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Holography based on noncommutative geometry and the AdSÕCFT correspondence
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Exponential regularization of orthogonal and anti–de Sitter~AdS! space is presented based on noncommu-
tative geometry. We show that an adequately adopted noncommutative deformation of geometry makes the
holography of higher dimensional quantum theory of gravity and lower dimensional theory possible. We
present detailed calculations for the counting of the observable degrees of freedom of a quantum system of
gravity in the bulk of noncommutative space SOq(3) and the classical limit of its boundary surfaceS2. Taking
the noncommutivity effect into account, we get the desired form of entropy for our world, which is consistent
with the physical phenomena associated with gravitational collapse. Conformally invariant symmetry is ob-
tained for the equivalent theory of the quantum gravity living on the classical limit of the boundary of the
noncommutative AdS space. This is the basis of the AdS/CFT correspondence in string theory.

PACS number~s!: 04.50.1h, 11.25.Hf
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I. INTRODUCTION

By making use of the idea that a quantum system of gr
ity may possess far less degrees of freedom than usu
expected for a (311)-dimensional field theory@1,2#, it was
suggested recently that there is an AdS conformal fi
theory~CFT! correspondence@3–5#: string theory~M theory!
on a background of the form AdSd3MD2d is dual to a con-
formal field theory living on the spacetime boundary. He
AdSd is the d-dimensional anti–de Sitter~AdS! space, and
MD2d is a compact space of dimensionD2d with D510
for string theory (D511 for M theory!. A thoroughly studied
example is the correspondence between the type-IIB st
theory on the background AdS53S5 and the four-
dimensionalN54 SU(N) super Yang-Mills theory@3#. Here
the correspondence goes as follows: for each fieldF i there is
a corresponding local operatorOi in the conformal field
theory and the precise relation between string theory in
bulk and field theory on the boundary is

Zeff~F i !5eiSeff(F i )5^Tei *BFbiO i
&, ~1!

whereSeff is the effective action in the bulk andFbi is the
field F i restricted to the boundary. In the large-N limit, the
string theory is weakly coupled and supergravity is a go
approximation to it. By using this correspondence we hav
precise recipe expressing correlation functions of theN54
super Yang-Mills theory in four dimensions in terms of t
effective action of tree approximation to supergravity in t
bulk.

At first sight, it seems very strange that quantum theo
in different spacetime dimensions could ever be equiva
in any sense. The key to understanding this equivalenc
the fact that the theory in a higher dimension is alway
quantum theory of gravity. For these theories ’t Hooft@1# has
introduced the concepts of holography based on the phen
enological study of the black hole theory. It is believed th
these concepts are generic properties of the quantum sy
of gravity @1,2#. The AdS/CFT correspondence is just
example of the realization of the holography on the quant
0556-2821/2000/61~4!/044009~10!/$15.00 61 0440
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theory of gravity. From the point of view of general relativ
ity, gravity is nothing but spacetime geometry. To check
Maldacena conjecture@3#, one has to start from the geome
ric description for the quantum theory of gravity. Becau
holography is a generic property of the quantum gravity,
principle, it should be deduced naturally from geomet
properties of spacetime. ’t Hooft showed that simple regu
ization of spacetime cannot give a correct account of obs
able degrees of freedom for quantum gravity. On the ot
hand, the understanding of physics at the Planck scale
indicates that the small scale structure of spacetime m
not be adequately described by classical continuum ge
etry. Thus, new geometry should be appeared in quan
gravity. It has for a long time been suspected that the n
commutative spacetime might be a realistic picture of h
spacetime behaves near the Planck scale@6,7#. Strong quan-
tum fluctuations of gravity may make points fuzzy~in
space!. The noncommutative geometry@8,9# is a promising
candidate for the quantum theory of gravity. We think th
the holography can be obtained explicitly from the nonco
mutative geometry picture of quantum gravity and show
AdS/CFT correspondence by demonstrating conformally
variant symmetry on the boundary surface of noncommu
tive AdS space.

In this paper, we present a kind of special regularizat
with exponentially increasing spacetime cutoff for both o
thogonal and AdS space based on noncommutative ge
etry. We argue that the same minimal cutoff for any geo
etry is the Planck scalel p . The most direct and obviou
physical cutoff is from the formation of microscopic blac
holes when enough energy are accumulated into a smal
gion @1#. We show that an adequately adopted noncommu
tive deformation of geometry makes the holography o
higher dimensional quantum system of gravity and low
dimensional theory possible. As an example, detailed ca
lations are carried out for the counting of observable degr
of freedom of quantum gravity in the bulk of noncommut
tive space SOq(3) and the classical limit of its boundar
surfaceS2. Results show that a very small~may be,10215)
displacement of the noncommutative deformation param
©2000 The American Physical Society09-1
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ZHE CHANG PHYSICAL REVIEW D 61 044009
from its classical value 1 reduces sharply the entropy of
quantum system of gravity. The desired entropy express
S54pM21C of the universe can be deduced natural
Conformally invariant symmetry is obtained for the equiv
lent theory of quantum gravity. This is the basis of the Ad
CFT correspondence in nonperturbative string theory and
theory.

This paper is organized as follows. In Sec. II, we discu
the noncommutative orthogonal space SOq(3). Thealgebra
formed by the coordinates and derivatives is decoupled
three independent subalgebras by the introduction of a
set of variables. Quantum coherent states are constructed
reference for investigating representations of the space
algebra. The structure of the Hilbert space shows clearly
the noncommutative spacetime is discretely latticed with
ponentially increasing space distances. The noncommuta
deformation parameter is determined by an algebraic eq
tion. The noncommutative space SOq(3) has the same en
tropy or observable degrees of freedom as the classicaS2

surface. Section III is devoted to the study of noncommu
tive AdS2n space. A conjugate operation is set up for t
noncommutative AdS space. This conjugation has an
duced counterpart for the set of decoupled coordinates
derivatives. The Hilbert space of the noncommutative Ad2n
space is also constructed based on quantum coherent s
The discrete lattice structure of the noncommutative Ad2n
with exponentially increasing space distances is obtain
Holography makes the quantum system of gravity on
noncommutative AdS2n space equivalent to the conformal
invariant quantum theory living on the classical limit of i
boundary surface. This is crucial for the AdS/CFT cor
spondence of string theory and M theory. By almost
same procedures, the properties of the noncommuta
AdS2n21 space are shown in Sec. IV. Some concluding
marks are given in Sec. V.

II. NONCOMMUTATIVE GEOMETRY
AND HOLOGRAPHY

We begin by discussing the quantum space SOq(3) with
coordinatesxi( i 52,0,1). The commutation relations@10#
among coordinatesxi are

x2x05qx0x2, x0x15qx1x0,

x1x22x2x15~q1/22q21/2!x0x0. ~2!

The algebra formed by derivatives is of the form

]2]05q21]0]2 , ]0]15q21]1]0 ,

]2]12]1]25~q1/22q21/2!]0]0 . ~3!

The action of the derivatives on the coordinates is stand
@11# and is given as follows:

]2x2511q2x2]21lqx0]01l~q21!x1]1 , ~4!

]2x05qx0]22q1/2lx1]0 , ]2x15x1]2 ,
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]0x25qx2]02q1/2lx0]1 ,

]0x0511qx0]01qlx1]1 , ]0x15qx1]0 ,

]1x25x2]1 , ]1x05qx0]1 , ]1x1511q2x1]1 .

It is convenient to introduce two dilatation operators@11#

m1511qlx1]1 ,

L511ql (
j 50,6

xj] j1q3l2S q21/2x2x11
q

11q
x0x0D

3S q21/2]1]21
q

11q
]0]0D . ~5!

These dilatation operators obey the following relations:

m1x15q2x1m1 , m1]15q22]1m1 ,

Lxk5q2xkL, L]k5q22]kL, for k50,6. ~6!

The real form SOq(3,R) @denoted as SOq(3) whenever no
confusion arises# of the noncommutative space SOq(3) is
obtained by a consistent conjugation:

x̄i5Cji x
j ,

]̄ i52q22Ci j L
21S q21/2@]1]2 ,xj #1

q

11q
@]0]0 ,xj # D ,

~7!

where the metricCi j is of the form

C5S q21/2

1

q1/2
D .

We remark that throughout this paper we limit our analy
to the case of realq.

By making use of the dilatation operatorsm1 andL, we
introduce a new set of coordinates and derivatives

X 25L21/2m1
21/2Fx21q3/2lS q21/2x2x11

q

11q
x0x0D ]1G ,

D25q21L21/2m1
21/2F]21q3/2l

3S q21/2]1]21
q

11q
]0]0D x1G ,

X 05m1
21/2x0, D05m1

21/2]0 ,

X 15x1, D15]1 . ~8!

In terms of these new variables, the commutation relati
among coordinates and derivatives of the noncommuta
space SOq(3) are changed to
9-2
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D2X 22X 2D25m2
21, m2X 25q2X 2m2 ,

m2D25q22D2m2 , m2
21[11~q2221!X 2D2 ,

D0X 02X 0D05m0
1/2, m0X 05q2X 0m0 ,

m0D05q22D0m0 , m0
1/2[11~q21!X 0D0 ,

D1X 12X 1D15m1 , m1X 15q2X 1m1 ,

m1D15q22D1m1 , m1
1/2511~q221!X 1D1 ,

@X i ,X j #50, @Di ,Dj #50, @Di ,Xj #50,

@m i ,X j #50, @m i ,Dj #50, for iÞ j . ~9!

In terms of the independent operatorsX j and Dj the non-
commutative surfaceSq

2 is of the form

q21

11q
X 0X 01q21/2L1/2m1

21/2X 1X 25R2. ~10!

In the limit q→1, Sq
2 reduces to the familiarS2 surface with

radiusR.
The conjugate operation onX j andDj is induced by the

operation onxj and] j @Eq. ~7!#,

X̄25F x̄21q3/2l]̄1S q21/2x̄1x̄21
q

11q
x̄0x̄0D G

3m̄1
21/2L̄21/2,

D̄25q21F ]̄21q3/2l x̄1S q21/2]̄2]̄12
q

11q
]̄0]̄0D G

3m̄1
21/2L̄21/2,

X̄05 x̄0m̄1
21/2, D̄05 ]̄0m̄1

21/2,

X̄15 x̄1, D̄15 ]̄1 . ~11!

Thus, we conclude that the quantum Heisenberg-Weyl a
bra corresponding to the noncommutative space SOq(3) can
be decoupled into three independent subalgebras. One
then investigate properties of the noncommutative space
constructing Hilbert spaces of the three quantum suba
bras.

For the quantum algebraA2

D2X 22X 2D25m2
21, m2X 25q2X 2m2 ,

m2D25q22D2m2 , m2
21[11~q2221!X 2D2 , ~12!

we construct a quantum coherent stateuz&2 as follows:
04400
e-
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uz&25expq2S 2
1

2
uq22zu D (

m50

`
~2q22z!m

@m#q2!
~D2!mu0&2 ,

~13!

where we have used the notation ofq exponential:

expq~x![ (
n50

`
xn

@n#q!
,

@n#q! 5@n#q@n21#q•••@1#q , @n#q5
qn21

q21
.

The reference stateu0&2 is chosen such thatX 2u0&250.
As in the classical case, the coordinateX 2 is diagonal in

the quantum coherent state basis

X 2uz&25zuz&2 . ~14!

The value ofz may be interpreted as position of an indispe
sive wave pocket@12#. Here we should notice thatz can be of
any complex number because we are working on a gen
quantum orthogonal space. The complex values of the qu
tum coherent state parameter is also consistent with the
jugate operation on the noncommutative space.

Denoting the quantum coherent state as

u0,z&2[uz&2 ,

we can construct a representation for the quantum alge
A2 based on the quantum coherent state as the followin

X 2un,z&25q2nzun,z&2 ,

D2un,z&252q2122nl21z21un11,z&2 ,

m2un,z&25un21,z&2 . ~15!

From the Hilbert space representation of the quantum a
bra A2 , the coordinates of the noncommutative orthogo
space is discretely latticed with exponentially increas
space distances. In fact, this is in agreement with the disc
difference representation of quantum derivatives:

Df ~X!5
f ~q2X!2 f ~X!

~q221!X .

Similarly, we can also construct the reference statesu0,z&0
and u0,z&1 as

u0,z&05expq21S 2
1

2
uqzu D (

m50

`
~2qz!m

@m#q21!
~D0!mu0&0 ,

X 0u0&050,

u0,z&15expq22S 2
1

2
uq2zu D (

m50

`
~2q2z!m

@m#q22!
~D1!mu0&1 ,

X 1u0&150. ~16!

By using these states the corresponding representation
the quantum algebrasA0
9-3
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ZHE CHANG PHYSICAL REVIEW D 61 044009
D0X 02X 0D05m0
1/2, m0X 05q2X 0m0 ,

m0D05q22D0m0 , m0
1/2[11~q21!X 0D0 , ~17!

andA1

D1X 12X 1D15m1 , m1X 15q2X 1m1 ,

m1D15q22D1m1 , m1[11~q221!X 1D1 , ~18!

are given as follows:

X 0un,z&05qnzun,z&0 ,

D0un,z&05
q12n

q21
z21un21,z&0 ,

m0un,z&05un21,z&0 , ~19!

for the algebraA0, and

X 1un,z&15q2nzun,z&1 ,

D1un,z&15q122nl21z21un21,z&1 ,

m1un,z&15un21,z&1 , ~20!

for the algebraA1 . It has been strongly argued@1# that the
most direct and obvious physical cutoff of spacetime is fr
the formation of microscopic black holes, as soon as
much energy would be accumulated into too small a reg
Thus, from a physical point of view, the black holes shou
provide a natural cutoff all by themselves. The cutoff d
tance scale is the Planck scale. Because of this origin
spacetime cutoff, for any geometry we are working on, th
should be a universal minimal cutoffl p . For the classical
geometry, the spacetime regularization is equal distance
ticed and there is one degree of freedom per Planck a
However, from the above discussion of noncommutative
ometry, the spacetime is discretely latticed with expon
tially increasing space distances. Thus, much less infor
tion can be stored in the noncommutative geometry. In f
this may be the origin of the holography for the quantu
system of gravity.

If the assumed minimal cutoff for the noncommutati
space SOq(3) with radiusR is the Planck scalel p , it is not
difficult to count the degrees of freedomNbulk ,

Nbulk'(
i 51

N
~q2i l p!2

~q2i l p2q2(i 21)l p!2
, q2N5R,

5

q4lnS R

l p
D

2~q221!2ln q
. ~21!

By taking the deformation parameter of the noncommuta
spaceq to be determined by the following algebraic equ
tion:
04400
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n.
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q24~q221!2ln q5

lnS R

l p
D

8pS R

l p
D 2 , ~22!

we can check thatNbulk is equal to the degrees of freedom o
the classical limit of its boundary surface with radiusR,
Nboundary,

Nboundary5
4pR2

l p
2

. ~23!

Then one can write down the entropy of our world at t
Planck scale as

S54pM21C, ~24!

whereM is the mass of the world~black hole! in natural units
andC is a constant entropy which is not determined. This
exactly what was called the holography or dimension red
tion in the quantum theory of gravity by ’t Hooft. At the
Planck scale, our world is not 311 dimensional. Rather, the
observable degrees of freedom can best be described
they were Boolean variables defined on a two-dimensio
lattice, evolving with time. It is now clear that the exa
meaning of the holography can be interpreted as follows:
quantum theory of gravity in higher dimensional noncomm
tative space is equivalent to the theory living on the class
limit of spacetime boundary. This gives a reasonable pict
for the ’t Hooft’s holography.

III. NONCOMMUTATIVE AdS 2n SPACE
AND EXPONENTIAL REGULARIZATION

The noncommutative AdS2n space is defined as th
2n-dimensional noncommutative real hyperboloid embedd
in a (2n11)-dimensional space with coordinatesxi ( i
52n,2n11, . . . ,21,0,1, . . . ,n),

1

11q2n21
Ci j x

ixj52
1

a2
,

x̄i5Cji M jkxk, ~25!

where r2 i5 i 2 1
2 , r050, r i52 i 1 1

2 , and the metricCi j
5q2r id i ,2 j and
9-4
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It is easy to check that, in the limitq→1, the noncommuta-
tive AdS2n space reduces to the familiar AdS2n space

habx
axb52

1

a2

in R2n11 with Cartesian coordinatesxa. Here

is the flat spacetime metric.
For the noncommutative AdS2n space, the commutatio

relations ~in components! among coordinates are given a
follows:

xixj5qxjxi for i , j and iÞ2 j ,

xix2 i5x2 ixi1lqi 23/2Li 21

5q22x2 ixi1lqi 23/2Li for i .0, ~26!

where we have used the notation for intermediate length

Li5 (
k51

i

qrkx2kxk1
q

11q
x0x0.

By making use of the intermediate Laplacians

D i5 (
k51

i

qrk]k]2k1
q

11q
]0]0 ,

the algebra satisfied by the derivatives can be written c
pactly as

] i] j5q21] j] i for i , j and iÞ2 j , ~27!
04400
-

]2 i] i5] i]2 i1lqi 23/2D i 21

5q22] i]2 i1lqi 23/2D i for i .0.

The commutation relations among the coordinates and
rivatives are as follows:

]2 ix
i5xi]2 i for iÞ0,

] ix
j5qxj] i for j .2 i , and j Þ i ,

] ix
j5qxj] i2qlq2r j 2rkx2 i]2 j

for j ,2 i , and iÞ j ,

] j x
j511q2xj] j1ql(

k. j
xk]k2q122r jlx2 j]2 j

for j ,0,

]0x0511qx0]01ql(
k.0

xk]k ,

] j x
j511q2xj] j1ql(

k. j
xk]k for j .0. ~28!

As in our previous discussions, we introduce the dilatat
operatorLm (0,m<n) as follows:

Lm511qlEm1q2m11l2LmDm , Em5 (
j 52m

m

xj] j .

These dilatation operators satisfy

Lmxk5q2xkLm , Lm]k5q22]kLm for uku<m.
~29!

The noncommutative AdS2n space is also accompanied wi
the conjugation@13#

x̄i5Cji M jkxk,

]̄ i52q22Ln
21Ci j M jk@Dn ,xk#. ~30!

For k.0, using the notations

y2k5x2k1qk11/2lLk]1k ,

d2k5]2k1qk11/2lDkx
1k,

we can construct the following set of independent bases@11#
on the noncommutative AdS2n space:

X n5xn, ~31!

Dn5]n ,

X 1 j5mn
21/2mn21

21/2
•••m j 11

21/2x1 j for n. j >0,

D1 j5mn
21/2mn21

21/2
•••m j 11

21/2]1 j ,
9-5
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X 2 j5mn
21/2mn21

21/2
•••m j 11

21/2L1 j
21/2m1 j

21/2y2 j ,

D2 j5q21mn
21/2mn21

21/2
•••m j 11

21/2L1 j
21/2m1 j

21/2d2 j ,

X 2n5L1n
21/2m1n

21/2y2n,

D2 j5q21L1n
21/2m1n

21/2d2n ,

where (m6 i)
615D6 iX 6 i2X 6 iD6 i and m0

1/25D0X 0

2X 0D0.
We note that them i ’s satisfy simple commutation rela

tions with the new variablesX j andDj ,

@m i ,m j #50,

m iX j5X jm i H q2 for i 5 j ,

1 for iÞ j ,

m iD j5D jm i H q22 for i 5 j ,

1 for iÞ j .

With the new basis of coordinates and derivatives on
noncommutative AdS2n space, it is not difficult to show tha

D2kX 2k511q22X 2kD2k for k.0,

D0X 0511qX 0D0 ,

D1kX 1k511q2X 1kD1k ,

@Di ,Dj #50, @X i ,X j #50,

DiX j5X jDi for iÞ j . ~32!

And the noncommutative AdS2n space in terms of theX i and
Di is of the form

(
j 51

n

qr j 22(n2 j )L j
1/2m j

21/2X jX 2 j1
q22n11

11q
X 0X 052

1

a2
.

~33!

The conjugate operation on the independent set of opera
X j andDj is deduced from the conjugate operation onxi and
] i @Eq. ~30!#, and we have the following explicit results:

X̄n5 x̄n, ~34!

D̄n5 ]̄n ,

X̄1 j5 x̄1 j m̄ j 11
21/2m̄ j 12

21/2
•••m̄n

21/2 for n. j >0,

D̄1 j5 ]̄1 j m̄ j 11
21/2m̄ j 12

21/2
•••m̄n

21/2,

X̄2 j5 ȳ2 j m̄1 j
21/2L̄1 j

21/2m̄ j 11
21/2m̄ j 12

21/2
•••m̄n

21/2,

D̄2 j5q21d̄2 j m̄1 j
21/2L̄1 j

21/2m̄ j 11
21/2

3m̄ j 12
21/2

•••m̄n
21/2,
04400
e

rs

X̄2n5 ȳ2nm̄1n
21/2L̄1n

21/2,

D̄2 j5q21d̄2nm̄1n
21/2L̄1n

21/2.

Thus, the quantum Heisenberg-Weyl algebra correspond
to the noncommutative AdS2n space can be decoupled in
(2n11)-independent subalgebras.

For the quantum algebraA2k (0,k<n)

D2kX 2k2X 2kD2k5m2k
21 , m2kX 2k5q2X 2km2k ,

m2D2k5q22D2km2k ,

m2
21[11~q2221!X 2kD2k , ~35!

we can construct the quantum coherent stateu0,z&2k as

u0,z&2k5expq2S 2
1

2
uq22zu D

3 (
m50

`
~2q22z!m

@m#q2!
~D2k!

mu0&2k ,

X 2ku0,z&2k5zu0,z&2k , ~36!

where the reference stateu0&2k was chosen such tha
X 2ku0&2k50.

From the coherent stateu0,z&2k , we can construct a rep
resentation for the quantum algebraA2k as follows:

X 2kun,z&25q2nzun,z&2k ,

D2kun,z&252q2122nl21z21un11,z&2k ,

m2kun,z&25un21,z&2k . ~37!

The quantum coherent state which corresponds to the q
tum algebrasA0,

D0X 02X 0D05m0
1/2, m0X 05q2X 0m0 ,

m0D05q22D0m0 , m0
1/2[11~q21!X 0D0 , ~38!

is

u0,z&05expq21S 2
1

2
uqzu D (

m50

`
~2qz!m

@m#q21!
~D0!mu0&0 ,

X 0u0&050,

X 0u0,z&05zu0,z&0 . ~39!

By using this state we can construct the representation of
quantum algebraA0 and the result is

X 0un,z&05qnzun,z&0 , ~40!

D0un,z&05
q12n

q21
z21un21,z&0 ,
9-6
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m0un,z&05un21,z&0 .

Quite similarly, we can also construct the quantum alge
A1k in terms of a reference state. The quantum algebraA1k
is

D1kX 1k2X 1kD1k5m1k , m1kX 1k5q2X 1km1k ,

m1kD1k5q22D1km1k , m1k[11~q221!X 1kD1k ,

~41!

and the quantum coherent stateu0,z&1k is given by

u0,z&1k5expq22S 2
1

2
uq2zu D (

m50

`
~2q2z!m

@m#q22!
~D1k!

mu0&1k ,

X 1ku0&1k50,

X 1ku0,z&1k5zu0,z&1k . ~42!

The representation of the quantum algebraA1k is given as
follows:

X 1kun,z&1k5q2nzun,z&1k ,

D1kun,z&1k5q122nl21z21un21,z&1k ,

L1kun,z&1k5un21,z&1k . ~43!

All these, Eqs.~37!, ~40!, and ~43!, give a complete repre
sentation for the Hilbert space of the noncommutative Ad2n
space. The above results show that the noncommuta
AdS2n space is discretely latticed with exponentially increa
ing space distances. The minimal cutoff induced by
quantum gravity itself is the Planck scalel p . As in the case
of noncommutative orthogonal space, the exponential re
larization may effectively reduce the amount of observa
degrees of freedom of the noncommutative AdS2n space;
even one cannot enumerate it exactly because it is infi
@14#. An adequately adopted noncommutative deformat
parameterq ~it may be even closer to 1 than the case
limited geometry! can give the equal of the entropy of th
quantum system of gravity in the bulk of noncommutati
AdS2n space and that on the classical limit of its bounda
The commutative boundary is equal distance lattice regu
ized and possesses conformally invariant symmetry. Thi
crucial for the AdS/CFT correspondence.

IV. NONCOMMUTATIVE AdS 2nÀ1 SPACE WITH
EXPONENTIAL REGULARIZATION

Now we extend our discussion to the noncommutat
AdS2n21 space. For this space, commutation relations am
coordinatesxi ( i 52n,2n11, . . . ,22,21,11,12, . . . ,n)
are given as follows:

xixj5qxjxi for i , j and iÞ2 j ,

xix2 i5x2 ixi1lqi 22Li 21

5q22x2 ixi1lqi 22Li for i .0, ~44!
04400
a

ve
-
e
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te
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where we have used the notation for intermediate length

Li5 (
k51

i

qrkx2kxk, r2k5k21, rk52k11.

By making use of the intermediate Laplacians

D i5 (
k51

i

qrk]k]2k ,

the algebra satisfied by the derivatives can be written co
pactly as

] i] j5q21] j] i for i , j and iÞ2 j ,

]2 i] i5] i]2 i1lqi 22D i 21

5q22] i]2 i1lqi 22D i for i .0. ~45!

The commutation relations among the coordinates and
rivatives can also be derived and are given as follows:

]2 ix
i5xi]2 i for iÞ0,

] ix
j5qxj] i for j .2 i , and j Þ i ,

] ix
j5qxj] i2qlq2r j 2rkx2 i]2 j for j ,2 i , and iÞ j ,

] j x
j511q2xj] j1ql(

k. j
xk]k2q122r jlx2 j]2 j

for j ,0,

] j x
j511q2xj] j1ql(

k. j
xk]k for j .0. ~46!

As in Sec. III, we introduce the following dilatation opera
tors Lm (0,m<n):

Lm511qlEm1q2ml2~11q2n22!LmDm ,

Em5 (
j 52m

m

xj] j .

They satisfy the following relations:

Lmxk5q2xkLm , Lm]k5q22]kLm for 0,uku<m.
~47!

The noncommutative AdS2n21 space is accompanied wit
the conjugation

x̄i5Cji Njkxk,

]̄ i52q22Ln
21Ci j Njk@Dn ,xk#, ~48!

where
9-7
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For k.0, introducing the notations

y2k5x2k1qk11/2l~11q2n22!Lk]1k ,

d2k5]2k1qk11/2lDkx
1k,

we can construct the following new set of variables for t
coordinates and derivatives:

X n5xn,

Dn5]n ,

X 1 j5mn
21/2mn21

21/2
•••m j 11

21/2x1 j for n. j .0,

D1 j5mn
21/2mn21

21/2
•••m j 11

21/2]1 j ,

X 2 j5mn
21/2mn21

21/2
•••m j 11

21/2L1 j
21/2m1 j

21/2y2 j ,

D2 j5q21mn
21/2mn21

21/2
•••m j 11

21/2L1 j
21/2m1 j

21/2d2 j ,

X 2n5L1n
21/2m1n

21/2y2n,

D2 j5q21L1n
21/2m1n

21/2d2n , ~49!

where (m6 i)
615D6 iX 6 i2X 6 iD6 i .

Commutation relations among these new coordinates
derivatives on the noncommutative AdS2n21 space are as
follows:

D2kX 2k511q22X 2kD2k for k.0,

D1kX 1k511q2X 1kD1k ,

@Di ,Dj #50, @X i ,X j #50,

DiX j5X jDi for iÞ j . ~50!

The noncommutative AdS2n21 space in terms of theX i and
Di is of the form
04400
nd

(
j 51

n

qr j 22(n2 j )L j
1/2m j

21/2X jX 2 j52
1

a2
. ~51!

The conjugate operation on the operatorsX j and Dj is in-
duced by the conjugation onxi and] i and the explicit results
are calculated to be

X̄n5 x̄n,

D̄n5 ]̄n ,

X̄1 j5 x̄1 j m̄ j 11
21/2m̄ j 12

21/2
•••m̄n

21/2 for n. j .0,

D̄1 j5 ]̄1 j m̄ j 11
21/2m̄ j 12

21/2
•••m̄n

21/2,

X̄2 j5 ȳ2 j m̄1 j
21/2L̄1 j

21/2m̄ j 11
21/2m̄ j 12

21/2
•••m̄n

21/2,

D̄2 j5q21d̄2 j m̄1 j
21/2L̄1 j

21/2m̄ j 11
21/2m̄ j 12

21/2
•••m̄n

21/2,

X̄2n5 ȳ2nm̄1n
21/2L̄1n

21/2,

D̄2 j5q21d̄2nm̄1n
21/2L̄1n

21/2. ~52!

Then, the quantum Heisenberg-Weyl algebra correspond
the noncommutative AdS2n21 space is decoupled into 2n
independent subalgebras. In the following we will give th
representations in terms of quantum coherent states.

The quantum algebraA2k (n>k.0) is

D2kX 2k2X 2kD2k5m2k
21 , m2kX 2k5q2X 2km2k ,

m2D2k5q22D2km2k , m2
21[11~q2221!X 2kD2k .

~53!

For these algebras, we choose the quantum coherent
u0,z&2k as follows:

u0,z&2k5expq2S 2
1

2
uq22zu D (

m50

`
~2q22z!m

@m#q2!
~D2k!

mu0&2k ,

X 2ku0&2k50,

X 2ku0,z&2k5zu0,z&2k . ~54!

From the coherent stateu0,z&2k , we can construct a repre
sentation for the quantum algebraA2k as

X 2kun,z&25q2nzun,z&2k ,

D2kun,z&252q2122nl21z21un11,z&2k ,

m2kun,z&25un21,z&2k . ~55!

Quite similarly, we can construct the reference st
u0,z&1k (n>k.0) as

u0,z&1k5expq22S 2
1

2 Uq2zU D (
m50

`
~2q2z!m

@m#q22!
~D1k!

mu0&1k ,

~56!
9-8
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X 1ku0&1k50,

X 1ku0,z&1k5zu0,z&1k .

The corresponding representation of the quantum alge
A1k

D1kX 1k2X 1kD1k5m1k , m1kX 1k5q2X 1km1k ,

m1kD1k5q22D1km1k , m1k[11~q221!X 1kD1k ,

~57!

is given as follows:

X 1kun,z&1k5q2nzun,z&1k ,

D1kun,z&1k5q122nl21z21un21,z&1k ,

L1kun,z&1k5un21,z&1k . ~58!

As in the noncommutative AdS2n space, the noncommutativ
AdS2n21 space is also discretely latticed with exponentia
increasing space distances. The minimal cutoff induced
the quantum gravity itself is the Planck scalel p . The expo-
nential regularization effectively reduces degrees of freed
in the noncommutative AdS2n21 space. A very small amoun
of displacement of the noncommutative deformation para
eterq from unity gives rise to the equal of the entropy of t
quantum theory of gravity in the bulk of noncumulativ
AdS2n21 space and that on the commutative limit of
boundary surface. The commutative boundary is regulari
by an equal distance lattice and possesses a conformall
variant symmetry. Thus, the equivalent theory living on t
spacetime boundary of the quantum system of gravity on
background of noncommutative AdS space is a confor
field theory. As we said in the last section, this is the ba
for the AdS/CFT correspondence.

V. CONCLUDING REMARKS

In this paper, by constructing Hilbert space with quantu
coherent states as reference ones, we presented a kin
special regularization with exponentially increasing spa
time cutoff for both orthogonal and AdS space based
noncommutative geometry. We argued that there must b
universal minimal cutoff for any geometry which is given b
the Planck scalel p . The most direct and obvious physic
cutoff is from the formation of microscopic black holes
soon as enough energy are accumulated into a small reg
We have obtained results which show a very sm
(,10215) displacement of the noncommutative deformati
parameter from its classical value (q51) reduces sharply the
entropy of quantum system of gravity. The noncommutat
deformation parameterq was determined by a well-define
04400
as

y

m

-

d
in-

e
al
is

of
-
n
a

n.
ll

e

algebraic equation. The noncommutative space SOq(3) with
such a deformation parameter have the same entropy o
grees of freedom as the classicalS2 surface. This is the so
called holography for quantum theory of gravity. The holo
raphy makes the quantum theory of gravity on t
noncommutative AdSd space equivalent to the conformal
invariant quantum field theory living on the classical limit
its boundary. This is the basis of the AdS/CFT correspo
dence of string theory and M theory. Here we should str
that the proper geometry for quantum gravity may be n
commutative. Classical continuum geometry is not suita
for quantum gravity. This is in agreement with the long-tim
speculation that the small scale structure of spacetime
not be adequately described by classical continuum geom
and the noncommutative spacetime might be a realistic
ture of how spacetime behaves near the Planck scale. St
quantum fluctuations of gravity at this spacetime scale m
make points fuzzy~in space!. All of the strangeness abou
the quantum theories in different spacetime dimensi
could ever be equivalent are coming from the noncommu
tive geometry description of the quantum gravity. The ex
form of the AdS/CFT correspondence is concerned w
noncommutative AdS space and the classical limit of
boundary surface~on which the conformal field theory lives!.
This suggests that the gravity-gauge theory connec
should be of the following form: string theory or M theor
on the noncommutative background of the form Add

q

3MD2d
q is dual to a conformal field theory living on th

classical limit of spacetime boundary. For the type-IIB stri
theory on the noncommutative background AdS5

q3Sq
5 , the

spectra can be compared with low-order correlation fu
tions of the 311-dimensionalN54 SU(N) super Yang-
Mills theory. Only both in the large-N limit and the commu-
tative limit, is string theory weakly coupled and supergrav
a good approximation. Therefore, in fact as ’t Hooft su
pected@1#, nature is much more crazy at the Planck sc
than even string theorists could have imagined. Formalis
of string theory~gravity! on noncommutative geometry hav
to be constructed to gain insight into the unification of gra
ity and quantum mechanics.
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