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Dual-resonator speed meter for a free test mass
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A description and analysis are given of a ‘‘speed meter’’ for monitoring a classical force that acts on a test
mass. This speed meter is based on two microwave resonators~‘‘dual resonators’’!, one of which couples
evanescently to the position of the test mass. The sloshing of the resulting signal between the resonators, and
a wise choice of where to place the resonators’ output waveguide, produce a signal in the waveguide that~for
sufficiently low frequencies! is proportional to the test-mass velocity~speed! rather than its position. This
permits the speed meter to achieve force-measurement sensitivities better than the standard quantum limit
~SQL!, both when operating in a narrow-band mode and a wideband mode. A scrutiny of experimental issues
shows that it is feasible, with current technology, to construct a demonstration speed meter that beats the
wideband SQL by a factor 2. A concept is sketched for an adaptation of this speed meter to optical frequencies;
this adaptation forms the basis for a possible LIGO-III interferometer that could beat the gravitational-wave
standard quantum limithSQL, but perhaps only by a factor 1/j5hSQL/h&3 ~constrained by losses in the
optics! and at the price of a very high circulating optical power—larger byj22 than that required to reach the
SQL.

PACS number~s!: 95.55.Ym, 03.65.Bz, 04.80.Nn, 42.50.Dv
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I. INTRODUCTION

A conceptual design for aquantum speed meterwas pro-
posed several years ago@1#. This speed meter couples to th
velocity of a free test mass and thereby can monitor a c
sical force that acts on the test mass with a precision be
than the standard quantum limit~SQL!.

The motivation for coupling to test-mass velocity rath
than position is that~in the absence of the coupling! the
test-mass velocity is equal to momentum divided by ma
and momentum, by contrast with position, is a constant
the test mass’s free motion, so it commutes with itself
different times and is a quantum nondemolition~QND! ob-
servable @2#. This enables the speed meter to beat
classical-force SQL without any special squeezed-s
preparation of the speed meter’s microwave pump field
frequency-dependent homodyne detection of its output sig
field. By contrast, to beat the classical-force SQL, a me
that couples to position must incorporate a squeezed-s
pump and/or frequency-dependent homodyne detection;
Appendix A.

In Ref. @1# two variants of the speed meter were su
gested, one based on an optical-fiber delay line and the o
on coupled microwave resonators~‘‘dual resonators’’!. In
this paper we analyze in detail the dual-resonator scheme
show that it can be realized in principle with current expe
mental technology.

An important possible application of this speed meter
as the readout device for a new class of laser-interferom
gravitational-wave antennas that may beat the SQL w
using unusually low laser power@3–5#.

The speed meter proposed in Ref.@1# is based on two
identical, weakly coupled microwave resonators as show
Fig. 1. It is a fascinating characteristic of such coupled re
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nators that, when one is driven at their common eigen
quencyve , it is the other that becomes excited. Resonato
is pumped on resonance by the voltageU0cosvet of an input
waveguide, so resonator 1 becomes excited at frequencyve .
The eigenfrequency of resonator 1 is modulated by the p
tion x of the test mass

ṽe~x!5veS 12
x

dD , ~1!

whered is a length that characterizes the resonator’s tuna
ity ~cf. Sec. V!; this modulation puts a voltage signal propo
tional to positionx into resonator 2, and a voltage sign
proportional to velocitydx/dt into resonator 1. The velocity
signal flows from resonator 1 into an output waveguide, fro
which it is monitored.

One can understand the production of this velocity sig
as follows: The weak coupling between the resonators ca

FIG. 1. Schematic diagram of the coupled-resonator quan
speed meter.
©2000 The American Physical Society02-1
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voltage signals to slosh periodically from one resonator
the other at the frequencyV!ve . After each cycle of slosh-
ing, the sign of the signal is reversed, so the net signa
resonator 1 is proportional to the difference of the position
times t and t12p/V, i.e. is proportional to the test-mas
velocity so long as the test mass’s frequenciesv of oscilla-
tion arev!V.

Actually, we shall find that the optimal regime of oper
tion for the speed meter is at signal frequenciesv;V. In
this regime, the voltage signal in resonator 1 and the co
sponding output voltage signal are sums over time der
tives of the test-mass position@Eqs.~25!–~27!#. Correspond-
ingly, the speed meter does not monitor just the speed,
rather the speed plus time derivatives of the speed.

In this paper we shall analyze in detail the operation
the speed meter, first ignoring the resonators’ dissipa
losses and associated noise~Sec. III!, then including the
losses and noise~Sec. IV!. We shall express the spee
meter’s performance in terms of the spectral densityS(v) of
the net noise that it produces when monitoring a class
signal forceFs(t) that is acting on the test mass. As a fou
dation for this, in Sec. II we discuss the SQL for force me
surements in the language of spectral density. In Sec. V
discuss the most serious practical impediments to achie
a sensitivity that actually beats the SQL by a significant f
tor and conclude that a demonstration experiment is feas
with current technology. In Appendix A we compare th
speed meter with a position meter based on a single mi
wave resonator with homodyne readout in the output wa
guide at a frequency-dependent homodyne phase~‘‘quantum
variational technique’’!; and in Appendix B we describe
speed-meter-based conceptual design for a LIGO-t
gravitational-wave antenna that can beat the gravitatio
wave SQL, but requires very high light power.

II. STANDARD QUANTUM LIMITS

The standard quantum limits~SQL! for measurement of a
classical signal forceFs(t) acting on a free test mass, a
usually given in the literature~e.g. @2#!, are not convenien
since they are based on some assumed shape of the fo
time dependence~most commonly a single-cycle sinusoid
a long, monochromatic wave train!. In this paper we prefer
the greater generality of a SQL expressed in terms of the
sided spectral densityS(v) for the net noise in a measure
ment ofFs(t); S(v) is defined such that for optimal signa
processing the measurement’s power signal to noise rat

S

N
5E

2`

` uFs~v!u2

S~v!

dv

2p
. ~2!

HereFs(v) is the Fourier transform ofFs(t)

Fs~ t !5E
2`

`

Fs~v!e2 ivt
dv

2p
, ~3!

in which we adopt the 2p convention of signal processin
theory and microwave technology, and thee2 ivt sign con-
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vention of quantum physics~so field amplitudes and annihi
lation operators evolve ase2 ivt in the Heisenberg picture!.

A. Wideband SQL

An ordinary position meter~sometimes called coordinat
meter! monitors the positionx(t) of a free test mass, an
thereby deduces the classical signal forceFs(t) that acts on
the mass. The spectral density of the net noise in this fo
monitoring is

S~v!5m2v4Sx1SF , ~4!

wherem is the mass of the test mass,Sx(v) is the spectral
density of the noisexm(t) that the meter superimposes on t
output position signal, andSF(v) is the spectral density o
the fluctuating back-action forceFBA(t) that the meter exerts
on the test mass. For an ordinary position meter,xm(t) and
FBA(t) are uncorrelated, and the Heisenberg uncerta
principle implies thatSxSF>\2/4 @2#. We shall assume tha
the position meter is as perfect as possible, correspondin
equality in this uncertainty relation. If the spectrum of th
classical force is concentrated near the frequencyvF and the
position meter is optimally tuned for monitoring this forc
@so the ratioSF /Sx is adjusted to make the two terms in E
~4! equal atv5vF], then the net spectral density is

S~v!5\mv2 for v5vF ,
~5!

S~v!>\mv2 for other values of v.

This is the spectral-density form of the SQL. The corr
sponding minimum detectable amplitude for a force that la
for a timetF is

FWB SQL.A\mvF
2

tF
. ~6!

This is the usual form of the wide-band SQL for a sinusoid
force.

In order for the meter to beat this usual wide-band S
by a factorjWB,1,

F.jWBFWB SQL, ~7!

the spectral density of the net noise must obey the condi

S~v!5jWB
2 \mv2 ~8!

in the range of frequencies of the detected force. We s
regard Eq.~8! as a definition of the amountjWB(v) by
which our speed meter beats the broad-band SQL.

B. Narrowband SQL

If the test mass has a restoring force so it is an oscilla
with eigenfrequencyv0, and/or the noisesxm(t) andFBA(t)
are correlated~with cross spectral densitySxF), then the net
noise in the measurement ofFs(t) is
2-2
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S~v!5m2~v22v0
2!2Sx22m~v22v0

2!SxF1SF . ~9!

For such a system, the noise can be made especially sm
a narrow-band measurement centered on the frequency

vmeter
2 5v0

21
SxF

mSx
. ~10!

If the noisesSx andSF can be regarded as constant over t
narrow band, and they are constrained only by the Heis
berg uncertainty relationSxSF2SxF

2 5\2/4 @2#, then

S~v!5m2~vmeter
2 2v2!2Sx1

\2

4Sx
. ~11!

Suppose, now, that we use such a SQL-limited mete
measure a sinusoidal force with frequencyvF.vmeter and
with durationtF@2p/vF so the bandwidth of the force i
Dv52p/tF!vF . Then, ifSx is optimized, the amplitude o
the minimum detectable force@as computed by settingS/N
.1 in Eq. ~2!# is at the narrow-band SQL:

F.FNB SQL5
1

tF
A\vFm. ~12!

Correspondingly, in order to beat the narrow-band SQ
the meter’s net spectral density~9! in the vicinity of some
frequencyvmeter must have the form:

S~v!5A~vmeter
2 2v2!21B, ~13!

where the parametersA and B ~whose ratio is adjustable!
satisfy

AB5jNB
4 \2m2

4
. ~14!

The factor jNB,1 is the amount by which the minimum
detectable force is below the narrow-band SQL~12!.

Another viewpoint onjNB is the following: Define

S̄F[SF2
SxF

2

Sx
, L̄v[Lv1

SxF

Sx
, ~15!

where Lv is the spectral response of the test mass@Lv5
2mv2 for a free mass andLv5m(v0

22v2) for a lossless
oscillator#. Then the net noise@Eq. ~9! with m(v22v0

2) re-
placed by2Lv# takes the form

S~v!5L̄v
2 Sx1S̄F . ~16!

If the noises are constrained only by the Heisenberg un
tainty relation, SxSF2SxF

2 5SxS̄F5\2/4, and one choose

vmeter to be at a zero ofL̄v
2 , then comparison with Eqs.~13!

and~14! reveals the following expression for the amount
which the narrow-band SQL can be beaten:
04400
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jNB
2 5U L̄v

m~vmeter
2 2v2!

U . ~17!

III. MICROWAVE SPEED METER
IN THE LOSSLESS LIMIT

A. Equations of motion and their solution

When we neglect all losses in the test mass and in
resonators~and all associated fluctuating forces!, except
those due to coupling to the output waveguide, then
equations of motion for the speedmeter of Fig. 1 take
following form @6#:

d2q1~ t !

dt2
12de

dq1~ t !

dt
1ve

2S 12
x~ t !

d D 2

q1~ t !

52veVq2~ t !12
ve

r
Ue~ t !, ~18a!

d2q2~ t !

dt2
1ve

2q2~ t !52veVq1~ t !12
ve

r
U0 cosvet,

~18b!

m
d2x

dt2
5

rve

d
q1

22
rve

2d
q0

21Fs~ t !. ~18c!

Here the notation is as follows:
ve is the common~angular! eigenfrequency of the two

resonators andV!ve is the weak-coupling frequency a
which energy sloshes between the two resonators;

q1,2(t) are generalized coordinates of resonators 1 an
so defined that the energy in resonatorj is

Ej5
r

2ve
q̇j

21
rve

2
qj

2 , ~19!

with an overdot representing a time derivative;
r is the characteristic impedance of the resonators;
de[1/2te* wherete* is the relaxation time of resonator

due to energy flowing into the output waveguide;
Ue is the fluctuating voltage imposed on resonator 1 fro

the output waveguide;
U0 is the driving voltage from the input waveguide, and

assumed to be the result of a very strong waveguide field
a very weak coupling to the resonator, so the waveguid
fluctuational voltages can be ignored andU0 can be regarded
as a classical c-number;

x(t) is the position of the free test mass,d is the tuning
length of resonator 1, andx/d is assumed to be so small th
(x/d)2 can be neglected;

Fs(t) is the classical signal force acting on the test ma
q0 is the amplitude of the classical excitation ofq1

q052
U0

Vr
, ~20!
2-3
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and the constant classical force2(rve/2d)q0
2 @second term

in Eq. ~18c!# is applied to the test mass to counteract
mean radiation pressure force@time average of first term in
Eq. ~18c!#.

One can take two points of view on the quantitiesq1 , q2 ,
x, andUe : one can regard them as classical quantities, w
Ue(t) described by a classical spectral densitySUe

(v), in
which case Eqs.~18! are classical equations of motion; o
one can regard them as quantum mechanical operators i
Heisenberg picture, in which case Eqs.~18! are the Heisen-
berg evolution equations. The two viewpoints will produ
the same final conclusions, if one chooses the cor
quantum-mechanically-based value forSUe

. We shall return
to this in Sec. III B below.

We resolveq1 andq2 into their quadrature components

q15~q01a1!cosvet1b1sinvet,
~21!

q25a2cosvet1S 2
de

V
q01b2D sinvet.

Note that the classical input driving voltage 2U0cosvet, act-
ing on resonator 2, produces its primary classical excita
q0cosvet in resonator 1 as was advertised in Sec. I; but th
is also a secondary classical excitation in resonator 2 pro
tional to the loss ratede that was ignored in Sec. I.

The quadrature amplitudesa1,2 andb1,2 carry the pertur-
bations caused by coupling to the test-mass position an
the output waveguide. We solve for these perturbations
inserting expressions~21! into the equations of motion~18!
and linearizing:

da1~ t !

dt
1dea1~ t !52Vb2~ t !2

Ues~ t !

r
, ~22a!

db1~ t !

dt
1deb1~ t !5

veq0

d
x~ t !1Va2~ t !1

Uec~ t !

r
,

~22b!

da2~ t !

dt
52Vb1~ t !, ~22c!

db2~ t !

dt
5Va1~ t !, ~22d!

m
d2x

dt2
5FBA~ t !1Fs~ t !. ~22e!

HereUec andUes are the quadrature amplitudes of the flu
tuating voltage imposed on resonator 1 from the out
waveguide,

Ue5Ueccosvet1Uessinvet, ~23!

and FBA(t) is the back-action force that the speed me
exerts on the test mass averaged over a microwave pe
2p/ve ,
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FBA~ t !5
q0rve

d
a1~ t !. ~24!

In the Heisenberg-picture interpretation of Eqs.~22!, all the
functions of timet are quantum operators except the classi
force Fs(t).

We solve Eqs.~22! in the frequency domain using th
Fourier-transform conventions of Eq.~3!. The frequencies of
interest are in the rangeuvu!ve and can be thought of a
side-band frequencies of the microwave carrierve . Equa-
tions ~22! imply, for the quadrature amplitudes of resonat
1:

a1~v!5
ivUes~v!

rL~v!
,

~25!

b1~v!52
iv

L~v! S veq0

d
x~v!1

Uec~v!

r D ,

where

L~v![V22v22 ivde . ~26!

The output-wave voltage entering the output wavegu
can be expressed in the form@6#:

Uout~ t !5Ue~ t !2
2de

ve
r

dq1~ t !

dt

5@Uec~ t !22derb1~ t !#cosvet

1@Ues~ t !12dera1~ t !#sinvet, ~27!

where we have ignored the carrier signal 2derq0 sinvet.
When measuring the classical signal forceFs(t), the noise
will be minimized by monitoring the sidebands of an op
mally chosen quadrature component of the output wave. T
monitoring can be done via homodyne detection@which, at
microwave frequencies, can be achieved by mixing the o
put wave Uout(t) with a strong local-oscillator fieldULO
}sin(vet1F), where F is the desired quadrature’s phas
then rectifying it and averaging it over a carrier period, a
then monitoring its slowly oscillating voltage#. The moni-
tored voltage is then proportional to

Ũ~ t !5@Uec~ t !22derb1~ t !#sinF

1@Ues~ t !12dera1~ t !#cosF. ~28!

By switching to the frequency domain and using express
~25! for b1(v), we obtain the following expression for thi
monitored voltage in terms of the test-mass positionx(v)
and the noisexm(v) added to the position signal by th
speed meter:

Ũ~v!5
2ivvederq0 sinF

L~v!d
„x~v!1xm~v!…, ~29!

where
2-4
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xm~v!5
d

2ivvedeq0r
~V22v21 ivde!

3@Uec~v!1Ues~v!cotF#. ~30!

Notice that in the limit of weak coupling to the outpu
waveguidede!V, and for signal frequencies low compare
to the resonator sloshing frequencyv!V, the monitored
voltage isŨ(t)}@dx/dt1dxm /dt#; i.e., it is proportional to
the test-mass velocity, as expected for a speed meter. H
ever, as we shall see below, the regime of optimal sensiti
is one in which the classical force’s signal frequency is
v;V, so the monitored voltage~29! has a more complicate
dependence on test-mass position than simplydx/dt.

Equation~22e! implies for the test-mass position in th
frequency domain

x~v!5xod~v!2
po

ivm
d~v!2

FBA~v!

mv2
2

Fs~v!

mv2 . ~31!

Herexo andpo are integration constants@the test-mass posi
tion and momentum in the absence of coupling to the sig
forceFs(v) and to the speed meter#, d(v) is the Dirac delta
function, and

FBA~v!5
ivveq0Ues~v!

L~v!d
~32!

is the speed meter’s back-action force; cf. Eqs.~24! and~25!.

B. Meter and back-action spectral densities

When thinking about this speed meter in the quant
mechanical Heisenberg Picture, one might be concerned
the nonzero value of the test mass’s two-time commuta
@x(t),x(t8)#5 i\(t82t)/m will cause the two-time commu
tator of the output waveguide’s signal to be nonzero; cf.
~29!. If this were so, then we would have to worry about t
effects of successive quantum state reductions as each
cessive bit of signal is collected~via homodyne detection!.
Fortunately, the monitored quantity is the Hermitian p
Ũh(t)5 1

2 „Ũ(t)1Ũ†(t)… of a quadrature amplitudeŨ(t) of
the output waveguide’s microwave fieldUout(t). The com-
mutation relations for the electromagnetic field guaran
that this quantity commutes with itself at different tim

@Ũh(t),Ũh(t8)#50, independently of how the field has in
teracted with the speed meter.~This is a manifestation of the
quantum Markov approximation.! In the case of the spee
meter, this vanishing commutator is achieved via an au
matic cancellation between the influences of the test-m
position x(t) @which in turn is influenced by the meter’
back-action noiseFBA(t)] and the meter’s noisexm(t); cf.
Eqs.~29!–~32!.

Because@Ũh(t),Ũh(t8)#50, we can compute the noise i
any measurement with the speed meter by taking expecta
values in the initial states of the test mass, resonators,
incoming output-waveguide fieldUe . Moreover, when—as
in this paper—we are not interested in making absolute m
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surements of test-mass position and momentum, but ins
are interested only in learning about components of the c
sical forceFs(t) bounded away from zero frequency, o
final inferred force and its noise will be independent of t
initial test-mass position and momentumxo and po @cf. Eq.
~31! where xo and po appear only at zero frequency#. In
addition, in this section’s model, which ignores the reso
tors’ intrinsic losses, the resonator dissipation via leakage
field into the output waveguide guarantees that the stat
the resonators is determined completely by the initial state
the output waveguide fieldUe .

These considerations imply that the measurement n
will be determined solely by the quantum state of the fie
Ue that impinges on the speed meter from the output wa
guide. Throughout this paper, except in Sec. V, we sh
assume that this field is in its vacuum state. Correspondin
the spectral densities and cross spectral density of its qua
ture components are

SUc
~v!5SUs

~v!5\rde , SUcUs
50. ~33!

~To deduce these spectral densities from the standard th
of a quantized transmission line or waveguide, one m
know that, in the notation of our model, the waveguide i
pedance is 2rde /ve .)

By combining Eqs.~33!, ~24! and~30! we deduce for the
spectral densities of the meter’s position noise and ba
action force and their cross spectral density

Sx~v!5
\uL~v!u2

2mv2L4 sin2 F
, ~34a!

SF~v!5
\mL4v2

2uL~v!u2
, ~34b!

SxF~v!52
\

2
cotF. ~34c!

HereL is a frequency that characterizes the strength of
pumping,

L4[
2veW

md2
~35!

with

W5rveq0
2de ~36!

the power supplied to the resonator by the input wavegu
and the corresponding power removed through the ou
waveguide; cf. Eq.~19!. Below it will be useful to write
uL(v)u2 @Eq. ~26!# in the form

uL~v!u25~v22v0
2!21de

2~v0
21de

2/4!, ~37!

where

v0[AV22de
2/2; ~38!
2-5
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v0 will turn out to be the speed meter’s optimal frequency
operation.

C. Wide-band sensitivity with lossless resonators

When one infers the classical signal forceFs(t) from the
speedmeter’s outputŨ(t), the spectral density of the noise o
the inferredFs is

S~v!5m2v4Sx~v!22mv2SxF~v!1SF~v!

5\mv2jWB
2 ~v!; ~39!

cf. Eq. ~8!. Equations~34! and~39! imply for the amount by
which the speed meter beats the wide-band standard q
tum limit

jWB
2 ~v!5

uL~v!u2

2L4 sin2 F
1cotF1

L4

2uL~v!u2
. ~40!

We shall optimize the homodyne phaseF so as to mini-
mizejWB at the frequencyvF around which the signal force
Fs(t) is concentrated. The optimizing phase is

cotF52
L4

uL~vF!u2
, ~41!

jWB
2 (v) for this F is

jWB
2 ~v!5

uL~v!u2

2L4
1

L4~v22vF
2 !2~v21vF

222v0
2!2

2uL~v!u2uL~vF!u4
,

~42!

and its minimum is

jmin
2 5jWB

2 ~vF!5
~vF

22v0
2!21de

2~v0
21de

2/4!

2L4
. ~43!

To further minimize the noise, we shall adjust the spe
meter’s optimal frequency tov05vF , thereby producing

jWB
2 ~v!5

uL~v!u2

2L4
1

L4~v22v0
2!4

2uL~v!u2de
4~v0

21de
2/4!2

, ~44!

and

jmin
2 5

de
2~v0

21de
2/4!

2L4
5

WSQL

W
, ~45!

where

WSQL5
md2~v0

21de
2/4!de

2

4ve
~46!

is the pump power required to reach the standard quan
limit at the optimal frequencyv0. By pumping with a power
W.WSQL, the speed meter can beat the SQL in the vicin
of the optimal frequencyv0.
04400
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We define the frequency bandv1,v,v2 of high sensi-
tivity to be those frequencies for which

jWB~v!<A2jWB~v0!. ~47!

From Eqs.~44! and ~45!, we infer that

v1,2
2 5v0

27
de

2~v0
21de

2/4!

A4 de
4~v0

21de
2/4!21L8

5v0
27

2L2jmin
2

A4 4jmin
4 11

.

~48!

Equations~48!, ~45! and ~44! imply that the lossless spee
meter can beat the force-measurement SQL by a la
amountjmin!1 over a wide frequency band,v22v1;vF
by settingL/v0;(de /v0)2*2; cf. Fig. 3 in Appendix A.

D. Narrow-band sensitivity with lossless resonators

At fixed pump powerW, i.e. fixedL, Eqs.~48! and ~44!
imply that there is a trade off, as one changesde , between
the optimal sensitivityjmin and the frequency bandv22v1
of near-optimal sensitivity. Forde→0 the sensitivity atv0
grows indefinitely, but the frequency band goes to zero
jmin!1 anduv22v1u!v0, this tradeoff has a simple form

v22v1

v0
52S L

v0
D 2

jmin
2 5A 8veW

md2v0
4
jmin

2 . ~49!

In this narrow-band regime~more precisely, forde!v0

and for a frequency rangeDv!de
2/v0 centered onv0), the

spectral density of the net noise has the form@Eqs.~39! and
~44!#

S~v!5A8~vmeter
2 2v2!41B8, ~50!

wherevmeter5v0 and

A85
\mL4

2v0
4de

6 , B85
\mv0

4de
2

2L4 . ~51!

Notice that for the narrow-band speed meter, the noise’s
quency dependence@Eq. ~50!# is (vmeter

2 2v2)4, whereas for
an ordinary, quantum limited meter@Eq. ~13!# it is (vmeter

2

2v2)2. The (vmeter
2 2v2)4 behavior is responsible for th

ability of the speed meter to beat the narrow-band SQL,
is produced by the combined actions of the speed met
multiple degrees of freedom~test mass and two resonator!
and the correlationSxFÞ0 of its noises. These combine
actions make the net noiseS(v)5m2v4jWB

2 (v) be equiva-
lent to1 that of a system which has two coupled dynamic

1For a detailed discussion of the use of noise correlations to m
a meter’s noise resemble that of a system that has different dyn
cal motions than the meter actually possesses, see Ref.@7#. Section
II B above gives another example: the noise correlation is u
there to make the noise be that of an oscillator with eigenfreque
vmeter different from the oscillator’s true frequencyv0.

2The degrees of freedom are~i! the electromagnetic energy tha
2-6
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degrees of freedom with system eigenfrequencies that
degenerate@equation of motion of the quartic formd4y/dt4

12vmeter
2 d2y/dt21vmeter

4 y5Fs(t) for some variabley#. The
noise-equivalence to such a system is the central feature
measuring device that beats the narrow-band SQL.~Of
course, one can do even better with a device whose n
behaves like that of a system with three degenerate eige
quencies.!

Three of the authors have previously described a conc
tual design for an ‘‘optical-bar’’ gravitational-wave antenn
@4# that can beat the gravitational-wave narrow-band S
and does so by this same principle, but without the aid
noise correlations. When operating in a narrow-band mo
the optical bar does actually consist of two coupled degr
of freedom with system eigenfrequencies that are degene
and it thus does actually have the above, quartic equatio
motion.2

For the speed meter, Eqs.~51! imply that

A8B85
\2m2

4de
4 . ~52!

This relation, together with Eq.~50!, implies that, when a
measurement of a sinusoidal force withvF5vmeter and du-
ration tF is made by averaging over a timet̂*tF , and the
ratio B8/A8 is optimized toB8/A8;(vF / t̂)4, then the am-
plitude of the minimum detectable classical force is

F.
A\mvF

tF
AvF /de

det̂
5FNB SQLAvF /de

det̂
, ~53!

which beats the narrow-band SQL~12! by the indicated fac-
tor. This result can also be derived by comparing Eqs.~13!,
~14!, ~50! and ~51! to obtain for the amount by which th
narrow-band SQL is beaten at frequencyv

jNB
2 5

vF
22v2

de
2

, ~54!

and by then evaluating the rms value ofjNB over the band-
width Dv52p/ t̂ of the measurement to obtain

jNB
rms.AvF /de

det̂
. ~55!

IV. THE SENSITIVITY OF THE SPEEDMETER
WITH INTRINSIC LOSSES

Turn, now, from the idealized case of a speed meter w
no intrinsic losses in its resonators to the more realistic c

sloshes between the two nearly identical Fabry-Perot cavities@en-
ergy differencedE(t)], and ~ii ! the displacementy(t)5xD2(xA

1xB)/2 of the cavities’ common corner mirrorD relative to the
separate end mirrorsA andB; see Fig. 1a of Ref.@4#.
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of lossy resonators. In this case the resonators’ equation
motion become

d2q1~ t !

dt2
12~d11de!

dq1~ t !

dt
1ve

2S 12
x~ t !

d D 2

q1~ t !

52veVq2~ t !12
ve

r
@U1~ t !1Ue~ t !#, ~56a!

d2q2~ t !

dt2
12d2

dq2~ t !

dt
1ve

2q2~ t !

52veVq1~ t !12
ve

r
U0 cosvet12

ve

r
U2~ t !,

~56b!

whered1,2 are the rates of amplitude decay in resonator
and 2 due to intrinsic losses andU1,2 are the fluctuating
voltages that must accompany these losses.

Inserting expressions~21! into these equations of motio
and linearizing, we obtain the following generalization
Eqs.~22!:

da1~ t !

dt
1~d11de!a1~ t !52Vb2~ t !2

U1s~ t !

r
2

Ues~ t !

r
,

db1~ t !

dt
1~d11de!b1~ t !5

veq0

d
x~ t !1Va2~ t !

1
U1c~ t !

r
1

Uec~ t !

r
,

~57!

da2~ t !

dt
1d2a2~ t !52Vb1~ t !2

U2s~ t !

r
.

db2~ t !

dt
1d2b2~ t !5Va1~ t !1

U2c~ t !

r
.

By repeating the same manipulations as in Sec. III and us

SU js
5SU jc

5\rd j , SU jsU jc
50,

~58!

SU jsUks
5SU jsUkc

5SU jcUkc
50

for j Þk and j ,k51,2 @cf. Eq. ~33!#, we obtain the following
expressions for the spectral densities of the speed me
position noise and back-action noise:

Sx~v!5
\uL8~v!u2

2m~v21d2
2!L4 sin2 F

SF~v!5
\mL4@~v21d2

2!~d11de!1V2d2#

2uL8~v!u2de
~59!
2-7
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SxF~v!52
\

2
cotF,

where

uL8~v!u25~v22v08
2!21d* 2~v08

21d* 2/4!. ~60!

Hered* is the total damping rate due to intrinsic losses a
losses into the output waveguide andv08 is the speed meter’s
damping-influenced optimal frequency of operation

d* 5de1d11d2 , v085AV22@~d11de!
21d2

2#/2. ~61!

By inserting the speed-meter spectral densities~59! into
Eq. ~39!, we obtain for the factor by which the lossy spe
meter can beat the classical-force standard quantum lim

jWB
2 ~v!5

uL8~v!u2v2

2L4sin2F~v21d2
2!

1cotF

1
~v21d2

2!~d11de!1V2d2

2v2deuL8~v!u2
L4. ~62!

To minimize the noise at the frequencyvF around which the
signal forceFs(t) is concentrated, we adjust the speed me
so v085vF and choose for the homodyne phase

cotF52
L4

uL8~v08!u2

v08
21d2

2

v08
2

. ~63!

The result is

jWB
2 ~v08!5

d* 2~v08
21d* 2/4!v08

2

2L4~v08
21d2

2!

1
L4@d1~v08

21d2
2!1V2d2#

2v08
2ded* 2~v08

21d* 2/4!
. ~64!

By contrast with the lossless case, the sensitivity here d
not grow indefinitely with the growth ofL. Rather, the sen
sitivity at the optimal frequencyv08 is maximized by setting

L45
v08

2d* 2~v08
21d* 2/4!Ade

A@~v08
21d2

2!d11V2d2#~v08
21d2

2!
. ~65!

In this case

jmin
2 5jWB

2 ~v08!5Ad1

de
1

v08
21

1

2
@~d11de!

21d2
2#

v08
21d2

2

d2

de
.

~66!

In any real speed meter, one will make the lossesd1 andd2

as small as one can, resulting ind1.d2!de ,v08 . This fur-
ther simplifies expression~66! into the form
04400
d
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jmin
4 5

2d1

de
1

ded1

2v08
2

, ~67!

which is optimized by settingde52v08 @so V5A3v08 ; cf.
Eq. ~61!#:

jmin
4 5

2d1

v08
5

4d1

de
. ~68!

In this case the actual~optimal! pump powerW and power to
reach the SQL,WSQL, are

W5
L4md2

2ve
5

WSQL

jmin
2

, WSQL5
4md2v08

4

ve
, ~69!

the homodyne phase is cotF521/jmin
2 , and the band over

which jWB
2 ,2jmin

2 is

v22v1

v08
52A4 8jmin . ~70!

Of course, by allowing the minimum ofjWB
4 (v) to be larger

than 4d1 /de , one can widen the band of good sensitivity
v12v2;v08 , as in the case of the lossless speed meter@Eq.
~48! and associated discussion; Fig. 3 of Appendix A#.

V. ON THE POSSIBILITY TO REALIZE
THE QUANTUM SPEED METER

We turn, now, to a discussion of the possibility to co
struct a demonstration version of the quantum speed m
that is capable of beating the wide-band SQL. A central is
in such a speed meter is the intrinisic losses in the resona
These losses are characterized by the dissipation rated1
.d2, or equivalently by the unloaded resonators’ ener
damping time t151/(2d1) or quality factor Q15vet1.
Equations~68! and~69! show that the intrinsic damping tim
t1 can seriously limit the achievablejmin51/(v08t1)1/4 and
significantly influence the required pump powerW
5WSQLAv08t1 and the power that is thermally diss
pated in each resonator,W85(d1 /de)W5W/(4v08t1)
5WSQL/(4Av08t1).

Actually, the situation is more extreme than these eq
tions suggest. Even at cryogenic temperaturesT.1 K, the
mean thermal energy per degree of freedomkT is large com-
pared to the energy of a microwave photon\ve ; i.e., the
thermal noise number

NT5
kT

\ve
.2 ~71!

is somewhat larger than unity.~Here and below, for reason
to be discussed, we setve52p31010 s21.) Correspond-
ingly, the quantum-to-classical transition\ve/2→kT implies
that the noise spectra of the fluctuating voltagesSUe

, SU1
and

SU2
that plague the speed meter are larger by 2NT than in the

idealized, quantum-limited analysis of Secs. III and IV, a
2-8
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the limiting performance and thermally dissipated power
changed by factorsA2NT and 2NT :

jmin5
A2NT

~v08t1)1/4, W85
2NT md2v08

4

veAv08t1

. ~72!

@Here we have used Eq.~69! for WSQL.#
To have any hope at all of achievingjmin,1, it is neces-

sary to operate at cryogenic temperaturesT.1 K. Then, for
a demonstration experiment that achievesjmin.0.5 near a
frequencyv08.33103 s21 for the signal force, Eq.~72! dic-
tates a resonator energy damping timet1.0.1 s, correspond
ing to an unloaded quality factorQ1.53109.

The best candidates for resonators withQ1.53109 are
polished sapphire disks excited in whispering-gallery mo
with ve;2p31010 s21 ~which is our reason for selectin
this ve). Such resonators have been constructed withQ1
larger than 109 @9#, and the intrinsic electromagnetic loss
in sapphire are small enough to permitQ1.1010 @10#. More-
over, the whispering-gallery evanescent fields provide an
tractive means for coupling to the test mass and to input
output waveguides. To obtain a small tuning lengthd, reso-
nator 1 and the test mass could consist of two identical d
A and B facing each other with variable separation@and x
5(change of separation!#, with the resonator-1 whispering
gallery field shared equally between the disks, and with
classical forceFs(t) acting onA; while resonator 2 could be
a single diskC facing B and with fixed separation fromB
large enough that the fields inC and in AB overlap only
slightly. In this case, the tuning lengthd can be as small a
d.3 mm @11,12# but not smaller. So large ad means that
each resonator’s thermally dissipated power~72! will be, for
m510 g ~the smallest reasonable test mass correspondin
the smallest dissipated power! and all other parameters a
above,W8;33102 erg/s. So much heat cannot be remov
radiatively, but it can be removed by thermal conduction
the suspensions from which the test mass and reson
hang, provided the suspensions are thin niobium strips ra
than the more normal fused-silica fibers.

To achieve a demonstration experiment withjmin.0.5,
the test mass’s thermal mechanical noise must be kept
respondingly small:

2kT

tm*
,jmin \v08 , ~73!

wheretm* is the test mass’s mechanical relaxation time. F
the above parameters, this will be satisfied iftm* .23108

s21. Mitrofanov and colleagues@8# have demonstratedt̂m*
comparable to this with fused silica suspensions, and a s
lar performance is likely from a niobium strip suspensi
@13#.

The demonstration experiment also requires that the m
measure the test-mass velocity

Dv5jminA \

mt̂
, ~74!
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where t̂;1/v08 is the observation time. The above param

eters giveDvAt̂.5310215 cm/s1/2, a signal strength that is
within the measurement capabilities of current techniq
based on whispering gallery modes of sapphire disks
microwave oscillators stabilized by sapphire disks@12#.

The velocity signalDvAt̂.5310215 cm/s1/2 produces a
microwave phase shift with magnitude

Df5
ve

A8 v08
2d

Dv; ~75!

i.e., for the above parameters,DfAt̂54310211 s1/2. This
small phase shift imposes very strict requirements on
stability of the microwave oscillator that regulates the spe
meter’s pump field, though the quantum limit in this case
not the main factor. That stability translates into an oscilla
power

Wosc.
8md2v08

2ve

jmin
2 Q2

, ~76!

whereQ is the quality factor of its resonator. ForQ5109,
the required power isWosc.20 erg/s, which is within curren
technical capabilities.

Thermal noise in the acoustic modes of the speed met
resonators must also be taken into account. During the
servation timet̂, the thermally induced change in the velo
ity that is measured by the speed meter will be

Dvac.v08A 2kT

mvac
3 Qact̂

, ~77!

wherevac is the eigenfrequency andQac the quality factor of
the lowest acoustic mode. With the conservative estim

Qac5105 at vac5106, we infer DvacAt̂.5310217 cm/s1/2,

which is small compared to the signalDvAt̂.5310215

cm/s1/2.
In summary, the above estimates suggest that with pre

technology a demonstration type of experiment at the le
jmin.0.5 is not hopeless. However, further technological d
velopments will be required if such a speed meter is to
come a promising tool for, e.g., QND interferometers in t
Laser Interferometric Gravitational Wave Observato
~LIGO! of the type proposed in Refs.@4,5#. Most impor-
tantly, it will be necessary to construct resonators withQ1
.1010. This may be possible for sapphire in double dis
~the design described above!, or perhaps for klystron-type
superconducting resonators with lumped capacitances
permit tuning lengthsd;1023 cm ~much smaller than the
d.3 mm of sapphire disks!.
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APPENDIX A: COMPARISON OF SPEED METER
AND POSITION METER

It is useful to compare our speed meter~Fig. 1! with a
position meter~parametric transducer! that is made from a
single microwave resonator, modulated by the position o
test mass on which a signal force acts; see Fig. 2.

1. Analysis of position meter

The position meter’s resonator is pumped with a class
force U0 sin(vet), by contrast withU0 cos(vet) for the speed
meter; this difference guarantees that the excitation in
resonator will be at the same phase as for the speed me
resonator 1; see below. The equations of motion for the
sition meter are then the same as for the speed meter@Eqs.
~56!# but with the driving voltage moved from resonator 2
resonator 1 and changed in phase so cos→sin, with resonator
2 removed, and with the coupling frequencyV set to zero:

d2q~ t !

dt2
12~de1d1!

dq~ t !

dt
1ve

2S 12
x~ t !

d D 2

q~ t !

52
ve

r
@U1~ t !1Ue~ t !1U0sinvet#, ~A1a!

m
d2x

dt2
5

rve

d
q22

rve

2d
q0

21Fs~ t !. ~A1b!

Resolvingq1 , U1, andUe into cosvet and sinvet parts as
for the speed meter@Eqs.~21!, ~23!, etc.# and linearizing, we
obtain the same equations as for the speed meter@Eqs.~57!#
but with resonator 2 deleted andV set to zero:

da1~ t !

dt
1~d11de!a1~ t !52

U1s~ t !

r
2

Ues~ t !

r
,

~A2!

db1~ t !

dt
1~d11de!b1~ t !5

veq0

d
x~ t !1

U1c~ t !

r

1
Uec~ t !

r
.

FIG. 2. Schematic diagram of a position meter~parametric
transducer!.
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Repeating the same manipulations as for the speed m
we arrive at spectral densities for the position meter’s po
tion noisexm(t) and back-action noiseFBA(t), which can be
deduced from those~59! for the speed meter by settingV
50, d250, and thereforeuL8(v)u25v2(v21d* 2):

Sx~v!5
\~v21d* 2!

2mL4sin2F
, SF~v!5

\mL4d*

2~v21d* 2!de

SxF~v!52
\

2
cotF, ~A3!

where d* 5de1d1. Correspondingly, when homodyne d
tection is performed on the output of the position meter, w
homodyne angleF, the factor by which the wide-band SQ
is beaten is@Eq. ~62!#

jWB
2 ~v!5

v2~v21d* 2!

2L4 sin2 F
1cotF1

d* L4

2v2~v21d* 2!de

.

~A4!

2. Lossless position meter without homodyne detection

The best performance is achieved if intrinsic losses
negligible,d1!de , which we shall idealize asd150. Then,
if no homodyne detection is used~i.e., if F5p/2, corre-
sponding to measuring the signal force as a phase mod
tion on the output voltage’s carrier!, Eq. ~A4! predicts that
jWB>1, with the minimum valuejmin51 obtained for the
optimal power

WSQL5
md2~v21de

2!v2

2ve
. ~A5!

Thus, as is well known, this conventional parametric tra
ducer can reach but not beat the wide-band SQL.

3. Lossless position meter with ordinary homodyne detection

By performing homodyne detection (FÞp/2), we intro-
duce a correlation between the position noisexm(t) and
back-action noiseFBA(t). This correlation can be used t
make the position meter perform a narrow-band meas
ment of the signal force at, butnot below, the narrow-band
SQL, in precisely the manner described by Eqs.~9!–~12!
with v050. Contrast this with the speed meter~which, like
this position meter, uses standard homodyne detection
constant homodyne phase!. When monitoring a classica
force Fs(t) in a narrow-band mode, the speed meter has
noiseS(v)5A8(v22vmeter

2 )41B8 @Eqs.~50! and ~51!# and
beats the narrow-band SQL. The position meter hasS(v)
5A(v22vmeter

2 )21B, with AB5\2m2/4, and reaches bu
does not beat the narrow-band SQL.

It will be useful to reexpress this position-meter perfo
mance with constant homodyne angleF in the language of
jWB(v) @Eq. ~A4!#. We adjustF so as to minimizejWB(v)
at some desired optimal operating frequencyvopt,
2-10
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cotF52
L4

vopt
2 ~vopt

2 1de
2!

, ~A6!

and thereby obtain forjmin[jWB(vopt)

jmin
2 52

1

2 cotF
5

WSQL

W
!1. ~A7!

Here W5md2L4/2ve is the pump power@Eq. ~35!#, and
Eqs.~A6! and~A7! imply that the power required to beat th
broad-band SQL is

WSQL5
md2vopt

2 ~vopt
2 1de

2!

2ve
. ~A8!

The bandv1,v,v2 over whichjWB
2 <2jmin

2 , as computed
from Eqs.~A4!, ~A6! and ~A7!, is given by

v1,2
2 5vopt

2 F17
2~vopt

2 1de
2!

2vopt
2 1de

2
jmin

2 G . ~A9!

Let us compare this lossless position-meter performa
with the lossless speed meter. Both can beat the wide-b
SQL near their optimal frequencies and they do so with
proximately the same pump power@Eqs. ~45! and ~46! for
speed meter, withde

2;v0
2 ; Eqs. ~A7! and ~A8! for position

meter#. However, the speed meter can do so over a w
frequency bandv22v1*v0 @Eqs.~48!, ~44! and associated
discussion#, while the position meter can only do so over
bandv22v1;voptjmin

2 that becomes more and more narro
asjmin is made smaller and smaller. This difference is illu
trated in Fig. 3, which showsjWB

2 (v) for the two meters
with the same choice of parameters:jmin

2 50.1, optimal fre-
quenciesv05vopt51000 s21, and de52v052vopt52000

FIG. 3. jWB
2 (v), the squared amount by which a meter beats

wide-band SQL when monitoring a signal forceFs(t), as a function
of angular frequencyv, for three meters with negligible intrinsic
losses: The speed meter@Eqs. ~44!–~46!#, the position meter with
homodyne detection at constant~frequency-independent! homodyne
phaseF5const@Eqs.~A4!, ~A6!, ~A7! with d* 5de], and the po-
sition meter with optimized frequency-dependent homodyne ph
F(v) ~‘‘quantum variational technique’’! @Eqs.~A10!, ~A11! with
d150, d* 5de#. The parameters of the three meters are adjuste
be the same: the samejmin

2 50.1 at the optimal frequency of opera
tion v05vopt51000 s21, and the same rate of extraction of sign
from the resonator,de52v052vopt52000 s21.
04400
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s21. ~For these parameters, the pump powerW
5WSQL/jmin

2 is 5/451.25 times larger for the position mete
than for the speed meter.! The figure shows explicitly the
excellent wide-band performance of the speed meter, and
inability of the position meter to achieve wide-band perfo
mance for this moderately smalljmin51/A10;1/3.

4. Position meter with optimized frequency-dependent
homodyne detection„‘‘Quantum variational technique’’ …

Vyatchanin and colleagues@14# have shown that a posi
tion meter can be made to beat the wide-band SQL ove
wide range of frequencies by performing an~unconven-
tional! homodyne detection with an optimized, frequenc
dependent homodyne phaseF(v); they have called this the
‘‘quantum variational technique.’’ Recently, Kimble and co
leagues@15# have proposed a possibly practical method
achieve such aF(v): pass the meter’s output field through
sufficiently lossless filter that has an appropriate freque
dependence, and then perform conventional homodyne
tection.

For the above position meter, the desired, optimal f
quency dependence of the homodyne phase is theF(v) that
minimizesjWB

2 (v) @Eq. ~A4!#:

cotF~v!52
L4

v2~v21d* 2!
, ~A10!

where we now allow the meter to have intrinsic losses,
d* 5de1d1. In the idealized case that thisF(v) is achieved
perfectly, the resulting performance@Eq. ~A4!# is

jWB
2 ~v!5

v2~v21d* 2!

2L4
1

L4

2v2~v21d* 2!

d1

de
.

~A11!

If the meter is lossless (d150) and is adjusted to hav
jWB

2 50.1 at frequencyv51000 s21, then jWB
2 (v) has the

form shown as the dashed line in Fig. 3. Note that switch
from constantF to optimizedF(v) has made the position
meter broad band, though its performance above 1000 s21 is
not quite as good as that of the~constant-F) speed meter.
The pump power needed to achieve this performance is
same~A8! as for the constant-F position meter and nearly
the same as for the speed meter.

Intrinsic losses (d1.d2!de) in the meters’ resonator
debilitate their low-frequency performances@Eq. ~A11! for
position meter; Eq.~64! for speed meter#. For the position
meter with such losses, the minimum achievablejWB is

jmin5~d1 /de!
1/4. ~A12!

This isA2 lower than for the speed meter@Eq. ~68!# at fixed
d1 /de—though this factorA2 is not signficant compared t
ill-understood differences in the difficulty of realizing th
two meters. In both cases the 1/4 power dependence on
sipation presents serious problems for a practical device;
Sec. V.
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We note in passing that one can enlarge the bandwidt
the speed meter by changing its homodyne phase from
optimized constantF to an optimized frequency-depende
F(v) ~analog of the above position meter!. However, the
speed meter already does so well with constantF, that the
improvement is modest. Forjmin

2 50.1, switching toF(v)
increases the bandwidth by about 50 percent. More ge
ally, the bandwidth is widened, by switching from consta
F to optimizedF(v), by about the same amount as it
widened by increasingde ~at constantF) by a factor
1/Ajmin.

APPENDIX B: SPEED-METER-BASED GRAVITATIONAL-
WAVE ANTENNA

In the Laser Interferometer Gravitational-wave Obser
tory ~LIGO!, the second generation antennas~‘‘LIGO-II’’;
2006–2008! are expected to have sensitivites near th
wideband SQL atv;2p3100 Hz @16#. Our speed mete
research is motivated, in part, by the goal of conceiving pr
tical designs for a third generation of LIGO antennas~LIGO-
III ! that will beat the wide-band SQL and go into operati
in ca. 2008. One possibility is the use of a microwave-ba
speed meter as an internal readout device in a radically
designed antenna~one based on the concept of an ‘‘optic
bar’’ @4# or ‘‘symphotonic states’’@5# or something similar!.
Another possibility is an adaptation of the speed meter i
the optical band, as sketched in Fig. 4. Further possibili
will be discussed in Ref.@15#.

Figure 4 shows two nearly identical devices, one labe
118228, the other labeled 338448. For the moment ignore
338448.

Device 118228 consists of two optical cavities~resonators!
118 and 228 that operate at identical resonant frequenciesve
and are weakly coupled by a mirror with low transmissivi
The mirror causes light to slosh between the two cavi
with a sloshing frequencyV5cAT/2d whereT is the cou-
pling mirror’s very small power transmission coefficient a
d is the length of each cavity’s arm. These cavities are
resonators of a speed meter andd54 km is the speed
meter’s tuning length. By contrast with the microwave spe

FIG. 4. Rough sketch of a possible LIGO antenna based on
optical-frequency adaptation of the speed meter.
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meter of Fig. 1, which has only one test mass~that coupled
to resonator 1!, this optical speed meter has~in effect! two
test masses, one coupled to each resonator. The reas
that, in order to keep both resonators highly stable, all f
mirrors must be suspended as pendula, and the relative
placementx1 of mirrors 18 and 1 then behaves as a test ma
coupled to resonator 1, while the relative displacementx2 of
28 and 2 behaves as a test mass coupled to resonator 2

As for the microwave speed meter, we shall read out
classical force~gravity-wave signal! from resonator 1. To
guarantee that resonator 1 contains only a velocity sig
dx1 /dt @or, more precisely, a signal that involves on
dx1 /dt and its time derivatives# and not any position signa
x2(t), it is essential that resonator 2 be unexcited. To achi
this requires, in contrast with the microwave speed me
that both cavities be driven by input light beams and that
relative amplitudes and phases of those beams be ch
appropriately. Because resonator 2 is unexcited, its mi
motions produce no gravity wave signal, so it does not m
ter whether it is placed in the same arm as resonator 1, o
the other arm~cf. Fig. 4!.

For the configuration in Fig. 4, the two cavities are driv
by beams entering their corner mirrors. The end mirrors8
and 28 have the highest possible power reflectivities and
corner mirrors 1 and 2 have more modest power reflect
ties R designed to produce identical amplitude decay ra
de5c(12R)/4d.

As for a conventional LIGO interferometer, so for th
speed meter, there is a serious issue of frequency instab
for the input light beams. To protect against frequency flu
tuations, one could proceed as in a conventional interfero
eter: Construct two identical speed meters, 118228 and
338448 as shown in Fig. 4, with the strongly excited reson
tors 1 and 3 in the two orthogonal arms of the LIGO vacuu
system. Drive the four cavities with phase coherent lig
beams that are all phase locked to the same master oscill
Construct the difference of the outputs from 1 and 3 by m
ing at a beam splitter, and perform the homodyne detec
on that difference. As for a conventional interferometer, su
a scheme should provide significant protection against
quency fluctuations.

Although we have not yet carried out a full and detail
analysis of this optical speed meter, our approximate an
ses show that, up to factors of order unity, its performanc
described by the same equations as for the microwave sp
meter. It can beat the wide-band SQL by the factorsjWB(v)
derived and discussed in Secs. III C, III D and IV.

More specifically, if such an optical speed meter is op
mized as in Sec. IV (de.2v08 , V.A3v08 wherev08 is the
optimal frequency of operation!, then to reach the wide-ban
SQL atv5v08 requires a pump power

W5WSQL.4md2v08
4/ve ~B1!

@Eq. ~69!#, and by using a pump powerW that exceeds this
WSQL and achieving sufficiently low optical lossesd1!de ,
the wide-band SQL can be beat in the vicinity of the optim
frequencyv08 by a factor

n

2-12
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jmin5AWSQL

W
; jmin*S 4d1

de
D 1/4

~B2!

@Eqs.~69! and ~68!#.
Note that the SQL powerWSQL corresponds to a store

energy in each resonator 118 and 338 given by

ESQL5
WSQL

2de
.

md2v08
3

ve
. ~B3!

This is the same stored energy~to within a factor of order
unity! as is required to reach the SQL in a conventio
LIGO gravitational-wave detector@5#. This stored energy
and the corresponding circulating light powerWSQL

circ in the
resonators are uncomfortably large:

WSQL
circ 5

ESQL

2d/c
;900 kW, ~B4!

where we have usedm511 kg,d54 km,v0852p3100 Hz,
and ve51.831015 s21 ~wavelength 1.06mm), as planned
for LIGO @16#. There is hope, in LIGO, of operating at ci
culating powers of this order@16#, but to do so will be ex-
tremely challenging. And to beat the SQL by a factorjmin at
t

s.

s.
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,
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the optimal frequencyvo8 using the optical speed meter o
Fig. 4 would require an even larger circulating power

Wcirc5WSQL
circ /jmin

2 ~B5!

@Eqs. ~B2!–~B4!#. Moreover, even if such extreme powe
could be handled in LIGO-III, the resonators’ optical loss
might not be much smaller thand1 /de;0.01, which corre-
sponds to a limit on the achievable sensitivityjmin
*(4d1 /de)

1/4.0.4 ~and an increase in event rate fo
gravitational-wave bursts of&1/0.43.15 over an SQL-
limited interferometer!.

Although this scheme is rather complex and places
treme demands on the circulating light power and on opt
losses, it nevertheless might turn out to be practical. Mo
over, it is not significantly more complex or demanding th
schemes that have been devised for beating the SQL
LIGO-III by modifying a conventional interferometer’s inpu
and/or output optics@17,14,15#.

The high power demands of all these schemes leave
research groups dissatisfied and motivate our continuing
forts to find more promising designs that entail much le
optical power—schemes that might resemble those descr
in Refs.@4,5#.
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