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Exponential regularization of orthogonal and anti—de SitfalS) space is presented based on noncommu-
tative geometry. We show that an adequately adopted noncommutative deformation of geometry makes the
holography of higher dimensional quantum theory of gravity and lower dimensional theory possible. We
present detailed calculations for the counting of the observable degrees of freedom of a quantum system of
gravity in the bulk of noncommutative space %) and the classical limit of its boundary surfe®e Taking
the noncommutivity effect into account, we get the desired form of entropy for our world, which is consistent
with the physical phenomena associated with gravitational collapse. Conformally invariant symmetry is ob-
tained for the equivalent theory of the quantum gravity living on the classical limit of the boundary of the
noncommutative AdS space. This is the basis of the AAS/CFT correspondence in string theory.

PACS numbe): 04.50+h, 11.25.Hf

[. INTRODUCTION theory of gravity. From the point of view of general relativ-
ity, gravity is nothing but spacetime geometry. To check the
By making use of the idea that a quantum system of gravMaldacena conjecturg8], one has to start from the geomet-
ity may possess far less degrees of freedom than usualljc description for the quantum theory of gravity. Because
expected for a (3-1)-dimensional field theorf1,2], it was  holography is a generic property of the quantum gravity, in
suggested recently that there is an AdS conformal fielgrinciple, it should be deduced naturally from geometric
theory(CFT) correspondend8-5]: string theory(M theory)  properties of spacetime. 't Hooft showed that simple regular-
on a background of the form A¢8Mp_4 is dual to a con-  jzation of spacetime cannot give a correct account of observ-
formal field theory living on the spacetime boundary. Hereable degrees of freedom for quantum gravity. On the other
AdS; is the d-dimensional anti—de SittgfAdS) space, and hand, the understanding of physics at the Planck scale also
Mp_q is a compact space of dimensi@n—d with D=10 indicates that the small scale structure of spacetime might
for string theory D=11 for M theory. A thoroughly studied not be adequately described by classical continuum geom-
example is the correspondence between the type-1IB stringtry. Thus, new geometry should be appeared in quantum
theory on the background Ad8S® and the four- gravity. It has for a long time been suspected that the non-
dimensional\V=4 SU(N) super Yang-Mills theory3]. Here  commutative spacetime might be a realistic picture of how
the correspondence goes as follows: for each flglthere is  spacetime behaves near the Planck sf&lg. Strong quan-
a corresponding local operat@®; in the conformal field tum fluctuations of gravity may make points fuzZyn
theory and the precise relation between string theory in thepace. The noncommutative geometf§,9] is a promising

bulk and field theory on the boundary is candidate for the quantum theory of gravity. We think that
_ the holography can be obtained explicitly from the noncom-
Zeﬁ(q)i):eiseﬁ(‘bi):<TeifB¢’biO|>, (1) mutative geometry picture of quantum gravity and show the

AdS/CFT correspondence by demonstrating conformally in-
where Sy is the effective action in the bulk ardi,; is the  variant symmetry on the boundary surface of noncommuta-
field ®; restricted to the boundary. In the lardelimit, the  tive AdS space.
string theory is weakly coupled and supergravity is a good In this paper, we present a kind of special regularization
approximation to it. By using this correspondence we have avith exponentially increasing spacetime cutoff for both or-
precise recipe expressing correlation functions of Ahe4 thogonal and AdS space based on noncommutative geom-
super Yang-Mills theory in four dimensions in terms of the etry. We argue that the same minimal cutoff for any geom-
effective action of tree approximation to supergravity in theetry is the Planck scalg,. The most direct and obvious
bulk. physical cutoff is from the formation of microscopic black

At first sight, it seems very strange that quantum theoriefioles when enough energy are accumulated into a small re-
in different spacetime dimensions could ever be equivalengion[1]. We show that an adequately adopted noncommuta-
in any sense. The key to understanding this equivalence isve deformation of geometry makes the holography of a
the fact that the theory in a higher dimension is always &higher dimensional quantum system of gravity and lower
guantum theory of gravity. For these theories 't Hddfthas  dimensional theory possible. As an example, detailed calcu-
introduced the concepts of holography based on the phenontations are carried out for the counting of observable degrees
enological study of the black hole theory. It is believed thatof freedom of quantum gravity in the bulk of noncommuta-
these concepts are generic properties of the quantum systeivie space SQ{3) and the classical limit of its boundary
of gravity [1,2]. The AdS/CFT correspondence is just ansurfaceS?. Results show that a very sméthay be< 10 15
example of the realization of the holography on the quantundisplacement of the noncommutative deformation parameter
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from its classical value 1 reduces sharply the entropy of the gox ™ =qx~ ao—q1/2)\x0a+ ,

guantum system of gravity. The desired entropy expression

S=4wM2+C of the universe can be deduced naturally.  9px°=1+qxdp+qA\X" 0., doX =X dp,

Conformally invariant symmetry is obtained for the equiva-

lent theory of quantum gravity. This is the basis of the AdS/ 9, x =x"4d,, d.,x°=qx%,, d.x"=1+g>x" 4, .

CFT correspondence in nonperturbative string theory and M

theory. It is convenient to introduce two dilatation operatpt4]
This paper is organized as follows. In Sec. Il, we discuss

the noncommutative orthogonal space,§%). Thealgebra

formed by the coordinates and derivatives is decoupled into

three ind_ependent subalgebras by the introduction of a new , — 1+qgA X 9 +q3)\2( q Y% x*+ onxo

set of variables. Quantum coherent states are constructed as a j=0,+

Iu’+=1+q)\x+a+ ’

1+q

reference for investigating representations of the spacetime

algebra. The structure of the Hilbert space shows clearly that x| q Y29, 9.+ ia 9 ) (5)
. . . . . . +0_— 000 -

the noncommutative spacetime is discretely latticed with ex- 1+

ponentially increasing space distances. The noncommutative , ) . )

deformation parameter is determined by an algebraic equé[hese dilatation operators obey the following relations:

tion. The noncommutative space §3) has the same en- L ooy o

tropy or observable degrees of freedom as the classkal PaXT =Xy me =00

surface. Section Il is devoted to the study of nhoncommuta- _ o _

tive AdS,, space. A conjugate operation is set up for the AX =0, Ad=a7?aA,  for k=0 (6)

noncommutative AdS space. This conjugation has an inThe real form SQ(3,R) [denoted as S@3) whenever no

duced counterpart for the set of decoupled coordinates anc‘,jonfusion ariselsof the noncommutative space §@) is
derivatives. The Hilbert space of the noncommutative AdS obtained by a consistent conjugation:

space is also constructed based on quantum coherent states.
The discrete lattice structure of the noncommutative AdS
with exponentially increasing space distances is obtained.
Holography makes the quantum system of gravity on the
noncommutative Adsg, space equivalent to the conformally Ei: —q‘ZCijA‘l q Y9, X+ L[ﬂoﬂo,xj] ,
invariant quantum theory living on the classical limit of its 1+q

boundary surface. This is crucial for the AdS/CFT corre- @)
spondence of string theory and M theory. By almost theW
same procedures, the properties of the noncommutative
AdS,,,_; space are shown in Sec. IV. Some concluding re- q 2
marks are given in Sec. V.

Xi Cjin,

here the metricC;; is of the form

1/2
. NONCOMMUTATIVE GEOMETRY q

AND HOLOGRAPHY . L .
We remark that throughout this paper we limit our analysis

We begin by discussing the quantum spacg,(S8Pwith  to the case of rea.

coordinatesx'(i = — ,0,+). The commutation relationgl0] By making use of the dilatation operatqes. and A, we
among coordinateg' are introduce a new set of coordinates and derivatives
—y0_— Oy, — Oy + — +40
X“X°=qX° X, XxX'x"=gx"x", _ 1 - _ 1
q q Y =A 1/2M+1/Z[X +q3’2>\(q 112y x++1+qx°x°>ﬁ+ ,
x+x_—x_x+=(q1/2—q_1/2)xoxo. 2)
. . . R - —1/2]
The algebra formed by derivatives is of the form D_=q A"V 0 +g¥
d_do=q Ydpd_, dods=0q 1d,dy,
0 q 0 oY+ q +00 % q_1/2(9+(97+ q (90(90)X+ '
1+q
J_d,—d.+0_=(q"*~q ) dnd,. 3
. o _ _ XO0=p %0, Do=pi M,
The action of the derivatives on the coordinates is standard
[11] and is given as follows: Xt=x*, D,=d,. (8)
9-X"=1+g* " -+ A%+ N(q—1)x" a, (4)  In terms of these new variables, the commutation relations
among coordinates and derivatives of the noncommutative

a_x0=qx0i_—q¥AxT 9y, d_xT=xTa_, space SQ(3) are changed to
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DX —XD_=u_t, u X =0’X u_,

p-D_=q *D_pu_, wp '=1+(q 2-1)Xx D_,

DoX %= X°Do=ug?,  poX°=q?A u,,

poDo=0 2Dopg,  wy’=1+(q—1)X°Dy,

DX T-X"D, peX =02 Xy,

=My
piD=q"?Dyu,, p=1+(*~1)X"D,,
[A,A1]=0, [D,Dj]=0, [D;,X]=0,
[, X11=0, [u;,Dj]=0, for i#]. 9)

In terms of the independent operatotd and D; the non-
commutative surfac§2 is of the form
q—l

1/2X+X7: RZ.
1+q

X0X0+ q 1/2A1/2 (10)

In the limitq—1, Sﬁ reduces to the familia®? surface with
radiusR.

The conjugate operation o’ andD; is induced by the
operation orx! andd; [Eq. (7)],

X = ﬂqS’Z@(q VA + 1qq;;)
X ;Jr —U2N 12
1+q
X ;+ -U2p - 2
AO=x0y, 12 50=30;;1/2,

Xt=x", D,=a,. (12)

Thus, we conclude that the qguantum Heisenberg-Weyl alge-

bra corresponding to the noncommutative spacg(3jDcan

be decoupled into three independent subalgebras. One can|0,z)o=exp,-1
then investigate properties of the noncommutative space by
constructing Hilbert spaces of the three quantum subalge-

bras.
For the quantum algebrd _
DX —XD_=u"t, u X =0°X u_,
p-D_=q *D_pu_, wp '=1+(q ?2-1)X D_, (12

we construct a quantum coherent stife  as follows:

PHYSICAL REVIEW 51 044009

1 * 72 )m
|z)_=exp]z( - §|qzz|) E:O ! (D-)™Mo0)_,
(13)
where we have used the notationgpéxponential:
* n
equ(x)EnZO m,

[l =[n]gn—1lg---[1]q, [nlg= q

The reference stat®) _ is chosen such tha’c"|0),=0.
As in the classical case, the coordindte is diagonal in
the quantum coherent state basis

X7|2)_=272z)_. (14

The value ofz may be interpreted as position of an indisper-
sive wave pockdtl2]. Here we should notice thatcan be of
any complex number because we are working on a general
quantum orthogonal space. The complex values of the quan-
tum coherent state parameter is also consistent with the con-
jugate operation on the noncommutative space.

Denoting the quantum coherent state as

02)-=[2),

we can construct a representation for the quantum algebra
A_ based on the quantum coherent state as the following:

X7|n,z2)_=9%"zn,z) _,

D_Inzy_=—q 12"\ z7Yn+12)_,

u_|n,z)y_=|n-1z)_. (15

From the Hilbert space representation of the quantum alge-
bra A_, the coordinates of the noncommutative orthogonal
space is discretely latticed with exponentially increasing
space distances. In fact, this is in agreement with the discrete
difference representation of quantum derivatives:

f(q?X)— f(?c)
(@*-1)x

Similarly, we can also construct the reference stifes,
and|0,z), as

Df(x)=

(Do)m|0>ov

| -3loa) 3,55

X°0)o=0,

q‘1'

_ L ) e Ca”
02). =exn+| ~ ylad| 3, o).
X710y, =0 (16)

By using these states the corresponding representations of
the quantum algebrad,
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DoX%= X%Do= g%, poX®=0?A %, In(R)
woDo=0 *Domo,  pg’=1+(q-1)X°Dy,  (17) a~*(e*~1)Ing=—pm, (22
877( )

and A, I
DX -X'"D,=p., p X=X,
we can check thak/,,, is equal to the degrees of freedom on
wiD,=q Doy, pi=1+(g°—1)X*D,, (18 the classical limit of its boundary surface with radiBs

. Nboundary:
are given as follows:
X0|n,Z>O:an|n,Z>O, 4’7TR2
1-n Nboundary: 2 (23
_ 1 p
Dy|Nn,z)¢ q—lZ In—1.2),,
wolN,Z)o=In—12), (199  Then one can write down the entropy of our world at the
Planck scale as
for the algebrad,, and
X*|n,z) . =9*"Zn,z) ., S=47M?+C, (24)

D+|n,z>+:q172n)\71271|n_1,Z>+ y
whereM is the mass of the worltblack holg in natural units
pilnz) =In=12).,, (200 andC s a constant entropy which is not determined. This is

exactly what was called the holography or dimension reduc-
for the algebrad., . It has been strongly arguéd] that the o, i the quantum theory of gravity by 't Hooft. At the

most direct and obvious physical cutoff of spacetime is fromPlanck scale, our world is not31 dimensional. Rather, the

the formation of microscopic black holes, as soon as too . .
. . Observable degrees of freedom can best be described as if
much energy would be accumulated into too small a region

Thus, from a physical point of view, the black holes shouldfhe.y were Bgolear) vapables Qef|ned on a two-dimensional
provide a natural cutoff all by themselves. The cutoff diS_Iatnce_, evolving with time. It is now clear that the exact
tance scale is the Planck scale. Because of this origin di'®@ning of the holography can be interpreted as follows: the
spacetime cutoff, for any geometry we are working on, therdluantum theory of gravity in higher dimensional noncommu-
should be a universal minimal cutoff. For the classical tative space is equivalent to the theory living on the classical
geometry, the spacetime regularization is equal distance latimit of spacetime boundary. This gives a reasonable picture
ticed and there is one degree of freedom per Planck arefor the 't Hooft's holography.

However, from the above discussion of noncommutative ge-

ometry, the spacetime is discretely latticed with exponen-

tially increasing space distances. Thus, much less informa- I1l. NONCOMMUTATIVE AdS ,, SPACE

tion can be stored in the noncommutative geometry. In fact, AND EXPONENTIAL REGULARIZATION

this may be the origin of the holography for the quantum . i .

system of gravity. The noncommutative Ad$ space is defined as the

If the assumed minimal cutoff for the noncommutative 2n'dimensi0na| noncommutative I’ea| hyperb0|0id embedded
space SQ(3) with radiusR is the Planck scalg,, itis not in a (2n+1)-dimensional space with coordinates (i

difficult to count the degrees of freedaiviy, =—-n,—n+1,...-101...,n),
N 2i] \2
(q?lp)
Nbulk%izl (q%1,— ZF()i—1)| )2’ a=R, L 1
1 (@l —g* S
1+q2n71 2
R
q4ln(|—>
P
= 21 -
2(9°-1)%Inq @) X'=CjiMjx, (29
By taking the deformation parameter of the noncommutative
spaceq to be determined by the following algebraic equa-where p_j=i—3, po=0, pj=—i+3, and the metricC;;

tion: =q " _j and
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1 &_i&i=¢9i&_i+)\qi_3/2Ai_1
=q 29,0_;+\q ~%2A; for i>0.

The commutation relations among the coordinates and de-
rivatives are as follows:

g_x'=x'g_, for i#0,
M = gxi=qgxlg; for j>—i, and j#i,

&in =qsz9i—q)\q_”i_”kx_i&_j

for j<—i, andi#j,

Ixl=1+02xI9;+qn X, x4a—ql 2Pinx 1o
k>j

for j<O,
It is easy to check that, in the limi§— 1, the noncommuta- dox°=1+gx°dy+ quo X<ay,
tive AdS,, space reduces to the familiar AgSspace
1 &JXJ=1+q2XJ&]+q)\2 Xké’k for J>0 (28)
ﬂabxaxb: - k>j
a

in R2"*1 with Cartesian coordinate. Here As in our previous discussions, we introduce the dilatation

operatorA,, (0<m=n) as follows:
Mab = dia'g(_la L, -, 1, — l) U
T Am=1+NEn+@®™ 2L Ay, Ep= X Xd;.
n— j=7m
is the flat spacetime metric. These dilatation operators satisfy
For the noncommutative Ads space, the commutation Kook y
relations (in components among coordinates are given as ~ AmX'=0XAn,  And=d “dAn for [k|<m.
follows: (29

The noncommutative Ad§ space is also accompanied with

x'xI=qgqxix' for i<j andi#—j, the conjugatior[13]

Ty =i — iy i3/
XX '=x"'X'+Ng' TV

;i—:c“ Mijk,
:q*ZX*iXi_’_)\qi*:’:/ZLi for i>0, (26) Ei:_q_zAr:lciijk[Annxk]- (30)
where we have used the notation for intermediate lengths For k>0, using the notations
q y =X "+q K94k
L= Prx kK ——xOxO,
! kzl g 1+q

5= a_k+qk+1/2)\AkX+k,
By making use of the intermediate Laplacians

we can construct the following set of independent bas&k
on the noncommutative AgS space:
i

q
Ai:gl q°kdd_+ 7= dodo,

1+q = -
Dn=14h,
the algebra satisfied by the derivatives can be written com- i ip i e _
pactly as X = p o VP U p XL for n>j=0,
P : . _ -2 -1 -1/
5iaj=q‘1&j&i for i<j andi#—j, (27 D,j= Vot e

n_ MnlitMj£10+4,
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X = P Y AT P Ay, X N=y e, YA, 2
_ N1, 12 —-1/2 —-1/2 1/2 1/2 —_ — —
D_j=q “pn M1 BT ALY My 0 D_j=q 6 qpin YA, 2
X~ “—A+ﬁ’2 Qﬁ’ - Thus, the quantum Heisenberg-Weyl algebra corresponding
to the noncommutative Ad$ space can be decoupled into
D_j=q A Pui s, (2n+ 1)-independent subalgebras.

_ _ For the quantum algebrd |, (0<k=<n)
where (o) **=D, X 1 —x*D.; and wui?=Dyx°

—X°D,. DX M =X "D =pTp, po X =R My,
We note that theu;'s satisfy simple commutation rela-
tions with the new variabled” andD;, w-D_ =0 *D_pu_y,
[4i,x1=0, pIt=1+(q72-1)X 5D, (35
q? for i=j, we can construct the quantum coherent sfa® _, as
MlXJ X]MI —
1 for i#], 1
02) =exg| - 510"
. q 2 for i=j, 2
iD'=D’ u; L
i Hil 1 for i#j. (—q 22
, , _ o xE —(D-)"0)«,
With the new basis of coordinates and derivatives on the [m]q2!
noncommutative Ads space, it is not difficult to show that Ly
X7X02)_«=2/02)_4, (36)

D_ X *=1+q2x kD_, for k>0,
where the reference stat) , was chosen such that

DoX0=1+qX°Dy, X70),=0.
From the coherent staté,z) _,, we can construct a rep-
Do X =1+qg?x " D, resentation for the quantum algeb#a  as follows:
[D;,D]=0, [&',A1]=0, X7Mn,z)_=q’"z|n,z)
DXI=XID, for i+#]. (32 D.nz)-=-q '\ 71z n+12)
And the noncommutative AgS space in terms of th&”' and “olnzy_=In—=12z)_. (37

D; is of the form )
The quantum coherent state which corresponds to the quan-
—2n+1 - 1 tum algebrasA,,
g XX =~ ;.
(33

n
i=1 D XO_XOD _ 12 XO: ZXO
0 0= Mo 1+ Mo q " po,

_ 2 12_ _ 0
The conjugate operation on the independent set of operators ~ “0P0=d “Dotto, o =1+(q=1)A"Dy, (38)

X andD; is deduced from the conjugate operationdand
d; [Eq. (30)], and we have the following explicit results:

_ 1 o (—ag™

An=x", (34 |02)o=expy-1| —5laz] | X (Do)™|0)o,
2 m=0 [m]q-1!

Dy=0y,

oo X0/0)y=0,
?i:_ﬂ_jﬂ—l/z;jﬂ—uz, . _;n—1/2 for n>j=0, 39
D..=g. Y2 =12 -1 . . .

+j +,MJ+1 Mj+2 " TS By using this state we can construct the representation of the
L o o o o quantum algebral, and the result is
X—]:y—j’u S UZp '_l/ZM' _1/2,“' -1/2, " —1/2,
H ﬂ e vz " X%n,z2)o=9"z|n,2)o, (40)
D ]:q_lafj,U“rj_1/2A+j_1/2Mj+1_1/2 n
- _ —_ Do|n,z)o= z n-12),,
X i+ 2 1/2"'Mn 2 ol M Z)o q—1 | )o
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moln,z)o=[n—12)o.

Quite similarly, we can also construct the quantum algebra

A in terms of a reference state. The quantum algebra
is
DX~ XD =i, pad =P R,

p=1H(0P =1 XD,
(41)

kD=0 *Dieptsi

and the quantum coherent sta@ez) . is given by
1 o (—g*)"
0.2)=expy-2| — = 22) ———— (D1 )™MO0Y 1k,
02 c=ewny o~ 31e7| 3, 2000
X*K0), =0
X40,2) . «=2/02) . (42)

The representation of the quantum algebra, is given as
follows:

PHYSICAL REVIEW 51 044009

where we have used the notation for intermediate lengths

1
Li=> q%x "< p_y=k—1, pe=—k+1.
k=1

By making use of the intermediate Laplacians
I
Ai= 2 QPdkd_y,
k=1

the algebra satisfied by the derivatives can be written com-
pactly as

gid;=q t9;0, for i<j and i#—j,
ﬁ,i(?i=0i(7,i+)\qi_2Ai,l
=q 29,0_;+Nq %A, for i>0. (45)

The commutation relations among the coordinates and de-
rivatives can also be derived and are given as follows:

XNn,2) 1 =97"2In,2) ;. a_x=xlg_; for i#0,
Dynz) =" 2"\ "1z = 12) 4, xi=qxig; for j>—i, and j#i,
A+k|nrz>+k:|n_lvz>+k- (43) &ixj:qxjai_q)\qujfpkxfi&_j for j<_i' and |¢]’
All these, Egs.(37), (40), and (43), give a complete repre-
sentation for the Hilbert space of the noncommutative AdS  ; yi—1+q 2x19; +q)\2 X —qt 2o,
space. The above results show that the noncommutative
AdS,,, space is discretely latticed with exponentially increas-
ing space distances. The minimal cutoff induced by the for j<O,
quantum gravity itself is the Planck scdlg. As in the case
of noncommutative orthogonal space, the exponential regu- . )
larization may effectively reduce the amount of observable ;X'=1+q 2! 19j+q7\k§j x“9 for j>0. (46)

degrees of freedom of the noncommutative AdSpace;

even one cannot enumerate it exactly because it is infinitg‘\S in Sec. Ill, we introduce the following dilatation opera-
[14]. An adequately adopted noncommutative deformatioqorSA (0<n%sn)'

parameterg (it may be even closer to 1 than the case of m '
limited geometry can give the equal of the entropy of the
guantum system of gravity in the bulk of noncommutative

AdS,,, space and that on the classical limit of its boundary. m

The commutative boundary is equal distance lattice regular- En= > xlo;.
ized and possesses conformally invariant symmetry. This is
crucial for the AAS/CFT correspondence.

An=1+ g En+3?™\2(1+9*" 2) LA,

j=—-m

They satisfy the following relations:

IV. NONCOMMUTATIVE AdS ,,_; SPACE WITH

EXPONENTIAL REGULARIZATION A= @XAm, - Amdh=a” oA for 0<|kISI’72'47)
Now we extend our discussion to the noncommutative

AdS;,,_; space. For this space, commutation relations amondhe noncommutative Adg_; space is accompanied with

coordinatesx' (i=—n,—n+1,...,—2—-14+1,+2,...n) the conjugation

are given as follows:

i ]: J i . . . _ X C Njkx
xX'xI=qgx'x' for i<j and i#-—]j,
xix~T=x"Ixi+nq 2L, Ei=—q‘2A e NJk[An,x] (48)
=q 2 'x+Nqg 2L, for i>0, (44  where
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n
( 1 \ 21 qu72(nfj)A];l/2M]fl/2XjX7j: _ ; (51)
j=
—1 The conjugate operation on the operatéts andD; is in-
duced by the conjugation ofl andg; and the epr|C|t results
—1 are calculated to be
X=x",
N = S —
Dp=9,
-1 i tis,  —uZ o —12 12 ;
X =x o Moy M g for n>j>0,
-1 Dyj=0simjrr Voujra Yy M
2n—2 X—j:y—jMH—l/ZA+j—1/2M]_+1—1/2luj+2—1/2. A
1 = e T e 1 - —_
\ J D= oy VANV TV Y 12,
For k>0, introducing the notations X =y N, TV, 2
Kk qk+1/2 2n-2
y =X NI+ ) Ld ks = — e
" D—j:q l5—nl"/+n l/ZA#—n V2, (52

— k+1/2 +k
Ok = -kt g TR, Then, the quantum Heisenberg-Weyl algebra corresponds to
we can construct the following new set of variables for thel® noncommutative Adg_, space is decoupled inton2

coordinates and derivatives: independent subalgebras. In the following we will give their
representations in terms of quantum coherent states.
xN=x", The quantum algebral_, (n=k>0) is
D=d,., D_kX‘k—X‘kD_ﬁu:&, [T S T
: . —n2 — k
X+]:M|;1/2M|:71/12. . 'M;+l/2X+J for n>J >O, ,U«_D_k—q D—kﬂ—kv 1+( 1).)( D_(53)
_ 12 -1/2 —1/2
Dyj=pn M1 Mji104], For these algebras, we choose the quantum coherent state
|0,2) _ as follows:
- ]_M—1/2Mn—1/12' 1/2A+,1/2MI,1/2Y j )k
* 72 m
-1 —172, U2y 12 —1/2 0 = L2 2 2) D )Mo
D_j=q thn Pt S 73 v Wiy VA N 0.2) _k=expy §|q Z| o [mla! ———(D-"0),
—n_ -1/ -1/ —
X n_A+%2M+% " X_k|0>7k:01
D_j=q AL Pui%0 . (49) XH02)_ =202 4. (54)
where (w.j) =D ;X - XD, From the coherent sta{®,z) ,, we can construct a repre-

Commutation relations among these new coordinates ansentation for the quantum algehra , as
derivatives on the noncommutative AgS, space are as

follows: X7 Nn,z2)_=q?"z|n,z) _,
D_ X k=1+q2x *p_, for k>0, D_nz)_=—q 12\ 1z Yn+12)_,,
D X TK=1+q2X %D, , p-nz)-=[n-12z)_y. (55)
P T— i pi1— Quite similarly, we can construct the reference state
(D1 By]=0, [A.A1]=0, |0,2) . (n=k>0) as
 vi— x¥iD. i i .
DX =X'D; for i#]j. (50 02 1, )2 (_qzz)m(D o)
. Z) k=exXpy-2| —5(9°z _— ,
The noncommutative AdS_; space in terms of th&" and Tk Rz 72| m=0 [m]g-2! x x
D, is of the form (56)
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X+k|o)+k=0, algebraic equation. The noncommutative spacg(Spwith
such a deformation parameter have the same entropy or de-
X740,2) 1 «=202) . grees of freedom as the classi&@l surface. This is the so-

. . called holography for quantum theory of gravity. The holog-
The corresponding representation of the quantum algebraaphy makes the quantum theory of gravity on the

Ay noncommutative Ad$space equivalent to the conformally
K ook K 2tk invariant quantum field theory living on the classical limit of
DX "= X" "D =porr X "= T, its boundary. This is the basis of the AdS/CFT correspon-
o, B ) Tk dence of string theory and M theory. Here we should stress
ukDi=0a Digpsr,  pk=1+(a"=1)A Dy, that the proper geometry for quantum gravity may be non-

(57) commutative. Classical continuum geometry is not suitable
for quantum gravity. This is in agreement with the long-time

's given as follows: speculation that the small scale structure of spacetime may

X*N,2) 1 =9"2n,2) ., not be adequately described by classical continuum geometry
and the noncommutative spacetime might be a realistic pic-

Didn2) =0 2"\ "2 n—-12) 4, ture of how spacetime behaves near the Planck scale. Strong
quantum fluctuations of gravity at this spacetime scale may

Aln,z)  =In—12) . (580  make points fuzzy(in spacé. All of the strangeness about

the quantum theories in different spacetime dimensions
As in the noncommutative Adg space, the noncommutative could ever be equivalent are coming from the noncommuta-
AdS;,- 1 space is also discretely latticed with exponentially tive geometry description of the quantum gravity. The exact
increasing space distances. The minimal cutoff induced byorm of the AdS/CFT correspondence is concerned with
the quantum gravity itself is the Planck scéje The expo-  noncommutative AdS space and the classical limit of its
nential regularization effectively reduces degrees of freedonpoundary surfacéon which the conformal field theory lives
in the noncommutative Adg_; space. A very small amount This suggests that the gravity-gauge theory connection
of displacement of the noncommutative deformation paramshould be of the following form: string theory or M theory
eterq from unity gives rise to the equal of the entropy of the on the noncommutative background of the form AdS
quantum theory of gravity in the bulk of noncumulative  \9 _  is dual to a conformal field theory living on the
AdS,-; space and that on the commutative limit of its ¢|assical limit of spacetime boundary. For the type-IIB string
boundary surface. The commutative boundary is regularizeg1eory on the noncommutative background AdSS, the
by an equal distance lattice and possesses a conformally igpecira can be compared with low-order correlation func-
variant symmetry. Thus, the equivalent theory living on the;o -« of the 3+ 1-dimensional /=4 SU(N) super Yang-
spacetime boundary of the quantum system O_f gravity on thg; theory. Only both in the larg& limit and the commu-
b_ackground of noncommutative AdS space IS a Conform?{ative limit, is string theory weakly coupled and supergravity
field theory. As we said in the last section, this is the basis, good approximation. Therefore, in fact as 't Hooft sus-
for the AdS/CFT correspondence. pected[1], nature is much more crazy at the Planck scale

than even string theorists could have imagined. Formalisms

V. CONCLUDING REMARKS of string theory(gravity) on noncommutative geometry have

In this paper, by constructing Hilbert space with quantu fo be constructed to gain insight into the unification of grav-

coherent states as reference ones, we presented a kind [Bf @nd guantum mechanics.
special regularization with exponentially increasing space-
time cutoff for both orthogonal and AdS space based on
noncommutative geometry. We argued that there must be a | would like to thank Professor J. Wess for introducing
universal minimal cutoff for any geometry which is given by the problem and for enlightening discussions. | am also
the Planck scalé,. The most direct and obvious physical grateful to H. Steinacker for valuable discussions. After the
cutoff is from the formation of microscopic black holes asinitial version of the paper was submitted, a communication
soon as enough energy are accumulated into a small regioffom A. Jevicki drew my attention t¢15], in which the
We have obtained results which show a very smallnoncommutative effect in the AAS/CFT correspondence was
(<10 1) displacement of the noncommutative deformationdiscussed from different point of view. The author is in-
parameter from its classical valug= 1) reduces sharply the debted to Professor C. J. Zhu for a critical reading of the
entropy of quantum system of gravity. The noncommutativenanuscript. This work was supported in part by the National
deformation parametey was determined by a well-defined Science Foundation of China under Grant No. 19625512.
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