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We define supersymmetric spin networks, which provide a complete set of gauge invariant states for super-
gravity and supersymmetric gauge theories. The particular ca®s pfL|2) is studied in detail and applied to
the non-perturbative quantization of supergravity. The supersymmetric extension of the area operator is defined
and partly diagonalized. The spectrum is discrete as in quantum general relativity, and the two cases could be
distinguished by measurements of quantum geometry.

PACS numbds): 04.65+e

[. INTRODUCTION supersymmetry is essential to the success of string theory,
which remains the only successful technique for investigat-
In this paper we describe an extension of the spin networkng quantum gravity in the perturbative regime. Another im-
states to supergravity. The spin network states play a fundgortant open area of investigation is the propertie8 &S
mental role in non-perturbative quantizations of both gaugetates in the non-perturbative regime. This could be very
theorieq[1,18] and gravitational theorig2—4]. In the gauge interesting as it could provide a way to compare results on
theory context they provide an orthonormal basis for latticeblack hole entropy obtained by both string thei®] and
gauge theorief1,18]. In this case the spin networks are la- loop quantum gravity20].
beled graphs on the lattice, whose edges are labeled by the In this paper we take a first step to the study of the non-
finite irreducible representations of the gauge grdupin  perturbative quantization of supersymmetric theories of
quantum gravity diffeomorphism invariance reduces the degravitation by constructing the spin network states for
grees of freedom, so that a basis of states invariant under 1 supergravity. We find a number of new features, which
spatial diffeomorphisms and local frame rotations are giversuggest that this could be a fruitful direction of investigation.
by the diffeomorphism classes of spin netwofR<4]. In this ~ The main result is a diagrammatic method for the construc-
case the group is 9@), for the chiral formulation based on tion and evaluation of spin networks for the supergroup
the Ashtekar-Sen variabld$,6], or SU2)+SU(2) in the Osp(1|2). As a first example we construct and partly diag-
relativistic casd7,8]. onalize the supersymmetric extension of the area operator.
Over the last ten years there has been a great deal éfs expected the spectrum is discrete, but different from that
progress in our understanding of the non-perturbative struosf quantum general relativity. This means that experimental
ture of quantum general relativity, leading to the completeprobes of geometry at the Planck scale could, in principle,
formulation of the quantum theofyAmong the key results distinguish different hypotheses about the local gauge sym-
are the discovery that diffeomorphism invariant observablesnetry. This is highly interesting in light of recent develop-
that measure aspects of the spatial geometry such as areasnoénts that suggest that astrophysical probes of Planck scale
surfaces and volumes of regions are finite, and have discretphysics can be developédl].
computatable spectrii2—4,11. This has led to a physical Another possible application of the formalism given here
understanding of the spin network states as eigenstates &f to supersymmetric Yang-Mills theory. It will be very in-
these geometrical observables. teresting to investigate the extent to which the physichl of
During this period there have been a number of papers=2 andN=4 super-Yang-Mills theory can be expressed in
which extend the methods used to supergrayit2—16. terms of the spin network states.
These have included the formulationd#=1,2[13-15, and It is straightforward to extend the construction here\to
N =4 [16] supergravity in terms of chiral, Ashtekar-Sen like =2 and higher supersymmetry, this will be described else-
variables, as well as the discovery of exact solutions to thevhere[22,23. Also, in progresg24] is an examination of
quantum constraintgl3,15. However, much more remains the canonical and boundary structureNof 1,2 quantum su-
to be done in this direction. The non-perturbative quantizapergravity, which extends results on a holographic formula-
tion of gravitational theories with extended supersymmetry igion of quantum general relativity with finite cosmological
largely unexplored territory, despite the fact that extendedonstan{25,8].
In the next section we review some of the basic results
aboutN=1 supergravity in chiral coordinates, first studied

*Email address: ling@phys.psu.edu by Jacobsorf12]. In Sec. lll we present some results from
"Email address: smolin@phys.psu.edu the representation theory @sp(1|2) which allow us in
For recent reviews sd®,10]. Sec. IV to construct quantum spin networks. The diagram-
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matic method for doing calculations with these states is in- D,E8=0, (8)
troduced in Sec. V, and the following sections describe ex-
amples and calculations. while the last one combines with the Hamiltonian constraint

Finally, we mention that we do not here provide rigorousto give
proofs for the assertions made, but we see no reason why a ach - Aebec
straightforward extension of the rigorous methods introduced EE Fap—19%€ap£°E°E"=0, 9)
in [26—29 to the present case should not be possible. Where 7,y is the curvature of the super connectidy:
Il. REVIEW OF QUANTUM SUPERGRAVITY Fapi=0aAp+[ Ay, Ayl (10

Supergravity in terms of the new variables maybe was,
initially investigated in[12] and extended if13,14]. In this
paper we will consider mainlii=1 supergravity. As shown
first by Jacobson if12], this can be formulated in chiral
variables which extend the Ashtekar-Sen variables of gener

lr;ltatagtg'dég tgg)fosrr?nm?gg2étcr:iir(;:in?;]'ga:t\slasrfbéfsaa:{ﬁérhegau_ge invariance. The theory is then written so that the as-
_ =d Stb) sp : a _ perpz sociatedOsp(1|2) connection is the canonical coordinate.

spin-3/2 fieldys, . As shown in[15] these fit together into a The right-handed part of the supersymmetry, generated by

connection field of the superlie algeb@sp(1[2) [which is  Eq. (5), is a dynamical constraint, being quadratic rather than

key feature of this kind of approach to supergravity is that

the supersymmetry gauge invariance has been split into two

parts, which play rather different roles. The left-handed su-
ersymmetry transformations generated by &g.combine

ith the SU2) Gauss’s lam3) to give a localOsp(1|2),

referred to in some referencgs3,15,3Q as GSU2)]. linear in the momentum. It joins with the Hamiltonian con-
We thus define the graded connection: straint to form a left-handed supersymmetry multiplet of dy-
i namical operators.
Agi=Adi+ YAQn, ) b

It is then natural in a chiral formulation of supergravity to

_ o ~ a i represent the left-handed supersymmetry kinematically, and
wheref Is the spatial index. IEj" and, are momenta ok, gojve it completely by expressing the theory completely in
and ¢, , respectively, we can define the graded momentumierms ofOsp(1|2) invariant states. These are the spin net-

as work states we will present shortly. The remaining, right-
~ handed, part of the supersymmetry is then imposed as a dy-
Ex=E{'+maQ" (2)  namical operator, and has the same status as the Hamiltonian
constraint.

The constraints that generate local gauge transformations can The loop representation for supergravity in the chiral rep-

then be expressed as usual as resentation was constructed [ii5] in terms of Osp(1|2)
. Wilson loops. These are defined in terms of the supertrace

~ | . . . .
G =D.E3+ — 724 a7 "B=0. 3y  takenin the fundamental three dimensional representation of
I a=i \/E A‘/’aB | OSF(1|2)
The left- and right-handed supersymmetry transformations a
are generated bj12], [ y]= StrPex ig dsAy*|=St,(A). (1)
Y
LA=D,ma—igE} Tiathap=0, (4 These Wilson loop states are subject to additional relations

s arising from intersections of loops. These are solved com-
RA= eiJkE?EijﬁB(_4iD[a¢§]+ \/Egeabcch):o, (5) pletely by the introduction of the spin network basis, which
are complete and orthogond].
where the cosmological constant is given hy= —g?. The We can construct the loop-momentum variables by insert-
diffeomorphism and Hamiltonian constraints can be derivedng the Osp(1|2) invariant momentun£? into the Wilson
by taking the Poisson brackets of E¢4) and (5). loops:
These may be written simply in terms of the fundamental

representation adDsp(1|2), which is three dimensional. The T a](s)=St{U,(A)EX a(s)]. 12
superlie algebrdDsp(1|2) is then generated by five>x33
matricesG,(I=1...5),given explicitly in[15]. Using them
we can define

It is straightforward to show that th&[ v] and 7% «](s)
form a closed algebra under Poisson brackets, which we will
call theN=1 super-loop algebra.

A'a=(Aia,¢§), (6) We will also need to describe operators quadratic in the
conjugate momenta, which in the loop representation are

5?:(55, ), R formed by inserting two momenta in the loop trace,
T3 a](s,t)=St{U,(s,1) E3(a(t))U,(t,5)EP(a(s))].
wherel =(i,A) labels the five generators @sp(1|2). Lal(st) (Uel S EN())ha(1.5)E%a ))](13)
Then the first two constraints can be combined into one
Osp(1]|2) Gauss constraint: The higher order loop operators are similarly defined as
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720 a](st, ...V) integer, and. can beJ or J—1/2 and—L<M<L. The di-
mension of the space of the representation with spis
= St{U,(s,0)E(a(l)) 43+1.
XULELWE(@(W)) . . . UV,S)EX(a(S))]. (14) The usual rules for combination of angular momentum

can be extended directly to these states. The result is a super
Racah-Wigner calculus which gives the results of decompo-
§itions of products of representations@&p(1|2). The ten-

sor product is completely reducible and is given by

As discussed ifi15], the supersymmetric extension of the
Chern-Simons state may be formed from the Chern-Simon
form of the superconnectiod,,

i 1 J1®i2=lj1—jal®li1—jot 12 ® .. [j1+]a.  (2D)
\Pscha)=exp{ﬁf d3xStr( ANF— §A/\A/\A”.
1 Note that this differs from the familiar S8) case in that
(15 representations which differ fromy+j, by both integers

This state is an exact solution to all the quantum constraints."’.‘.nd half integers are included. The Clebsch-Gordan coeffi-

Like the ordinary Chern-Simons state it also has a semiclaients for the expansion of the basis elements are determined

sical interpretation as the ground state associated with dlénlquely, from th_elr values for S_(IZ).
Sitter or anti-de Sitter spacetime. Next we consider the reduction of the tensor product of

three irreducible representations (j»,j3). As in the SU2)

case we have two different recoupling schemes. One can
couple the representationg,(j,) into jq, first and then
couple the result tg5 to give the final representation; or one

] . ~couples (,,j3) into j,; first and then couples tp; next.

Spin networks may be constructed for any Lie or SuperlieThese two representations are related to each other by the

algebra,A by extending the original definitiofil7,18. An  Racah sum rule in terms of super rotation 6-symbols. For

A-spin network is a labeled graph whose edges are labeledsy(1|2), the parity independent super-rotation 6-symbols
by the finite dimensional irreducible representationsof gre defined af21]:

and whose nodes are labeled by the associated intertwiners.
In quantum gravity spin networks states are associated Wit:{ j

IIl. FINITE DIMENSIONAL IRREDUCIBLE
REPRESENTATION OF Osp(1]|2)

Jihi j2No Jiohio]®
Jahs  JN Jaghag)

. . . 1 j2 j12
the gauge group of the connection, which we have seen i
the case ofN=1 supergravity in the chiral representation

[12] to beOsp(1]2). The representation theory Ofs p(1|2)

]S: (— 1)‘13()\13\2,7\3){

iz J 23

has been studied in detail [80—34], here we give some of (22
thg basic facts that we will need to construct the associate{flhen the Racah sum rule reads
spin network states.
The superlie algebra @sp(1|2), is constructed by three TR
bosonic generatorg;(i=1,2,3) and two fermionic genera- ( o ]
tors Qa(A=0,1). The commutation relations are la ) J2s
o Ners s ys
[9,.3]1=i k. (16 -3 (_1)@[1_1 s ?“’] [‘.2 I ?12] 29
I13 J2 ) Je23) U3z ) i3
Ji,Qal=1/2(7)RQs, (17)
[2:.Qal IAXE In a similar way the Biedenharn-Elliott identity can be con-
[Qn,Qp) = 1/2ep57; (18) structed for the super psymbols:
H 1
where 7' are Pauli matrices. R N ¥ B ER EES iy
Each irreducible representation of t@esp(1|2) contains iz Ji2z 23] lia 0 J1a
two adjacent S(2) representations. One is labeled by spin . . Dy
and the other byl—1/2. J may be taken as the label of the = (—1)fe l2 1 o
Osp(1]2) representation, and is related to the eigenvalues of i124 ja J12a 14

the quadratic Casmier operator of the supergrogp(1|2): . . sl . s
_ » Ja J12 J123( 7| J1a )2 124 (24
C=3;+€*"QaQs, (19 Ja 1 dn2a Lis 1 das)
by where 6, and ® are the sign factors related to the super-
R spins involved. The interesting fact is that except these two
C|J)=3(3+1/2)3). (200 sign factors, the structure of two relations are the same as the
structure for SW2) rotation algebra. Therefore, when we re-
For each] the representation is a graded vector space with atrict the sum of three super-spins in all the triangles
basis labeled byJ;L;M), whereJ is an integer or half- (j1,j2,j12), (J1,i3.j13, (j2,i3,i23 to be integers, then all
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the expressions go back to the normal Racah sum rule anca c a Y
the Biedenharn-Elliott identity for S(@).

IV. SPIN NETWORK STATES OF N=1 SUPERGRAVITY

We recall that a spin network state of quantum general i a b !
relativity, denotedT") consists of an embedding of closed = %
graphI’ into a fixed three manifol@ with edges labeled by a ¢, TAdn C d : J
the representation of SU(E3U(2),] and vertices labeled by bd,jEAdn ]

intertwining operators, namely distinct ways to decompose

the incoming representations into a singlet. Here we define

the superspin networks in the same way only by replacing d b d

the SU2) with superlie algebr®sp(1]2).? The elements of

the super spin networks are links and vertices. Notice that in FIG. 1. Recoupling theory foDsp(1|2) 64 symbols.
guantum general relativity, the link of colarcorresponds to

a parallel propogator of connectid¥, along this path in the where the sum of incident colors is odd. However, there is
spin n/2 representation of SW), here associated to every still a very useful decomposition, which we will give below.
link we also label a colom;, which is two times as the  As in the SU2) case, there is a recoupling theory based
superspinj; which labels the representation Gfsp(1|2). on the Racah sum rule and Biedenharn-Elliott identity in
For every vertew,, there are incoming links with colar,,  terms of thesuperrotation 6§ symbols. We can express the
and outcoming links with colon®!, so we can label the recoupling theory by Fig. 1.

‘ei . .
vertex by the total colow,==;nl—3;n2" which satisfies Here the sum is over labels such that the supgrsgm-

1/2<v.<k/2 bols satisfies the triangle inequalities Eg6).
<v =<k/2.

Corresponding to every super spin netwoblé{,n; ,v,),
there is a super spin network stgfe*%,n; ,v,| in the Hilbert V. GRAPHIC REPRESENTATION
space of the supergravity. As an independent basis, the super OF THE SUPER SPIN NETWORKS

spin network can also be expressed as the bras so that a

A AR We can now give a diagrammatic notation fosp(1|2)
general state in this representation is given by

spin networks which is useful for computation. We follow

the method developed [d] and elaborated ifiL1] for quan-

tum general relativity in which a diagrammatic notion for
U(2) spin network states was developed by modifying no-
ations used by Penro$&7] and Kauffman and Linn§g35].

The result is a diagrammatic notation of super spin networks

based on the connection between them and the representation

W[IS9]:=(I'SYW). (25)

We now list some basic facts about the super spin network
As in the SU2) case there is no intertwiner associated to
trivalent nodes because given

13, 3| <J5=< 3.+ 34, (26) theory of the supergrou@sp(1/2).
then the map from the tensor products of two representations A. Element of the diagrams
to the reduced representation is unique. The basic fact about the $2) representation theory on

The condition that the sum of three colors of the links\yhich the Penrose and Kauffman and Linns notation rests is
adjacent to a trivalent vertex must sum to an even numbeat gl irreducible representations can be obtained by sym-
does not hold, because both even and odd spins appear in thatrizing products of the fundamental representation. In the
sum(2.1). As the color of the link is twice the spin, the edges c55e ofOsp(1|2) all irreducible representations can be ob-
of a trivalent vertex can be any integers such that 88)  tzined via a process of graded symmetrizing, in which there
holds. ) are extra signs for even and odd parts of the representations.

If the valences adjacent to the same vertex are more thafere are in fact two different fundamental representations
three, intertwiners are needed to label the different mapg,), the Osp(1]2), which are complex conjugates of each
from the incoming representations to the singlet state. As ifyher. et us consider first the left handed fundamental rep-

the SU2) case the multivalent vertices can be decomposegesentation. It is a three dimensional graded vector space,
in terms of trivalent vertex connected by internal edges, a§hose elements may be written

described in4].
Note that this means that there is no simple way to de- N

compose th©sp(1|2) spin networks completely in terms of fa:( & )

ordinary spin networks because there is no ordinary spin net- ©

work vertex corresponding to the superspin network verticeg,here A= (0,1) denotes the left-handed & spinor index
part anda = 0 denotes the third component. Here we take the
&Ea=p to be fermionic while thef,= ¢ is bosonic. The
2t is also possible to extend the construction to the “quantumgrade of the index(«) is defined to be one fap and zero
graded group,”Osp(1|2),. We do not carry this out here. for A. Under the action 0Osp(1|2), &, transforms as

(27)
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o A 0

« =;| |4
6 m— . ) 7

a

o A 0

FIG. 3. Construction of unit element in representation with spin

FIG. 2. Unit element in fundamental representation Ofone

Osp(1]2).

a 1 ’ !
Ear=Uy s, (28) 5(a,ﬁ,)<aﬁ>=§[5a,aaﬁ,ﬁ+(—1)9<a 9B 55,968 1.

where 3x3 matrix U, is an element in the fundamental (35

representation 0Dsp(1/2). _ This allows us to generalize the Penrose diagrammatic nota-
The higher irreducible representations are formed by tak;q for SU2) spin networks. We indicate the elements of a

ing graded symmetric products of this fundamental represensner spin networks by bold lines, the elements wit{ZU

tation. For instance, the basis states Jor1 span a five jjices by thin lines, and the third componesit= £, by

dimensional space, which can be constructed by SYMM&otted lines. Then we can denote #ie& and its components

trized tensor products of two states in the fundamental rep- ~ . L .
resentation, as as Fig. 2. Then it is straightforward to express E8p) as

Fig. 3.
1 Let us consider the component formulation of this expres-
Elapy=5 Ealpt (~ 10D ], (29 sion. When the indices of delta are @Yspinor indices, it is
easy to see that it goes back to the normal spin networks

We can then read off the components of the basis states &XPression. If one index is fermionic and the other one is
theJ=1 representation. They consist of a pair of(8)rep- bosonlc! they commut_e WI'.[h other and. we can denote the
resentations, given by expression by two vertical lines, one solid and one dotted. If

both indices are bosonic, which may be denoted by two ver-

Eap)=(Eap)  Endo))- (30 tical dotted lines. However, this term vanishes because the
graded symmetrization antisymmetrizes them and there is a
The first term is the bosonic component defined as single bosonic component. The procedure of the decomposi-

L tion of the super element can then be drawn as Fig. 4.

_ 1) (2 1 ,(2 Thus, we have a way to decompose the diagrams for

g(AB)_E(wS*)l//%)+"/j'(3)ws*)) 3D Osp(1]2) spin networks into combinations of $2) spin
network diagrams and dotted lines representing the single

and the second term is the fermionic component of the basisosonic component of the fundamental representation. It is

states straightforward to see how this works when applied to any
higher dimensional representation@&p(1|2), which is ob-

1 tained by making a graded symmetrizationndundamental
Endo =5 WD+ o). (32 ymangag Y
| _ o B A B 40
The other termp; ) vanishes due to the antisymmetrization. .
\

Under the action oDsp(1|2), the states transform as

g(alﬁl): U(“’B,)(aﬁ)gaﬁ, (33)

where :>< !

U(Q,B,)(aﬁ)zg[(_1)9(a)[9(l3’)*9(ﬁ)]ua,aUB,B E
+(—1)9@N9B)(—1)9(@lg(a)~g(B)] E
XU U, A]. (34) a B ¥ A B A0
If we only consider the unit element @sp(1|2) in this FIG. 4. Decomposition of the link with color 2 in super spin
representation, then we have networks into normal S(2) ones.
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qa)aﬂ AdyA, Ay A0

: 4

1 (L Sl 7w
— . i '

-

\ J

a[azan Ady--A, Ay A0 FIG. 7. Decomposition of trivalent vertex in which every link
has color two.
FIG. 5. Decomposition of the super link of color
B. Trivalent vertices

representations. The basic property is that all the terms Next we consider the tri-valent vertex. As there is no
whose corresponding graphs have two or more dotted linegstriction that the incident colors must add up to an even
must vanish also since we need to antisymmetrize them. As §,mber. as in the SW) case, the simplest trivalent node is
result, the basis states in any dimensional representation COfke one in which all three edges have color one. This node

sists of two components, can be visualized in two ways, depending on how the direc-
tion of time is read. One fermion with spin-1/2 meets one
Eay . .a= (&, ..a) Ea, . -An-lo))’ (36) boson with spin zero and then changes into one fermion, or

two fermions with spin-1/2 meet together forming into a bo-
son which is also singlet state. These processes are expressed

where .
by Fig. 6.
We next consider the case in which every link has color
Eay . .A)= i n, - Un) (37 two. This can be decomposed into the ordinary(Bspin

networks as shown in Fig. 7.

In general, if the sum of the three colors is even it can be
decomposed into four terms, each of which contains an or-
dinary spin network plus, possible dotted edges. We illus-
The unit element of the supergroup in this representation catrate it in Fig. 8.
be expressed as

Eay.. A0 = WA YA, - WA, Do) (38)

C. Simple closed diagrams: The supe® graph

Sarpr .. )\ P V=8 8P By (39) We have found that edges and nodes of superspin net-
works decompose into sums of terms, each of which consists
and the corresponding graph can be drawn as Fig. 5. Thus wa an ordinary spin network, perhaps dressed by dotted lines.
see that we can decompose a super spin network into a sufs a result any closed super spin network can be decom-
of diagrams, each of which is a normal spin network togetheposed into a sum of such terms. As an example, we describe
with dotted lines. In this decomposition each edge of thethe simplest example of a closed spin network, which is the
superspin network, with colan becomes two ordinary spin
network edges, the first amline without a dotted line and
the second with an—1 line with a single dotted line. This is
shown in Fig. 5.

a A 00 D 4 A B

Y B B 0!

FIG. 6. The three terms in the decomposition of the trivalent FIG. 8. Decomposition of trivalent vertex in which the sum of
vertex, in the case that all colors are equal to one. colors is even.
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111|:><

FIG. 9. Decomposition of the simple&t graph.

graph. The simplest one is the diagram in which every

link has color one. This supéd graph can be decomposed FIG. 11. The bracket identity for S&) spin networks.
into a sum of three components, each of which is an ordinary
spin network. This is illustrated in Fig. 9. traces over the S(@) representations that make up a repre-

Another interesting® diagram is the one in which the sentation ofOsp(1|2). In fact, the sign factors necessary to
colors of three links aren(,2,n). We will use it later in the turn a sum of traces into a supertrace are already built into
calculation of the area spectrum in quantum supergravity. Iour formalism by the sign factors that go into the graded
can be decomposed into four components in terms gPBU symmetrizations that define the edges and nodes of the super

spin networks as shown in Fig. 10. spin networks. In the example of the sugrgraph, as well
as in the examples that follow, one can see how this works
VI. EVALUATION OF SUPER SPIN NETWORKS explicitly.

As a direct application, we can calculate the super stan-

In the case of S(2) spin networks, the edges representdard closure of the super tangles, which is defined as the
projection operators, which live in the Temperly Lieb alge-supertrace of the holonomy of the flat connection in this
bra. These can always be decomposed using the brackgipresentation:
identity (see Fig. 11

As a result, associated with any ordinary spin network ol NN NN
there is a number which is called its evaluation. This was Stfj(%ia;__a:)=tfj(5/,:1§j__2:)“&(5':1/22_“2”:18)
first introduced by Penrosgl7]. It is now known to be a
special case of the Kauffman brackets polynomial when the . i .
quantum deformation parametge + 1. =(~DE2)+ 1)+ (D202~ 1/2) +1]

For the supergrou®sp(1|2), the spinor identity does =(—1)4. (40)
not exist any more. Therefore, there is no bracket identity

(although in the super loop re_pres_entation Some iOlemitiels—|ere when we take the trace of the dotted line, we find its
analogous to the Mandelstam identity can be expressed Walue is one '

g:?nag\?a?lzgt]s ZUSSS(;?C;;r?:g&g?fgg'?g)aggéxgggzg i Let us consider the simple sup€r graph in which the
into ordinary SUW2) spin networks, using the rules defined in colors of links are(1,2,1. After decomposing the graph into

the previous section, and then evaluating each com onentthe normal spin networks and taking the trace of them as
P . ’ . 9 . P 'shown in Fig. 12, we find the value of th@ graph is one.
The evaluation of a super spin network in fact corre-

) -~ .~ Also since this graph is equivalent to the super standard clo-
sponds to taking t_he Supertrace of a product of projectio ure with color twa(see the first step in Fig. 12we can find
operators on the direct product of a number of fundament qe value of this graph by E¢40) directly, in whichn equals

trﬁgrg\?;r&t;ﬁf::'o;rg? d];ﬁ;tr thsati;t ﬁg?wgfkei);p;e:;?gemufg(r?es o. If we consider another example in which the colors are
Y sP q 2,2, we have the answer illustrated in Fig. 13.

the fact that the supertrace can be decomposed into a sum

n

D-5
=

=(=D)* 2 +1) +1[(=D' A+ DI+ L(=D)' (1 +1)]
=3+(-1)+(-1) =1

FIG. 10. The general case of the decompositiofdofraph. FIG. 12. The evaluation o®(1,2,1).
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FIG. 13. The evaluation 0P (2,2,2). Ay e-dy 0 (4,00 ek U A4

In the third step the coefficient one fourth appears when FIG. 15. Separation of the dotted line from the symmetrizer.
we try to separate the dotted loop from the real-line loops.
Since initially the bosonic index is symmetrized with the (=1)""Y(n+1)(n+2)
fermionic indices, we have four different ways to connect the O(n.2n)= 2n
ropes to form loops. But the value of any loop which is
formed by connecting one real rope and one dotted rope +i(—1)”(n+1)+ (n—=1)2(=1)"n(n+1)
must be zero, therefore only one graph has non-zero value. 2n n2 2(n—1)
We llustrate the specific expansion in Fig. 14. The most
interesting® graph, which has important application to the (-1 D(n+1)
calculation of the area spectrum in supergravity, is the one - 2n : (41)
with colors (n,2,n). From the last section, we see this graph
can be divided into four graphs with respect to the ordinary |t js not difficult to generalize this calculation to the case
su2) spin networks. In Fig. 16 the bosonic index is symme-jn which the supe® graph has colorrfi,2,n). One finds that
trized with the fermionic indices. To evaluate all thesethe coefficients before every ordinaBygraphs, respectively,
graphs, we also need to separate the dotted loop from@ach gre[1,1/2n,1/2m, (n—1)(m—1)/mn]. However, it is more
graph. In other words, we must decouple the dotted line fromyomplicated to find a general formula for the su@egraph
the symmetrizer just as we have done for@@raph(1,2,)  with color (m,n,p), in which the separation of the dotted

and(2,22. . ~loop from links labeled bym,n obviously depends on the
When doing this one must be careful to obtain the rightihirq ink with color p.

coefficients for each term. The key point is that the dotted

line has to be connected to the dotted line and for ever

vertex the triangle inequality must hold. In general when the Il. THE SUPER-AREA OPERATOR AND ITS SPECTRUM

dotted line is separated from the symmetrizer of colothe A natural question concerning the spin network states of
factor 1h appears and there aneterms due to the different g, pergravity is whether we can construct observables such as
permutation of the dotted line as shown in Fig. 15. For thene area and the volume of the space in terms of their action
second and third term in Fig. 16, there is only one possiblgn super spin network states, as in the case of general rela-
routing of the dotted line which has non-zero value amongiyity [4]. Here we show that the answer is yes, if the opera-
the 2n possibilities, therefore the coefficients arerl/Zor oy js suitably defined. In this section we construct the area

the last term, the dotted line cannot be connected to the linkperator and calculating its eigenvalues in the context of the
of color two so there aren(—1)(n—1) routings with non-  syper spin network basis.
zero value and the coefficient is1{1)?/n®. Now it is The gauge invariance of supergravity includes the

straightforward to evaluate the sup®rgraph by summing Qsp(1]2) symmetry, hence we must require that the observ-
all the ordinary® graphs:

1
+%(—1) (n+1)

FIG. 14. Separation of the dotted loop from t®egraph. FIG. 16. Evaluation of th&® graph with color ,2,n).
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ables be invariant under its full action. The expression for the
area operator in quantum general relativity, computed in
[2—4], is not an observable in supergravity, since inist
Osp(1]|2) gauge invariant. But it is not difficult to extend
the definition of the area of a surface in general relativity to —— :O :>
an expression which i©sp(1|2) invariant. Given a spatial — —
surfaceS, which is a two-dimensional manifold embedded in
the spacetime manifold1, we define the supersymmetric
area to be

FIG. 17. Action of 72 with one grasp on the super spin net-

A[S]=f dZS\/nanbc‘fa'EF, (42)  works.
S

. , elementary grasp operation. This allows us to calculate the
wheren, is the normal vector of the surface and H# is spectrum of the operator in both ways.

the conjugate momentum. The definition of area operator is" | ¢t 5 consider the former method first. The action of the

b
closely related to the two-hand loop operaft® that we g ner operato?® on the super spin networks can be defined
have introduced in section three. When the loop shrinks to ag Fig. 17. Basically as we have done in the previous sec-

point, following[11] and using the identity about the super- tions “we can decompose super spin networks into the ordi-

trace of theOsp(1/2) Lie algebra we find, nary SU2) ones and then consider the action of the operator
on them separately. From Fig. 4, we see the super link of

T ] (s,t)=St{U,(5,1) E2(a(t))U,(t,5)EP(a(S))] color 2 can be divided into two components, so the corre-
alob sponding action of the super operator can be divided into two

=2E%¢EY. (43 parts which can be illustrated in Fig. 18. For convenience, let

us define these actions as ‘“real grasp” and “dotted grasp,”
respectively.

When decomposed in terms of &) spin networks, we
find that there are several distinct grasp operations. The first

As a result, the area of the small surface with sideto
zeroth order, can be written as

e 5 possibility is the real grasp to the real line, which is exactly
ALS]= L'TLZ ‘/A— (44 the normal grasps having appearedlia]. The second one is
the dotted grasp acting on the real line, and the third one is
where the dotted grasp acting on the dotted line. Note that the real

grasp acting on the dotted line vanishes since the only pos-
1 sible result is that two real lines combine together and go
A== f d?a f d?mn,(o)ny(N T a,,](o,7). (45  back. . ,
2] S| Now it is straightforward to express the action of super
] ) ) operators on the link of colan, but we need to be careful to
Now we define thedsp(1]2) invariant area operator to be getermine the multiplicative factors when using the Leibnitz
rule to define the action of area operator on it. Specifically,
- ) = there is a great difference between the real grasp and the
A[S]= lim 2| \/A— (46) dotted grasp. Since the area operator is related to the second
Lo order super loop operator, we can take 7f& as the handle

where

A=y | o | ey ey, @

S

Next we want to consider the action of the area operator on

spin network states. 103,11], the discrete spectrum of the 1
area operator in spin network states is worked out in different T
ways. One can divide the link, the element of the spin net-
works, into ropes in loop representation so that the area op-
erator acts on the state as a second-order loop operator which
can be expressed in terms of the elementary grasp operation; ]
or equivalently one can define the action of the area operator

on spin networks as inserting two trivalent intersections on

the link by a new link of color 2, then calculate the eigen-

values of the operator by recoupling theory directly. Here we FIG. 18. The super grasps in the view of ordinary(&Uspin
can define the action of supér variables in terms of the networks.
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(3]
I

—
=
i

(3]
=

+1llod-17 544

FIG. 19. Action of the second order real grasp.
FIG. 21. The action of the area operator.

with two grasps in the super spin network basis. When two

grasps act on the link of colam, they can grasp the same . ni(ni+1) ,

rope, or any two different ropes, so there are possible AlTS9,n; !Ve>:2 T|p|rsgvni Ve)

ways to grasp the link. But when the real grasps act on the '

dotted rope, the results of the action are zero. So the number 1

of “non-zero” grasps aren? and (n— 1)? to the doublet of =Ei Jillit3 127500, ve).  (49)

the super link, respectively. Also after the two dotted grasps
act on the link of colon, we need to separate the dotted rope
from the solid ropes so that we can apply the formula withHere we have applied the identities and the formulas in
respect to the ordinary 92) spin networks. As we have SU(2) spin networks. This confirms the expected result that
discussed in the last section, the separation involves the fathe spectrum is discrete and is directly related to the eigen-
tor 1/2n. As a result the coefficients before the graphs acted/alues of the Casmier operator ©fsp(1|2).
by the dotted grasps am¥2. Figures 19 and 20 show the  Next we conclude that we can get the same solution to
actions of these two kinds of grasps on the link of calor  eigenvalues of the area operator directly by employing the
Finally, we arrive at the last step of this section, that is toidentity associated with the representation@$p(1|2), in
calculate the spectrum of the area operator. Combining thehich the evaluation of the super projectors E40) and
two actions of the grasps together, we find the super spisuper® graphs(41) are involved. The procedure is shown in

network states are the eigenstates ofARelt is straightfor- ~ Fig- 22.
ward to compute the eigenvalues B° in the super spin Finally, we note that we have computed here only a part
network basi§see Fig. 2] and the result is of the spectrum of the superarea operator, which is that con-

cerned with the intersections of edges of the superspin net-
work with the surfaceS As in the SU2) case there are

additional eigenvalues associated with the possibility that the
surfaceS intersects nodes of the superspin network. These
eigenvalues may not be physically relevant as the probability

) ) ) of such intersections is zero, but in any case they can be
wherel, is Planck length. As a result we find that the eigen-computed directly.

values of the area operator are given by

R ni(n;+1
wrsan v =3 MO v, s
I

1/ n
" " -
1 A\2 __Ln214 n _Ln214
P ) P - 2 p
= n n—1 O
n
n
n=1 : n n n
I H _1)n+1n_+1
| . 1294 2 RN T
i TN —_1 n — - +1
i — n2 ”i 2” lp (-1)” 4 lp ](.] Z)IP
| |
|

FIG. 22. The evaluation of area spectrum by means of the iden-

FIG. 20. Action of the second order dotted grasp. tity for super spin networks.
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VIll. CONCLUSIONS scribes a limit of M theory in which only the three-form
In this paper we have taken an important step in the exfield of 11 dimensional supergravity survives can be dis-

tension of the results of loop quantum gravity to supergravit)FUSSEd’ and a large set of exact non-perturbative states found

and string theory. We have shown that kb1 supergravity ]‘_ . .
in 3+1 dimensions there is a straightforward extension of _Finally, the guantum deformation of the supersymmetric

the methods developed if8,4,11 from quantum general spin netv\(ork states may be developed along t_he IinéSij
relativity. The extension ttN=2 is in progress and will be and applled both to yield the supersymmetric extension of
reported shorthf22,24]. There is in fact nothing to prevent f[he spin foam model§7,39] as well as to .the packground
the direct extension to ani, what is difficult is only the independent formulation oM theory described ij40,41.
guestion of whether, foN>2, all the degrees of freedom of
higher N supergravities are represented by an extension of
the connection representation, or whether additional degrees We are grateful to Shyamoli Chaudhuri, Laurent Freidel,
of freedom need to be introduced. In this connection we maylurat Gunyadin, Renata Loll, Fotini Markopoulou, Adrian
note that the extension of the loop representation to represe@icneanu and Mike Reisenberger for conversations and en-
the states op-form gauge fields is straightforward, and has couragement. This work was supported by the NSF through
been worked out fop=2 [36,37] and p=3 [38]. In the  grant PHY95-14240 and a gift from the Jesse Phillips Foun-
latter case an extension of the loop representation that delation.
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