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The main properties of the Levi-Civita` solutions with a cosmological constant are studied. In particular, it is
found that some of the solutions need to be extended beyond certain hypersurfaces in order to have geodesi-
cally complete spacetimes. Some extensions are considered and found to give rise to a black hole structure but
with plane symmetry. All the spacetimes that are not geodesically complete are Petrov typeD, while in general
the spacetimes are Petrov typeI.

PACS number~s!: 04.20.Jb, 97.60.Lf
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I. INTRODUCTION

Recently, we studied the Levi-Civita` ~LC! solutions and
found that the solutions have a physical meaning at leas
sP@0,1#, wheres is a free parameter related to the mass
unit length@1#. In this paper, we shall study the Levi-Civit`
solutions with a cosmological constant~LCC!. This is not
trivial, as the inclusion of a cosmological constant usua
makes the problem considerably complicated and chan
the spacetime properties dramatically.

The paper is organized as follows: In Sec. II we sh
study the main properties of the LCC solutions, includi
their singularity behavior. We shall show that some spa
times are not geodesically complete and need to be exten
In Sec. III we will present some extensions and show t
some of the extended spacetimes have black hole struc
but with plane symmetry. To distinguish these black ho
from the spherical ones, we shall refer to them asblack mem-
branes. To further study the LCC solutions, we devote Se
IV to investigate their Petrov classifications, while Sec.
contains our main conclusions.

II. MAIN PROPERTIES OF THE LEVI-CIVITA `

SOLUTIONS WITH A COSMOLOGICAL CONSTANT

The LCC solutions are not new and were rederived s
eral times, for example, see@2# and references therein. It ca
be shown that, in addition to the cosmological constant,
solutions haveonly two physically relevant parameters, sim
lar to the LC solutions, and that, without loss of generali
they can be written in the form

ds25Q~r !2/3$P~r !22~4s228s11!/3Adt2

2P~r !2~8s224s21!/3Adz2

2C22P~r !24~2s212s21!/3Adw2%2dr2, ~1!

where$xm%[$t,r ,z,w% are the usual cylindrical coordinate
A[4s222s11. The constants is related, but not equal, to
0556-2821/2000/61~4!/044003~5!/$15.00 61 0440
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the mass per unit length, andC is related to the angle defect
@1,3#. The functionsP(r ) andQ(r ) are defined as

P~r ![
2

A3L
tanSA3Lr

2 D , Q~r ![
1

A3L
sin~A3Lr !.

~2!

It is easy to show that asL→0 the above solutions reduce t
the LC solutions@4#. To study these solutions, it is foun
convenient to consider the two casesL.0 andL,0, sepa-
rately.

A. L>0

In this case, from Eq.~2! we find that, asr→0, we have
Q(r )'r , P(r )'r . Then the corresponding solutions a
proach the LC ones. As a result, the metric~1! has the same
singularity behavior as the LC ones near the axisr 50. In
particular, for the casess50 ands51/2, the solutions are
free of spacetime singularities@1#. Thus one may conside
the LCC solutions withs50,1/2 as cylindrical analogues o
the de Sitter solution, although there is a foundamental
ference between these two cases. In the present case
Weyl tensor is different from zero, and the spacetimes
not conformally flat~cf. the discussion in Sec. IV!. As a
matter of fact, they are all Petrov typeD. In addition to the
usual three Killing vectorsj (t)5]t, j (z)5]z, j (w)5]w, the
solution with s50 has one more Killing vectorj (0)5t]z
2z]t, which corresponds to a Lorentz boost in thetz plane,
while the solution withs51/2 has a fourth Killing vector
given by j (1/2)5C21w]z2Cz]w, which corresponds to a
rotation in thewz plane. Since in the latter case the extrins
curvatures of the two spacelike surfacesr 5const andt
5const are identically zero, it is difficult to consider th
spacetime as having cylindrical symmetry. Instead, one m
extend thew coordinate from the range@0,2p# to the range
~2`,1`!, so the resulting spacetime has plane symme
@1#.

On the other hand, Eq.~2! shows that the solutions usu
ally are also singular on the hypersurfacer 5r g[p/a,
©2000 The American Physical Society03-1
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wherea[(3uLu)1/2. To study the singular behavior of th
solutions near this hypersurface, we use the relationsQ(r )
'R, P(r )'R21, as r→r g , whereR[r 2r g . Substituting
these expressions into Eq.~1!, we find

ds2'R4~4s225s11!/3Adt22R24~2s22s21!/3Adz2

2C22R2~8s212s21!/3Adw22dr2 ~R'0!. ~3!

The corresponding Kretschmann scalar is given by

RabgdRabgd5
64~s21!2~2s11!2~4s21!2

27A3R4 ~R'0!,

~4!

which is always singular asR→0, except for the cases wher
s521/2,1/4,1. It can be shown that all 14 scalars built fro
the Riemann tensor have the same properties. Therefor
the casess521/2,1/4,1 the singularities on the hypersu
face r 5r g are coordinate ones, and to have the correspo
ing spacetimes geodesically complete, the solutions nee
be extended beyond this surface. Note that, similar to
solutions withs50,1/2, all these three solutions are Petr
type D. Moreover, in addition to the usually three Killin
vectors, they also have a fourth Killing vector, given, resp
tively, by j (21/2)5C21w]z2Cz]w, j (1/4)5C21w]t
2Ct]w, andj (1)5z]t2t]z. Using the same arguments a
those given for the solution withs51/2, the solution with
s521/2 can be also considered as representing plane s
metry.

Combining the analysis of the singular behavior of t
solutions on the axis and on the hypersurfacer 5r g , we can
see that all the solutions are singular on both of the t
surfaces, except for the ones withs521/2,0,1/4,1/2,1,
which are the only solutions that are Petrov type D~see the
discussion given in Sec. IV!. These singularities make
physical interpretation of the solutions very difficult. A po
sible way to circumvent these difficulties is to cut the spa
times along the hypersurfacer 5r S,r g and then join the
part r ,r S with an asymptotically de Sitter region, whil
considering the singularities on the axis as representing m
ter sources@3#. On the other hand, the solutions withs
50,1/2 are free of spacetime singularities on the axis, bu
have them on the hypersurfacer 5r g . To give a meaningful
physical interpretation of these solutions, one may takr
5r g as the symmetry axis, and then extend the spaceti
beyondr 50. Whens521/2,1/4,1, the corresponding solu
tions are singular on the axis, but free of spacetime sin
larities on the hypersurfacer 5r g . Thus we need to exten
the spacetimes beyond this surface. We shall leave these
siderations to the next section.

B. L<0

As r→0, the functionsQ(r ) and P(r ) have the same
asymptotical behavior as those given in the last case. A
result, in both of the two cases the solutions have the s
singularity behavior as the LC ones near the axisr 50; that
is, they are all singular, except for the casess50 and s
51/2.
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On the other hand, Eq.~2! shows that in the present cas
Q(r ) and P(r ) are monotonically increasing functions ofr
and are positive for any givenr .0, in contrast with the case
L.0, where they are periodic functions@cf. Eq. ~2!#. When
r→1`, we findQ(r )'ear /(2a), P(r )'2/a, and the cor-
responding metric, aftert andz are rescaled, takes the form

ds2'C0e2ar /3~dt22dz22C22dw2!2dr2 ~r→1`!,
~5!

whereC0 is a positive constant. This is exactly the anti–
Sitter spacetime, but written in horospherical coordinates@5#.
Since the metric does not depend on the parameters, we
conclude thatall the LCC solutions with negative cosmolog
cal constant are asymptotically anti–de Sitter.

III. SOLUTIONS REPRESENTING BLACK MEMBRANES

As shown in the last section, the solutions withs
561/2 both forL.0 andL,0 have a fourth Killing vec-
tor j5C21w]z2Cz]w, which represents the rotation in
variant in thezw planes, or in other words, the extrins
curvature of the planes is identically zero. This prope
makes these two-dimensional planes more likely to h
plane symmetry than a cylindrical one@1#. Then, the ranges
of r and w should be extended to2`,r , w,1`. In the
following we shall denote such an extended coordinatew by
Y. Once this is done, we can see that the spacetime is
geodesically complete. In particular, the solutions withs
51/2 for bothL.0 andL,0 are not singular on the hy
persurfacer 50 and need to be extended beyond it, while t
one with s521/2 andL.0 is not singular on the hyper
surfacer 5r g and needs to be extended beyond this surfa
too. In the following, we shall consider these cases se
rately.

Case~a!: s51/2, L.0. In this case, making the coor
dinate transformations

T5
2t

3
, X5cos2/3S ar

2 D , Y5
aw

3C
, Z5

az

3
, ~6!

we find that the corresponding solution can be written in
form

dss51/2
2 5

9

a2 $ f ~X!dT22 f 21~X!dX2

2X2~dY21dZ2!% ~L.0!, ~7!

where f (X) is defined as

f ~X![
1

X
2X2. ~8!

From Eq.~6! we can see that the region 0<r<r g is mapped
onto the region 0<X<1, and the pointr 5r g , where the
spacetime is singular, is mapped onto the pointX50. Ex-
tending X to the range~2`, 1`!, we find that in the ex-
tended spacetime two new regionsX.1 andX,0 are in-
cluded. The curvature singularity atX50 divides the whole
3-2
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spacetime into two unconnected regionsX>0 andX<0. In
the regionX<0, the functionf (X) is always negative and
the X coordinate is timelike. Then, the spacetime is ess
tially time dependent and the singularity atX50 is spacelike
and naked. AsX→2`, the metric is asymptotically de Sit
ter @6#:

dss51/2
2 'dT̃22e2aT̃/3~dX21dY21dZ2! ~X→2`!,

~9!

whereT5eaT̃/3 and X,Y,Z have been rescaled. The corr
sponding Penrose diagram is given by Fig. 1~a!.

When X>0, f (X) is greater than zero for 0<X,1 and
less than zero forX.1; that is,X is spacelike when 0<X
,1 and timelike whenX.1. On the hypersurfaceX50 it
becomes null, which represents a horizon. Since the sp
time singularity atX50 now is timelike, the horizon is ac
tually a Cauchy horizon. AsX→1`, the spacetime is also
asymptotically de Sitter and approaches the same form
that given by Eq.~9!. The corresponding Penrose diagram
given by Fig. 1~b!.

Case~b!: s521/2,L.0. In this case, the spacetime
singular at r 50 and is free of curvature singularity atr

FIG. 1. The Peurose diagram for the cases561/2, L.0. ~a!
X<0, ~b! X>0. Each point actually represents a plane. The lin
X50 represent spacetime singularities, while the linesX51 repre-
sent Cauchy horizons.LsuXu→1`, the spacetimes are asympto
cally de Sitter.
04400
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5rg . Thus, to have a geodesically complete spacetime,
need to extend the solution beyond the hypersurfacer 5r g .
To make such an extension, we can introduce a new coo
nateX by X5sin2/3(ar /2) and rescale the coordinatest, z,
andw then, we will find that the corresponding metric tak
the same form as that given by Eq.~7!. This is not expected
As we know, in the limitL→0 the solution withs51/2
approaches the Rindler space@7#, which represents a uni
formly gravitational field and is free of any kind of spac
time curvature singularities, while the one withs521/2 is
the static Taub solution with plane symmetry@8# and is sin-
gular on the hypersurfaceX50. The total mass of the Tau
spacetime is negative, while the one of Rindler is not@9#.
However, the presence of the cosmological constant ma
up these differences and turns the two spacetimes into b
identical.

Case~g!: s51/2, L,0. In this case, the spacetime
free of curvature singularity for 0<r ,1` and needs to be
extended beyond the hypersurfacer 50. Similar to the last
two cases, introducing the new coordinateX as X
5cosh2/3(ar /2) and rescaling the cordinatest,z,w, the cor-
responding metric can be written in the form

dss51/2
2 5

9

a2 $2 f ~X!dT21 f 21~X!dX2

2X2~dY21dZ2!% ~L,0!, ~10!

wheref (X) is given by Eq.~8!. From the expression ofX we
can see that the region 0<r ,1` is mapped onto the region
1<X,1`. The regionX,1 is an extended region. Afte
the extension, a spacetime curvature singularity appear
X50, which divides the wholeX axis into two partsX<0
andX>0. It can be shown that, unlike the caseL.0, now
the spacetime is static in the regionX<0 and the curvature
singularity atX50 is timelike and naked. AsX→2`, the
spacetime is asymptotically anti–de Sitter spacetime@5#:

dss51/2
2 '

9

a2X̃2 ~dT22dX̃22dY22dZ2! ~X→2`!,

~11!

whereX̃51/X. The corresponding Penrose diagram is giv
by Fig. 2~a!.

In the regionX>0, the spacetime singularity atX50 be-
comes spacelike. Except for this curvature singularity, th
is a coordinate one located atX51. This coordinate singu-
larity actually represents an event horizon. As shown in
last section, the spacetime is asymptotically anti–de Si
(X→1`). The corresponding Penrose diagram is given
Fig. 2~b!. This is the black hole solution with plane symm
try found recently by Cai and Zhang with vanishing electr
magnetic charge@10#.

Case~d!: s521/2, L,0. In this case, a spacetime sin
gularity appears atr 50, and the region 0<r ,1` is geo-
desically complete. However, since in this case the solu
has also plane symmetry, hence the range ofr should be
taken as2`,r ,1`. Then one may ask, what is the phys
cal interpretation of the spacetime in the regionr<0? To an-

s
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swer this question, let us introduce a new coordinateX
52sinh2/3(ar /2) and rescale the other three; then, we w
find that the metric takes the same form as that given by
~10!. From the expression forX we can see that the regio
0<r ,1` now is mapped onto the region2`,X<0,
while the region2`,r<0 is mapped onto the region
<X,1`. In the region 0<r ,1` the solution represents
static spacetime with a naked singularity located atr 50. The
spacetime is asymptotically anti–de Sitter, and the co
sponding Penrose diagram is given by Fig. 2~a!. In the region
2`,r<0 the solution represents a black hole solution w
plane symmetry, and the corresponding Penrose diagra
given by Fig. 2~b!.

IV. PETROV CLASSIFICATION OF THE SOLUTIONS

To further study the LCC solutions, we shall consid
their Petrov classifications in this section. Choosing a n
tetrade(a)

m 5$ l m,nm,mm,m̄m% as

l m5
1

&
$~gtt!

1/2d t
m1d r

m%,

nm5
1

&
$~gtt!

1/2d t
m2d r

m%,

mm5
1

&
$~2gzz!

1/2dz
m1 i ~2gww!1/2dw

m%,

m̄m5
1

&
$~2gzz!

1/2dz
m2 i ~2gww!1/2dw

m%,

~12!

where the metric coefficients can be read off directly fro
Eq. ~1!, we find that the nonvanishing components of t
Ricci and Weyl tensors are given by

R54L,

C0[2Cmnldl mmnl lmd

52
L~4s21!

4D2 cos2 u sin2 u
@D cos2 u12s22s21#,

C2[2
1

2
Cmnldl mmnm̄lnd

52
L

12D2 cos2 u sin2 u
@D~8s224s21!cos2 u

232s3~s21!16s227s11#,

C4[2Cmnldl mmnl lmd5C0 , ~13!

whereu[A3Lr /2. Note that the above expressions are va
for any L, including L50. WhenL,0 the functionu be-
comes imaginary, and the trigonometric functions beco
04400
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hyperbolic functions. SinceC0 , C2 , and C4 are the only
components of the Weyl tensor different from zero, it can
shown that the metric in general is Petrov typeI @4#, unless
~i! C050, C2Þ0; ~ii ! C0563C2Þ0. In the last two cases
the solutions are Petrov typeD. Further specializationC0
5C45C250 leads to Petrov typeO solutions. However,
the last case holds only whenL50 ands50,1/2. That is, all
the solutions withLÞ0 are either Petrov typeI or D. From
Eq. ~13! we find that the conditionC050 andC2Þ0 yields
s51/4, while the one C0563C2Þ0 yields s
521/2,0,1/2,1. Thusall the solutions withLÞ0 are Petrov
type I, except for the ones withs521/2,0,1/4,1/2,1,which
are Petrov type D. In the latter cases, all of the solution
have an additional Killing vector@cf. Sec. II#. Since confor-
mally flat solutions are necessarily Petrov typeO, we con-
clude that all the solutions withLÞ0 are not conformally
flat, and the de Sitter and anti–de Sitter solutions are
particular cases of the LCC solutions.

It is interesting to note that if we introduce a new para
etert by s51/41t, we find that the metric can be obtaine
from the one with s51/42t following the changet
5 iC21w8, w5 iCt8. This indicates some kind of symme
tries with respect to the solutions51/4. The study of the
Ricci and Weyl tensors using the null tetrad defined by E
~12! will make this symmetry clear. For any givent, we find

FIG. 2. The Penrose diagram for the casess561/2, L,0. ~a!
X<0, ~b! X>0. The linesX50 represent spacetime singularitie
while the linesX51 represent event horizons.LsuXu→1`, the
spacetimes are asymptotically anti–de Sitter.
3-4
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R1~r ,t!5R2~r ,t!, C0
1~r ,t!52C0

2~r ,t!,

C2
1~r ,t!5C2

2~r ,t!, C4
1~r ,t!52C4

2~r ,t!,
~14!

where quantities with ‘‘1’’ denote the ones calculated from
the metric withs51/41t and the quantities with ‘‘2’’ de-
note the ones calculated from the metric withs51/42t.
The above relations are valid even forL50. From Eq.~14!
we can see that, for any givent, the solution withs51/4
1t and the one withs51/42t have the same Petrov cla
sification. For example, the solution withs50 and the one
with s51/2 all belong to Petrov typeD whenLÞ0 and to
Petrov typeO whenL50.

V. CONCLUSIONS

In this paper, we have studied the main properties of
Levi-Cività solutions with a cosmological constant an
found that, among other things, some solutions need to
extended beyond certain hypersurfaces in order to ob
geodesically complete spacetimes. We have considered s
s
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extensions for the case where the solutions have a rota
Killing vector in the zw plane and found that some of th
extensions give rise to black hole structures, but with pla
symmetry,black membranes. It is interesting to note tha
these structures exist even in the range2`,r<0. This
naturally raises the question, what kind of spacetimes do
general solutions represent in this region? This problem
currently under our investigation.

To further study the solutions, we have also conside
their Petrov classifications and found that all solutions t
are not geodesically complete, including the ones that re
sent black membranes, are Petrov typeD, while in general
they are Petrov typeI. As we know, Kerr-Newmann solu
tions are Petrov typeD, too. So it would be very interesting
to show that all black hole solutions with plane or cylindric
symmetry are Petrov typeD.
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