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A description and analysis are given of a “speed meter” for monitoring a classical force that acts on a test
mass. This speed meter is based on two microwave resordthral resonators’}, one of which couples
evanescently to the position of the test mass. The sloshing of the resulting signal between the resonators, and
a wise choice of where to place the resonators’ output waveguide, produce a signal in the waveguide that
sufficiently low frequencigsis proportional to the test-mass velocitgpeed rather than its position. This
permits the speed meter to achieve force-measurement sensitivities better than the standard quantum limit
(SQL), both when operating in a narrow-band mode and a wideband mode. A scrutiny of experimental issues
shows that it is feasible, with current technology, to construct a demonstration speed meter that beats the
wideband SQL by a factor 2. A concept is sketched for an adaptation of this speed meter to optical frequencies;
this adaptation forms the basis for a possible LIGO-III interferometer that could beat the gravitational-wave
standard quantum limihsg, , but perhaps only by a factor &* hgq /h=3 (constrained by losses in the
optic9 and at the price of a very high circulating optical power—largegby than that required to reach the
SQL.

PACS numbses): 95.55.Ym, 03.65.Bz, 04.80.Nn, 42.50.Dv

I. INTRODUCTION nators that, when one is driven at their common eigenfre-
gquencyw,, it is the other that becomes excited. Resonator 2

A conceptual design for guantum speed met&ras pro- is pumped on resonance by the voltadgcoswet of an input
posed several years afjb]. This speed meter couples to the waveguide, so resonator 1 becomes excited at frequepcy
velocity of a free test mass and thereby can monitor a clasthe eigenfrequency of resonator 1 is modulated by the posi-
sical force that acts on the test mass with a precision bettdion x of the test mass
than the standard quantum li{BQL).

The motivation for coupling to test-mass velocity rather ~ _
than position is thatin the absence of the couplinghe @e(X) = we
test-mass velocity is equal to momentum divided by mass;
and momentum, by contrast with position, is a constant ofvhered is a length that characterizes the resonator’s tunabil-
the test mass’s free motion, so it commutes with itself afity (cf. Sec. \J; this modulation puts a voltage signal propor-
different times and is a quantum nondemoliti@ND) ob-  tional to positionx into resonator 2, and a voltage signal
servable[2]. This enables the speed meter to beat theroportional to velocitydx/dt into resonator 1. The velocity
classical-force SQL without any special squeezed-statgignal flows from resonator 1 into an output waveguide, from
preparation of the speed meter's microwave pump field oiwhich it is monitored.
frequency-dependent homodyne detection of its output signal One can understand the production of this velocity signal
field. By contrast, to beat the classical-force SQL, a meteas follows: The weak coupling between the resonators causes
that couples to position must incorporate a squeezed-state
pump and/or frequency-dependent homodyne detection; see 2
Appendix A.

In Ref. [1] two variants of the speed meter were sug- )
gested, one based on an optical-fiber delay line and the other Up cos wet
on coupled microwave resonatofsdual resonators’). In

]

this paper we analyze in detail the dual-resonator scheme and 3

show that it can be realized in principle with current experi- ¢ 1

mental technology. ot
An important possible application of this speed meter is d — U™(t)

as the readout device for a new class of laser-interferometer I — U.(t)

gravitational-wave antennas that may beat the SQL while
using unusually low laser pow¢8—5]. | Tl |

The speed meter proposed in REf] is based on two
identical, weakly coupled microwave resonators as shown in FIG. 1. Schematic diagram of the coupled-resonator quantum
Fig. 1. It is a fascinating characteristic of such coupled resospeed meter.
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voltage signals to slosh periodically from one resonator tovention of quantum physicso field amplitudes and annihi-
the other at the frequend) < w, . After each cycle of slosh- lation operators evolve as '“! in the Heisenberg pictuye
ing, the sign of the signal is reversed, so the net signal in

resonator 1 is proportional to the difference of the position at A. Wideband SQL

timest and t+2#/(, i.e. is proportional to the test-mass
velocity so long as the test mass’s frequenciesf oscilla-
tion arew<(}.

Actually, we shall find that the optimal regime of opera-
tion for the speed meter is at signal frequenaies(). In Lo
this regime, the voltage signal in resonator 1 and the correNitoring is
sponding output voltage signal are sums over time deriva- — 2 4
tives of the test-mass positigkqgs.(25)—(27)]. Correspond- S(0) =M S+ S, @

ingly, the speed meter does not monitor just the speed, byfnerem is the mass of the test mass(w) is the spectral
rather the speed plus time derivatives of the speed. density of the nois&(t) that the meter superimposes on the
In this paper we shall analyze in detail the operation oftnyt position signal, anB(w) is the spectral density of
the speed meter, first ignoring the resonators’ dissipativene fiyctuating back-action fords,(t) that the meter exerts
losses and assomated noi€gec. Il), then including the . the test mass. For an ordinary position metet) and
losses and noiséSec. 1V). We shall express the speed g (1) are uncorrelated, and the Heisenberg uncertainty
meter’s performance in terms of the spectral derSfty) of rinciple implies thatS,S-=72/4 [2]. We shall assume that

the net noise that it produ_ces when monitoring a classicgj,q position meter is as perfect as possible, corresponding to
signal forceF(t) that is acting on the test mass. As a foun- gq ity in this uncertainty relation. If the spectrum of the

dation for this, in Sec. Il we discuss the SQL for force mea-(|aqsica) force is concentrated near the frequaneyand the
surements in the language of spectral density. In Sec. V Wa

) - LA . " "position meter is optimally tuned for monitoring this force
discuss the most serious practical impediments to achieving,, 1o ratioSe /S, is adjusted to make the two terms in Eq.
a sensitivity that actually beats the SQL by a significant fac- 4) equal atw=wg], then the net spectral density is
tor and conclude that a demonstration experiment is feasiblg ko
with current technology. In Appendix A we compare this S(w)=hmw? for o= wg,
speed meter with a position meter based on a single micro- (5)
wave resonator with homodyne readout in the output wave-
guide at a frequency-dependent homodyne plfageantum

variational techniquej; and in Appendix B we describe a Tps s the spectral-density form of the SQL. The corre-

speed-meter-based conceptual design for a LIGO-typgnonding minimum detectable amplitude for a force that lasts
gravitational-wave antenna that can beat the gravitationaky, 4 time e is

wave SQL, but requires very high light power.

ﬁmwlzz
Il. STANDARD QUANTUM LIMITS Fws squ= P (6)

The standard quantum limitSQL) for measurement of a
classical signal forcd-¢(t) acting on a free test mass, as
usually given in the literaturée.g.[2]), are not convenient force. ) )
since they are based on some assumed shape of the forc%’sln order for the meter to beat this usual wide-band SQL
time dependencémost commonly a single-cycle sinusoid or PY @ factoréwe<1,
a long, monochromatic wave trainn this paper we prefer Fe F 7
the greater generality of a SQL expressed in terms of the two =éwsFws soL: @)
sided spectral densitg(w) for the net noise in a measure-
ment of F4(t); S(w) is defined such that for optimal signal

An ordinary position mete(sometimes called coordinate
mete) monitors the positiork(t) of a free test mass, and
thereby deduces the classical signal forcét) that acts on
the mass. The spectral density of the net noise in this force

S(w)=hmw? for other values of w.

This is the usual form of the wide-band SQL for a sinusoidal

the spectral density of the net noise must obey the condition

processing the measurement’s power signal to noise ratio is S(w) = & ghmw? ®)
— SwB
- 2
§:f |Fs(w)] d_“’ (2) in the range of frequencies of the detected force. We shall
N J-= S(w) 27 regard Eq.(8) as a definition of the amoung,g(w) by

which our speed meter beats the broad-band SQL.
Here F () is the Fourier transform df (t)

°° ~ tda) B. Narrowband SQL
Fs(t)= Flw)e ' 5—, ©) . . .
—o 2m If the test mass has a restoring force so it is an oscillator
with eigenfrequencyn, and/or the noises,,(t) andFga(t)
in which we adopt the 2 convention of signal processing are correlatedwith cross spectral densitg,g), then the net

theory and microwave technology, and tbe'“! sign con-  noise in the measurement B{(t) is
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S(w)=m(0’— 03)?S,—2Mm(w?— w3)S+Sk.  (9)

For such a system, the noise can be made especially small
a narrow-band measurement centered on the frequency

2 _
meter

w

If the noisesS, andSg can be regarded as constant over that
narrow band, and they are constrained only by the Heiser}-e

berg uncertainty relatio, S — S2-=#%2/4 [2], then

2

75 (11)

S( Lt)) = mZ( wrzneter_ w2)28x+

Suppose, now, that we use such a SQL-limited meter to

measure a sinusoidal force with frequen®y= w yeter anNd
with duration 7g>27/wg so the bandwidth of the force is
Aw=27m/e<wg. Then, ifS, is optimized, the amplitude of
the minimum detectable fordas computed by settin§/N
=1 in Eq.(2)] is at the narrow-band SQL:

1

F’;’ FNB SQL:T_F\/ﬁU)Fm.

12

Correspondingly, in order to beat the narrow-band SQL
the meter's net spectral densif9) in the vicinity of some
frequencyw yeter Must have the form:

()= A herer ?)?+B, (13)
where the parameterd and B (whose ratio is adjustable
satisfy

hZ 2
AB=&ig— (14)
The factor §yg<1 is the amount by which the minimum

detectable force is below the narrow-band SQPR).
Another viewpoint onéyg is the following: Define

2
Sk Sk
S S’
where L, is the spectral response of the test mplsg=
—mw? for a free mass and,=m(wj— »?) for a lossless

oscillato. Then the net noisgEq. (9) with m(w?— w3) re-
placed by—L ] takes the form

Se=S— =, L,=L,+ (15)

S(w)=L2S,+S¢. (16)

If the noises are constrained only by the Heisenberg unce
tainty relation,SXSF—SiF:SXSFZﬁZM, and one chooses
wmeter 0 e at a zero off), then comparison with Eq$13)

and(14) reveals the following expression for the amount by
which the narrow-band SQL can be beaten:
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Ill. MICROWAVE SPEED METER
IN THE LOSSLESS LIMIT

A. Equations of motion and their solution

When we neglect all losses in the test mass and in the
sonators(and all associated fluctuating forgesxcept
those due to coupling to the output waveguide, then the
equations of motion for the speedmeter of Fig. 1 take the
following form [6]:

d?gq(t) dog(t) [ x(b))?
e +26, dt we<1—T) gy(t)
We
:ZweQQZ(t)"'z?Ue(t): (183
dzqz(t) We
1 +wng(t)=2weﬂq1(t)+27U0003wet,
(18b
, d’X  pwe s PWe ,
Myz = g 917 5g Yot Fs(b). (189

Here the notation is as follows:

we IS the common(angulaj eigenfrequency of the two
resonators andl<w, is the weak-coupling frequency at
which energy sloshes between the two resonators;

gy (t) are generalized coordinates of resonators 1 and 2,
so defined that the energy in resongtds

L
2w,

pWe

2

~2

q; 2

j ’

E =

, (19

with an overdot representing a time derivative;

p is the characteristic impedance of the resonators;

Se=1/27}; wherer; is the relaxation time of resonator 1
due to energy flowing into the output waveguide;

U, is the fluctuating voltage imposed on resonator 1 from
the output waveguide;

U, is the driving voltage from the input waveguide, and is
assumed to be the result of a very strong waveguide field and
a very weak coupling to the resonator, so the waveguide’s
fluctuational voltages can be ignored ddgl can be regarded
as a classical c-number;

X(t) is the position of the free test maskjs the tuning
length of resonator 1, andd is assumed to be so small that
(x/d)? can be neglected:;

r- F¢(t) is the classical signal force acting on the test mass;

Jo is the amplitude of the classical excitation apf

(20

2-3



BRAGINSKY, GORODETSKY, KHALILI, AND THORNE PHYSICAL REVIEW D61 044002

and the constant classical foree(pwe/Zd)qg [second term Qopwe

in Eq. (180] is applied to the test mass to counteract the Fea(t)= —5—au(V). (24)

mean radiation pressure forfgme average of first term in

Eq. (180)]. ) ) - In the Heisenberg-picture interpretation of E¢22), all the
One can take two points of view on the quantiigs 4z, functions of timet are quantum operators except the classical

x, andU,: one can regard them as classical quantities, withgrce F (t).

Ug(t) described by a classical spectral densiy (o), in We solve Egs.(22) in the frequency domain using the

which case Eqgs(18) are classical equations of motion; or Fourier-transform conventions of E@). The frequencies of
one can regard them as quantum mechanical operators in tirgterest are in the ranges|<w, and can be thought of as
Heisenberg picture, in which case E@$8) are the Heisen- side-band frequencies of the microwave cardgy. Equa-
berg evolution equations. The two viewpoints will producetions (22) imply, for the quadrature amplitudes of resonator
the same final conclusions, if one chooses the correct:

guantum-mechanically-based value Egje. We shall return

to this in Sec. Il B below. ioUgd )

We resolveq; andq, into their quadrature components 3y(w)= pLw) ’
_ (25
0= (go+a;)Coswet +b;Sinwet, be(w)=— — @eo V4 Ue(@)
S,
0,=a,C08wet+| — ﬁeqo+ b, | sinwt. where
L(0)=0%—w’—iwb,. (26)

Note that the classical input driving voltagé)gcoswt, act-
ing on resonator 2, produces its primary classical excitation . .

0oCOSwet in resonator 1 as was advertised in Sec. |; but there The output-wave voltage e'ntermg the output waveguide
is also a secondary classical excitation in resonator 2 propoF—an be expressed in the fori@]:
tional to the loss rat&, that was ignored in Sec. I.

The quadrature amplitudes , andb, , carry the pertur- UOU(t) = Uq(t) _%p day(t)
bations caused by coupling to the test-mass position and to We dt
the output waveguide. We solve for these perturbations by —TUo(t)—28.0b-(t)]cosw.t
inserting expression&1) into the equations of motiofi8) [Uedt) epDa(V)] €
and linearizing: +[Uedt) +28spa (t)]sinwet, (27
day(t) Uedt) where we have ignored the carrier signab.aqq Sinwt.
dt +3eas (1) = — 2by(1) — p (228 \phen measuring the classical signal fofegt), the noise
will be minimized by monitoring the sidebands of an opti-
dby(t) oo Uedt) mally chosen quadrature component of the output wave. This
qi T 9eba(D)=—5—x(1)+Qay(t) + P monitoring can be done via homodyne detectiaich, at

(22b) microwave frequencies, can be achieved by mixing the out-
put wave U°'{(t) with a strong local-oscillator fieldJ, o
day(t) xsin(wt+®), whered is the desired quadrature’s phase,
=—Qby(1), (220  then rectifying it and averaging it over a carrier period, and
dt then monitoring its slowly oscillating voltageThe moni-
tored voltage is then proportional to

db,(t = 0ay(t) (224
ar ol U(t)=[Uedt) — 28¢pby(t) ]sind
d2x +[Uedt) +25¢pa;(t)]cosb. (28

By switching to the frequency domain and using expression
(25) for b;(w), we obtain the following expression for this
fnonitored voltage in terms of the test-mass positi¢w)

and the noisex,,(w) added to the position signal by the
speed meter:

HereU.. andU. are the quadrature amplitudes of the fluc-
tuating voltage imposed on resonator 1 from the outpu
waveguide,

Ue=U¢:COSwet+UgSinwet, (23 _ _
_ 2iwwebepoSin

@)= L(w)d

P
X(@)+xXm(w)), (29

l

and Fga(t) is the back-action force that the speed meter
exerts on the test mass averaged over a microwave period
27 we, where
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surements of test-mass position and momentum, but instead

Xm(w) = m(ﬂz— o’ +iwd) are interested only in learning about components of the clas-
eveto sical forceF4(t) bounded away from zero frequency, our
X[Ugdw)+Ugd w)cotd]. (30)  final inferred force and its noise will be independent of the

initial test-mass position and momentu and p, [cf. Eq.

Notice that in the limit of weak coupling to the output (31) where x, and p, appear only at zero frequeniyin
waveguides,<(2, and for signal frequencies low compared addition, in this section’s model, which ignores the resona-
to the resonator sloshing frequenay<(), the monitored tors’ intrinsic losses, the resonator dissipation via leakage of
voltage isU (t)c[dx/dt+dx,,/dt]; i.e., it is proportional to ~ field into the output waveguide guarantees that the state of
the test-mass velocity, as expected for a speed meter. Howhe resonators is determined completely by the initial state of
ever, as we shall see below, the regime of optimal sensitivitghe output waveguide field .
is one in which the classical force’s signal frequency is at These considerations imply that the measurement noise
w~ (), so the monitored voltag@9) has a more complicated Will be determined solely by the quantum state of the field

dependence on test-mass position than sindpddt. U, that impinges on the speed meter from the output wave-
Equation (22@ implies for the test-mass position in the guide. Throughout this paper, except in Sec. V, we shall
frequency domain assume that this field is in its vacuum state. Correspondingly,
the spectral densities and cross spectral density of its quadra-
Forlw) Foo ture components are
X() = X 8( ) — 2 8( ) — BA(Z)—S—(;. (31)
lom mw® Mo Su,(@)=Sy (@) =7pde, Syu =0. (33

Herex, andp, are integration constanfthe test-mass posi- (To deduce these spectral densities from the standard theory
tion and momentum in the absence of cloupllng.to the signadf a quantized transmission line or waveguide, one must
force F¢(w) and to the speed mefed(w) is the Dirac delta  know that, in the notation of our model, the waveguide im-

function, and pedance is g8,/ w,.)
. By combining Eqs(33), (24) and(30) we deduce for the
Fonl )_'wweQOUeg(w) (32 spectral densities of the meter's position noise and back-
BAL®) ™ L(w)d action force and their cross spectral density

is the speed meter’s back-action force; cf. E@4) and(25). h|L(w)]?

Sw) =, (34a
2mw?A* sir?
B. Meter and back-action spectral densities
When thinking about this speed meter in the quantum AmA*w?
mechanical Heisenberg Picture, one might be concerned that Sr(w)= (340

, ) 2|L(w)]?’
the nonzero value of the test mass’s two-time commutator

[x(t),x(t")]=iA(t"—t)/m will cause the two-time commu- A

tator of the output waveguide’s signal to be nonzero; cf. Eq. S.r(w)=— =cotd. (340
(29). If this were so, then we would have to worry about the 2

effects of successive quantum state reductions as each syc- . .

cessive bit of signal is collecte@ia homodyne detection lﬁere/_\ is a frequency that characterizes the strength of the
Fortunately, the monitored quantity is the Hermitian partpumplng,

UN(t)=1(O(t)+U0T(t)) of a quadrature amplitudd(t) of

2w W
the output waveguide’s microwave field®“(t). The com- A= we2 (35)
mutation relations for the electromagnetic field guarantee md
that this quantity commutes with itself at different times ith
[UN(t),U"(t")]=0, independently of how the field has in- "'
teracted with the speed met€fhis is a manifestation of the W= pwe2d, (36)

quantum Markov approximationin the case of the speed

meter, this vanishing commutator is achieved via an autoge power supplied to the resonator by the input waveguide

matic cancellation between the influences of the test-masgnq the corresponding power removed through the output
position x(t) [which in turn is influenced by the meter’s waveguide; cf. Eq(19). Below it will be useful to write

back-action noiséga(t)] and the meter's nois&n(t); cf. | £(w)[2 [Eq. (26)] in the form
Egs.(29)—-(32).
Becausg U"(t),U"(t")]=0, we can compute the noise in |L(w)|2=(0?— wd)?+ 52(wi+ 6214, (37)

any measurement with the speed meter by taking expectation

values in the initial states of the test mass, resonators, ariihere

incoming output-waveguide field,. Moreover, when—as .

in this paper—we are not interested in making absolute mea- wo=Q*— 5/2; (38)
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wq Will turn out to be the speed meter’s optimal frequency of

operation.

C. Wide-band sensitivity with lossless resonators

When one infers the classical signal fofieg(t) from the

speedmeter’s outplit(t), the spectral density of the noise of

the inferredF is
S(w)=m?w*S,(w) — 2Mw’S,¢(») + Se(w)

=hmw?&ss(o); (39

cf. Eq.(8). Equationg34) and(39) imply for the amount by
which the speed meter beats the wide-band standard qu

tum limit

& (w)=i cotd>+A—4 (40)
we 2A%sir? @ 2|L(w)|?

We shall optimize the homodyne pha®deso as to mini-

mize &g at the frequencyor around which the signal force

F(t) is concentrated. The optimizing phase is

A4
cotb=—

41
| L(wE) @

>
&&s(w) for this @ is

|E(w)|2 A w? —w,:) (w? +a),: Zwo)2

fuel @)= 15 2@ Plal
(42
and its minimum is
(02— w2)2+ 5 +52/4)
R RO L L 4

2A4

To further minimize the noise, we shall adjust the speed

meter’s optimal frequency t@y,= wg, thereby producing

|L(w)[? AHw?— wh)*
Ep(@) = 4 2 7 gz 4
2A 2| L(w)|? 6% w3+ 5214)
and
o2 w3+ 8214) W,
ffmn ( 0 ) SQL’ (45)
2A4 W
where
md?( w2+ 5%/4) 52
sQL= 2=~ ° (46)

dwe

PHYSICAL REVIEW D61 044002

We define the frequency bang, < w<w, of high sensi-
tivity to be those frequencies for which

Ews(®)=<\2&ws(wo). (47)
From Egs.(44) and (45), we infer that
(1)2 (1)2_ 5§( (1)%+ 55/4) wz_ ZAzgﬁ”lin
= wg+ =wqy+ .
VY sl wf suaP AR T ag 1 s

Equations(48), (45) and (44) imply that the lossless speed
meter can beat the force-measurement SQL by a large
mountéi,<1 over a wide frequency band,— w;~ wg
y settingA/wo~ (8e/ wo)?=2; cf. Fig. 3 in Appendix A.

D. Narrow-band sensitivity with lossless resonators

At fixed pump powel, i.e. fixedA, Egs.(48) and (44)
imply that there is a trade off, as one changes between
the optimal sensitivity¢,,;; and the frequency band,— w;
of near-optimal sensitivity. Fob,—0 the sensitivity atwg
grows indefinitely, but the frequency band goes to zero. If
Emin<<l and|w,— wq| < wy, this tradeoff has a simple form:

W™ Wy

B (A)Z > [BweW
wo =2 w_o Emin= d2 4§m|n (49

In this narrow-band regimémore precisely, ford.<wq
and for a frequency rangkw < 5§/w0 centered onwg), the
spectral density of the net noise has the f¢Exqs. (39) and
(44)]

S(0)=A" (02 4o ®2)*+B’, (50)
where o mete= wo and
. hmA* hmawgos
T 20t BT T2AT (52)
e

Notice that for the narrow-band speed meter, the noise’s fre-
quency dependend&q. (50)] is (w2 ee— @2)*, Whereas for

an ordinary, quantum limited met@Eq. (13)] it is (w2 e

— 0?)2. The (wZee— @2)* behavior is responsible for the
ability of the speed meter to beat the narrow-band SQL, and
is produced by the combined actions of the speed meter’s
multiple degrees of freedorfiest mass and two resonatprs
and the correlatior5,#0 of its noises. These combined
actions make the net noi ) =m?w*¢3,5(w) be equiva-
lent td' that of a system which has two coupled dynamical

For a detailed discussion of the use of noise correlations to make
a meter’'s noise resemble that of a system that has different dynami-
cal motions than the meter actually possesses, sed ReSection

is the pump power required to reach the standard quantumnB above gives another example: the noise correlation is used

limit at the optimal frequencw,. By pumping with a power

there to make the noise be that of an oscillator with eigenfrequency

W=>Wgq,, the speed meter can beat the SQL in the vicinitywmee different from the oscillator’s true frequenay,.

of the optimal frequencyv.

°The degrees of freedom afd the electromagnetic energy that
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degrees of freedom with system eigenfrequencies that amef lossy resonators. In this case the resonators’ equations of

degeneratgequation of motion of the quartic form*y/dt*  motion become

+ 202 @2yl d P+ 0y =F (1) for some variable/]. The

noise-equivalence to such a system is the central feature of a d?g4(t) PPNy dgq(t) o[ 1 x(1)\?

measuring device that beats the narrow-band SQf dt2 (01 G)TJF @Wel 27 Tg~ q(t)

course, one can do even better with a device whose noise

behaves like that of a system with three degenerate eigenfre- we

quencies. =ZweQQ2(t)+27[U1(t)+Ue(t)]7 (563
Three of the authors have previously described a concep-

tual design for an “optical-bar” gravitational-wave antenna

d*qa(t) dag(t)

[4] that can beat the gravitational-wave narrow-band SQL +26, + wlg,(t)

and does so by this same principle, but without the aid of dt? dt ¢

noise correlations. When operating in a narrow-band mode,

the optical ba_lr does actu_ally consist o_f two coupled degrees =2wqul(t)+2ﬁ3Uoc05wet+Zﬁuz(t),

of freedom with system eigenfrequencies that are degenerate, P P

and it thus does actually have the above, quartic equation of (56b)

motion?

For the speed meter, Eq&1) imply that where 8, , are the rates of amplitude decay in resonators 1
- and 2 due to intrinsic losses and, , are the fluctuating
AR’ — h*m (52) voltages that must accompany these losses.

45;‘ | Inserting expression@1) into these equations of motion

and linearizing, we obtain the following generalization of
This relation, together with Eq50), implies that, when a Egs.(22):
measurement of a sinusoidal force witht = w yeter@nd du-
ration 7¢ is made b i i day(t) Uss® _ Uedt)
= y averaging over a time= -, and the (8 + 8)ay(t) = —Qb,(t) — — ,
ratio B'/A’ is optimized toB'/A’ ~(wg/7)*, then the am- dt P P
plitude of the minimum detectable classical force is

dbl(t) wer
gi T (911 8)ba () =—5=x(1) + Qay(t)
= \ ﬁm(l)[: w;:/ﬁe_F w,:/b‘e (53)
T Nogy WS N L Vi) | Ued®)
P p
which beats the narrow-band S@12) by the indicated fac- (57)
tor. This result can also be derived by comparing E48),
(14), (50) and (51) to obtain for the amount by which the day(t) 5 bt U,s(t)
narrow-band SQL is beaten at frequenay at T 28(1) = 1(0) .
wi—w? dby,(t) U (1)
o= (54) g Eba()=0ay )+

e

and by then evaluating the rms value &fs over the band- By repeating the same manipulations as in Sec. Il and using

width Aw=27/7 of the measurement to obtain sujszsujczﬁpgj , Sy u. =0,

js*jc

rms__ /wF /5e (55) (58)
NB 56; . SUstks: SUstkc: SchUkc:O

for j#k andj,k=1,2[cf. Eq.(33)], we obtain the following

IV. THE SENSITIVITY OF THE SPEEDMETER expressions for the spectral densities of the speed meter's
WITH INTRINSIC LOSSES position noise and back-action noise:
Turn, now, from the idealized case of a speed meter with , )
no intrinsic losses in its resonators to the more realistic case S(w)= AL ()|
2m(w?+ 82) A* sir?
sloshes between the two nearly identical Fabry-Perot caVidies AMAY (02+ 82 (8- + 8.)+ 028
ergy differences&(t)], and (i) the displacemeny(t)=xp—(Xa Se(w)= [(w 2)(811 %) 2]
+Xg)/2 of the cavities’ common corner mirrd relative to the 2|L" (w)]?8,
separate end mirrors and B; see Fig. 1a of Ref4]. (59
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. 25 o
Sy 202

(67)

where which is optimized by setting,=2w, [s0 Q=\3w}; cf.
£/ (0)]?= (02— w0+ 5w+ 5214, (60 = OV
, , L 26, 46,
Here &* is the total damping rate due to intrinsic losses and Eh=—=—. (68)
losses into the output waveguide aaf is the speed meter’s wg Fe

damping-influenced optimal frequency of operation

5 =08t 01+ 85, wh=\QP—[(81+ 802+ 65]12.  (61)

By inserting the speed-meter spectral densitE® into

Eq. (39), we obtain for the factor by which the lossy speed
meter can beat the classical-force standard quantum limit

£ (w)]?w?

+cotd
2A4SirPd (w?+ 83)

Ep(w)=

+(cu2+ 82)(81+ 80) +Q%6,
20°8| L' (0)?

A% (62

To minimize the noise at the frequenay: around which the

signal forceF4(t) is concentrated, we adjust the speed mete

so w,= wg and choose for the homodyne phase

A WP+ 85

cotd=—
1L (0p)]* wg?

(63

The result is

52 (o)) 6*2(w62+5*2/4)w62
w0l) =
wero 2A N w2+ 52)

A 81(wh?+ 55) +025,]
2w(28,6* A w2+ 5*24)

(64)

In this case the actugptimal) pump powelW and power to
reach the SQLWsq,, are

_A'md® Wsq

4md2w64

T2 0 Wsoum T
2w, 5 We

(69

the homodyne phase is dot—1/£2,, and the band over
which £3,,<2£2. is

W™ W7

=2%/8¢&min- (70)

g
Of course, by allowing the minimum @f{}VB(w) to be larger
than 46, /6., one can widen the band of good sensitivity to
@1= w,~ g, as in the case of the lossless speed nié&qr
(48) and associated discussion; Fig. 3 of Appendi)x A

V. ON THE POSSIBILITY TO REALIZE
THE QUANTUM SPEED METER

We turn, now, to a discussion of the possibility to con-
struct a demonstration version of the quantum speed meter
that is capable of beating the wide-band SQL. A central issue
in such a speed meter is the intrinisic losses in the resonators.
These losses are characterized by the dissipation date
=§,, or equivalently by the unloaded resonators’ energy
damping time 7,=1/(26;) or quality factor Q= we7.
Equationg68) and(69) show that the intrinsic damping time
7, can seriously limit the achievablgy,=1/(wy)Y* and
significantly influence the required pump poweN

By contrast with the lossless case, the sensitivity here does WsqLVwor: and the power that is thermally dissi-

not grow indefinitely with the growth of\. Rather, the sen-
sitivity at the optimal frequencw, is maximized by setting

s w2 8* 2 (wh?+ 5"2/4)\/(—3e
_\/ 12 62 S 925 12 52 ) (65)
[(wg™+6%) 61+ 2](wo"+ 63)
In this case
1

R (RSt

2 __ &2 Iy — -t _<

gmin_ gWB(wO) e + w62+ 5% 56'
(66)

In any real speed meter, one will make the loséggnd &,
as small as one can, resulting 4= §,< S, ,w(,. This fur-
ther simplifies expressio(66) into the form

pated in each
:WSQL/(4 \/&)67’1) .

Actually, the situation is more extreme than these equa-
tions suggest. Even at cryogenic temperaturesl K, the
mean thermal energy per degree of freedohis large com-
pared to the energy of a microwave photbn,; i.e., the
thermal noise number

resonatorW’ = (81/5e) W=W/(4wqT1)

KT
=2 (72)

hoe

NT:

is somewhat larger than unitytHere and below, for reasons
to be discussed, we set,=2mwx10° s1.) Correspond-
ingly, the quantum-to-classical transitiéiw /2— kT implies
that the noise spectra of the fluctuating voltaggs Sy, and
SU2 that plague the speed meter are larger by Zhan in the

idealized, quantum-limited analysis of Secs. Ill and IV, and
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the limiting performance and thermally dissipated power argyhere 7~ 1/w}, is the observation time. The above param-
changed by factorg2Ny and Ny eters giveAv\/7=5x 10~ cm/d’2 a signal strength that is

, within the measurement capabilities of current techniques
- \/Z_NT _ 2N mcPwg* (72) based on whispering galler;/) modes of sapphire disksqand
™ (whry) YA wewhT, microwave oscillators stabilized by sapphire digk8].
The velocity signalAv v7=5x 10715 cm/€/2 produces a
[Here we have used E¢G9) for Wsq, ] microwave phase shift with magnitude

To have any hope at all of achievirgg,,<1, it is neces-

sary to operate at cryogenic temperatufesl K. Then, for 0,

a demonstration experiment that achievgs,=0.5 near a b= —,ZAv; (75
frequencyw(=3x10* s~ for the signal force, Eq.72) dic- \/§w0 d

tates a resonator energy damping time=0.1 s, correspond- -

ing to an unloaded qua"ty fact@lzsx 10°. i.e., for the above parameterﬁ,¢\/;=4>< 10_11 51/2. This

The best candidates for resonators V\QBZSX 109 are small phase shift imposes very strict requirementS on the
polished sapphire disks excited in whispering-gallery mode§tability of the microwave oscillator that regulates the speed
With we~27x 101 s~ (which is our reason for selecting Meter's pump field, though the quantum limit in this case is
this ). Such resonators have been constructed \@ith  not the main factor. That stability translates into an oscillator
larger than 18[9], and the intrinsic electromagnetic losses POWer
in sapphire are small enough to per@it=10'°[10]. More-
over, the whispering-gallery evanescent fields provide an at- 8mdwy’we
tractive means for coupling to the test mass and to input and Wose> £ Q2 '
output waveguides. To obtain a small tuning lendtheso- min
nator 1 and the test mass could consist of two identical diSk\?vhereQ is the quality factor of its resonator. F@=10°,

A and B facing each other with variable separatiEmdx  the required power i¥,s> 20 erg/s, which is within current
=(change of separatioh with the resonator-1 whispering- technical capabilities.

gallery field shared equally between the disks, and with the  Thermal noise in the acoustic modes of the speed meter’s
classical force(t) acting onA; while resonator 2 could be  resonators must also be taken into account. During the ob-
a single diskC facing B and with fixed separation fror8 servation timer, the thermally induced change in the veloc-

large enough that the fields i@ and in AB overlap only . - ;
slightly. In this case, the tuning lengthcan be as small as ity that is measured by the speed meter will be

d=3 mm[11,12 but not smaller. So large d means that
each resonator’s thermally dissipated pow&) will be, for
m=10 g (the smallest reasonable test mass corresponding to
the smallest dissipated poweaind all other parameters as
above,W'~3x 107 erg/s. So much heat cannot be removedwherew,.is the eigenfrequency ar@,. the quality factor of
radiatively, but it can be removed by thermal conduction upthe lowest acoustic mode. With the conservative estimate
the suspensions from which the test mass and resonatofg, = 10° at w,.=10°, we infer Avy\7=5x 1017 cm/d/2
hang, provided the suspensions are thin niobium strips rather, . , . : \/7 15

N which is small compared to the signalv\7=5Xx10
than the more normal fused-silica fibers.

. . . cm/g’2,
To achieve a demonstration experiment with;,=0.5, . .
i . . In summary, the above estimates suggest that with present
the test mass’s thermal mechanical noise must be kept coy- . )
. . echnology a demonstration type of experiment at the level
respondingly small:

¢min=0.5 is not hopeless. However, further technological de-
velopments will be required if such a speed meter is to be-

(76)

2kT

3 ~
mwacQacT

(77

!
Ava=wg

E< Eminfl @), (73 come a promising tool for, e.g., QND interferometers in the
T Laser Interferometric Gravitational Wave Observatory

(LIGO) of the type proposed in Ref$4,5]. Most impor-
where 7. is the test mass’s mechanical relaxation time. Fortantly, it will be necessary to construct resonators vt
the above parameters, this will be satisfiedrif>2x10°  >10'. This may be possible for sapphire in double disks
s 1. Mitrofanov and colleaguef8] have demonstrateat, ~ (the design described aboveor perhaps for klystron-type
comparable to this with fused silica suspensions, and a simgUPerconducting resonators with lumped capacitances that
lar performance is likely from a niobium strip suspensionP€rmit tuning lengthgi~10 ® cm (much smaller than the

[13]. d=3 mm of sapphire disks
The demonstration experiment also requires that the meter
measure the test-mass velocity ACKNOWLEDGMENTS
7 For helpful advice, K.S.T. thanks Andrey Matsko, Sergey
Av=Enin\/ —, (74)  Vyatchanin, and the members of the Caltech QND Reading
T Group, most especially Constantin Brif, Bill Kells, Jeff
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1 Repeating the same manipulations as for the speed meter,
— Uo(1) we arrive at spectral densities for the position meter’'s posi-
Upsinw,t P |d C'j(t)— tion noisex,(t) and back-action noiség,(t), which can be
€ deduced from thos€s9) for the speed meter by settir(g
=0, 6,=0, and therefor¢L’ () |?= w?(w?+ 6*?):

L m |

2 2 4
FIG. 2. Schematic diagram of a position meigarametric S(w :ﬁ(w—-i—é*), SF(w)=M
transducex 2mA4sinf® 2(w?+ 5%2) 5,

Kimble, Yuri Levin and John Preskill. This paper was sup- h
ported in part by NSF grants PHY-9424337, PHY-9503642 Scr(w)=— Scotd, (A3)
and PHY-9900776, and by the Russian Foundation for Fun-

damental Research grants #96-02-16319a and #97—02—0421\/9here 5 = 5,4+ 8,. Correspondingly, when homodyne de
— Ye 1- ’ -

tection is performed on the output of the position meter, with

APPENDIX A: COMPARISON OF SPEED METER homodyne angle, the factor by which the wide-band SQL
AND POSITION METER is beaten i§Eq. (62)]

It is useful to compare our speed metéig. 1) with a
position meter(parametric transducethat is made from a ) RCE ) 5 A
single microwave resonator, modulated by the position of a  swe(®@)=— "7 — +eotdb+
; ) ; 2A%sit @ 202 (w?+ 6*2) 5,
test mass on which a signal force acts; see Fig. 2. (A4)

1. Analysis of position meter 2. Lossless position meter without homodyne detection

The position meter’s resonator is pumped with a classical
force Uy sin(wgt), by contrast withU cos(et) for the speed
meter; this difference guarantees that the excitation in th% no homodyne detection is useie., if &= /2, corre-

resonator will be at the same phase as for the speed metersﬁonding to measuring the signal force as a phase modula-

;i?gr??rtgt:r; ;fee tﬁgf\;\;engnfgg&g'?;Stﬁg '20223 Igéthe POion on the output voltage’s carrigrEq. (A4) predicts that
P s &we=1, with the minimum valu&,,,;,=1 obtained for the

(56)] but with the driving v_oltage moved _from_resonator 2to optimal power
resonator 1 and changed in phase so-€8i5, with resonator

The best performance is achieved if intrinsic losses are
negligible, 6, << ., which we shall idealize ag;=0. Then,

2 removed, and with the coupling frequenQyset to zero: md(w?+ 82) w?
WSQL:T- (A5)
d’q(t) da() — ,( x(®)? e
7 T2(0et o)y twe| 1- —~] a(t)
dt Thus, as is well known, this conventional parametric trans-
© ducer can reach but not beat the wide-band SQL.
=2f[u1(t)+ U(t) + Ugsinmet], (Ala)

3. Lossless position meter with ordinary homodyne detection

d’x  pwe , POe , By performing homodyne detectionb( 7/2), we intro-
My~ g 9 g dotFsb. (A1b)  duce a correlation between the position noisg(t) and
back-action noisd-ga(t). This correlation can be used to
make the position meter perform a narrow-band measure-
ment of the signal force at, butot below, the narrow-band
SQL, in precisely the manner described by E@—(12)
with wy=0. Contrast this with the speed metearhich, like
this position meter, uses standard homodyne detection with

Resolvingq, U4, andU, into coswt and sinwgt parts as
for the speed metdEqgs.(21), (23), etc] and linearizing, we
obtain the same equations as for the speed nEfgs. (57)]
but with resonator 2 deleted a2l set to zero:

day(t) U(t)  Uedt) constant homodyne phaseWhen monitoring a classical
;4_(514_ So)ay(t)=— I e force F¢(t) in a narrow-band mode, the speed meter has net
dt P P noiseS(w)=A’(w?— w?4)*+B’ [Egs.(50) and(51)] and

(A2) beats the narrow-band SQL. The position meter §&s)
=A(0?— 02 ee)?+B, with AB=#%2m?/4, and reaches but

dby(t) welo Uqc(t) does not beat the narrow-band SQL.
dt +(81F Se)ba(t) = d (D) + p It will be useful to reexpress this position-meter perfor-
mance with constant homodyne andbein the language of
N Ued(t) éws(w) [EQ. (A4)]. We adjustd so as to minimizeyg(w)
p at some desired optimal operating frequeiagy;,
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0.5 7 T 7 s !. (For these parameters, the pump pow&y
04 ebont / =Wsq/ €2, is 5/4=1.25 times larger for the position meter
@-const! . than for the speed metgrThe figure shows explicitly the
5 03 ! i excellent wide-band performance of the speed meter, and the

Eve ! i inability of the position meter to achieve wide-band perfor-

921 Speed Meter ‘-‘ | mance for this moderately smai,,= 1/y/10~1/3.

0.1

g":%’@fejer/ - 4. Position meter with optimized frequency-dependent
0 0 = 500 1000 1500 2000 homodyne detection(“Quantum variational technique” )
a]

Vyatchanin and colleagud44] have shown that a posi-

FIG. 3. £3,5(w), the squared amount by which a meter beats thetion meter can be made to beat the wide-band SQL over a
wide-band SQL when monitoring a signal forg(t), as a function  wide range of frequencies by performing @anconven-
of angular frequencyw, for three meters with negligible intrinsic  tional) homodyne detection with an optimized, frequency-
losses: The speed metdEqs. (44)—(46)], the position meter with  dependent homodyne pha®$d w); they have called this the
homodyne detection at constdfrequency-independentomodyne  “quantum variational technique.” Recently, Kimble and col-
phase® = const[Egs.(A4), (AB), (A7) with 6" = 5], and the po-  |eagues[15] have proposed a possibly practical method to
sition meter with optimi_zed freque_ncy-dependent homodyn_e phasgchieve such & (w): pass the meter’s output field through a
®(w) (“quantum variational techniqug[Egs. (A10), (A11) with g fficiently lossless filter that has an appropriate frequency

8,=0, & = 5,]. The parameters of the three meters are adjusted t?iependence, and then perform conventional homodyne de-
be the same: the sarﬁémzo.l at the optimal frequency of opera- tection

tion wo= wep=1000 s, and the same rate of extraction of signal

from the resonators, 2 5 2000 &1 For the above position meter, the desired, optimal fre-
e = £WQT £Wopt— .

quency dependence of the homodyne phase i$the) that

A4 minimizes £5,5( @) [Eq. (A4)]:

coth=— —————, (AB) 4
Wopl Wopit 52) A

cotd e e——
(@) 0’ (w?+ 8*?)

(A10)

and thereby obtain foéyi,= {we(wopy)
where we now allow the meter to have intrinsic losses, so

2 _ _ 1 - WsaL < 8* = 8g+ 8;. In the idealized case that this(w) is achieved
Emin <1. (A7) : )

2cotd W perfectly, the resulting performan¢gq. (A4)] is
Here W=md?A*/2w, is the pump powefEq. (35)], and 02w+ 5*2) Al s
Egs.(A6) and (A7) imply that the power required to beat the 5\2,\/8(“,): + ey
broad-band SQL is 2A% 202 (w?+ 6*?) O

(A11)
mdzwgpt(wgpl+ 5%)
sQL= : (A8) If the meter is lossless&=0) and is adjusted to have

20e 2 _ _ <1 2
&ws=0.1 at frequencyw=1000 s -, then & g(w) has the

The bandw; < w< w, over which&2g<2£2,, as computed form shown as the dashed line in Fig. 3. Note that switching

from Eqs.(A4), (A6) and (A7), is given by from constant® to optimized®(w) has made the position
meter broad band, though its performance above 1060ss
not quite as good as that of tljeonstantd) speed meter.

) (A9)  The pump power needed to achieve this performance is the
same(A8) as for the constarn® position meter and nearly

_ N the same as for the speed meter.

Let us compare this lossless position-meter performance |ntrinsic losses §,~5,<3,) in the meters’ resonators

with the lossless speed meter. Both can beat the wide-bangbpilitate their low-frequency performancggg. (A11) for

SQL near their optimal frequencies and they do so with apposition meter; Eq(64) for speed metdr For the position
proximately the same pump powgEqs. (45 and (46) for  meter with such losses, the minimum achievailg is

speed meter, with2~ w3 ; Eqs. (A7) and (A8) for position

meterl. However, the speed meter can do so over a wide Emin=(6118)Y4. (A12)
frequency bandv,— 0= wq [Egs.(48), (44) and associated

discussiot, while the position meter can only do so over a This is /2 lower than for the speed mefdq. (68)] at fixed
bandw, — w1~ wepé i, that becomes more and more narrow s, /5,—though this factor/2 is not signficant compared to

as &min Is made smaller and smaller. This difference is illus-jll-understood differences in the difficulty of realizing the
trated in Fig. 3, which shows{g(w) for the two meters  two meters. In both cases the 1/4 power dependence on dis-
with the same choice of parametegﬁ;iﬁo.l, optimal fre-  sipation presents serious problems for a practical device; see
quencieswy= wqu=1000 S*, and §e=2wo=2w=2000  Sec. V.

2 2
s 2 _Z(wopt+5e) )
W1 2= Wopy L+ 202 + 52 min
opt™ e
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o T meter of Fig. 1, which has only one test magsat coupled
to resonator ), this optical speed meter hés effect two
test masses, one coupled to each resonator. The reason is
that, in order to keep both resonators highly stable, all four
mirrors must be suspended as pendula, and the relative dis-
placemenk; of mirrors 1' and 1 then behaves as a test mass
coupled to resonator 1, while the relative displacemgraf
N f2 Q \ 2' and 2 behaves as a test mass coupled to resonator 2.
- Tl As for the microwave speed meter, we shall read out the
L classical force(gravity-wave signal from resonator 1. To
OUT(3 Q INjoYT \ guarantee that resonator 1 contains only a velocity signal
T 7) dx,/dt [or, more precisely, a signal that involves only
4 dx, /dt and its time derivativésand not any position signal
V'N X5(t), it is essential that resonator 2 be unexcited. To achieve
this requires, in contrast with the microwave speed meter,
FIG. 4. Rough sketch of a possible LIGO antenna based on athat both cavities be driven by input light beams and that the
optical-frequency adaptation of the speed meter. relative amplitudes and phases of those beams be chosen
appropriately. Because resonator 2 is unexcited, its mirror
We note in passing that one can enlarge the bandwidth ghotions produce no gravity wave signal, so it does not mat-
the speed meter by changing its homodyne phase from aer whether it is placed in the same arm as resonator 1, or in
optimized constan® to an optimized frequency-dependent the other arm(cf. Fig. 4).
®(w) (analog of the above position meteHowever, the For the configuration in Fig. 4, the two cavities are driven
speed meter already does so well with consthnthat the by beams entering their corner mirrors. The end mirrors 1
improvement is modest. quﬁqinzo_l, switching to® (w) and 2 have the highest possible power reflectivities and the
increases the bandwidth by about 50 percent. More genegorner mirrors 1 and 2 have more modest power reflectivi-
ally, the bandwidth is widened, by switching from constantties R designed to produce identical amplitude decay rates
® to optimized®(w), by about the same amount as it is Je=C(1—R)/4d.

widened by increasings. (at constant®) by a factor As for a conventional LIGO interferometer, so for this
NEmin speed meter, there is a serious issue of frequency instability

for the input light beams. To protect against frequency fluc-
tuations, one could proceed as in a conventional interferom-
eter: Construct two identical speed meters,’2P1 and
33'44’ as shown in Fig. 4, with the strongly excited resona-

In the Laser Interferometer Gravitational-wave Observators 1 and 3 in the two orthogonal arms of the LIGO vacuum
tory (LIGO), the second generation antenn&8kIGO-II”; system. Drive the four cavities with phase coherent light
2006—2008 are expected to have sensitivites near theirbeams that are all phase locked to the same master oscillator.
wideband SQL atw~27X 100 Hz[16]. Our speed meter Construct the difference of the outputs from 1 and 3 by mix-
research is motivated, in part, by the goal of conceiving pracing at a beam splitter, and perform the homodyne detection
tical designs for a third generation of LIGO antenfiasO-  on that difference. As for a conventional interferometer, such
1) that will beat the wide-band SQL and go into operationa scheme should provide significant protection against fre-
in ca. 2008. One possibility is the use of a microwave-baseduency fluctuations.
speed meter as an internal readout device in a radically re- Although we have not yet carried out a full and detailed
designed antenné@ne based on the concept of an “optical analysis of this optical speed meter, our approximate analy-
bar” [4] or “symphotonic states’[5] or something similgr ~ ses show that, up to factors of order unity, its performance is
Another possibility is an adaptation of the speed meter intglescribed by the same equations as for the microwave speed-
the optical band, as sketched in Fig. 4. Further possibilitiesneter. It can beat the wide-band SQL by the factqyg( )
will be discussed in Ref.15]. derived and discussed in Secs. lll C, Il D and IV.

Figure 4 shows two nearly identical devices, one labeled More specifically, if such an optical speed meter is opti-
1122, the other labeled 384’. For the moment ignore mized as in Sec. IV §e=2w}, Q= 3w} wherew), is the
33'44'. optimal frequency of operatignthen to reach the wide-band

Device 1122 consists of two optical cavitiggesonators ~ SQL atw= w; requires a pump power
11’ and 22 that operate at identical resonant frequencigs
and are weakly coupled by a mirror with low transmissivity.
The mirror causes light to slosh between the two cavities
with a sloshing frequenc§2=c\T/2d whereT is the cou-
pling mirror’s very small power transmission coefficient and[Eq. (69)], and by using a pump pow&¥ that exceeds this
d is the length of each cavity’s arm. These cavities are th&Vsg_ and achieving sufficiently low optical losség< 6,
resonators of a speed meter adeé-4 km is the speed the wide-band SQL can be beat in the vicinity of the optimal
meter’s tuning length. By contrast with the microwave speedrequencywg by a factor

APPENDIX B: SPEED-METER-BASED GRAVITATIONAL-
WAVE ANTENNA

W=Wsq =4mdwy* we (B1)
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WsoL 48,\ " the optimal frequency, using the optical speed meter of
Emin= W; §min2(78) (B2) Fig. 4 would require an even larger circulating power
[Egs. (69) and (68)]. WEIe=WEE/ € (B5)
Note that the SQL poweWsg, corresponds to a stored _
energy in each resonator '1and 33 given by [Egs. (B2)—(B4)]. Moreover, even if such extreme power
could be handled in LIGO-III, the resonators’ optical losses
WsoL mw,? might not be much smaller tha#, / 5.~0.01, which corre-
5SQL:2_5€:(0—6- (B3) sponds to a limit on the achievable sensitivi,

=(46,18,)Y*=0.4 (and an increase in event rate for
This is the same stored ener@lp within a factor of order gravitational-wave bursts of£1/0.4°=15 over an SQL-
unity) as is required to reach the SQL in a conventionallimited interferometer

LIGO gravitational-wave detectgi5]. This stored energy Although this scheme is rather complex and places ex-
and the corresponding circulating light powéfgg, in the  treme demands on the circulating light power and on optical
resonators are uncomfortably large: losses, it nevertheless might turn out to be practical. More-
over, it is not significantly more complex or demanding than
schemes that have been devised for beating the SQL in
LIGO-III by modifying a conventional interferometer’s input
and/or output optic§l7,14,15.

where we have useti=11 kg,d=4 km, wy=27x 100 Hz, The high power demands of all these schemes leave our
and w,=1.8x 10" s ! (wavelength 1.06um), as planned research groups dissatisfied and motivate our continuing ef-
for LIGO [16]. There is hope, in LIGO, of operating at cir- forts to find more promising designs that entail much less
culating powers of this orddrl6], but to do so will be ex- optical power—schemes that might resemble those described
tremely challenging. And to beat the SQL by a facigy, at  in Refs.[4,5].

i EsaL
irc _ -
6= 5gc 900 kW, (B4)
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