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The main properties of the Levi-Civiolutions with a cosmological constant are studied. In particular, it is
found that some of the solutions need to be extended beyond certain hypersurfaces in order to have geodesi-
cally complete spacetimes. Some extensions are considered and found to give rise to a black hole structure but
with plane symmetry. All the spacetimes that are not geodesically complete are Petr®y typie in general
the spacetimes are Petrov type

PACS numbds): 04.20.Jb, 97.60.Lf

I. INTRODUCTION the mass per unit length, a@is related to the angle defects

[1,3]. The functionsP(r) andQ(r) are defined as
found that the solutions have a physical meaning at least for 2 JV3AT )

o [0,1], whereo is a free parameter related to the mass per  P(r) \/ﬁta"( 2 | Q(r) \/ﬁsm( V3AT).

unit length[1]. In this paper, we shall study the Levi-Civita 7
solutions with a cosmological constafitCC). This is not

trivial, as the inclusion of a cosmological constant usuallyt js easy to show that as— 0 the above solutions reduce to
makes the problem considerably complicated and changgfe | C solutions[4]. To study these solutions, it is found

the spacetime properties dramatically. convenient to consider the two casks-0 andA <0, sepa-
The paper is organized as follows: In Sec. Il we Sha”rately.

study the main properties of the LCC solutions, including
their singularity behavior. We shall show that some space-
times are not geodesically complete and need to be extended.
In Sec. lll we will present some extensions and show that In this case, from Eq(2) we find that, ag — 0, we have
some of the extended spacetimes have black hole structur®(r)~r, P(r)~r. Then the corresponding solutions ap-
but with plane symmetry. To distinguish these black holegproach the LC ones. As a result, the metfi¢ has the same
from the spherical ones, we shall refer to thenblaek mem-  singularity behavior as the LC ones near the axis0. In
branes To further study the LCC solutions, we devote Sec.particular, for the cases=0 ando=1/2, the solutions are
IV to investigate their Petrov classifications, while Sec. Vfree of spacetime singularitigd]. Thus one may consider

Recently, we studied the Levi-Civitd.C) solutions and
1

A. A>0

contains our main conclusions. the LCC solutions withr=0,1/2 as cylindrical analogues of
the de Sitter solution, although there is a foundamental dif-
Il. MAIN PROPERTIES OF THE LEVI-CIVITA ference betvv_een_ these two cases. In the present case the
SOLUTIONS WITH A COSMOLOGICAL CONSTANT Weyl tensor is different from zero, and the spacetimes are

not conformally flat(cf. the discussion in Sec. IV As a
The LCC solutions are not new and were rederived sevmatter of fact, they are all Petrov tyfiz In addition to the
eral times, for example, s¢2] and references therein. It can usual three Killing vectors = dt, £, =3z, £,)=de, the
be shown that, in addition to the cosmological constant, thgolution with o=0 has one more Killing Vectok )=tz
solutions havenly two physically relevant parameters, simi- — zgt, which corresponds to a Lorentz boost in taglane,
lar to the LC solutions, and that, without loss of generality,while the solution withoc=1/2 has a fourth Killing vector

they can be written in the form given by &/2=C pdz—Czde, which corresponds to a
rotation in thepz plane. Since in the latter case the extrinsic
d?=Q(r) 23 P(r) 240 ~Bo+ LisAG2 curvatures of the two spacelike surfaces const andt
5 =const are identically zero, it is difficult to consider this
— P(r)2807-40-1)3Aq 72 spacetime as having cylindrical symmetry. Instead, one may
5 extend thep coordinate from the rangd, 2] to the range
—C72P(r) 420720 -UBAG o2 —dr?, (1) (—o,+), S0 the resulting spacetime has plane symmetry
[1].

where{x*}={t,r,z,¢} are the usual cylindrical coordinates,  On the other hand, Ed2) shows that the solutions usu-
A=40%—20+1. The constantr is related, but not equal, to ally are also singular on the hypersurface: rq=mla,
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where a=(3|A|)¥2. To study the singular behavior of the
solutions near this hypersurface, we use the relat@(s)
~R, P(r)=R1, asr—rgy, whereR=r—r,. Substituting
these expressions into E@.), we find

On the other hand, Ed2) shows that in the present case
Q(r) and P(r) are monotonically increasing functions of
and are positive for any giver>0, in contrast with the case
A >0, where they are periodic functiofsf. Eq. (2)]. When
r— -+, we findQ(r)~e*"/(2a), P(r)~2/a, and the cor-

2_ _ . .
ds?~RAH4 50t DIAG2— R responding metric, afterandz are rescaled, takes the form

4(20%—o— 1I3AG 2

—C_2R2(8‘72+2‘7_1)/3Adq02—dr2 (R%O) (3) dSZ~COeZO‘”3(dt2—dZZ—szdqoz)—dr2 (r_)+oo),
5
The corresponding Kretschmann scalar is given by ©
whereC, is a positive constant. This is exactly the anti—de
REBYOR . 64(0—1)%(20+1)*(40—1)? (R~0) Sitter spacetime, but written in horospherical coordinfes
apys 27A3R? ' Since the metric does not depend on the parametexe
(4)  conclude thaall the LCC solutions with negative cosmologi-

o _ cal constant are asymptotically antie Sitter
which is always singular @&— 0, except for the cases where

o=—1/2,1/4,1. It can be shown that all 14 scalars built from 1Il. SOLUTIONS REPRESENTING BLACK MEMBRANES
the Riemann tensor have the same properties. Therefore, in
the casesr=—1/2,1/4,1 the singularities on the hypersur- As shown in the last section, the solutions with
facer=ry are coordinate ones, and to have the correspond= *+ 1/2 both forA>0 andA <0 have a fourth Killing vec-
ing spacetlmes geodesically complete, the solutions need tor é=C ™ 1¢dz— Czde, which represents the rotation in-
be extended beyond this surface. Note that, similar to theariant in theze planes, or in other words, the extrinsic
solutions witho=0,1/2, all these three solutions are Petrovcurvature of the planes is identically zero. This property
type D. Moreover, in addition to the usually three Killing makes these two-dimensional planes more likely to have
vectors, they also have a fourth Killing vector, given, respecplane symmetry than a cylindrical ofi¢]. Then, the ranges
tively, by £_1»=C '@dz—Czdp, &1ay=C '@dt  of r and ¢ should be extended to »<r, ¢<+c. In the
—Ctde, and §(;)=2zdt—tgz. Using the same arguments as following we shall denote such an extended coordirats
those given for the solution witr=1/2, the solution with Y. Once this is done, we can see that the spacetime is not
o= —1/2 can be also considered as representing plane syngeodesically complete. In particular, the solutions with
metry. =1/2 for bothA>0 andA <0 are not singular on the hy-
Combining the analysis of the singular behavior of thepersurface =0 and need to be extended beyond it, while the
solutions on the axis and on the hypersurfaeey, we can  one witho=—1/2 andA>0 is not singular on the hyper-
see that all the solutions are singular on both of the twasurfacer =ry and needs to be extended beyond this surface,
surfaces, except for the ones witlh=—1/2,0,1/4,1/2,1, too. In the following, we shall consider these cases sepa-
which are the only solutions that are Petrov typgd2e the rately.
discussion given in Sec. IV These singularities make a  Case(a): o=1/2, A>0. In this case, making the coor-
physical interpretation of the solutions very difficult. A pos- dinate transformations
sible way to circumvent these difficulties is to cut the space-
times along the hypersurfage=ry<rg, and then join the T— E X—COSZ/3<a—r) v—
part r<ry with an asymptotically de Sitter region, while 3 B 2 B
considering the singularities on the axis as representing mat-
ter sourceg3]. On the other hand, the solutions with  we find that the corresponding solution can be written in the
=0,1/2 are free of spacetime singularities on the axis, but déorm
have them on the hypersurfacery. To give a meaningful
physical interpretation of these solutions, one may take
=r4 as the symmetry axis, and then extend the spacetimes
beyondr=0. Wheno=—1/2,1/4,1, the corresponding solu-

agp
3C’

9
olsf,:l,zz?{f(X)de—f*l(X)olx2

tions are singular on the axis, but free of spacetime singu- —X¥(dY?+dZ%)}  (A>0), @
larities on the hypersurface=ry. Thus we need to extend heref (X defined
the spacetimes beyond this surface. We shall leave these coff-'€"® (X) Is defined as
siderations to the next section. 1
f(X)= < X2. (8

B. A<O

As r—0, the functionsQ(r) and P(r) have the same From Eq.(6) we can see that the region<0 <r 4 is mapped
asymptotical behavior as those given in the last case. As anto the region &X<1, and the point =r,, where the
result, in both of the two cases the solutions have the samgpacetime is singular, is mapped onto the p&{rt0. Ex-

singularity behavior as the LC ones near the ax0; that
is, they are all singular, except for the cases0 and o
=1/2.

tending X to the range(—o, +), we find that in the ex-
tended spacetime two new regioKs>1 and X<0 are in-
cluded. The curvature singularity =0 divides the whole
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=rgq. Thus, to have a geodesically complete spacetime, we
need to extend the solution beyond the hypersurface, .

To make such an extension, we can introduce a new coordi-
nate X by X=sir?3(ar/2) and rescale the coordinatgsz,
and ¢ then, we will find that the corresponding metric takes
the same form as that given by E{). This is not expected.

As we know, in the limitA—O0 the solution witho=1/2
approaches the Rindler spafé], which represents a uni-
formly gravitational field and is free of any kind of space-
time curvature singularities, while the one with= —1/2 is

the static Taub solution with plane symme{8] and is sin-
gular on the hypersurfacé=0. The total mass of the Taub
spacetime is negative, while the one of Rindler is f@&jt
However, the presence of the cosmological constant makes
up these differences and turns the two spacetimes into being
identical.

Case(y): o=1/2, A<O0. In this case, the spacetime is
free of curvature singularity for€r <+ and needs to be
extended beyond the hypersurface 0. Similar to the last
two cases, introducing the new coordinaté as X
=cosh/3(ar/2) and rescaling the cordinateéz,¢, the cor-
responding metric can be written in the form

9
ds%,:l,z:?{—f(X)dT2+f—1(X)dx2

—X3(dY?+dZ?)} (A<O0), (10

(b)

wheref(X) is given by Eq(8). From the expression of we

can see that the regionsr <+« is mapped onto the region
Sl<X<+®. The regionX<<1 is an extended region. After
the extension, a spacetime curvature singularity appears at
X=0, which divides the whole& axis into two partsX<0

and X=0. It can be shown that, unlike the cade>0, now

the spacetime is static in the regiog=0 and the curvature
singularity atX=0 is timelike and naked. AX— —«, the
spacetime is asymptotically anti—de Sitter spacefifie

FIG. 1. The Peurose diagram for the case +1/2, A>0. (a)
X=<0, (b) X=0. Each point actually represents a plane. The line
X=0 represent spacetime singularities, while the likesl repre-
sent Cauchy horizong\ s|X|— + =, the spacetimes are asymptoti-
cally de Sitter.

spacetime into two unconnected regiots 0 andX<0. In
the regionX=<0, the functionf(X) is always negative and
the X coordinate is timelike. Then, the spacetime is essen- 9

tially time dependent and the singularity>at 0 is spacelike d3¢27=1/2~ TE(dTZ—d"f(Z—dYZ—de) (X— —),
and naked. As{— —x, the metric is asymptotically de Sit- a“X

ter [6]: 11

whereX=1/X. The corresponding Penrose diagram is given
by Fig. 2a).
© In the regionX=0, the spacetime singularity 2t=0 be-
comes spacelike. Except for this curvature singularity, there
where T=¢e*'"* and X,Y,Z have been rescaled. The corre- is a coordinate one located At=1. This coordinate singu-
sponding Penrose diagram is given by Figa)1 larity actually represents an event horizon. As shown in the
When X=0, f(X) is greater than zero for9X<1 and last section, the spacetime is asymptotically anti—de Sitter
less than zero foX>1; that is, X is spacelike when €X  (X— +®). The corresponding Penrose diagram is given by
<1 and timelike whenX>1. On the hypersurfac¥=0 it Fig. 2b). This is the black hole solution with plane symme-
becomes null, which represents a horizon. Since the spacéy found recently by Cai and Zhang with vanishing electro-
time singularity atX=0 now is timelike, the horizon is ac- magnetic charggl0].
tually a Cauchy horizon. AX— +, the spacetime is also Case(6): o=—1/2, A<0. In this case, a spacetime sin-
asymptotically de Sitter and approaches the same form agularity appears at=0, and the region &r<+© is geo-
that given by Eq(9). The corresponding Penrose diagram isdesically complete. However, since in this case the solution
given by Fig. 1b). has also plane symmetry, hence the range should be
Case(B): o=-—1/2,A>0. In this case, the spacetime is taken as—»<r<+o. Then one may ask, what is the physi-
singular atr=0 and is free of curvature singularity at cal interpretation of the spacetime in the regien0? To an-

A2, ~dT2—e2TR(dX2+dY2+dZ?) (X —0),

«TI3
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swer this question, let us introduce a new coordingte

= —sint?¥(ar/2) and rescale the other three; then, we will
find that the metric takes the same form as that given by Eg.
(10). From the expression foX we can see that the region
O0<r<+o now is mapped onto the regior 0o<X=<0,
while the region—»<r=<0 is mapped onto the region 0
< X<+, In the region @r <+« the solution represents a
static spacetime with a naked singularity located-a0. The
spacetime is asymptotically anti—de Sitter, and the corre-
sponding Penrose diagram is given by Fig)2In the region
—oo<r=0 the solution represents a black hole solution with
plane symmetry, and the corresponding Penrose diagram is !

given by Fig. Zb). (@

IV. PETROV CLASSIFICATION OF THE SOLUTIONS

To further study the LCC solutions, we shall consider
their Petrov classifications in this section. Choosing a null
tetrade(,,={l*,n*,m*,m*} as

[#= i{(gtt)mﬂk" 3}
V2

1
nt= — V2gm_ st ’
‘fz{(gtt) t '}

1 |
M= o {(= 020 V201 (— 0,) Y200},

o) FIG. 2. The Penrose diagram for the cases* 1/2, A<O0. (a)
X=<0, (b) X=0. The linesX=0 represent spacetime singularities,
1 while the linesX=1 represent event horizond.s|X|— +, the
mt= —{(- 922)1/25/;_ i(— g¢¢)l/25M}, spacetimes are asymptotically anti—de Sitter.
‘/2 ¢

12
(12 hyperbolic functions. Sinc&,, ¥,, and ¥, are the only

where the metric coefficients can be read off directly fromcomponents of the Weyl tensor different from zero, it can be
Eq. (1), we find that the nonvanishing components of theshown that the metric in general is Petrov typiet], unless

Ricci and Weyl tensors are given by (i) Wo=0,W,#0; (i) Vo= =3W¥,#0. In the last two cases,
the solutions are Petrov typR. Further specialization?
R=4A, =V,=W¥,=0 leads to Petrov typ®© solutions. However,
the last case holds only wheérn=0 ando=0,1/2. That s, all
Vo= —wal“m”l”m‘s the solutions withA #0 are either Petrov typeor D. From

Eq. (13) we find that the conditio ;=0 andW¥,+ 0 yields
A(do—1) ) o=1/4, while the one Vy==x3V¥,#0 vyields o
=~ Ab%cod a7 g P cos O+ 207~ —1], =—1/2,0,1/2,1. Thusll the solutions withA # 0 are Petrov
type |, except for the ones with=—1/2,0,1/4,1/2,1which
1 are Petrov type DIn the latter cases, all of the solutions
V,=— ECWWI“m”ﬁKn‘s have an additional Killing vectdrcf. Sec. II|. Since confor-
mally flat solutions are necessarily Petrov typgwe con-

A 5 clude that all the solutions withh # 0 are not conformally
= T 12D2co2 ASi? 0[D(8U —4g—1)cos ¢ flat, and the de Sitter and anti—de Sitter solutions are not
particular cases of the LCC solutions.
—320%(0—1)+60°—T70+1], It is interesting to note that if we introduce a new param-
eter by o= 1/4+ 7, we find that the metric can be obtained
\II4E—CMM5I“mVI"m5= Vo, (13 from the one with 0=1/4—7 following the changet

=iC 1¢’, =iCt’. This indicates some kind of symme-
where#=\/3Ar/2. Note that the above expressions are validtries with respect to the solutiom=1/4. The study of the
for any A, including A=0. WhenA <0 the functioné be-  Ricci and Weyl tensors using the null tetrad defined by Eg.
comes imaginary, and the trigonometric functions becomé&12) will make this symmetry clear. For any givenwe find

044003-4



LEVI-CIVITA SOLUTIONS WITH A COSMOLOGICAL . . .

R*(r,7) =R (r,7), \Pa’(r,r)z—\lfg(r,r),

W;(F,T):WE(Y,T), \PZ(I’,T)I—\I’;(Y,T),
(14

where quantities with +” denote the ones calculated from
the metric witho=1/4+ 7 and the quantities with =" de-
note the ones calculated from the metric wiit+ 1/4— 7.
The above relations are valid even far=0. From Eq.(14)
we can see that, for any given the solution withc=1/4

+ 7 and the one wittr=1/4— 7 have the same Petrov clas-
sification. For example, the solution with=0 and the one
with o=1/2 all belong to Petrov typ® when A #0 and to
Petrov typeO when A =0.

V. CONCLUSIONS

PHYSICAL REVIEW D 61 044003

extensions for the case where the solutions have a rotating
Killing vector in thez¢ plane and found that some of the
extensions give rise to black hole structures, but with plane
symmetry, black membraneslt is interesting to note that
these structures exist even in the rangece<r<0. This
naturally raises the question, what kind of spacetimes do the
general solutions represent in this region? This problem is
currently under our investigation.

To further study the solutions, we have also considered
their Petrov classifications and found that all solutions that
are not geodesically complete, including the ones that repre-
sent black membranes, are Petrov typewhile in general
they are Petrov typé. As we know, Kerr-Newmann solu-
tions are Petrov typ®, too. So it would be very interesting
to show that all black hole solutions with plane or cylindrical
symmetry are Petrov typb.
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