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Supersymmetric spin networks and quantum supergravity
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We define supersymmetric spin networks, which provide a complete set of gauge invariant states for super-
gravity and supersymmetric gauge theories. The particular case ofOsp(1u2) is studied in detail and applied to
the non-perturbative quantization of supergravity. The supersymmetric extension of the area operator is defined
and partly diagonalized. The spectrum is discrete as in quantum general relativity, and the two cases could be
distinguished by measurements of quantum geometry.
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I. INTRODUCTION

In this paper we describe an extension of the spin netw
states to supergravity. The spin network states play a fun
mental role in non-perturbative quantizations of both gau
theories@1,18# and gravitational theories@2–4#. In the gauge
theory context they provide an orthonormal basis for latt
gauge theories@1,18#. In this case the spin networks are l
beled graphs on the lattice, whose edges are labeled by
finite irreducible representations of the gauge groupG. In
quantum gravity diffeomorphism invariance reduces the
grees of freedom, so that a basis of states invariant un
spatial diffeomorphisms and local frame rotations are giv
by the diffeomorphism classes of spin networks@3,4#. In this
case the group is SU~2!, for the chiral formulation based o
the Ashtekar-Sen variables@5,6#, or SU~2!1SU~2! in the
relativistic case@7,8#.

Over the last ten years there has been a great dea
progress in our understanding of the non-perturbative st
ture of quantum general relativity, leading to the compl
formulation of the quantum theory.1 Among the key results
are the discovery that diffeomorphism invariant observab
that measure aspects of the spatial geometry such as are
surfaces and volumes of regions are finite, and have disc
computatable spectra@2–4,11#. This has led to a physica
understanding of the spin network states as eigenstate
these geometrical observables.

During this period there have been a number of pap
which extend the methods used to supergravity@12–16#.
These have included the formulation ofN51,2 @13–15#, and
N54 @16# supergravity in terms of chiral, Ashtekar-Sen lik
variables, as well as the discovery of exact solutions to
quantum constraints@13,15#. However, much more remain
to be done in this direction. The non-perturbative quanti
tion of gravitational theories with extended supersymmetr
largely unexplored territory, despite the fact that extend

*Email address: ling@phys.psu.edu
†Email address: smolin@phys.psu.edu
1For recent reviews see@9,10#.
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supersymmetry is essential to the success of string the
which remains the only successful technique for investig
ing quantum gravity in the perturbative regime. Another im
portant open area of investigation is the properties ofBPS
states in the non-perturbative regime. This could be v
interesting as it could provide a way to compare results
black hole entropy obtained by both string theory@19# and
loop quantum gravity@20#.

In this paper we take a first step to the study of the n
perturbative quantization of supersymmetric theories
gravitation by constructing the spin network states forN
51 supergravity. We find a number of new features, wh
suggest that this could be a fruitful direction of investigatio
The main result is a diagrammatic method for the constr
tion and evaluation of spin networks for the supergro
Osp(1u2). As a first example we construct and partly dia
onalize the supersymmetric extension of the area opera
As expected the spectrum is discrete, but different from t
of quantum general relativity. This means that experimen
probes of geometry at the Planck scale could, in princip
distinguish different hypotheses about the local gauge s
metry. This is highly interesting in light of recent develo
ments that suggest that astrophysical probes of Planck s
physics can be developed@21#.

Another possible application of the formalism given he
is to supersymmetric Yang-Mills theory. It will be very in
teresting to investigate the extent to which the physics oN
52 andN54 super-Yang-Mills theory can be expressed
terms of the spin network states.

It is straightforward to extend the construction here toN
52 and higher supersymmetry, this will be described el
where @22,23#. Also, in progress@24# is an examination of
the canonical and boundary structure ofN51,2 quantum su-
pergravity, which extends results on a holographic formu
tion of quantum general relativity with finite cosmologic
constant@25,8#.

In the next section we review some of the basic resu
aboutN51 supergravity in chiral coordinates, first studie
by Jacobson@12#. In Sec. III we present some results fro
the representation theory ofOsp(1u2) which allow us in
Sec. IV to construct quantum spin networks. The diagra
©2000 The American Physical Society08-1
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YI LING AND LEE SMOLIN PHYSICAL REVIEW D 61 044008
matic method for doing calculations with these states is
troduced in Sec. V, and the following sections describe
amples and calculations.

Finally, we mention that we do not here provide rigoro
proofs for the assertions made, but we see no reason w
straightforward extension of the rigorous methods introdu
in @26–29# to the present case should not be possible.

II. REVIEW OF QUANTUM SUPERGRAVITY

Supergravity in terms of the new variables maybe w
initially investigated in@12# and extended in@13,14#. In this
paper we will consider mainlyN51 supergravity. As shown
first by Jacobson in@12#, this can be formulated in chira
variables which extend the Ashtekar-Sen variables of gen
relativity. In this formulation, the canonical variables are t
left handed su~2! spin connectionAa

i and its superpartne
spin-3/2 fieldca

A . As shown in@15# these fit together into a
connection field of the superlie algebraOsp(1u2) @which is
referred to in some references@13,15,30# as GSU~2!#.

We thus define the graded connection:

AaªAa
i Ji1ca

AQA , ~1!

wherea is the spatial index. IfEi
ã andpA

a are momenta ofAa
i

and ca
A , respectively, we can define the graded moment

as

E a
ªEi

ãJi1pA
aQA. ~2!

The constraints that generate local gauge transformations
then be expressed as usual as

Gi5DaEi
ã1

i

A2
pA

acaBt i
AB50. ~3!

The left- and right-handed supersymmetry transformati
are generated by@12#,

LA5DapA
a2 igEi

ãt iA
B caB50, ~4!

R A5e i jkEi
ãEj

b̃skB
A ~24iD [acb]

B 1A2geabcp
cB!50, ~5!

where the cosmological constant is given byL52g2. The
diffeomorphism and Hamiltonian constraints can be deriv
by taking the Poisson brackets of Eqs.~4! and ~5!.

These may be written simply in terms of the fundamen
representation ofOsp(1u2), which is three dimensional. Th
superlie algebraOsp(1u2) is then generated by five 333
matricesGI(I 51 . . . 5),given explicitly in @15#. Using them
we can define

A a
I 5~Aa

i ,ca
A!, ~6!

E I
a5~Ei

ã,pA
a !, ~7!

whereI 5( i ,A) labels the five generators ofOsp(1u2).
Then the first two constraints can be combined into o

Osp(1u2) Gauss constraint:
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while the last one combines with the Hamiltonian constra
to give

E aE bFab2 ig2eabcE aE bE c50, ~9!

whereFab is the curvature of the super connectionAa :

FabªdaAb1@Aa ,Ab#. ~10!

A key feature of this kind of approach to supergravity is th
the supersymmetry gauge invariance has been split into
parts, which play rather different roles. The left-handed
persymmetry transformations generated by Eq.~4! combine
with the SU~2! Gauss’s law~3! to give a localOsp(1u2)L
gauge invariance. The theory is then written so that the
sociatedOsp(1u2) connection is the canonical coordinat
The right-handed part of the supersymmetry, generated
Eq. ~5!, is a dynamical constraint, being quadratic rather th
linear in the momentum. It joins with the Hamiltonian co
straint to form a left-handed supersymmetry multiplet of d
namical operators.

It is then natural in a chiral formulation of supergravity
represent the left-handed supersymmetry kinematically,
solve it completely by expressing the theory completely
terms ofOsp(1u2) invariant states. These are the spin n
work states we will present shortly. The remaining, righ
handed, part of the supersymmetry is then imposed as a
namical operator, and has the same status as the Hamilto
constraint.

The loop representation for supergravity in the chiral re
resentation was constructed in@15# in terms of Osp(1u2)
Wilson loops. These are defined in terms of the supertr
taken in the fundamental three dimensional representatio
Osp(1u2).

T@g#5StrPexpS R
g
dsA agaD[StrUg~A!. ~11!

These Wilson loop states are subject to additional relati
arising from intersections of loops. These are solved co
pletely by the introduction of the spin network basis, whi
are complete and orthogonal@4#.

We can construct the loop-momentum variables by ins
ing the Osp(1u2) invariant momentumE a into the Wilson
loops:

T a@a#~s!5Str@Ua~A!E a~a~s!#. ~12!

It is straightforward to show that theT@g# and T a@a#(s)
form a closed algebra under Poisson brackets, which we
call theN51 super-loop algebra.

We will also need to describe operators quadratic in
conjugate momenta, which in the loop representation
formed by inserting two momenta in the loop trace,

T ab@a#~s,t !5Str@Ua~s,t !E a
„a~ t !…Ua~ t,s!E b

„a~s!…#.
~13!

The higher order loop operators are similarly defined as
8-2
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SUPERSYMMETRIC SPIN NETWORKS AND QUANTUM . . . PHYSICAL REVIEW D61 044008
T ab . . . c@a#~s,t, . . . v !

5Str@Ua~s,t !E a
„a~ t !…

3Ua~ t,u!E b
„a~u!… . . . Ua~v,s!E c

„a~s!…#. ~14!

As discussed in@15#, the supersymmetric extension of th
Chern-Simons state may be formed from the Chern-Sim
form of the superconnectionAa ,

CSCS~Aa!5expF i

2LE d3xStrS A`F2
1

3
A`A`AD G .

~15!

This state is an exact solution to all the quantum constrai
Like the ordinary Chern-Simons state it also has a semic
sical interpretation as the ground state associated with
Sitter or anti-de Sitter spacetime.

III. FINITE DIMENSIONAL IRREDUCIBLE
REPRESENTATION OF Osp„1z2…

Spin networks may be constructed for any Lie or Supe
algebra,A by extending the original definition@17,18#. An
A-spin network is a labeled graph whose edges are lab
by the finite dimensional irreducible representations ofA
and whose nodes are labeled by the associated intertwi
In quantum gravity spin networks states are associated
the gauge group of the connection, which we have see
the case ofN51 supergravity in the chiral representatio
@12# to beOsp(1u2). The representation theory ofOsp(1u2)
has been studied in detail in@30–34#, here we give some o
the basic facts that we will need to construct the associa
spin network states.

The superlie algebra ofOsp(1u2), is constructed by three
bosonic generatorsJi( i 51,2,3) and two fermionic genera
tors QA(A50,1). The commutation relations are

@Ji ,Jj #5 i e i jkJk , ~16!

@Ji ,QA#51/2~t i !A
BQB , ~17!

$QA ,QB%51/2eABt iJi , ~18!

wheret i are Pauli matrices.
Each irreducible representation of theOsp(1u2) contains

two adjacent SU~2! representations. One is labeled by spinJ
and the other byJ21/2. J may be taken as the label of th
Osp(1u2) representation, and is related to the eigenvalue
the quadratic Casmier operator of the supergroupOsp(1u2):

C5JiJi1eABQAQB , ~19!

by

ĈuJ&5J~J11/2!uJ&. ~20!

For eachJ the representation is a graded vector space wi
basis labeled byuJ;L;M &, where J is an integer or half-
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integer, andL can beJ or J21/2 and2L<M<L. The di-
mension of the space of the representation with spinJ is
4J11.

The usual rules for combination of angular momentu
can be extended directly to these states. The result is a s
Racah-Wigner calculus which gives the results of decom
sitions of products of representations ofOsp(1u2). The ten-
sor product is completely reducible and is given by

j 1^ j 25u j 12 j 2u % u j 12 j 211/2u % . . . u j 11 j 2u. ~21!

Note that this differs from the familiar SU~2! case in that
representations which differ fromj 11 j 2 by both integers
and half integers are included. The Clebsch-Gordan coe
cients for the expansion of the basis elements are determ
uniquely, from their values for SU~2!.

Next we consider the reduction of the tensor product
three irreducible representations (j 1 , j 2 , j 3). As in the SU~2!
case we have two different recoupling schemes. One
couple the representations (j 1 , j 2) into j 12 first and then
couple the result toj 3 to give the final representation; or on
couples (j 2 , j 3) into j 23 first and then couples toj 1 next.
These two representations are related to each other by
Racah sum rule in terms of super rotation 6-symbols.
Osp(1u2), the parity independent super-rotation 6-symb
are defined as@21#:

H j 1 j 2 j 12

j 3 j j 23
J s

5~21!F(l1 ,l2 ,l3)H j 1l1 j 2l2 j 12l12

j 3l3 j l j 23l23
J s

.

~22!

Then the Racah sum rule reads

H j 1 j 2 j 12

j 3 j j 23
J s

5(
j 13

~21!QH j 1 j 3 j 13

j 2 j j 23
J sH j 2 j 1 j 12

j 3 j j 13
J s

. ~23!

In a similar way the Biedenharn-Elliott identity can be co
structed for the super 6-j symbols:

H j 1 j 2 j 12

j 3 j 123 j 23
J sH j 23 j 1 j 123

j 4 j j 14
J s

5(
j 124

~21!ubeH j 2 j 1 j 12

j 4 j 124 j 14
J s

3H j 3 j 12 j 123

j 4 j j 124
J sH j 14 j 2 j 124

j 3 j j 23
J s

, ~24!

whereube and Q are the sign factors related to the supe
spins involved. The interesting fact is that except these
sign factors, the structure of two relations are the same as
structure for SU~2! rotation algebra. Therefore, when we r
strict the sum of three super-spins in all the triang
( j 1 , j 2 , j 12), ( j 1 , j 3 , j 13), ( j 2 , j 3 , j 23) to be integers, then al
8-3
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YI LING AND LEE SMOLIN PHYSICAL REVIEW D 61 044008
the expressions go back to the normal Racah sum rule
the Biedenharn-Elliott identity for SU~2!.

IV. SPIN NETWORK STATES OF NÄ1 SUPERGRAVITY

We recall that a spin network state of quantum gene
relativity, denoteduG& consists of an embedding of close
graphG into a fixed three manifoldS with edges labeled by
the representation of SU(2)@SU(2)q# and vertices labeled by
intertwining operators, namely distinct ways to decompo
the incoming representations into a singlet. Here we de
the superspin networks in the same way only by replaci
the SU~2! with superlie algebraOsp(1u2).2 The elements of
the super spin networks are links and vertices. Notice tha
quantum general relativity, the link of colorn corresponds to
a parallel propogator of connectionAa along this path in the
spin n/2 representation of SU~2!, here associated to ever
link we also label a colorni , which is two times as the
superspinj i which labels the representation ofOsp(1u2).
For every vertexve , there are incoming links with colornei

in

and outcoming links with colornei
out , so we can label the

vertex by the total colorve5( inei
in2( inei

out which satisfies
1/2<ve<k/2.

Corresponding to every super spin network (Gsg,ni ,ve),
there is a super spin network state^Gsg,ni ,veu in the Hilbert
space of the supergravity. As an independent basis, the s
spin network can also be expressed as the bras so th
general state in this representation is given by

C@Gsg#ª^GsguC&. ~25!

We now list some basic facts about the super spin netwo
As in the SU~2! case there is no intertwiner associated

trivalent nodes because given

uJ12J2u<J3<uJ11J2u, ~26!

then the map from the tensor products of two representat
to the reduced representation is unique.

The condition that the sum of three colors of the lin
adjacent to a trivalent vertex must sum to an even num
does not hold, because both even and odd spins appear
sum~21!. As the color of the link is twice the spin, the edg
of a trivalent vertex can be any integers such that Eq.~26!
holds.

If the valences adjacent to the same vertex are more
three, intertwiners are needed to label the different m
from the incoming representations to the singlet state. A
the SU~2! case the multivalent vertices can be decompo
in terms of trivalent vertex connected by internal edges,
described in@4#.

Note that this means that there is no simple way to
compose theOsp(1u2) spin networks completely in terms o
ordinary spin networks because there is no ordinary spin
work vertex corresponding to the superspin network verti

2It is also possible to extend the construction to the ‘‘quant
graded group,’’Osp(1u2)q . We do not carry this out here.
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where the sum of incident colors is odd. However, there
still a very useful decomposition, which we will give below

As in the SU~2! case, there is a recoupling theory bas
on the Racah sum rule and Biedenharn-Elliott identity
terms of thesuper-rotation 6-j symbols. We can express th
recoupling theory by Fig. 1.

Here the sum is over labels such that the super 6-j sym-
bols satisfies the triangle inequalities Eq.~26!.

V. GRAPHIC REPRESENTATION
OF THE SUPER SPIN NETWORKS

We can now give a diagrammatic notation forOsp(1u2)
spin networks which is useful for computation. We follo
the method developed in@4# and elaborated in@11# for quan-
tum general relativity in which a diagrammatic notion f
SU~2! spin network states was developed by modifying n
tations used by Penrose@17# and Kauffman and Linns@35#.
The result is a diagrammatic notation of super spin netwo
based on the connection between them and the represent
theory of the supergroupOsp(1u2).

A. Element of the diagrams

The basic fact about the SU~2! representation theory on
which the Penrose and Kauffman and Linns notation rest
that all irreducible representations can be obtained by s
metrizing products of the fundamental representation. In
case ofOsp(1u2) all irreducible representations can be o
tained via a process of graded symmetrizing, in which th
are extra signs for even and odd parts of the representat
There are in fact two different fundamental representati
for the Osp(1u2), which are complex conjugates of eac
other. Let us consider first the left handed fundamental r
resentation. It is a three dimensional graded vector sp
whose elements may be written

ja5S cA

fo
D , ~27!

whereA5(0,1) denotes the left-handed SU~2! spinor index
part anda5o denotes the third component. Here we take
jA5cA to be fermionic while thejo5f0 is bosonic. The
grade of the indexg(a) is defined to be one foro and zero
for A. Under the action ofOsp(1u2), ja transforms as

FIG. 1. Recoupling theory forOsp(1u2) 6-j symbols.
8-4
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SUPERSYMMETRIC SPIN NETWORKS AND QUANTUM . . . PHYSICAL REVIEW D61 044008
ja85Ua8
aja , ~28!

where 333 matrix Ua8
a is an element in the fundament

representation ofOsp(1u2).
The higher irreducible representations are formed by t

ing graded symmetric products of this fundamental repres
tation. For instance, the basis states forJ51 span a five
dimensional space, which can be constructed by sym
trized tensor products of two states in the fundamental r
resentation, as

j (ab)ª
1

2
@jajb1~21!g(a)g(b)jbja#. ~29!

We can then read off the components of the basis state
theJ51 representation. They consist of a pair of SU~2! rep-
resentations, given by,

j (ab)5~j (AB) ,j (Afo)!. ~30!

The first term is the bosonic component defined as

j (AB)5
1

2
~cA

(1)cB
(2)1cB

(1)cA
(2)! ~31!

and the second term is the fermionic component of the b
states

j (Afo)5
1

2
~cA

(1)fo
(2)1fo

(1)cA
(2)!. ~32!

The other termf [oo] vanishes due to the antisymmetrizatio
Under the action ofOsp(1u2), the states transform as

j (a8b8)5U (a8b8)
(ab)jab , ~33!

where

U (a8b8)
(ab)5

1

2
@~21!g(a)[g(b8)2g(b)]Ua8

aUb8
b

1~21!g(a8)g(b8)~21!g(a)[g(a8)2g(b)]

3Ub8
aUa8

b#. ~34!

If we only consider the unit element ofOsp(1u2) in this
representation, then we have

FIG. 2. Unit element in fundamental representation
Osp(1u2).
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(ab)5

1

2
@da8

adb8
b1~21!g(a8)g(b8)db8

ada8
b

#.

~35!

This allows us to generalize the Penrose diagrammatic n
tion for SU~2! spin networks. We indicate the elements of
super spin networks by bold lines, the elements with SU~2!
indices by thin lines, and the third componentf5jo by
dotted lines. Then we can denote theda8

a and its components
as Fig. 2. Then it is straightforward to express Eq.~35! as
Fig. 3.

Let us consider the component formulation of this expr
sion. When the indices of delta are SU~2! spinor indices, it is
easy to see that it goes back to the normal spin netwo
expression. If one index is fermionic and the other one
bosonic, they commute with other and we can denote
expression by two vertical lines, one solid and one dotted
both indices are bosonic, which may be denoted by two v
tical dotted lines. However, this term vanishes because
graded symmetrization antisymmetrizes them and there
single bosonic component. The procedure of the decomp
tion of the super element can then be drawn as Fig. 4.

Thus, we have a way to decompose the diagrams
Osp(1u2) spin networks into combinations of SU~2! spin
network diagrams and dotted lines representing the sin
bosonic component of the fundamental representation.
straightforward to see how this works when applied to a
higher dimensional representation ofOsp(1u2), which is ob-
tained by making a graded symmetrization ofn fundamental

f
FIG. 3. Construction of unit element in representation with s

one.

FIG. 4. Decomposition of the link with color 2 in super sp
networks into normal SU~2! ones.
8-5
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YI LING AND LEE SMOLIN PHYSICAL REVIEW D 61 044008
representations. The basic property is that all the te
whose corresponding graphs have two or more dotted l
must vanish also since we need to antisymmetrize them.
result, the basis states in any dimensional representation
sists of two components,

j (a1 . . . an)5~j (A1 . . . An) ,j (A1 . . . An210)!, ~36!

where

j (A1 . . . An)5c (A1
cA2

. . . cAn) ~37!

j (A1 . . . An210)5c (A1
cA2

. . . cAn21
f0) . ~38!

The unit element of the supergroup in this representation
be expressed as

d (a8b8 . . . g8)
(ab . . . g)

ªd (a8
adb8

b . . . dg8)
g ~39!

and the corresponding graph can be drawn as Fig. 5. Thu
see that we can decompose a super spin network into a
of diagrams, each of which is a normal spin network toget
with dotted lines. In this decomposition each edge of
superspin network, with colorn becomes two ordinary spin
network edges, the first ann line without a dotted line and
the second with ann21 line with a single dotted line. This is
shown in Fig. 5.

FIG. 5. Decomposition of the super link of colorn.

FIG. 6. The three terms in the decomposition of the trival
vertex, in the case that all colors are equal to one.
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B. Trivalent vertices

Next we consider the tri-valent vertex. As there is
restriction that the incident colors must add up to an ev
number, as in the SU~2! case, the simplest trivalent node
the one in which all three edges have color one. This n
can be visualized in two ways, depending on how the dir
tion of time is read. One fermion with spin-1/2 meets o
boson with spin zero and then changes into one fermion
two fermions with spin-1/2 meet together forming into a b
son which is also singlet state. These processes are expre
by Fig. 6.

We next consider the case in which every link has co
two. This can be decomposed into the ordinary SU~2! spin
networks as shown in Fig. 7.

In general, if the sum of the three colors is even it can
decomposed into four terms, each of which contains an
dinary spin network plus, possible dotted edges. We ill
trate it in Fig. 8.

C. Simple closed diagrams: The super-Q graph

We have found that edges and nodes of superspin
works decompose into sums of terms, each of which cons
of an ordinary spin network, perhaps dressed by dotted lin
As a result any closed super spin network can be dec
posed into a sum of such terms. As an example, we desc
the simplest example of a closed spin network, which is

t

FIG. 7. Decomposition of trivalent vertex in which every lin
has color two.

FIG. 8. Decomposition of trivalent vertex in which the sum
colors is even.
8-6
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Q graph. The simplest one is the diagram in which ev
link has color one. This superQ graph can be decompose
into a sum of three components, each of which is an ordin
spin network. This is illustrated in Fig. 9.

Another interestingQ diagram is the one in which th
colors of three links are (n,2,n). We will use it later in the
calculation of the area spectrum in quantum supergravity
can be decomposed into four components in terms of SU~2!
spin networks as shown in Fig. 10.

VI. EVALUATION OF SUPER SPIN NETWORKS

In the case of SU~2! spin networks, the edges represe
projection operators, which live in the Temperly Lieb alg
bra. These can always be decomposed using the bra
identity ~see Fig. 11!.

As a result, associated with any ordinary spin netwo
there is a number which is called its evaluation. This w
first introduced by Penrose@17#. It is now known to be a
special case of the Kauffman brackets polynomial when
quantum deformation parameterq561.

For the supergroupOsp(1u2), the spinor identity does
not exist any more. Therefore, there is no bracket iden
~although in the super loop representation some ident
analogous to the Mandelstam identity can be expresse
means of the supertraces of the holonomies@15#!. But we can
still evaluate a super spin network by first decomposing
into ordinary SU~2! spin networks, using the rules defined
the previous section, and then evaluating each compone

The evaluation of a super spin network in fact cor
sponds to taking the supertrace of a product of projec
operators on the direct product of a number of fundame
representations. The fact that it can be expressed in term
the evaluations of ordinary spin network is a consequenc
the fact that the supertrace can be decomposed into a su

FIG. 9. Decomposition of the simplestQ graph.

FIG. 10. The general case of the decomposition ofQ graph.
04400
y

ry

It

t
-
ket

k
s

e

y
s

by

it

t.
-
n
al
of

of
of

traces over the SU~2! representations that make up a rep
sentation ofOsp(1u2). In fact, the sign factors necessary
turn a sum of traces into a supertrace are already built
our formalism by the sign factors that go into the grad
symmetrizations that define the edges and nodes of the s
spin networks. In the example of the superQ graph, as well
as in the examples that follow, one can see how this wo
explicitly.

As a direct application, we can calculate the super st
dard closure of the super tangles, which is defined as
supertrace of the holonomy of the flat connection in t
representation:

Strj~d
a1a2 . . . an

a18a28 . . . an8!5trj~d
A1A2 . . . An

A18A28 . . . An8!1trj~d
A1A2 . . . An210
A18A28 . . . An218 0

!

5~21!(2 j )~2 j 11!1~21!2( j 21/2)@2~ j 21/2!11#

5~21!2 j . ~40!

Here when we take the trace of the dotted line, we find
value is one.

Let us consider the simple superQ graph in which the
colors of links are~1,2,1!. After decomposing the graph int
the normal spin networks and taking the trace of them
shown in Fig. 12, we find the value of theQ graph is one.
Also since this graph is equivalent to the super standard
sure with color two~see the first step in Fig. 12!, we can find
the value of this graph by Eq.~40! directly, in whichn equals
two. If we consider another example in which the colors a
~2,2,2!, we have the answer illustrated in Fig. 13.

FIG. 11. The bracket identity for SU~2! spin networks.

FIG. 12. The evaluation ofQ(1,2,1).
8-7



e
ps
e

th
is
op
lu

os
e

on
ph
ar
e
se
ch
om

h
te
er
th

t
th
ib
n

lin

se

,

d

of
h as
tion
rela-
ra-
rea
the

he
rv-

.

YI LING AND LEE SMOLIN PHYSICAL REVIEW D 61 044008
In the third step the coefficient one fourth appears wh
we try to separate the dotted loop from the real-line loo
Since initially the bosonic index is symmetrized with th
fermionic indices, we have four different ways to connect
ropes to form loops. But the value of any loop which
formed by connecting one real rope and one dotted r
must be zero, therefore only one graph has non-zero va
We illustrate the specific expansion in Fig. 14. The m
interestingQ graph, which has important application to th
calculation of the area spectrum in supergravity, is the
with colors (n,2,n). From the last section, we see this gra
can be divided into four graphs with respect to the ordin
su~2! spin networks. In Fig. 16 the bosonic index is symm
trized with the fermionic indices. To evaluate all the
graphs, we also need to separate the dotted loop from eaQ
graph. In other words, we must decouple the dotted line fr
the symmetrizer just as we have done for theQ graph~1,2,1!
and ~2,2,2!.

When doing this one must be careful to obtain the rig
coefficients for each term. The key point is that the dot
line has to be connected to the dotted line and for ev
vertex the triangle inequality must hold. In general when
dotted line is separated from the symmetrizer of colorn, the
factor 1/n appears and there aren terms due to the differen
permutation of the dotted line as shown in Fig. 15. For
second and third term in Fig. 16, there is only one poss
routing of the dotted line which has non-zero value amo
the 2n possibilities, therefore the coefficients are 1/2n. For
the last term, the dotted line cannot be connected to the
of color two so there are (n21)(n21) routings with non-
zero value and the coefficient is (n21)2/n2. Now it is
straightforward to evaluate the superQ graph by summing
all the ordinaryQ graphs:

FIG. 14. Separation of the dotted loop from theQ graph.

FIG. 13. The evaluation ofQ(2,2,2).
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Q~n,2,n!5
~21!n11~n11!~n12!

2n
1

1

2n
~21!n~n11!

1
1

2n
~21!n~n11!1

~n21!2

n2

~21!nn~n11!

2~n21!

5
~21!(n11)~n11!

2n
. ~41!

It is not difficult to generalize this calculation to the ca
in which the superQ graph has color (m,2,n). One finds that
the coefficients before every ordinaryQ graphs, respectively
are @1,1/2n,1/2m,(n21)(m21)/mn#. However, it is more
complicated to find a general formula for the superQ graph
with color (m,n,p), in which the separation of the dotte
loop from links labeled bym,n obviously depends on the
third link with color p.

VII. THE SUPER-AREA OPERATOR AND ITS SPECTRUM

A natural question concerning the spin network states
supergravity is whether we can construct observables suc
the area and the volume of the space in terms of their ac
on super spin network states, as in the case of general
tivity @4#. Here we show that the answer is yes, if the ope
tor is suitably defined. In this section we construct the a
operator and calculating its eigenvalues in the context of
super spin network basis.

The gauge invariance of supergravity includes t
Osp(1u2) symmetry, hence we must require that the obse

FIG. 15. Separation of the dotted line from the symmetrizer

FIG. 16. Evaluation of theQ graph with color (n,2,n).
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ables be invariant under its full action. The expression for
area operator in quantum general relativity, computed
@2–4#, is not an observable in supergravity, since it isnot
Osp(1u2) gauge invariant. But it is not difficult to exten
the definition of the area of a surface in general relativity
an expression which isOsp(1u2) invariant. Given a spatia
surfaceS, which is a two-dimensional manifold embedded
the spacetime manifoldM, we define the supersymmetr
area to be

A@S#5E
S
d2sAnanbE aIE I

b, ~42!

wherena is the normal vector of the surface and theE aI is
the conjugate momentum. The definition of area operato
closely related to the two-hand loop operatorT ab that we
have introduced in section three. When the loop shrinks
point, following @11# and using the identity about the supe
trace of theOsp(1u2) Lie algebra we find,

T ab@a#~s,t !5Str@Ua~s,t !E a
„a~ t !…Ua~ t,s!E b

„a~s!…#

52E aIE I
b . ~43!

As a result, the area of the small surface with sideL, to
zeroth order, can be written as

A@S#5 lim
L→`

(
I

AAI
2, ~44!

where

AI
25

1

2EsI

d2sE
sI

d2tna~s!nb~t!T ab@ast#~s,t!. ~45!

Now we define theOsp(1u2) invariant area operator to be

Â@S#5 lim
L→`

(
I

AÂI
2, ~46!

where

ÂI
25

1

2EsI

d2sE
sI

d2tna~s!nb~t!T̂ab@ast#~s,t!. ~47!

Next we want to consider the action of the area operator
spin network states. In@3,11#, the discrete spectrum of th
area operator in spin network states is worked out in differ
ways. One can divide the link, the element of the spin n
works, into ropes in loop representation so that the area
erator acts on the state as a second-order loop operator w
can be expressed in terms of the elementary grasp opera
or equivalently one can define the action of the area oper
on spin networks as inserting two trivalent intersections
the link by a new link of color 2, then calculate the eige
values of the operator by recoupling theory directly. Here
can define the action of superT variables in terms of the
04400
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elementary grasp operation. This allows us to calculate
spectrum of the operator in both ways.

Let us consider the former method first. The action of t
super operatorT a on the super spin networks can be defin
as Fig. 17. Basically as we have done in the previous s
tions, we can decompose super spin networks into the o
nary SU~2! ones and then consider the action of the opera
on them separately. From Fig. 4, we see the super link
color 2 can be divided into two components, so the cor
sponding action of the super operator can be divided into
parts which can be illustrated in Fig. 18. For convenience,
us define these actions as ‘‘real grasp’’ and ‘‘dotted gras
respectively.

When decomposed in terms of SU~2! spin networks, we
find that there are several distinct grasp operations. The
possibility is the real grasp to the real line, which is exac
the normal grasps having appeared in@11#. The second one is
the dotted grasp acting on the real line, and the third on
the dotted grasp acting on the dotted line. Note that the
grasp acting on the dotted line vanishes since the only p
sible result is that two real lines combine together and
back.

Now it is straightforward to express the action of sup
operators on the link of colorn, but we need to be careful to
determine the multiplicative factors when using the Leibn
rule to define the action of area operator on it. Specifica
there is a great difference between the real grasp and
dotted grasp. Since the area operator is related to the se
order super loop operator, we can take theT ab as the handle

FIG. 17. Action ofT a with one grasp on the super spin ne
works.

FIG. 18. The super grasps in the view of ordinary SU~2! spin
networks.
8-9
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YI LING AND LEE SMOLIN PHYSICAL REVIEW D 61 044008
with two grasps in the super spin network basis. When t
grasps act on the link of colorn, they can grasp the sam
rope, or any two different ropes, so there aren2 possible
ways to grasp the link. But when the real grasps act on
dotted rope, the results of the action are zero. So the num
of ‘‘non-zero’’ grasps aren2 and (n21)2 to the doublet of
the super link, respectively. Also after the two dotted gra
act on the link of colorn, we need to separate the dotted ro
from the solid ropes so that we can apply the formula w
respect to the ordinary SU~2! spin networks. As we have
discussed in the last section, the separation involves the
tor 1/2n. As a result the coefficients before the graphs ac
by the dotted grasps aren/2. Figures 19 and 20 show th
actions of these two kinds of grasps on the link of colorn.

Finally, we arrive at the last step of this section, that is
calculate the spectrum of the area operator. Combining
two actions of the grasps together, we find the super s
network states are the eigenstates of theÂ2. It is straightfor-
ward to compute the eigenvalues ofT ab in the super spin
network basis@see Fig. 21# and the result is

Â2uGsg,ni ,ve&5(
i

ni~ni11!

4
l p
4uGsg,ni ,ve&, ~48!

wherel p is Planck length. As a result we find that the eige
values of the area operator are given by

FIG. 19. Action of the second order real grasp.

FIG. 20. Action of the second order dotted grasp.
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ÂuGsg,ni ,ve&5(
i
Ani~ni11!

4
l p
2uGsg,ni ,ve&

5(
i
Aj i S j i1

1

2D l p
2uGsg,ni ,ve&. ~49!

Here we have applied the identities and the formulas
SU~2! spin networks. This confirms the expected result t
the spectrum is discrete and is directly related to the eig
values of the Casmier operator ofOsp(1u2).

Next we conclude that we can get the same solution
eigenvalues of the area operator directly by employing
identity associated with the representation ofOsp(1u2), in
which the evaluation of the super projectors Eq.~40! and
superQ graphs~41! are involved. The procedure is shown
Fig. 22.

Finally, we note that we have computed here only a p
of the spectrum of the superarea operator, which is that c
cerned with the intersections of edges of the superspin
work with the surfaceS. As in the SU~2! case there are
additional eigenvalues associated with the possibility that
surfaceS intersects nodes of the superspin network. Th
eigenvalues may not be physically relevant as the probab
of such intersections is zero, but in any case they can
computed directly.

FIG. 21. The action of the area operator.

FIG. 22. The evaluation of area spectrum by means of the id
tity for super spin networks.
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VIII. CONCLUSIONS

In this paper we have taken an important step in the
tension of the results of loop quantum gravity to supergrav
and string theory. We have shown that forN51 supergravity
in 311 dimensions there is a straightforward extension
the methods developed in@3,4,11# from quantum genera
relativity. The extension toN52 is in progress and will be
reported shortly@22,24#. There is in fact nothing to preven
the direct extension to anyN, what is difficult is only the
question of whether, forN.2, all the degrees of freedom o
higher N supergravities are represented by an extension
the connection representation, or whether additional deg
of freedom need to be introduced. In this connection we m
note that the extension of the loop representation to repre
the states ofp-form gauge fields is straightforward, and h
been worked out forp52 @36,37# and p53 @38#. In the
latter case an extension of the loop representation that
se

m
i-

f
ys
s.

in
,

-
,’
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scribes a limit ofM theory in which only the three-form
field of 11 dimensional supergravity survives can be d
cussed, and a large set of exact non-perturbative states f
@38#.

Finally, the quantum deformation of the supersymmet
spin network states may be developed along the lines of@35#,
and applied both to yield the supersymmetric extension
the spin foam models@7,39# as well as to the backgroun
independent formulation ofM theory described in@40,41#.
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