 node T3E
1200, achieving over 140 GFlop/sec and a scaling efficie
of over 95% ~for details of the benchmark, see http
wugrav.wustl.edu/Codes/GR3D/!. Besides the floating poin
and scaling efficiency, it is also noteworthy that a relative
large grid size~644364431284 grid points for 32 bit accu
racy, and 50035003996 grid points for 64 bit accuracy!
were used for the benchmarked run on the T3E-1200. Th
made possible by the efficient memory usage of the co
With the full set of the Einstein equations coupled to t
relativistic hydrodynamics equations, a large number of
arrays are required to evolve the system. In order to h
reasonable resolutions for realistic simulations, it is essen
that the code make efficient use of available memory. I
also essential that the code be highly optimized in order
these large simulations to be carried out in a reasonable t

During the code development, special attention was a
given to software engineering problems, such as collab
tive code development, maintenance, and management.
code was developed to be shared by the entire commu
for the investigation of general relativistic astrophysics.
minimize barriers associated with collaborative develo
ment, the code was constructed to have:~1! A modular code
structure that allows new code modules to easily plug in
‘‘thorns’’ to the core part of the code~the ‘‘flesh’’!. The
‘‘flesh’’ contains the parallel domain decomposition so
ware, I/O, and various utilities.~2! A consistency test suite
library to make sure that new thorns will not conflict wi
other parts of the code.~3! Various code development tools
such as: documentation, elliptic solvers, and visualizat
tools, which provide a complete environment for code dev
opment, and testing. For detailed discussions of these
other features of collaborative infrastructure of the code,
@51,49#

These computational features of the code significantly
hance our effort in constructing a multi-purpose code
general relativistic astrophysics.
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F. Organization of this paper

The organization of the paper is as follows: the formu
tion of the differential equations are given in Sec. II. A spe
tral decomposition of the GR-Hydro equations suitable fo
general non-diagonal spatial metric is presented. The de
of the discretization of the equations and of the coupling
the spacetime and hydrodynamics are given in Sec.
Shock tube tests are performed in Sec. IV for shocks al
the coordinate axes and along the diagonal. These tes
hydrodynamic part of the code, with the background geo
etry held flat. We then go on to test the coupling of t
hydrodynamics to curved and dynamical spacetimes. Sec
V is on tests using Friedmann-Robertson-Walker cosmo
gies with dust. Section VI contains tests using static sph
cal star solutions with a polytropic equation of state. W
present a practical procedure which gives stable evolutio
the surface region of the star. Section VII contains tests us
the spherical star solutions described in Sec. VI but n
relativistically boosted along the diagonalx̂1 ŷ1 ẑ. This is a
strong test of the fully coupled spacetime and hydrodyna
ics system, with all possible terms in the equations activa
and with a non-trivial lapse and shift. Finally, Sec. VIII con
tains a brief summary.

All tests presented in Secs. V–VII contain convergen
studies performed in the following way: errors are obtain
by subtracting the exact solution at a specific time from
computed solution for a number of dynamical variable
These errors are produced at three different resolutions,Dx,
Dx/2, andDx/4. To demonstrate they have the correct co
vergence properties for a second order accurate discretiza
we check that each error function decreases by a facto
four for each factor of two increase in resolution. This
demonstrated by plotting the various error functions alo
1D lines. These convergence tests are an essential pa
validating the code.

II. FORMULATION

A. General relativistic hydrodynamic equations

In this subsection we present the hydrodynamic equati
for a general curved spacetime in a form suitable for
vanced numerical treatment. The equations for the evolu
of the spacetime, including the hydrodynamic source, will
presented in a later subsection.

The general relativistic hydrodynamic equations, writt
in the standard covariant form, consist of the local conser
tion laws of the stress-energy,Tmn, and the matter curren
density,Jm

¹mTmn50, ~1!

¹mJm50, ~2!

where Jm5rum, r is the rest mass density andum the
4-velocity of the fluid.¹m stands for the covariant derivativ
with respect to the 4-metric of the underlying spacetim
Throughout this paper we are using, unless otherwise sta
natural units (G5c51). Greek~Latin! indices run from 0 to
1-5
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3 ~1 to 3!. In what follows we will neglect viscous effects
assuming the stress-energy tensor to be that of a perfect

Tmn5rhumun1Pgmn, ~3!

whereP is the fluid pressure andgmn is the 4-metric describ-
ing the spacetime. In addition, the relativistic specific e
thalpy,h, is given by

h511e1P/r, ~4!

wheree is the rest frame specific internal energy density
the fluid.

The equations written in this covariant form arenot suit-
able for the use of advanced numerical schemes. In orde
carry out numerical hydrodynamic evolutions, and in p
ticular to take advantage of the benefits of HRSC metho
the hydrodynamic equations after the 311 split must be writ-
ten as a hyperbolic system of first order flux conservat
equations. We introduce coordinates (x05t,x1,x2,x3) and
write Eqs.~1! and~2! in terms of coordinate derivatives. W
project Eq.~1! and Eq.~2! onto the basis$nm,(]/]xi)m%, with
nm being a timelike vector normal to a given hypersurface
straightforward calculation yields the set of equations in
desired form

] tUW1] iFW
i5SW , ~5!

where] t denotes a partial derivative with respect to time a
] i indicates a partial derivative with respect to the spa
coordinatexi .

The evolved state vectorUW is given, in terms of the primi-
tive variables (r,v i ,e), as

UW5F D̃

S̃j

t̃
G5F AgWr

AgrhW2v j

Ag~rhW22P2Wr!
G , ~6!

whereg is the determinant of the 3-metricg i j , v j is the fluid
3-velocity, and W is the Lorentz factor,W5au05(1
2g i j v

iv j )21/2. Notice that the spatial components of th
4-velocity ui are related to the 3-velocity by the followin
formula:

ui5W~v i2b i /a!, ~7!

wherea andb i are, respectively, the lapse function and t
shift vector of the spacetime. Also notice that we are usin
slightly different set of variables as those used in@38#. We
are now ‘‘densitizing’’ the evolved quantities,D, Sj and t,
with the factorAg. The three flux vectorsFW i are given by
04401
id

-

f

to
-
s,

e

e

d
l

a

FW i5F aS v i2
1

a
b i D D̃

aS S v i2
1

a
b i D S̃j1AgPd j

i D
aS S v i2

1

a
b i D t̃1Agv i PD G . ~8!

Finally, the source vectorSW is given by

SW 5F 0

aAgTmngnsGs
m j

aAg~Tm0]ma2aTmnG0
mn!

G , ~9!

whereGa
mn is the 4-Christoffel symbol

Ga
mn5

1

2
gab~]mgnb1]ngmb2]bgmn!. ~10!

A technical point must be included here. While the n
merical code updates the state vectorUW forward in time it
makes use, internally, of the set of primitive variables d
fined above, (r,v i ,e). Those are used throughout, e.g., in t
computation of the characteristic fields~see below!. These
variables cannot be obtained from the evolved ones i
closed functional form. Instead, they must be recove
through some appropriate root-finding procedure~an ex-
ample of this can be found in@52#!.

B. Spectral decomposition and characteristic fields

The use of HRSC schemes, as will be presented in de
in the next section, depends crucially on the knowledge
the spectral decomposition of the Jacobian matrix of the s
tem

]FW i

]UW . ~11!

The characteristic speeds~eigenvalues! and fields~eigenvec-
tors! are the key ingredients of any HRSC scheme. The sp
tral decomposition of the Jacobian matrices of the gen
relativistic hydrodynamic equations with general equation
state was first reported in@38# ~for polytropic EOS see@47#!.
However, we have found that the eigenvectors reported
@38# are correct only in the case of a diagonal spatial met
In this section we display the full spectral decompositi
valid for a generic spatial metric. We focus on thex direc-
tion, hence presenting the spectral decomposition
(]FW x/]UW ), as the other two directions can be found by simp
permutation of indices.

We start by considering an equation of state in which
pressureP is a function ofr ande, P5P(r,e). The relativ-
istic speed of sound in the fluidcs is given by~see, e.g.,@53#!

cs
25

]P

]E U
S
5

x

h
1

P

r2

k

h
, ~12!
1-6
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wherex5]P/]rue , k5]P/]eur , S is the entropy per par
ticle, andE is the total rest energy density which in our ca
is E5r1re. We require a complete set of eigenvectors@rW i #
and corresponding eigenvaluesl i along thex direction, i.e.

F ]FW x

]UW G @rW i #5l i@rW i #, i 51, . . . ,5. ~13!
iv-

ot

lu

s

th

a
y
in
M

r-

a

04401
The solution contains a triply degenerate eigenvalue

l15l25l35avx2bx. ~14!

A set of linearly independent vectors that span this dege
ate space is given by
rW15F k

hW~k2rcs
2!

,vx ,vy ,vz ,12
k

hW~k2rcs
2!

GT

, ~15!

rW25@Wvy ,h~gxy12W2vxvy!,h~gyy12W2vyvy!,h~gyz12W2vyvz!,vyW~2Wh21!#T, ~16!

rW35@Wvz ,h~gxz12W2vxvz!,h~gyz12W2vyvz!,h~gzz12W2vzvz!,vzW~2Wh21!#T. ~17!

The superscriptT denotes transpose. The other two eigenvalues are given by

l65
a

12v2cs
2 $vx~12cs

2!6Acs
2~12v2!@gxx~12v2cs

2!2vxvx~12cs
2!#%2bx, ~18!

with corresponding eigenvectors

rW65F1,hWS vx2
vx2~l61bx!/a

gxx2vx~l61bx!/a
D ,hWvy ,hWvz ,

hW~gxx2vxvx!

gxx2vx~l61bx!/a
21GT

. ~19!
e-

rit-

a
.

he
C. Equations for a dynamical spacetime
with a hydrodynamic source

The dynamics of the gravitational field in general relat
ity theory is described by Einstein’s field equations

Gmn58pTmn , ~20!

which relate the~ten! metric componentsgmn(5gnm) of the
spacetime to the stress energy tensorTmn . Here,Gmn is the
Einstein tensor which involves second derivatives, in b
space and time, of the dependent variablesgmn . A formula-
tion of the Einstein equations suitable for numerical evo
tions has been known for more than three decades@45#. In
recent years, many new formulations have been propo
~for a review, see@54,55# and references therein! seeking to
expose the hyperbolicity of the evolution components of
Einstein field equations.

In the present paper, we discuss the mathematical
algorithmic issues related to the coupling of the hydrod
namic equations to two different formulations of the Einste
equations. We start with the more commonly used AD
formulation @45#. Then we discuss the BM hyperbolic fo
mulation of the Einstein equations@1#.

1. Arnowitt-Deser-Misner formulation

In the ADM formulation@45#, spacetime is foliated into a
set of non-intersecting spacelike hypersurfaces. There
h

-

ed

e

nd
-

re

two kinematic variables which describe the evolution b
tween these surfaces: the lapse functiona, which describes
the rate of advance of time along a timelike unit vectornm

normal to a surface, and the spacelike shift vectorb i that
describes the motion of coordinates. The line element is w
ten as

ds252~a22b ib
i !dt212b idxidt1g i j dxidxj . ~21!

The ADM formulation casts the Einstein equations into
first order ~in time! quasi-linear@56# system of equations
The dependent variables are the 3-metricg i j and the extrin-
sic curvatureKi j . The evolution equations read

] tg i j 522aKi j 1¹ ib j1¹ jb i , ~22!

] tKi j 52¹ i¹ ja1aFRi j 1K Ki j 22KimK j
m

28pS Si j 2
1

2
g i j SD24pr

ADM
g i j G

1bm¹mKi j 1Kim¹ jb
m1Km j¹ ib

m, ~23!

where¹ i denotes a covariant derivative with respect to t
3-metricg i j andRi j is the Ricci curvature of the 3-metric.

In addition to the evolution equations,g i j ,Ki j ,r
ADM

, and

j i must satisfy the Hamiltonian constraint
1-7



ss

s-

o
m
e
3

n

he

FONT, MILLER, SUEN, AND TOBIAS PHYSICAL REVIEW D61 044011
(3)R1K22Ki j K
i j 216pr

ADM
50, ~24!

and the momentum constraints

¹ jK
i j 2g i j ¹ jK28p j i50. ~25!

Here,r
ADM

, j i ,Si j ,S5g i j Si j are the components of the stre
energy tensor projected onto the 3D hypersurface~for a more
detailed discussion, see@57#!. In this paper we use the stres
energy tensor of a perfect fluid@Eq. ~3!#. Hence, explicitly in
terms of the primitive hydrodynamic variables,

r
ADM

5rhW22P, ~26!

j i5rhW2v i , ~27!

Si j 5rhW2v iv j1g i j P, ~28!

S5rhW2v iv
i13P. ~29!

2. Bona-Masso´ hyperbolic formulation

In the BM hyperbolic formulation@58,1#, the evolution
equations are written as a first order balance law with, f
mally, the same mathematical structure as the hydrodyna
equations, Eq.~5!. Now, the state vector, containing th
evolved quantities for the spacetime, has the following
components:

UW5~g i j ,a,Ki j ,Dki j ,Ak ,Vk!, ~30!

where
04401
r-
ic

7

Dki j5
1

2
]kg i j , ~31!

Ak5]kln a, ~32!

Vi5Di j
j 2D j

ji . ~33!

We use the following notation to describe the fluxes;F2
k g i j

denotes thek component of the flux in the evolution equatio
for g i j . Using this notation, the fluxes are

F2
k g i j 50, ~34!

F2
k a50, ~35!

F2
k Ki j 52bkKi j 1a@Di j

k 2n/2Vkg i j 11/2d i
k~Aj12Vj

2D jr
r !11/2d j

k~Ai12Vi2Dir
r !#, ~36!

F2
k Dki j52b rDri j 1a~Ki j 2si j !, ~37!

F2
k Ak52b rAr1aQ, ~38!

F2
k Vi52bkVi1Bi

k2Bi
k, ~39!

where

Bk
i 5

1

2
]kb

i , ~40!

is calculated from the user supplied shift vector. Finally, t
source terms read
S2g i j 522a~Ki j 2si j !12b r Dri j , ~41!

S2a52a2Q1ab rAr , ~42!

S2Ki j 52~Kir Bj
r1K jr Bi

r2Ki j Br
r !1a†22Ki

kKk j1tr KKi j 2G ri
k Gk j

r 12Dik
r Dr j

k 12D jk
r Dri

k 1Gkr
k G i j

r 2~2Dkr
k 2Ar !~Di j

r 1D ji
r !

1Ai~Vj21/2D jk
k !1Aj~Vi21/2Dik

k !1Aj~Vi21/2Dik
k !2nVkDki j24p„2Si j 2g i j @S1p1~n21!r

ADM
#…‡

1n/4ag i j @2Dk
rsG rs

k 1Dkr
r Ds

ks22VkAk1KrsKrs2~ tr K !2#, ~43!

S2Dki j50, ~44!

S2Ak50, ~45!

S2Vi5a@8p j i1Ar~Ki
r2tr Kd i

r !1Ks
r~Dir

s 22Dri
s !2Ki

r~Drs
s 22Dsr

s !#12~Bi
r2d i

r tr B!Vr12~Dri
s 2d i

sD jr
j !Bs

r , ~46!
to
-

ro
nce
where

si j 5~Bi j 1Bji !/a, ~47!

is used to simplify the equations. The free parametern al-
lows one to select a specific evolution system~it is zero for
the ‘‘Ricci’’ system and one for the ‘‘Einstein’’ system! as
discussed in@58#.
III. DISCRETIZATION OF THE EQUATIONS

A. Modern HRSC schemes for the GR-Hydro equations

As stated previously, the main aim of this work is
confirm theconsistencyof the coded finite difference equa
tions with the partial differential equations and theconver-
genceof three independent discretizations of the GR-Hyd
equations. All three approaches are based on finite-differe
1-8
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schemes employing HRSC schemes to account, explic
for the characteristic information of the equations. The me
ods considered are a flux split method@61#, Roe’s approxi-
mate Riemann solver@46#, and Marquina’s recently devel
oped scheme@48#.

To simplify the discussion, let us examine the update
the state vectorUW for a flux in thex direction:

]UW
]t

1
]FW x

]x
50. ~48!

The discretization of this equation takes the form

]UW i

]t
1

~ fW* ! i 11/22~ fW* ! i 21/2

Dx
50, ~49!

where (fW* ) i 61/2 is the ‘‘numerical flux’’ function calculated
at the interfacesi 61/2 of the spatial celli. The different
methods we are using simply differ in the way the numeri
fluxes are calculated. The way the source terms are i
grated in time is explained later in this section. We point o
that, although we are interested in the specific application
the fluxes in Eq.~8!, the methods presented here can be u
with any advection equation, provided one has the spec
decomposition of the fluxes in hand.

1. Flux split method

The first scheme is a flux split method, where the flux
decomposed into the part contributing to the eigenfields w
positive eigenvalues~fields moving to the right! and the part
with negative eigenvalues~fields moving to the left!. These
fluxes are then discretized with one sided derivatives wh
side depends on the sign of the particular eigenvalue.

For the flux split method, one makes the assumption

FW x~sUW !5sFW x~UW !, ~50!

for any constants. This is only true for the fluxes of Eq.~8!
if the equation of state has the following functional form:

P5P~r,e!5r f ~e!, ~51!

for some functionf (e). For the flux split method we there
fore assume the equation of state to be in the following fo

P5~G21!re, ~52!

with G being the~constant! adiabatic index of the fluid. It is
easy to show that, under the above assumptions, the
vectorFW x can be written

FW x5S ]FW x

]UW DUW . ~53!

Using the spectral decomposition of Sec. II B one can
press the Jacobian matrix]FW x/]UW as
04401
y,
-
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]FW x

]UW 5MLM 21, ~54!

where M is the matrix whose columns are the right eige
vectors of the system andL is a diagonal matrix constructe
from the corresponding eigenvalues~see Sec. II B!.

Given the characteristic information, we can now split t
flux into the part that is moving to the right and the part th
is moving to the left:

FW x5~FW x!11~FW x!25~ML1M 21!UW1~ML2M 21!UW ,
~55!

whereL15 1
2 (L1uLu), andL25 1

2 (L2uLu). The numeri-
cal flux which corresponds to an upwind method~first order
in space! is then simply

~ fW i 11/2* !first order5~FW x! i
11~FW x! i 11

2 . ~56!

One could attempt to construct a numerical flux based
one-sided derivatives that were second order accurat
space:

~ fW* i 11/2!second order–non TVD

5~ fW* i 11/2!first order1
1

2
„FW i2~ fW* i 21/2!first order…

~57!

1
1

2
„FW i 112~ fW* i 13/2!first order…. ~58!

However, the method would not have the~numerically desir-
able! total variation diminishing~TVD! property ~see, e.g.
@32# for definition! unless flux limiters are used in front o
the second order correction terms:

~ fW* i 11/2!second order

5~ fW* i 11/2!first order1
1

2
c i 21/2

1
„FW i2~ fW* i 21/2!first order…

~59!

1
1

2
c i 13/2

2
„FW i 112~ fW* i 13/2!first order…, ~60!

with

c i 11/2
1 5cS FW i 12

x 2~ fW* i 13/2!

FW i 11
x 2~ fW* i 11/2!

D , ~61!

c i 11/2
2 5cS FW i 21

x 2~ fW* i 21/2!

FW i
x2~ fW* i 11/2!

D , ~62!

where we are using van Leer flux limiters@59#

c~s!5
s1usu
11s

. ~63!
1-9
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2. Roe’s method

The second scheme we use to integrate the hydrodyna
equations makes use of Roe’s approximate Riemann so
@46#. This is undoubtedly the most established method
the accurate integration of non-linear hyperbolic systems
conservation laws. The suitability of Roe’s method for t
relativistic hydrodynamic equations have been shown
@60,47,38#. This method makes no assumption on the eq
tion of state, and, in this respect, is more flexible than
flux split methods. As the method is well documented in
literature~see, e.g.,@61#! it will only be briefly outlined here.
As mentioned in the Introduction, all simulations reported
this paper using Roe’s scheme are performed employ
arithmetic averages. For the use of Roe’s averaging in G
Hydro see@47#.

A monotonic piecewise-constant~piecewise-linear! recon-
struction of the cell centered values of the primitive variab
to the cell interfaces provides first-order~second-order! ac-
curacy in space@59#. In order to get second-order conve
gence we have implemented a standard minmod piecew
linear reconstruction algorithm@59#. The numerical fluxes
across interfaces are calculated according to

~ fW* ! i 11/25
1

2 FFW R
x 1FW L

x2 (
m51

5 Ul̃mUDṽmrW̃mG , ~64!

where R and L indicate the right and left sides of a ce

interface. In addition,$l̃m ,rW̃m%m51,..,5 are, respectively, the
eigenvalues and right-eigenvectors of the Jacobian matri
the system calculated at the cell interfaces as the arithm
mean of the left and right reconstructed~interpolated! primi-
tive variables. Averaged quantities in Eq.~64! are identified
by a ‘‘tilde.’’ Finally, the quantities$Dṽn%n51,..,5, the jumps
of the characteristic variables across each characteristic fi
are obtained from

UW R2UW L5(
m

DṽmrW̃m . ~65!

3. Marquina’s Method

In @48# Donat and Marquina proposed a new flux formu
to compute the numerical flux at a cell interface. The n
flux formula has a clear flux splitting structure, and leads
an upstream scheme. The novelty of Marquina’s appro
lies in the extension of Shu and Osher’s entropy-satisfy
numerical flux @62# to systems of hyperbolic conservatio
laws. In this scheme there are no artificial intermediate st
constructed at each cell interface. This implies that there
no Riemann solutions involved~either exact or approxi-
mate!; moreover, the scheme has been proven to allev
several numerical pathologies associated to the introduc
of an averaged state~as Roe’s method does! in the local
diagonalization procedure~see@48,63#!.

To compute the numerical flux at a given interface, se
rating the statesUW L andUW R , we compute first the sided loca
characteristic variables and fluxes:
04401
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v l
p5 lWp~UW l !•UW l , f l

p5 lWp~UW l !• fW~UW l !,

v r
p5 lWp~UW r !•UW r , f r

p5 lWp~UW r !• fW~UW r !, ~66!

for p51,2 . . . ,5.Here lWp(UW l), lWp(UW r), are the~normalized!
left eigenvectors of the Jacobian matrices of the system.
l1(UW l), . . . ,l5(UW l) and l1(UW r), . . . ,l5(UW r) be their corre-
sponding eigenvalues. Fork51, . . . ,5 theprocedure is the
following:

If lk(UW ) does not change sign in@UW l ,UW r #, then the scheme
is upwind.

If lk(UW l).0 then

f1
k 5f l

k ,

f2
k 50, ~67!

else

f1
k 50,

f2
k 5f r

k . ~68!

Otherwise, the scheme is switched to the more visco
entropy-satisfying, local-Lax-Friedrichs scheme

ak5maxulk~UW !u, UWPG~UW l ,UW r !,

f1
k 5.5~f l

k1akv l
k!, ~69!

f2
k 5.5~f r

k2akv r
k!,

G(UW l ,UW r) is a curve in phase space connectingUW l andUW r . In
addition,ak can be determined as

ak5max$ulk~UW l !u,ulk~UW r !u%. ~70!

Marquina’s flux formula is then

~ fW* ! i 11/2
n 5 (

p51

m

„f1
p rWp~UW l !1f2

p rWp~UW r !…, ~71!

where,rWp(UW l), rWp(UW r), are the right~normalized! eigenvec-
tors of the system. For further technical information abo
this solver we refer the reader to@48#. The suitability of this
scheme for the accurate integration of the hydrodyna
equations and many of its desirable properties can be fo
in @48# ~Newtonian hydrodynamics! and @63,64# ~relativistic
hydrodynamics!.

B. Discretization techniques for the spacetime
and spacetime-hydrodynamics coupling

1. Spacetime discretization

In this section we outline the discretization techniqu
used in the vacuum spacetime part of the code. For a m
detailed discussion we refer the reader to@1#. Here we give
the essential formulas for completeness and discuss in d
1-10
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TABLE I. This table summarizes the abbreviations used for the various methods used for the spa
and hydrodynamical evolutions.

Abbreviation Spacetime formulation/evolution scheme Hydrodynamics update meth

ADMLEAP_ROE ADM / leapfrog Roe

ADMLEAP_FLUX ADM / leapfrog flux split

ADMLEAP_MAR ADM / leapfrog Marquina

ADMICN_ROE ADM / iterative Crank-Nicholson Roe

ADMICN_FLUX ADM / iterative Crank-Nicholson flux split

ADMICN_MAR ADM / iterative Crank-Nicholson Marquina

BMEIN_ROE BM ~Einstein! / MacCormack Roe

BMEIN_FLUX BM ~Einstein! / MacCormack flux split

BMEIN_MAR BM ~Einstein! / MacCormack Marquina

BMRIC_ROE BM ~Ricci! / MacCormack Roe

BMRIC_FLUX BM ~Ricci! / MacCormack flux split

BMRIC_MAR BM ~Ricci! / MacCormack Marquina
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only the issues relevant to its coupling to hydrodynam
described in the next subsection.

The BM system uses the so-called Strang splitting@65# to
separate Eq.~5! into two evolution steps. In the first step
only the source terms are used to update the variables

] tUW5SW , ~72!

while in the second step, only the flux terms are used for
update

] tUW1] iFW
i50. ~73!

To ensure second order accuracy in both space and time
is done by first evolving the source terms forward in tim
half a time step, then evolving with only the flux terms a fu
time step, and finally evolving with only the source term
another half time step. The source terms are evolved forw
using a second order accurate predictor-corrector met
while the flux terms are evolved using a second order ac
rate MacCormack scheme. Specific details of these meth
are discussed in@1#.

The ADM system supports the use of several differ
numerical schemes. Currently, a leapfrog~non-staggered in
time! and iterative Crank-Nicholson scheme have be
coupled to the hydrodynamic solver.

The leapfrog method assumes that all variables exis
both the current time stepn and the previous time stepn
21. Variables are updated fromn21 to n11 ~future time!
evaluating all terms in the evolution equations on the curr
time stepn.

The iterative Crank-Nicholson solver first evolves t
data from the current time stepn to the future time stepn
11 using a forward in time, centered in space~FTCS! first
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order method. The solution at stepsn and n11 are then
averaged to obtain the solution on the half time stepn1 1

2 .
This solution at the half time stepn1 1

2 is then used in a
leapfrog step to re-update the solution at the final time s
n11. This process is then iterated. The error is defined
the difference between the current and previous solutions
the half time stepn1 1

2 . This error is summed over all grid
points and all evolved variables. This process is repea
until some desired tolerance is reached. Care is taken
make sure that at least two iterations are taken to make
process second order accurate.

2. Spacetime-hydrodynamics coupling

Our code evolves the spacetime geometry and the ma
fields separately. This allows different methods to be u
for each system~spacetime and hydrodynamics!. The cou-
pling of those different evolution algorithms in a way that
second order accurate in both space and time is hig
method dependent. We will therefore discuss the coupling
each system, ADM or BM, with hydrodynamics, separate
A summary of the different combined schemes appears
Table I.

The coupling between the BM system~for both the ‘‘Ein-
stein’’ ~BMEIN! and ‘‘Ricci’’ ~BMRIC! systems! with the
hydrodynamic solver is fairly straightforward as both sy
tems of equations take a similar~first-order flux-
conservative! form. The steps involved in the coupling ar
outlined in Fig. 1. In step 1 we simultaneously update
spacetime and hydrodynamic variables with the source te
via a two-step predictor-corrector scheme~second order ac-
curate in time! to the half-time stepn11/2. In step 2, the
spacetime variables are updated with the flux terms usin
MacCormack scheme~second order accurate in time! again
to the half-time stepn11/2. In step 3, we update the hydro
1-11
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dynamic variables with the flux terms via a two-st
predictor-corrector scheme to then11 step. In step 4 the
spacetime variables are updated with the flux terms vi
MacCormack scheme to then11 step. Finally, in step 5, the
spacetime and hydrodynamic variables are simultaneo
updated with the source terms via a two-step predic
corrector scheme to the finaln11 step.

In Fig. 2 we display the coupling between the ADM lea
frog evolution~ADMLEAP! and the hydrodynamical evolu
tion. In step 1 we simultaneously update the ADM equatio
via a leapfrog step~second order accurate in time! and up-
date the hydrodynamic equations with an Euler-predic
step~first order in time! using the method of lines. In step 2
we update the fluid variables to a virtualn12 time step with
a first order in time Euler-corrector step using the method
lines. Finally, in step 3, we obtain a second order accurat
time update of the hydrodynamic variables by averaging
corrected quantities obtained in step 2 with the original s
of stepn.

Our last combination appears plotted in Fig. 3. Here
display the coupling between the iterative Crank-Nichols
evolution scheme for the ADM equations~ADMICN ! and
the hydrodynamical evolution. First, in step 1, we simul
neously update the ADM and hydrodynamic equations us
an Euler-predictor step, which is first-order order accurate
time, to the half time stepn11/2. In step 2 through M, we
update the ADM equations via an iterative Crank-Nichols
scheme~second order in time! to the n11 time step and
average then11 and n states to produce a correctedn
11/2 state. The solution is guaranteed to be second o
accurate~in time! for M>2. In step M11 we simultaneously
update the ADM equations via a leapfrog step~second order
in time! based on then andn11/2 states and the hydrody

FIG. 1. This figure represents the coupling between the hyd
dynamics and the MacCormack evolution scheme with the BM
mulation of the field equations~either BMEIN or BMRIC!. STEP 1:
Simultaneous update of the spacetime and hydrodynamic varia
with the source terms via a two-step predictor-corrector schem
the half-time stepn11/2. STEP 2: Update of the spacetime va
ables with the flux terms via a MacCormack scheme to the h
time stepn11/2. STEP 3: Update of the hydrodynamic variabl
with the flux terms via a two-step predictor-corrector scheme to
n11 step. STEP 4: Same as step 2 but the update is to the
time n11. STEP 5: Same as step 1 but updating both sets of v
ables to the finaln11 step.
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namic equations via the second half of the Euler-predic
step~first half applied in step 1! using a method of lines. In
step M12 the hydrodynamic equations are updated to a
tual n12 time step via an Euler-corrector step using
method of lines. Finally, in step M13 we obtain a~second
order in time! hydrodynamics update by averaging the co
rected variables obtained in stepM12 and the original state
of stepn.

IV. SHOCK TUBE TESTS

We start testing the code with one of the standard test
fluid dynamics, the shock tube~see Refs.@52,33,66,63# for a
sample of previous relativistic simulations!. In this test, the
fluid initially has two different thermodynamical states o
either side of an interface. When this interface is remov
the fluid evolves in such a way that four states appear. E
state is separated by one of three elementary waves: a s
wave, a contact discontinuity, and a rarefaction wave. T
time-dependent problem has an exact solution to which
numerical integration can be compared. This problem o
checks the hydrodynamical part of the code, as it assum
flat background metric. However, it provides a good test
the shock capturing properties of any HRSC scheme.
integration of the hydrodynamic equations in each of
three spatial directions can be tested independently by p
ing the initial discontinuity along each of the coordinate ax
or in the fully multidimensional case when the interface
placed along the main diagonal of the computational dom

The initial state of the fluid is specified byPL513.3, rL
510 on the left side of the interface andPR50.6631026,
rR51 on the right side. The local sound speed in the h
density region is only moderately relativistic,cs50.72. The
fluid is assumed to be initially at rest on both sides of t
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e
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FIG. 2. This figure represents the coupling between the hyd
dynamics and the leapfrog evolution scheme used for the A
spacetime equations~ADMLEAP!. STEP 1: Simultaneous updat
of the ADM equations via a leapfrog step~second order accurate i
time! and of the hydrodynamic equations via a~first order accurate
in time! Euler-predictor step using the method of lines. STEP
Update of the hydrodynamic equations to a virtualn12 time step
via a first order in time Euler-corrector step. STEP 3: A seco
order accurate in time update of the hydrodynamic variables is
tained by averaging the corrected quantities obtained in step 2
the original state of stepn.
1-12
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interface. We use a perfect fluid equation of state,P5(G
21)re with G55/3.

We have first tested the code for each direction,x, y, and
z, separately. The integration domain extends from20.5 to
0.5 and att50 the interface is placed atx50 ~similarly
when testing in they andz directions!. We use a grid of 400
zones along the relevant direction. Figures showing o
dimensional shock tube tests with the three different hyd
dynamical methods we are using can be found in the sup
ment to this paper@2#. The L1-norm errors of the differen
hydrodynamical quantities for each method, at a final evo
tion time t50.4, are presented in Table II. From this tab
~and the accompanying figures of the supplement@2#! we see
that Marquina’s scheme gives better results than the o
two schemes. The improvement with respect to the R
solver is not too sensitive for high resolutions (Dx51/400).
It is however quite relevant for the coarse grid (Dx

FIG. 3. This figure represents the coupling between the hyd
dynamic evolution scheme and the iterative Crank-Nichols
method used for the integration of the ADM equations~ADMICN !.
STEP 1: Simultaneous update of the ADM and hydrodynamic eq
tions via a Euler-predictor step~first order in time! to the half time
stepn11/2. STEP 2 through M: Update of the ADM equations v
an iterative Crank-Nicholson scheme~second order accurate i
time! to then11 time step, then compute a correctedn11/2 state
by averaging then11 and n states. STEP M11: Simultaneous
update of the ADM equations via a leapfrog step~second order in
time! based on then and n11/2 states and the hydrodynamic
equations via the second half of the Euler-predictor step~first half
applied in step 1! using a method of lines. STEP M12: Update of
the hydrodynamic equations to a virtualn12 time step via a~first
order in time! Euler-corrector step using method of lines. STE
M13: A second order~in time! hydrodynamics update is obtaine
by averaging the corrected quantities of stepM12 and the original
variables of stepn.
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51/200) evolutions. Also noticeable are the large err
found with the flux split method for the coarse grid althou
they are drastically reduced when the resolution is doub
All errors reported in Table II are measured taking into a
count the whole domain of integration, i.e., including t
discontinuities. Obviously, the smooth parts of the solutio
e.g., the rarefaction wave, have less numerical error.

We next test the code by placing the initial discontinu
along the diagonal of the computational domain. With th
setup we are checking the finite-differencing of all three
rections simultaneously. We consider a grid of 1283 zones,
spanning an interval of length 1/A3 in every direction. The
diagonal of the cube therefore has unit length. We evolve
the same time as in the 1D tests,t50.4, using a CFL factor
Dt/Dx52A3/25. This corresponds to 640 update iteratio
The results of the evolution for Marquina’s method are d
picted in Fig. 4~additional figures showing the results for th
other two methods appear in the supplement@2#!. We find
good agreement between the numerical and analytic res
Notice that, due to the lack of resolution, some features s
as the constant intermediate state in density, are less reso
than in the one dimensional case. The errors of the hydro
namic quantities for this run are also contained in Table
By inspection of this table, we observe that, although
errors are very similar for all schemes, the flux split meth
is slightly more accurate than both Roe and Marquin
method. However, the existence of a ‘‘kink’’ in the leadin
part of the rarefaction wave~which is more clear in one-
dimesional simulations; see the corresponding figure in
supplement@2#! is still noticeable in the flux split method.

We summarize this section by stressing the sho
capturing capabilities of the different numerical schemes
use to integrate the hydrodynamic equations. Such capa
ties are essential to our final goal of performing accur
simulations of interesting astrophysical scenarios, such
coalescing NS binaries.

V. FRIEDMANN-ROBERTSON-WALKER COSMOLOGY
TESTS

For the first testbed of the coupled GR-Hydro code w
dynamical spacetimes, we use the Friedmann-Robert
Walker ~FRW! model of an expanding cosmology. We u
the standard form of the FRW metric

ds252dt21R2~ t !F dr2

12kr2
1r 2~du21sin2udf2!G ,

~74!

corresponding to an open (k521), flat (k50), or closed
(k51) universe, with scale factorR(t). For the special case
k50, each constant time slice is spatially flat. For this ca
all terms involving spatial derivatives drop out of both th
spacetime and hydrodynamic evolution equations. Althou
we still use the fully general form of the evolution equatio
to evolve the initial data, this allows us to concentrate on
coupling of the two codes in time. We note that the cask
50 has been extensively used in the literature for calibrat
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a-
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TABLE II. L1-norm errors of different hydrodynamical quantities, density, velocity, and pressure fo
shock tube tests. The results correspond to the three different schemes we employ to integrate the h
namic equations. The waves along the axis use either 200 of 400 grid zones in the direction of propa
and one zone in the remaining two directions. This allows our 3D code to be effectively run as a 1D
The diagonal shock tube test is run with 128 grid zones in each direction. All three solvers are fo
perform nicely in the multidimensional case.

Dimension Dx5Dy5Dz5 Solver uuE(r)uu1 uuE(v)uu1 uuE(p)uu1

Along axis
1

200
Flux-Split 1.993100 3.4631021 2.883100

Roe 1.1931021 1.3631022 8.1531022

Marquina 7.6531022 8.1331023 4.6031022

1

400
Flux-Split 6.6131022 6.6731023 4.2531022

Roe 6.9031022 7.7231023 4.3331022

Marquina 4.6531022 4.8431023 2.4131022

diagonal 1/A3
128

Flux-Split 7.9531022 8.3531023 6.6231022

Roe 9.1231022 9.3931023 7.5331022

Marquina 9.2331022 9.6631023 7.9831022
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of cosmological codes. We also study the non-spatially
casek521, which involves non-trivial spatial derivatives

We take the matter to be collisionless dust,P5e50. Un-
der these assumptions, the hydrodynamic evolution eq
tions reduce to

] t~rR3!50, ~75!

FIG. 4. Numerical~symbols! versus analytic~solid lines! results
for the three-dimensional shock tube tests att50.4 using Marqui-
na’s method. Shown are normalized profiles of rest-mass densitr,
pressure,P, and velocity,v5(g i j v iv j )

1/2, as functions of the coor-
dinate distance along the main diagonal. A uniform Cartesian
of 1283 zones was used.
04401
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while the Einstein equations take the form

~] tR!21k5
8p

3
rR2 ~76!

~see, for example,@67#!.
It is important to stress that we are using thefull set of

evolution equations to integrate the initial data. The on
assumption we make is that the stress-energy tensor tak
form of a perfect fluid with zero pressure and internal e
ergy. We only use the simplified solutions given by Eq
~75!, ~76! to check the validity of our numerical evolutions

A. kÄ0 convergence tests

For thek50 case we have a flat spatial geometry. Not
that Eq.~75! implies that the evolved ‘‘densitized’’ variable
D̃ is a constant of motion

D̃5AgWr5rR35const. ~77!

This, combined with the fact that no fields have any spa
dependence, results in the hydrodynamical finite differe
equations becoming exact for our choice of variables. The
fore, we see no difference between the three methods w
we use to integrate the hydrodynamical variables. Becaus
this, we only present results for the flux split hydrodynam
method, and note that the results for Roe and Marqu
methods are equivalent. We concentrate on the space
evolution as driven by the hydrodynamic source. This is
first direct test of the spacetime-hydrodynamics coupling
pects of our code.

Since numerical error only comes from finite differencin
errors in time, we could run the convergence tests by sim
decreasing the CFL number. However, to minimize bou
ary effects, we run the convergence tests at three diffe

id
1-14
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TABLE III. Different run parameters for the FRWk50 convergence tests.

No. of points
Resolution in each Dx

c
Dt

Dx
No. of time steps

direction

low 10 0.01 0.25 1
medium 20 0.05 0.25 2
high 40 0.025 0.25 4
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resolutions: 403,203,103 with a fixed CFL factor as summa
rized in Table III. For initial conditions we chooseR(t50)
51, andr(t50)50.01.

In Fig. 5 we display the Hamiltonian constraint violation
for the BMEIN_FLUX scheme. We see classical second
der convergence of the Hamiltonian constraint. Simi
graphs for other schemes can be found in@2#.

We turn next to evolutions with ADM based evolutio
schemes. In Fig. 6 we compare the Hamiltonian constr
for the ADMICN_FLUX ~iterative Crank-Nicholson!
and ADMLEAP_FLUX ~leapfrog! systems. For the
ADMICN_FLUX system we get second order convergen
with some ‘‘noise’’ at the boundaries. This noise propaga
into the grid more quickly than with other methods, due
the iterative nature of the ICN scheme.

The ADMLEAP_FLUX system doesnot appear to be
converging at second order. When we plot the root m
square~RMS! Hamiltonian as a function of time step for th
system, Fig. 7, we observe an oscillatory behavior. This
pears to be a ‘‘loused’’ solution to the finite difference equ
tions, as described by Newet al. @68#, occurring when non-
staggered leapfrog methods are used to evolve certain
linear systems of equations. The ‘‘loused’’ solution is a no
physical solution characterized by oscillations from time s

FIG. 5. The Hamiltonian constraint violation for th
BMEIN_FLUX system. Since the hydrodynamic code gives the
act solution for the special case ofk50 initial data, there is no need
to monitor the errors in the matter field evolutions, or to comp
different hydrodynamic methods. We find that the BMEIN_FLU
system converges to second order.
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to time step. We have seen evidence of this solution o
when using the ADMLEAP system, both in vacuum evol
tions, and when coupled to hydrodynamics. It does not
pear with any other system. For comparison, see the R
Hamiltonian for the BMEIN_FLUX evolution in Fig. 7. The
degree to which this ‘‘loused’’ solution occurs depen
strongly on the initial data and choice of gauge.

It is important to note that this ‘‘loused’’ solution is
solution to the finite difference equations,not to the differ-
ential equations. Thus, it must converge away with increa
resolution. In Fig. 8 we show the RMS Hamiltonian at ea
iteration for three different resolutions: 403,203, and 103. Its
value has been scaled by a factor of sixteen for the fin
resolution grid, and a factor of four for the medium reso
tion grid, so that if the solution is converging to second o
der, the value graphed should remain constant. The itera
number refers to the finest grid. Since the ‘‘loused’’ soluti
oscillates between a maximum and minimum value ev
time step, at iteration number four the fine and medium g
correspond to a minimum~they have evolved an even num
ber of time steps! while the coarse grid is at a maximum
~having evolved an odd number of time steps!. Hence, itera-
tion eight is the first time when all three grids correspond
a minimum. At this point we see that the solution is inde
converging at second order.

To summarize this subsection, we have verified that
coupling between the spacetime and hydrodynamic meth
described in Sec. III, yield second order convergence in tim
We have seen evidence of a ‘‘loused’’ solution in th
ADMLEAP system. This ‘‘loused’’ solution produces a non
physical oscillation in time. By comparing this oscillation
three resolutions, and at the same stage of oscillation~when
all three resolutions are at a minimum!, we see that it is
converging away.

B. kÄÀ1 convergence tests

Having confirmed the fidelity of the~second order accu
rate! coupling in time between the spacetime and hydro
namical evolutions, we next test the spatial derivatives
studying the non-spatially flatk521 FRW solution. Since
we now have to resolve spatial gradients, we increase
grid resolution using 1603,803, and 403 zones. The different
runs are summarized in Table IV. For initial conditions w
chooseR(t50)51, andr(t50)50.01.

To monitor the correctness of the spacetime evolution
cut off our grid atx5y5z561 and ignore errors caused b
boundary effects. To analyze the spacetime, we look at

-

e
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FIG. 6. Comparison of the Hamiltonian constraint values for the ADMICN_FLUX~left plot! and ADMLEAP_FLUX systems. For the
ADMICN_FLUX system we obtain second order convergence apart from some numerical ‘‘noise’’ at the boundaries
ADMLEAP_FLUX system doesnot appear to be converging.
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Hamiltonian constraint,H, and the x component of the mo
mentum constraint,Mx. Correspondingly, to address the a
curacy of the hydrodynamic evolution we look at the cons
vation of rR3, D(rR3)5rR3u t2rR3u t5t0

. This quantity

should remain constant for a matter dominated FRW so
tion.

In Fig. 9 we plotH, Mx, and the error in the conserve
quantity rR3

„D(rR3)… for the ADMLEAP_ROE system.
We find second order convergence for all variables, and
all systems@2#. We also find little difference between th
various hydrodynamic methods for this initial data@2#.

To summarize, we find second order convergence for
systems, even when non-trivial spatial gradients are pres
The FRWk521 spacetime tests out many of the terms
the spacetime evolution, however, the assumption that
matter be composed of dust excludes many of the term
the hydrodynamical equations. Due to this, we see little
ference between the three different hydrodynamical meth
when evolving this initial data. In Table V, we summari
the errors for all combinations of evolution systems obtain
at the lowest resolution. We find that the BMEIN system
slightly more accurate for this initial data.
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VI. TOLMAN-OPPENHEIMER-VOLKOFF TESTS

The FRW tests analyzed in the previous section assu
the matter fields to be dust, i.e.,P5e50. We now turn to a
case where the pressure gradients play a central role.
evolve a static star in the general relativistic setting, that i
self-gravitating matter distribution satisfying the~equilib-
rium structure! Tolman-Oppenheimer-Volkoff~TOV! equa-
tions.

The ability to numerically evolve a compact, strong
gravitating object is crucial for our program of developing
general purpose code for general relativistic astrophysics.
though the TOV solution is static, we evolve it with the fu
set of evolution equations for the hydrodynamics and
spacetime. To maintain the static solution during the num
cal evolution, the pressure gradient must exactly balance
gravitational force in the general relativistic setting whe
both the energy density and pressure are sources of gra
Even though the extrinsic curvature and fluid velocities
initially zero, finite differencing errors will allow these quan
tities to evolve away from zero.

Besides the complexity of the full GR-Hydro equation
there are two other difficulties in numerically evolving th
strongly gravitating stellar configuration:~1! the treatment of
physical

FIG. 7. Plot of the RMS Hamiltonian as a function of the time step for the ADMLEAP_FLUX~left! and BMEIN_FLUX systems. We

observe that the Hamiltonian is oscillating only for the ADMLEAP_FLUX scheme. This has been reported in the literature as a non-
‘‘loused’’ solution. The degree to which the oscillations occur depends strongly on the initial data and gauge choice.
1-16
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the surface of the star, and~2! providing a coordinate condi
tion which maintains the long term stability of the evolutio
We will discuss the first difficulty, including our numerica
treatment, later in this section. We will defer discussing
problem of long term stability to the second paper in t
series.

We begin with a discussion of the initial data. The TO
equations@69,70# are the Einstein equations coupled to
perfect fluid stress-energy tensor under the assumptions
the solution is static and spherically symmetric. Specifica
the metric is given by

ds252a~r !2dt21g rr ~r !dr21r 2du21r 2sin2udf2,
~78!

where the metric functions,a(r ) andg rr (r ), along with the
primitive hydrodynamic variables,r(r ) and e(r ), are as-
sumed to depend only on the circumferential radiusr. ~We
note that this form of the metric is only used in computi
the initial data,not in our dynamic evolution code, where
general form of the metric in a Cartesian coordinate sys

TABLE IV. Run parameters for the FRWk521 convergence
tests.

Resolution
No. of points

in each
direction

Dx
c
Dt

Dx
No. of time steps

low 40 0.05 0.25 2
medium 80 0.025 0.25 4
high 160 0.0125 0.25 8

FIG. 8. The convergence of the ‘‘loused’’ oscillations appear
for the ADMLEAP_FLUX system is examined by plotting th
RMS Hamiltonian at each iteration for three different resolutio
403,203, and 103. The value is scaled by a factor of sixteen for t
finest resolution grid, and a factor of four for the medium resolut
grid. The iteration number refers to the finest grid. As explained
the text, iteration eight is the first time when all three grids coinc
to a minimum value. At this point we see that the solution co
verges at second order.
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is used.! Under these assumptions, the Einstein equatio
along with the hydrodynamic equations, reduce to

]P~r !

]r
52

~r1re1P!~m14pr 3P!

r ~r 22m!
, ~79!

]„ln a~r !…

]r
5

m14pr 3p

r ~r 22m!
, ~80!

]m~r !

]r
54pr 2~r1re!, ~81!

g rr ~r !5S 12
2m~r !

r D 21

, ~82!

wherem5m(r ) is the mass energy contained inside a sph
of circumferential radiusr. To determine the initial data, th
above coupled ordinary differential equations are integra
using a 4th order Runge-Kutta method, supplemented b
polytropic equation of state~EOS!

P5KrG. ~83!

We note that in the dynamical evolution we use the m
generic EOSP5(G21)re. In the simulations shown in this
section, we useG5 5

3 , K55.3803109 cm4/g2/3sec2, and a
central mass density ofrc5531014 gcm3. This configura-
tion corresponds, roughly, to a neutron star@71#. Other initial
parameters, showing essentially the same features as the
presented here, have also been tested. This choice of pa
eters leads to a TOV solution with a total ADM mass
0.566M ( and a circumferential coordinate radius of 14
km. The TOV solution is then matched at the star’s surfa
to an exterior Schwarzschild spacetime with the appropr
mass and coordinates@72#. A coordinate transformation from
spherical to Cartesian coordinates is then performed to
tain initial data for the 3D evolution code. The evolution
performed with ‘‘harmonic slicing,’’ that is ȧ
5aAgg i j Ki j . While this configuration represents a com
pactness ratio ofR/2M'9, we note that we have performe
tests using TOV configurations with compactness ratios
2.5<R/2M,100. We have verified strict second order co
vergence for this range of compactness ratio for the T
configurations and for the boosted TOV configurations
Sec. VII.

We now present convergence tests for the evolution co
These tests are performed with the parameters describe
Table VI. As the initial data exhibits octant symmetry, on
one octant is evolved~with appropriate boundary condition
used at the inner faces of the computational domain!. This is
an important capability of the code, in that it enables us
achieve a higher resolution and make more efficient use
available computational resources when allowed by the s
metry of the problem. The initial data is then evolved up
t50.986 ms. We calculateDr5rnum2rexact, the difference
between the numerically computed mass density,rnum, and
the exact solution,rexact. We also monitor the Hamiltonian
constraint, H, and the x-momentum constraint,Mx. The
maximum values of these errors obtained at the lowest re
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lution ~excluding the region near the surface of the star! are
summarized in Table VII for each evolution system. T
order of convergence of the code, for various combinati
of the spacetime and hydrodynamics integrations, is dem
strated as before.

For the TOV solution, we have tested the consistency
the flux-split, Roe, and Marquina methods both with a
without the limiting functions. We note that the limiters r
sult in a truncation error that is first order inDx at points that
attain minimum and maximum in the hydrodynamical va
ables, while all other points have truncation errors which
second order inDx. For the convergence tests in this secti
we will only present results without the flux limiters. Sp
cifically, we have built a switch in the code that will setc
51 for the limiting of the flux split method, Eq.~63!, and
turn off the minmod function for the Roe and Marquin
methods, so that we can perform tests with and without l
iters to ensure that all components of our code have the
pected convergence properties.

A typical convergence plot is shown in Fig. 10~see@2# for
convergence plots of all combinations of the different n
merical methods!. Notice that all quantities are converging
second order inDx in the interior of the star,r ,14.9 km.
The treatment of the surface of the star will be discusse
detail later.

Notice that the rest mass density for all systems using
flux-split hydrodynamical evolution scheme~FLUX! is con-
verging at a rate that is higher than second order for theDx
used here. This is due to the fact that, for the resolutions u
here, the truncation error terms that are proportional toDx3

have a magnitude comparable to the truncation error te
that are proportional toDx2. This causes the appearance
‘‘hyper-convergence’’ as seen in Fig. 11. To confirm th
point, we plot in Fig. 12 the results of a convergence test
04401
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the ADMLEAP_FLUX system with two times the spatia
resolution as described in Table VI. A clear indication
second order convergence is observed at this resolution

We also note that for the same resolution, the BMR
spacetime evolution scheme is slightly more accurate t
the other spacetime evolution schemes~from a standpoint of
the absolute value of the error functions plotted!. Also, the
Roe and Marquina schemes for evolving the hydrodynam
are more accurate~by an order of magnitude! than the flux-
split method~see@2# for details!.

Next we turn to the star’s surface treatment. There

FIG. 9. Convergence plot of the Hamiltonian constraint (H), the
x component of the momentum constraint (Mx), and error plot for
the conserved quantityrR3 (D(rR3)) for the ADMLEAP_ROE
system. All variables show second order convergence for ev
combination of systems@2#. We also find little difference between
the various hydrodynamic methods for this initial data@2#.
when
IV.
TABLE V. This table summarizes the magnitudes of the errors for the different evolution systems
evolving the FRWk521 spacetime. These values correspond to the lowest resolution listed in Table

Abbreviation max~H! max (Mx) max „D(rR3)…

ADMLEAP_ROE 231022 431024 231028

ADMLEAP_FLUX 231022 431024 231028

ADMLEAP_MAR 231022 431024 231028

ADMICN_ROE 231022 431024 231028

ADMICN_FLUX 2 31022 431024 231028

ADMICN_MAR 2 31022 431024 231028

BMEIN_ROE 231022 531025 131028

BMEIN_FLUX 231022 531025 131028

BMEIN_MAR 231022 531025 131028

BMRIC_ROE 231022 131024 231028

BMRIC_FLUX 231022 131024 231028

BMRIC_MAR 231022 131024 231028
1-18
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TABLE VI. Computational grid parameters for the TOV tests.

No. of points Total
Resolution in each Dx ~km!

c
Dt

Dx
No. of time steps evolved time

coordinate direction (ms)

low 16 1.182 0.125 2 0.986
medium 32 0.591 0.125 4 0.986
high 64 0.2955 0.125 8 0.986
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three related issues in the numerical evolution of the surf
region of a compact self-gravitating object in general rela
ity. ~1! At the surface of the star, the second normal deri
tives of some of the hydrodynamic quantities, e.g., the d
sity, are discontinuous for most equations of state. T
discontinuity is also present in the TOV solution withG
55/3 studied in this section. The Einstein equations im
that the curvature tensor~which contains second derivative
of the metric functions! has a kink at the stellar surface. Th
curvature tensor enters explicitly in the evolution equation
the extrinsic curvature. This makes the numerical treatm
of the stellar surface considerably more difficult in the re
tivistic framework than in the Newtonian case. According
the numerical evolutions are less stable in the relativi
case.~2! In the exterior of the star there is vacuum a
hence, the density must drop to zero. As the density
proaches zero, the transformation from the evolved varia
(D̃,S̃i ,t̃) to the primitive variables (r,v i ,e) becomes singu-
lar. The ‘‘standard’’ treatment of this problem is to add an
hoc ‘‘atmosphere,’’ with some choice of thermal properti
in the exterior region. This atmosphere typically has a d
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sity orders of magnitude smaller than that of the interior
the star and should have a negligible effect on the dynam
of the system. In our simulations, we typically pick the a
mosphere to be 1024 to 1025 of the central densityrc of the
TOV star and with the same EOS as the star. This is su
cient to ensure that the GR-Hydro equations are neither
gular nor degenerate in our treatment, while having ne
gible effect on the actual dynamical evolution of the star.~3!
In regions of low density, especially in the atmosphere n
the surface of the star, there are two related difficulties:~i! it
is difficult to accurately recover the pressure~which is a
power of the density! from the evolved variables (D̃,S̃i ,t̃),
and ~ii ! it is easy to develop high velocity flows due to th
strong gravitational field there. In particular, the atmosph
(r .14.9 km) is not part of the equilibrium TOV initial data
and the gravitational field is driving it to collapse onto th
surface of the star. Numerically, it is problematic to have
atmosphere colliding with the surface of the star, creatin
shock, and leaving the specific internal energy densitye in
the atmosphere behind plunging to zero. These difficul
eventually cause the code to crash. An explicit demonstra
when
errors
TABLE VII. This table summarizes the magnitudes of the errors for the different evolution systems
evolving the TOV spacetime. These values correspond to the lowest resolution listed in Table VI, and
near the surface of the star are ignored.

Abbreviation
maxSDr

rc
D

max~H! max (Mx)

ADMLEAP_ROE 831026 831024 231025

ADMLEAP_FLUX 231024 831024 231025

ADMLEAP_MAR 831026 831024 231025

ADMICN_ROE 831026 831024 231025

ADMICN_FLUX 2 31024 831024 231025

ADMICN_MAR 8 31026 831024 231025

BMEIN_ROE 531026 831024 531026

BMEIN_FLUX 231024 831024 531026

BMEIN_MAR 531026 831024 531026

BMRIC_ROE 131026 831024 131025

BMRIC_FLUX 231024 831024 131025

BMRIC_MAR 131026 831024 131025
1-19
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FIG. 10. We demonstrate the convergence of
ADMLEAP_ROE evolution system for three different error fun
tions: the difference between the analytic and computed rest m
density~normalized by the central rest mass densityrc) Dr/rc , the
Hamiltonian constraintH, and thex-momentum constraintMx. In
each of the three cases, we multiply the high resolution resul
sixteen and the medium resolution by four to show second o
convergence. All results are shown att50.986 ms which corre-
sponds to eight iterations at the highest resolution. The graphs
taken along thex axis ~results on they andz axes are identical, and
results on the diagonal axis are similar!.

FIG. 11. We demonstrate the convergence of
ADMLEAP_FLUX evolution system for three different error func
tions: the difference between the analytic and computed rest m
density~normalized by the central rest mass densityrc) Dr/rc , the
Hamiltonian constraintH, and thex-momentum constraintMx. In
each of the three cases, we multiply the high resolution resul
sixteen and the medium resolution by four to show second o
convergence. Note that the rest mass density~top frame! is converg-
ing faster than second order inDx ~see text for explanation!. All
results are shown att50.986 ms which corresponds to eight itera
tions at the highest resolution. The graphs are taken along thex axis
~results on they andz are identical, and results on the diagonal a
are similar!.
04401
of these difficulties is exhibited in Figs. 13 and 14. For the
simple tests, we evolve a TOV configuration as describ
above. We implement an atmosphere with densityratmos
51025 rc . The resulting atmosphere has a specific inter
energy ofeatmos'4.631024 ec . We then evolve the con
figuration with the ADMLEAP_FLUX evolution scheme
We first evolve this configurationwithout implementing the
surface treatment described below~which is implemented for
all other runs in this paper!. The code crashes after onl
0.043 ms, due to the specific internal energy dropping
zero near the surface of the star. Figure 13 shows a 3D
surface plot ofe corresponding to a value ofe50.87eatmos
at time t50.04 ms. These regions indicate where the s
cific internal energy is dropping significantly in this sho
time interval. Figure 14 shows a 1D plot ofe/ec . Clearly,
the specific internal energy is dropping to zero rapidly in
unstable fashion near the surface of the starr 514.9 km.

To circumvent these problems, we have found a simp
yet effective treatment for the stable numerical evolution
low density regions. Again, since this scheme is enacted o
for very low density flow, it has a negligible effect on th
dynamics of the system. It is important to note that the fi
indication of problems is in the recovery of the primitiv
variables (r,v i ,e) from the evolved variables (D̃,S̃i ,t̃),
given by Eq.~6!. In regions where the rest mass densityr is
less than some specified minimum densityr

min
~typically

some fraction of the atmosphere rest mass density!, if the
recovery of the primitive variables (r,v i ,e) from the evolved
variables (D̃,S̃i ,t̃) results in a negative specific energy de
sity e, then the primitive variables are solved again, with t
condition for adiabatic flow

P5KrG, ~84!

replacing the definition oft̃ @the fifth component of Eq.~6!#.
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FIG. 12. We demonstrate the convergence of the evolved
mass density with the ADMLEAP_FLUX evolution system for
set of grids with twice the resolution as that displayed in Table
All results are shown att50.493 ms which corresponds to eigh
iterations at the highest resolution. The graphs are taken alongx
axis ~results on they and z axes are identical, and results on th
diagonal axis are similar!.
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FIG. 13. A 3D isosurface of
constant internal specific energ
density at time t50.04 ms is
shown. This value of e54.1
31024 ec corresponds to 87% o
the atmosphere specific interna
energy density. Notice that the
troublesome regions are not alon
the coordinate or diagonal axe
and hence would not be observ
able in 1D plots along these axe
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To demonstrate the stability of this scheme, we show
Fig. 15 the final rest mass density profile for numerical e
lutions of the TOV configuration described above. The th
different hydrodynamics evolutions schemes~flux-split, Roe,
and Marquina! are used to evolve the same TOV configu
tion to 1.0 ms~approximately 8000 time steps!. Note that for
Roe’s method, the final mass density configuration is ind
tinguishable from the initial configuration profile.

VII. BOOSTED TOV TESTS

The final test case we present is the most stringent.
boosted TOV solution effectively tests many of the featu
one requires of a general relativistic hydrodynamical spa
time code: relativistic fluid motion, strong gravitation
04401
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fields, and a non-trivial coordinate condition for both th
lapse and shift. In addition, this test has an analytic solut
to compare against. We simulate a neutron star moving w

a high velocity along thex̂1 ŷ1 ẑ diagonal of the computa
tional domain. We find that in such a simulation, every te
in both the Einstein equations and the GR-Hydro equation
activated; each evolved variable is a nontrivial function
space and time. We obtain an analytic solution of a boos
neutron star by applying a coordinate transformation t
corresponds to a Lorentz boost at spatial infinity on a so
tion to the TOV equations. Specifically, if the solution to th
TOV equations ~see Sec. VI! is expressed in Cartesia
(t,x,y,z) coordinates, we transform to another set of coor
nates (t8,x8,y8,z8) via the transformation
F t8

x8

y8

z8

G53
gb jxgb jygb jzgb

jxgb S 11
~gb21!jx

2

j2 D S ~gb21!jxjy

j2 D S ~gb21!jxjz

j2 D
jygb S ~gb21!jxjy

j2 D S 11
~gb21!jy

2

j2 D S ~gb21!jyjz

j2 D
jzgb S ~gb21!jxjz

j2 D S ~gb21!jyjz

j2 D S 11
~gb21!jz

2

j2 D 4 F
t

x

y

z

G , ~85!

wherej25jx
21jy

21jz
2 andgb5(12j2)21/2. The resulting metric and stress-energy tensor in the primed frame,

gm8n8~ t8,x8,y8,z8![
]xa

]xm8

]xb

]xn8
gab , ~86!

Tm8n8~ t8,x8,y8,z8![
]xa

]xm8

]xb

]xn8
Tab , ~87!

are also solutions to the Einstein equations coupled to the GR-Hydro equations. Notice that the shift in the boosted~primed!
coordinates is non-zero. For example, thex component of the shift vector is given by
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bx8~ t8,x8,y8,z8!5gt8x8~ t8,x8,y8,z8!

5gb
2jxa

22gbS 11
~gb21!jx

2

j2 D ~jxgxx1jygxy1jzgxz!2gb

~gb21!jxjy

j2
~jxgxy1jygyy

1jzgyz!2gb

~gb21!jxjz

j2
~jxgxz1jygyz1jzgzz!, ~88!
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where a and g i j are the lapse and 3-metric, respective
computed in the rest frame~unprimed coordinates! evaluated
at coordinates (t,x,y,z) that correspond to the primed coo
dinates (t8,x8,y8,z8). In the tests performed in this sectio
we specify the lapse and shift to be given by these values
check that all evolved variables converge to the analytic
lution. For the pre-boosted TOV solution, we use the sa
configuration used in the previous section.

In Fig. 16 we plot the evolution of the rest mass dens
along the direction of boost (x̂1 ŷ1 ẑ diagonal! as a function
of time. The boosted star is evolved for 0.4 ms, and
boosted with a velocity ofv/c50.3. As can be seen, th
neutron star has traversed approximately 36 km during
0.4 ms, maintaining its original profile.

For completeness, we also present convergence test
the boosted star. The grid parameters for the tests are g
in Table VIII. The initial data is evolved with the three di
ferent resolutions. To test the code in the highly relativis
regime, we use the boost parametersjx5jy5jz50.5 giving
a Lorentz factorgb52. These boost parameters correspo
to a neutron star moving in thex̂1 ŷ1 ẑ diagonal direction
with a velocity ofv/c50.87.

Figure 17 shows convergence plots of various evolv
variables for a typical numerical scheme~see@2# for conver-
gence plots for all of the different numerical methods!. The

FIG. 14. 1D plot of e/ec for the ADMLEAP_FLUX system
evolving a TOV configuration. The lines are plotted in thex direc-
tion at time intervals of 0.002 ms, and correspond to coordin
valuesz54.6 km, y526.4 km. The final time ist50.042 ms.
The code crashes shortly afterwards.
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left panel of the figure contains plots of the difference b
tween the numerically evolved rest mass density and the
lytic solution, normalized by the central density (Dr/rc), the
Hamiltonian constraint (H), and thex component of the mo-
mentum constraint (Mx). The right panel of the figure con
tains plots of the difference between the numerically evolv
specific energy density and the analytic solution~normalized
by the central specific energy density!, De/ec , the difference
between thexx component of the extrinsic curvature and t
analytic solution,DKxx , and the difference between thex
component of the momentum and the analytic solution,DSx.

To provide adequate resolution for the convergence te
we move the boundaries of our computational domain ins
of the star. We ignore errors caused by the boundary,
focus on the convergence properties of the interior soluti

In comparing the absolute value of the errors for the d
ferent schemes, we notice no significant difference betw
the two spacetime evolution schemes~ADMLEAP,
ADMICN !. However, there is clearly a difference betwe
the hydrodynamical evolution schemes, where the Roe
Marquina methods~ROE,MAR! are equally more accurat
than the flux-split method~FLUX! for the resolutions used
The maximum values of the errors are summarized
Table IX.

te

FIG. 15. Long term~1.0 ms! evolution of TOV initial data. The
final rest mass density is plotted for the ADMLEAP_RO
ADMLEAP_FLUX, and ADMLEAP_MAR systems, along
with the static analytic solution. The evolution with th
ADMLEAP_ROE system is indistinguishable from the analytic s
lution. The resolution used for these runs correspond toDx
50.2954 km, with Dt/Dx50.125/c. 8000 time steps were re
quired to evolve to 1.0 ms.
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VIII. CONCLUSIONS

In this paper we present a new three-dimensional, E
rian, general relativistic hydrodynamical code construc
for general relativistic astrophysics. This code is capable
evolving the coupled system of the Einstein and hydro
namic equations. The code is constructed for a comple
general spacetime metric based on a Cartesian coord
system, with arbitrarily specifiable lapse and shift conditio
This paper discussed the general relativistic hydrodynam
part of the code, and its coupling to the spacetime code
parallel to the presentation of the spacetime~vacuum! part of
the code in@1#.

We have derived a spectral decomposition for the G
Hydro equations valid for general spatial metrics, genera
ing the results of@38# which were only valid for the case o
a diagonal metric. Based on this spectral decomposit
three different approximate~linearized! Riemann solvers,
flux-split, Roe and Marquina, were used to integrate the r
tivistic hydrodynamic equations. We tested these meth
individually and compared the results against one anot
While we found all methods converging to second order
the discretization parameter, we also compared the abso
values of errors of the different methods.

Which method produced the smallest absolute error,
whether the spacetime or hydrodynamical evolution was
dominant source of error, depends on the initial data be
evolved. For the shocktube problem, only the hydrodyna
cal evolution was relevant since the evolution took place
a flat background metric. For an evolution along a coordin

FIG. 16. A plot of the evolution of the rest mass densityr,
scaled by the central rest mass densityrc along the diagonal as a
function of time. The initial data corresponds to the TOV config

ration from Sec. VI boosted in thex̂1 ŷ1 ẑ diagonal direction with
velocity v/c50.3. The star is evolved for 0.4 ms. The spatial re
lution corresponds to approximately 30 points across the star.
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axis, the Roe and Marquina methods were superior to
flux split method. For an evolution where the shockfront
along the diagonal, the flux split method was slightly mo
accurate than both the Roe and Marquina method. For
FRW evolutions, the spacetime evolution is the main sou
of error. The BM system tends to be more accurate than
ADM system. For the TOV tests, we find that the Roe a
Marquina methods are more accurate than the flux s
method, and the BM system is more accurate than the A
system. For the boosted TOV test, the Roe and Marqu
methods are again superior to flux split. We caution t
these statements could depend on the resolution used an
duration of evolution.

The hydrodynamic evolution is coupled to the spaceti
evolution in a manner which is second order accurate inboth
space and time. The coupled code was subjected to a s
of convergence tests, with different combinations of t
spacetime and hydrodynamics finite differencing schem
demonstrating the consistency of the discrete equations
the differential equations@73#. The extensive convergenc
tests performed are important not only for the validation
the code, but have also been important debugging tools
ing the code development process. We consider the tests
sented to be a minimal set that any 3D GR-Hydro co
should pass before actual applications. The test-beds tha
report on in this paper include: special relativistic sho
tubes, Friedmann-Robertson-Walker cosmology tests, ev
tion of equilibrium configurations of compact stars~solutions
to the Tolman-Oppenheimer-Volkoff equations!, and the
evolution of relativistically boosted TOV stars transversi
diagonally across the computational domain. The degre
complexity presented in these tests increases from pu
special relativistic flows in flat backgrounds to fully gener
relativistic flows in dynamical spacetimes. In particular, t
last test-bed~the boosted star! involvesall possible terms in
the coupled set of GR-Hydro evolution equations and w
carried out with a non-trivial lapse and shift vector.

We found a simple, yet effective treatment for handli
the surface region of a general relativistic self-gravitati
compact object. The key idea is to replace the energy eq
tion update by the condition of adiabatic flow in regions
low density. While the surface region is not changing t
overall dynamics of the star, numerical instabilities the
could halt the numerical evolution if uncontrolled. The cap
bility to handle the surface region in a stable fashion is i
portant for the application of the code to the study of neut
star astrophysics. We have demonstrated this capabilit
the equilibrium and boosted star test-beds. Refinement of

-

-

TABLE VIII. Computational grid parameters for boosted TOV tests.

No. of points Total
Resolution in each Dx ~km!

c
Dt

Dx
No. of time steps evolved time

coordinate direction (ms)

low 16 0.3545 0.125 2 0.296
medium 32 0.1772 0.125 4 0.296
high 64 0.0886 0.125 8 0.296
1-23
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FIG. 17. We demonstrate the convergence of the ADMLEAP_ROE evolution system for six different error functions. On the lef
we plot the difference between the analytic and computed rest mass density~normalized by the central rest mass densityrc) Dr/rc , the
Hamiltonian constraintH, and thex-momentum constraintMx. On the right panel, we plot the difference between the analytic and comp
specific energy density~normalized by the central specific energy density! De/ec , the difference between thexx component of the extrinsic
curvature and the analytic solutionDKxx , and the difference between thex component of the momentum and the analytic solutionDSx. In
each case, we multiply the high resolution result by sixteen and the medium resolution by four to show second order convergence.

are shown att50.296 ms which corresponds to eight iterations at the highest resolution. The graphs are taken along thex̂1 ŷ1 ẑ diagonal
axis @results on the coordinate axis (x, y,z) are similar#.
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treatment for long term stability is presently being inves
gated.

Additional code calibrations that are underway inclu
long-term stability analysis of single neutron stars, comp
sons of wave forms from perturbed neutron stars, and c
parisons with one-dimensional and axisymmetric~2D! inde-
pendent GR-Hydro codes that we~together with our
collaborators! constructed@74,39#. Those will be reported in
later papers in this series.

The formulation of the coupled set of equations and
numerical code reported in this paper were used for the c
struction of the milestone code ‘‘GR3D’’ for the NASA
Neutron Star Grand Challenge project~for a description of
the project, see http://wugrav.wustl.edu/Relativ/nsgc.htm!.
The goal of this project is to develop a code for gene
relativistic astrophysics, and in particular, one that is capa
of simulating the inspiral coalescence of a neutron star
nary system. The coalescences of neutron star binaries
expected to be important sources of gravitational waves
04401
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interferometric detectors. The strongest signal will com
from the highly dynamic ‘‘plunge’’ during the final phase o
the inspiral; a fully general relativistic code provides the on
way to calculate this portion of the wave form. A version
the code which passed the milestone requirement of
NASA Grand Challenge project, has recently been relea
to the community@75#. This code has been benchmarked
over 140 GFlop/sec on a 1024 node Cray T3E with a sca
efficiency of over 95%, showing the potential for large sca
3D simulations of realistic astrophysical systems. Further
velopment of our general relativistic code, and its applicat
to the specific study of the neutron star coalescence scen
will be described in later papers in this series.

To summarize, this paper presents the first~and neces-
sary! steps towards constructing an accurate and reliable
for the numerical study of astrophysical phenomena invo
ing matter at relativistic speeds and strong gravitatio
fields.
used
TABLE IX. This table summarizes the magnitudes of the errors for the different evolution systems
in the boosted NS test.

Abbreviation
maxSDr

rc
D

max~H! max(Mx)
maxSDe

ec
D

max(DKxx) max(DSx)

ADMLEAP_ROE 631025 531024 531025 231024 131025 631028

ADMLEAP_FLUX 131024 531024 531025 131023 131025 131027

ADMLEAP_MAR 631025 531024 531025 231024 131025 631028

ADMICN_ROE 631025 531024 531025 231024 131025 631028

ADMICN_FLUX 1 31024 531024 531025 131023 131025 131027

ADMICN_MAR 6 31025 531024 531025 231024 131025 631028
1-24
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Hughes, Jose´ Marı́a Ibáñez, Sai Iyer, Gerd Lanferman, Joa
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