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There is substantial evidence that string theory on£dS; is a holographic theory in which the number of
degrees of freedom scales as the area of the boundary in Planck units. Precisely how the theory can describe
bulk physics using only surface degrees of freedom is not well understood. A particularly paradoxical situation
involves an event deep in the interior of the bulk space. The event must be recorded(8chinalinger
picture state vector of the boundary theory long before a signal, such as a gravitational wave, can propagate
from the event to the boundary. In a previous paper with Polchinski, we argued that the “precursor” operators
which carry information stored in the wave during the time when it vanishes in a neighborhood of the boundary
are necessarily non-local. In this paper we argue that the precursors cannot be products of local gauge invariant
operators such as the energy momentum tensor. In fact gauge theories have a class of intrinsically non-local
operators which cannot be built from local gauge invariant objects. These are the Wilson loops. We show that
the precursors can be identified with Wilson loops whose spatial size is dictated by the UV-IR connection.

PACS numbs(s): 04.50+h

[. INTRODUCTION behavior near the boundary records the presence of a certain
amount of energy in the interior. On the SYM side this
This paper is concerned with the mechanism by which aneans that the energy momentum tensor is almost exactly
holographic boundary theory can describe bulk physics. Alomogeneous and consists of an homogeneous energy den-
emphasized if1-3] a holographic description entails a vast sity and the pressure needed to méke) =0. However, this
reduction of the number of degrees of freedom needed teffect is featureless and provides no information about the
describe a region of bulk spacetime. Despite the largerofile of the gravitational wave. In addition, it is vanishingly
amount of circumstantial evidence for the holographic prin-small in the largeN limit since corrections to the metric due
ciple it is still very mysterious how such a sparse set ofto the energy of the wave are smaller than the wave itself by
degrees of freedom can describe all local bulk physics. Aactors of\/G_5~N*1_ We refer the reader t@!] for notation
particular challenge is to understand how events deep in thgnd conventions. Thus, within a neighborhood of the bound-
interior of the bulk space are recorded in the instantaneougry, all supergravity field functionals retain their original,
(Schralinger picturg state vector of the boundary theory vacuum-like expectation values, at least until light has had a
long before a signal can propagate from the event to thehance to propagate from~0 to the boundary. The impli-
boundary[4]. cation for the SYM theory is that all expectation values of
Let us consider an example. For definiteness we will contocal gauge invariant operators corresponding to the bulk
sider the(3+1)-dimensional super Yang-Mill$SYM) de-  fields, as well as expectation values of products of such op-
scription of bulk physics in 5-dimensional AdS spaf®-7].  erators, should initially be identical to their vacuum values
We will be interested in the limit of large radius of curvature and contain no information about the propagating wave.
compared to the string scale. In this limit stringy excitations  This situation continues until the outgoing wave arrives at
are negligible and the low energy supergravity approximathe boundary. At that time the perturbation on the boundary
tion to bulk physics is reliable. On the SYM side we mustbecomes nonzero and begins oscillating over the whole
take N large, keeping the 't Hooft coupling constagtN 3-sphere. From the SYM point of view, the energy momen-
fixed and large. tum tensor and its products suddenly begin to coherently
Suppose as ifi4] an event takes place at the ceAtef  oscillate. The features of the gravitational wave can then be
AdS which radiates a gravitational wave toward the boundfecovered from expectation values of the energy momentum
ary. No signal including the wave itself can arrive at thetensor and its products.
boundary until a certain time elapses. If the original eventis Thus during the time when the wave vanishes within a
well localized near the center of a very large AdS space, theeighborhood of the boundary, the SYM theory is excited to
original bulk fields will typically be very spherically sym- a non-vacuum-like state which we cannot distinguish from
metric and time independent. In fact the only bulk field of the vacuum by taking expectation values of local gauge in-
importance is the time-time component of the metric whosevariant operators or any of their produétsn [4], it was
argued that the holographic boundary theory must contain

The usualS; factor in the correspondence plays no role in the

present paper and will be ignored. 3We are assuming that local gauge invariant operators are in one-
2Since AdS is a homogeneous space, it has no preferred point-one correspondence with local observables of the bulk theory
Center here means the origin of cavity coordinates. evaluated near the boundary.
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special non-local operators, called precursors, that distin- 1 o

guish such states and code in detail local bulk information. ds?=R? ?(dtz—dzz—dx'dx') (1.3
The precursors should become increasingly non-local the

further the corresponding bulk process is from the boundaryherez=1—r and x%,x2,x3 replace the coordinates of the

@n acc_ordance with the UV-IR connecti¢8]. In those cases 3-sphere. For our purposes the metficd is to be regarded

in which the boundary theory has a gauge symmetry, thes 5 |ocal approximation to the cavity metric. It is true, but
precursors must also be gauge invariant since they contaiffglevant to our purposes, that the same metric also gives an
physical information. In the case Nf4 SYM theory, thls_ exact description of a patch of AdS space. In any case we
suggests that the precursors are Wilson loops whose size | call these the half-plane coordinates. The two dimen-
dictated by the UV-IR relation. sionless parameteRY/| andgs of the bulk theory— is the

We remark that there exists a rich class of generalizedgyring |ength scale—are related to the SYM quantibiesnd
equal-time Wilson loops as candidates for the precursorgy

Apart from conventional spatial Wilson loops, we may con-
sider spatial Wilson loops with insertions of local gauge co- R/1s=(g’N)¥4
variant operators. For example, we can consider the operator

—~2
TrPF,,, (X)X (X)W, (1. 9s=9g" 1.4
whereW is a Wilson loop passing through the pointsand The 5- and 10-dimensional Newton constants are given by
Xo, andP denotes path ordering. Presumably, such operators
and their products form a complete set of observables in the
boundary theory. e 1
In [4], it was shown how a plane gravitational wave can 10~ Osls - (1.5
be modeled by “squeezed states” constructed in free fieI({N
theory. In particular, it was shown how to account for the
oscillating energy density and the apparent acausality in th
behavior of the energy momentum tensor required by th
correspondence. It was found that this behavior is consistent
with bounds required by general principles of quantum me- Il. BULK WAVES
chanics. In addition, apart from possible numerical coeffi-
cients, the free field theory model reproduces corrections t?n
the linearized solution induced by non-linear terms in Ein-
stein’s equations involving the energy density of the wave.
In this paper we model bulk waves with “squeezed
states” constructed in the interacting SYM theory. We com-

ute expectation values of local gauge invariant operators i . ; : .
P P gaug P we will be interested in the case of a dilaton wave. Assume

the “squeezed states™ and match them .W'th the boundar¥hat the wave is in one of the lowest spherical harmonics on
data of the wave. We show that expectation values of prod;

ucts of local . . . .. tihe 3-sphere. In half-plane coordinates the plane fronted
gauge invariant operators contain no addltlonaw‘,jwe has the form

information about the profile of the wave in agreement with

bulk causality. Our computations are done in the 't Hooft ®(z,1)

I|m|t, keep!ng only the leading terms in theNLexpansion. ' vMV(z,x,t>=§ﬂVJG_5 2’ , (2.2

Finally, using the correspondence, we calculate expectation

values of Wilson loops in the “squeezed states” and show . .

how they carry non-trivial information if their size is as dic- WNe€ré7,..(z.x,t) is defined by

tated by the UV-IR connection. We discuss the implications 1

of our results for holography at the end. ds?=| S (dt2—dZ2—dxdx) |+ y,,(z,xt)dx*dx"
Before concluding the introduction we will review some z a

facts and conventions about the AdS and conformal field (2.2

theory (CFT) correspondence. The metric of AdS in cavity ) o )
coordinates is and¢,,, is a transverse traceless polarization tensor with non-

vanishing components in the directions. The polarization
(14122 P ) tensor is assumed normalized to unity.
(1_r2)2dt - (1_r2)2(dr +r2d0?) | =R, Far away from the original source®,(z,t) satisfies the

(1.2 ~ same wave equation as a free, minimally coupled, massless

scalar field in AdS. We use normalization conventions so
where the coordinates amtf’ are dimensionless artf)? is  that ®(z,t) is canonically normalized. Thus we keep the
the metric of the unit 3-sphere. The center of AdS means thamplitude|®(z,t)| finite, independent oN, and the energy
pointr=0. Near a point of the boundary et 1 the metric  of the wave is finite. The corresponding operator in the SYM
has the form theory is&;; T;; /N. The 2-point function of this operator is of

G5: GlolRS

e setR=1 for simplicity. The string length scale is then
iven by ls=1/(g?N)Y4 Throughout we neglect numerical
actors of order unity.

As in [4], we model bulk waves with “squeezed states”
the boundary theory. Our goal is to study expectation val-
ues of various operators in the “squeezed states” and iden-
tify the precursors that store local bulk information.

For definiteness, let us consider a gravitational wave
Rropagating radially outward from~0. In the next section,

z

ds?’=R?
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order N°. Non-linear terms in the gravitational field equa- ~ Our motivation in writing Eq.(2.5) is as follows. In the
tions are suppressed by additional factors/&s;~N"! and largeN limit with the 't Hooft coupling held fixed and large,

will be ignored in this papet. |W') corresponds to a coherent state in the bulk. To see this
Near the boundary, normalizable solutions to the wavelote that if we Fourier expand any local gauge invariant
equation behave as follows: operatorO(x,t),
D(z,t ~z4f do|w|® e et 2.3 R . L
(20 wlol*¢(w) @3 O(X,t)zf dwd®kO(w,K)e XK He, (2.6
0>0

with ¢(w)= ¢*(— w) since the field is real. According to
the AdS-CFT correspondence, the wave makes a contrib

Yhen, to leading order in W, th itive f d
tion to the SYM energy momentum tensor given[ky] en, 10 feading order in B, fhe positive frequency modes

O(w,IZ) behave like annihilation operators and the negative

frequency modes) T(w,k) behave like creation operators
[13]. In particular, their commutator is @number function.

. . " ) Thus, up to some irrelevant normalization factor, the state
We are interested in describing a wave emitted at a Pamy) takes the form

ticular timet, in the past, near~0, so that, whet<0, the

perturbation vanishes within a neighborhood of the bound-

ary. This can be achieved if we choose the function |\P>~exr{f dof(0)0T(0,0)[|Q). 2.7
|w|2¢(w) to be analytic in the upper half plane and have

the right asymptotic behavior as—i«~. Then the boundary ) ) ) )

data vanish fot<0 and so does the contribution ¢&/N).  We see that if we identify the SYM vacuum with the bulk
In general, the boundary data will be non-vanishing when vacuum and the mode®(w,k) with the Fourier modes of
>0 since ¢(w) will have singularities in the lower half- the bulk field corresponding t@, |¥') becomes a coherent
plane. Also, causality of the bulk theory ensures that théulk state. This can always be done in the limit we are con-
function ®(z,t) describes a wave which, at any<t<0,  sidering since, in this limit, the relation

exactly vanishes foz<|t|. In addition, bulk causality re-

quires that all local bulk fields evaluated in a neighborhood O(x)=z"*®(z,X)|,_0 (2.8

of the boundary, as well as products of such fields, retain

their vacuum expectation values uriti# 0. Therefore, on the  ho|ds as an exact operator relatidr2,13. Coherent states in
SYM side, expectation values of local gauge invariant operathe pulk describe classical waves.

tors and their products must be identical to their vacuum Next we calculate the expectation value

values untilt=0.

<E>~_§..z4¢(z vl (2.4
N 1 12 1z=0" .

_ . Ti(y,7) 1 i £mn
Squeezed states in Yang-Mills theory v N V)= N Qlexp — N f(O)Thn(X)
We propose that during the propagation of the wave, the _
SYM theory is exu-t:d in the “squeezed state” defined by xTij(y)eXp( fl\rlnnf f(t)Tmn(x))’ >
i & - -
|W>=exp{W”J’ d3xdtf(t)Tij(x,t) |Q), (2.5 2.9

where| Q) is the vacuum of the interacting theory afd) iS | the 't Hooft limit and to leading order in I, the com-
some rea! fur.1ct|on'related to the boundary data of the Wavernutator[Tij(y),Tmn(x)] is ac-number function proportional
The polarizatiorg;; is taken to be traceless and symmetric. Ity the central charge of the theory. Therefore, it is of order
will turn out to be the polarization of the wave. The statenz2 | fact, it is independent of the 't Hooft coupling and can
thus defined is unit normalized. be calculated in the free theory. This function vanishes both
inside and outside the light cone; it receives contributions
only when the pointx andy are at light-like separation.
“4In [4], these effects were included and it was shown how theyHence, we can commuigy) past the exponential, picking a
can be reproduced in free field theory up to possible numericafactor proportional to this commutator. Recall also that the
coefficients. In the largsl limit they are suppressed. However, they energy momentum tensor has zero expectation value in the

are important to recover consistency in the behavior of the energyacuum. Then, to leading order inNL/the expectation value
momentum tensor required by general principles of quantum meis given by
chanics. We refer the reader to Rg#,10| for a discussion of this

point. > .
®In the free theory, to leading order inNL/ it reduces to the <WM ‘P> = 'gm”f dtd®xf(t)
“squeezed state” considered [A], up to some normalization fac- N N2
tor. Also, the energy momentum tensor is normal ordered so that R .
the vacuum energy density is zero. X[Tii(¥,7), Tma(X,1) ] (2.10
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non-trivial component is just the product

time-ordered 2-point function of the energy momentum ten{ W |T,|W){W¥|T,|¥). Therefore, fort,,t,<0, the expecta-

sor, and so
T, (y,7) 2
<\P‘ N ‘I’>:‘fmnmf ey

X1m f d3)2<Tij ()7- T)Tmn()zit»

+0

1
N)' (2.10)

tion value is identical to its vacuum value since each factor
vanishes by construction. In any case, products of local
gauge invariant operators contain no additional information
about the profile of the wave. This is of course a conse-
quence of largeN factorization.

Ill. WILSON LOOPS

In this section we show how the expectation value of a
Wilson loop in a squeezed state carries non-trivial informa-
tion about a dilaton wave. Since we are interested in the

The expectation value inside the integral is in the vacuuminstantaneous state vector, a Wilson loop will typically mean
All other components of the energy momentum tensor have spatial loop with no extension in the time direction. To

expectation values of orderN/in this state.

model a dilaton wave in the SYM theory, we replace

The details of the calculation can be found in Appendix§;; T;; /N with O=TrF?/N in Eq. (2.5).

A. Here, we write down the results. The spatial integral is
imaginary and independent §f Simple dimensional analy-

sis shows that it behaves like

1

|7—t]>"

(2.12

Thus the expectation value of the energy momentum tensd

in the “squeezed state” is given by

Tij(;ﬂ')
o]

1
N4 Nfijfdtf(t)(q-——t)S' (2.13

If we Fourier transfornf (t),

f _
f(t)=J’ dw(Tw)e*"”t, (2.19
with f(w)=—f*(—w), we obtain
<W‘W ~P>~i§”f dof(w)|w]3e .
(2.15
Comparing with Eq(2.3), we must set
d(w)~if(w). (2.1

Note that we have chosefi(w) so that the boundary data

vanish fort<0. This does not imply that(t) is zero fort
<0.

We consider a conventional Wilson loop

(3.9

W(C)=Tr Pex%i jg A, dx*

for simplicity. In the 't Hooft limit and large 't Hooft cou-
pling, the vacuum expectation value of this loop can be ob-
gined from the area of a minimal world sheet in AdS that
ends on the loop at the boundd]. We consider a spatial
Wilson loop evaluated at<<O and oriented in the(;-x,
plane. We take the loop to be circular with seeWe regu-
larize the vacuum expectation val(é¢EV) of this loop by
dividing the divergent term proportional to the circumfer-
ence.

We wish to calculate the expectation val(#|W|¥) in
the case wherf is small. In this case, we can expand the
exponential, keeping only linear termsfinVe do not expect
higher order terms to modify our conclusions significantly,
since in the 't Hooft limit their expectation values should
factorize into products involving the linear term together
with featurelesgindependent of- anda) factors such as the
VEV of products ofO.

Then the expectation value reduces to the following ex-
pression involving the commutator of the loop with the op-
eratorQ:

<\If|W|\If)=(W>+if dtd3xf (1)([W(7),0(x,t)]).
(3.2

All expectation values on the right-hand sidRHS) of the
equation are vacuum expectation values. The first term is

Finally, consider expectation values of products of thejrrelevant to us since, by conformal invariance, it should be
energy momentum tensor. Using the same method as bem’iﬁdependent of the size of the lo@p(and 7). In terms of

we can easily see that these will differ from their vacuumtime-ordered vacuum expectation values the second term
values only by products of commutators. Schematically, wggkes the form

have

1 1
ﬁZ(‘I’|T1Tz|‘1’>: W<Q|T1T2|Q>

) e[ en

if dtd3xf (t) e(7— )[(W(T)O(X, 1)) — (W' () O(x,t))*].
(3.3

The Hermitian conjugate of the loop operator is obtained by
reversing the orientation of the loop in the-x, plane.
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The Euclidean version of the “2-point functions” appear- We also rescale; andr so that the variables of integration
ing in Eq. (3.3) has been computed i®] using the corre- are dimensionless. In polar coordinates the integral takes the
spondence. One first finds a minimal world sheet with theform
loop as its boundary. The world sheet in turn induces a

source term in the dilaton field equations through the cou- = 2_Tff drdx r (3.9
pling a 3[x5—A%+ie[x3—B2+ie?
1 where
d?a\/he??. (3.4)
27m'J A2=N\%2—(r—1)2 (3.9

Here, h;; is the metric induced on the world sheet when thea‘nd

background metric is in the Einstein frame. The term in the B2=\2— (1 +1)2 (3.10
world sheet action involving the curvature of the world sheet ' '

is suppressed when the 't Hooft coupling is large and can bgpq integrand has poles whéd andB? are positive. There-
ignored. The 2-point function is given by the boundary data, e the integral has a non-vanishing imaginary part. We
of the_ dilat_on profile obtained by solving the classical ﬁeldexplain the physical origin of these poles at the end of this
equations in the presence of the source. It depends only Qfuction. We integrate oves, first, closing the contour from
two parameters, which are the polar coordinate of the operg;e|ow and picking up the residues at the poles in the lower-
tor O on the plane defined by the loomnd its perpendicular  pait pjane. Only non-negative real poles contribute to the

distance from the plane of the logp= y/(t— 7)*+x3 [9]: imaginary part as a result of the prescription.
In Appendix B, we analyze the behavior of the imaginary
. (W) at part of the integral for three cases. Whes 1, we find
(W(T)O(x,t))~ —~ :
N [(y?+r?-a’)?+4a%y?]? - 1 a* a1
(3.9 m( )Nﬁ_|7—t|5' (3.1)

We see that the 2-point function behaves liké*when the  The result is identical to the result found in E8.12 for the

operator approaches the loop, where Jy“+(r—a)“isthe  case of local operators. This is of course the behavior one

distance of the operator from the loop. To obtain the expresshould expect to see. In this case, the temporal separation

sion in Minkowski signature, we replacer{t)>~—(7  between the loop and the opera@®is much bigger than the

—t)?+ie. size of the loop, and we should be able to use the operator
Before we continue with our calculation, we make someproduct expansion of the loop in terms of local gauge invari-

remarks about this correlation function. First, we see that it isint operators to calculate the 2-point function. Note also that

of orderNC since the expectation value of the loop itself is of the 2-point function behaves like

orderN. In fact, we may think of the operat@=Tr F2/N as

a small Wilson loop. The disconnected part of the 2-point a

function is zero sinc® has vanishing VEV. The connected (WO)~ m 312

part of the 2-point function receives contributions from

world sheets in the bulk that have the two loops as boundwhen x>1, as the 2-point function o® with itself. As A

aries. The topology of these surfaces implies that the 2-point. 1 the imaginary part increases. Wher 1, it is the big-

function is of order zero in the largdl expansion. Second, gest and behaves like

reversing the orientation of the loop does not change the

result for the dilaton profile since the coupling of the world

sheet in the bulk to the dilaton field, E(B.4), remains the Im(1)~

same. Hence, Ed3.2) reduces to the following expression:

4

WhenA <1, we find that the imaginary part tends to zero
(W) = (w2 [ dtfv ez ke
)\2
><|mfd3>Z<W(T)0(>Z,t)>. (3.6) Im(1)~—- (3.19

) o ) ) We can understand the result as follows. As explained be-
~ First we do the spatial integration over the 2-point func-joyy in this case, the imaginary part of the integral receives
tion and obtain the imaginary part as a function of the ratiocontriputions only when the operator is very close to the loop
atr~1 andxz;~0. Their temporal separation is also small.
\ |7t Thus, using the Heisenberg equations of motion, we can ap-

3.7

a - proximateO(x,t) with
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O(X,1)=O(X,7) — O(X,1)| ;= ( T—1). (3.15 functio_n of the ratio| 7|/a, one can see that the expectation
value is oscillatory wherj7|~a and suppressed when|

We see that the operat@ commutes with the Wilson loop >a or |7/<a.
unless the two are in contact. Essentially, only a single point In short, when the wave is very close to the boundary,
of the loop contributes to the commutator, a measure zerénly small Wilson loops are excited. At that time, however,
effect. The commutator in turn determines the imaginary paréxpectation values of local gauge invariant operators begin
of the integral as we can see from E(®&2) and(3.3). Sowe to oscillate. On the other hand, when the wave is far from the
expect the imaginary part of the integral to vanish like aboundary only big Wilson loops are excited. This shows that

power of \? or faster. the precursors are in fact Wilson loops.
Let us now see how the expectation value of the Wilson Finally, let us try to understand the physical origin of the
loop in the “squeezed state,” poles in the integrand in Eq43.8). When the denominators

vanish, the 2-point function has a non-vanishing imaginary
part since then thée prescription for treating the poles be-
(¥|W(n)|¥)= _ZJ’ dtf(e(r—t)Im(1), (3.1 comes relevant. As one can see from E§<2) and(3.3), the
imaginary part of the 2-point function is determined by the
carries information about the corresponding dilaton wavevacuum expectation value of the commutator between the
The imaginary part of the integral is a function f=|7  Wilson loop and the operatd. Therefore, at the poles the
—t|/a. As before, we choosé(t) so that(¥|O(7)|¥) ex- commutator is non-vanishing. Now, the commutator can be
actly vanishes whem<0. At any 7<0, the corresponding non-zero only when some part of the loop of non-trivial mea-
bulk wave vanishes far<|7|. On the other hand, the expec- sure is on the light cone @. Then the commutator between
tation value of the Wilson loop has a non-trivial time depen-the vector potential at any point whose separation ffons
dence wherr<0. Early in the remote past, whén>a, we  light-like andO is non-zero, and in turn all of them contrib-
can approximate Im{~1/7—t|°. Therefore, the expecta- ute to the commutator between the Wilson loop itself @nd
tion value tends to zero since it behaves exactly the saméhis is precisely what happens at the poles as we show be-
way as the expectation value of local gauge invariant operdow. The imaginary part of the 2-point function vanishes
tors given in Eq(2.13. When| 7| <a, the imaginary part of Wwhen the loop is not intersecting the light cone, and the
| is essentially independent ofwithin most of the domain of contribution to the integral from this region of integration is
integration but a small interval whem|~|7|. Thus the ex- real. Then, the 2-point function is non-singular as well.
pectation value receives its time dependence from this small Suppose the operator is &t 0. Then the loop can inter-
region of integration. Within this region, though=<1 and  sect with the past light cone @ only. For|x;| <\, the light
so the imaginary part of is tiny. Hence, the expectation cone intersects the,-x, plane at a circle of radius
value is featureless, having essentially no time dependence.
When |7]~a, the expectation value receives a non-trivial p=\/)\2—x32. (3.18
time dependence due to competition effects betwi¢enand
the imaginary part of. It receives its biggest contribution The polar coordinate of O is the distance of the center of
from the region of integration ne&r 0 since then~1 and this circle from the center of the loop. The point of the loop
the imaginary part of diverges. Whenr|~a, the wave is at ~ closest to the center of the light-cone circle is at distence
coordinate distance-a from the boundary. Thus the Wilson —1| from it, while the one that is the farthest is at distance
loop “detects” the wave when its distance from the bound-r + 1. Clearly, whenA? is negative, the loop is outside the
ary is comparable to the size of the loop, and reproducebght cone and so no contributions to the imaginary part of
details that depend on the profile of the wave. This is ofthe integral arise from this region of integration for axy
course a manifestation of the UV-IR relatif8i. When A? is positive the loop and the light-cone circle
Another interesting example is the case wti¢t) is os-  intersect. We may choose, howevpe;| = A so that the two
cillatory neart=0 and exponentially small otherwise. The circles are tangent to each other. This is precisely when the
oscillations are well concentrated neax 0. For example, integrand is singular. When the two circles are tangent the
we may takef(t) to be a polynomial irt times a Gaussian. set of points on the loop that are close enough to the light
At any time 7 other than zero, the corresponding bulk wavecone is of bigger measure and we get a contribution to the
should be oscillatory near=|7| and very small in a neigh- commutator and a pole in the 2-point function. Ror 1 the
borhood of the boundary. In this case, expectation values dfght-cone circle is tangent to the loop from the outside. The

local gauge invariant operators behave like opposite is true foa<1. In this case, the light-cone circle
becomes smaller and smaller as-0 and the effect ceases
f(0)ét to be important.
(¥|O(n)| W)~ |T|5 (317 For A=1, we can choose&; small enough so thab is

bigger than the radius of the loop.Bf is positive, then, for
and so they remain small unless the wave is at the boundatys| <B, the loop is inside the light cone. Fdxs|=B the
at 7=0. Here, 6t is the characteristic decay time of the os-two circles are tangent and again we have a pole in the
cillations in f(t). The expectation value of the Wilson loop 2-point function.
though has a very different time dependence. Again, using For\=1, the 2-point function becomes even more singu-
the results for the behavior of the imaginary partiadis a lar whenA=B atr=0 andp=1. In this case, the whole
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loop is on the light cone. Therefore, we should expect a bigrofile of the wave. Any interesting effect of bulk interac-
contribution to the imaginary part of the integral from the tions should be recovered from such expectation values only
smallr region. We expect this effect to amplify whar~1  when the signal of the event arrives at the boundary.
since, thenx;~0, and the operator is closer to the plane of We believe that the “squeezed states” constructed in the
the loop. Note also that the 2-point function is as singularSyYM theory continue to accurately describe gravitational
when A or B is zero andx3=0. The two effects combine \aves including the effect of bulk interactions. Evidence for
when\ = 1. The 2-point function can be the most singular inthis was found in[4], where the success of the free field
this case and we expect the imaginary part of the integral teheory model considered was linked with the non-
be the biggest. renormalization theorem for the 3-point function of the en-
ergy momentum tensor. It would be very interesting to study
IV. DISCUSSION t.he. exact .description of a grav?tat_ior)al wave in the flat space
limit considered in15,14. In this limit we takeN large and
The main purpose of this paper is to identify the non-localg fixed. We also keep bulk energies fixed in string units. This
precursor fields of the SYM boundary theory that record in-means that we have to consider energies in the SYM theory
formation about local processes occurring deep in the intethat scale likeNY In flat space, plane gravitational waves
rior of the bulk AdS spacetime. Causality of the bulk theoryare exact solutions of the theory and do not receive any
requires that the precursors be intrinsically non-local. Theytringy correction§17]. However, we do not have any com-
are not simple products of local operators corresponding t@utational control in the SYM theory in this limit apart from
the classical supergravity fields in the standard AdS-CFlconjectured non-renormalization theorems for the 2-point
dictionary. Correlation functions of such products essentiallyand 3-point functions of chiral primaries.
remain featureless until the signal from the event arrives at What really distinguishes the precursors in the case of
the boundary. Yet, as if4], we argue that the precursors A’=4 SYM theory from other non-local observables in the
store the information long before the signal can propagate teheory is that Wilson loops cannot be expressed in terms of
the boundary. finite polynomials of local gauge invariant operators corre-
In this paper, we study a rather simple case involving thesponding to the bulk fields. Gauge invariance equips the
propagation of a classical bulk wave toward the boundary. Ilhoundary holographic theory with this rich class of intrinsi-
is shown that when the wave vanishes within a neighborhoogdally non-local observables so that it can reproduce traces of
of the boundary, products of local gauge invariant operatorgulk causality and locality. Thus gauge invariance is crucial
retain their vacuum expectation values, whereas Wilsomn the way this particular local conformal theory describes
loops are excited when their size is of the same order as thgulk physics. It would be interesting to understand the pre-
coordinate distance of the wave from the boundary. A decise nature of the precursors in other AdS-CFT dualities in
tailed translation of all the configurations of the bulk theorywhich the CFT is not a conventional gauge theory: for ex-
to the SYM theory is not yet available, but as in the exampleample, the Ad$case® In some of these examples the CFT is
of the wave, we believe that the precursors will involve Wil- gbtained from a gauge theory through renormalization group
son loops with size dictated by the UV-IR connection. Theflows; however, there is no remnant of the original gauge
precise way Wilson loops would store information aboutsymmetry at the fixed point. It is particularly challenging to
complicated processes in the bulk is very difficult to see. Infind special non-local observables in these examples as well

particular, it remains a challenge to understand what precurso as to understand better the holographic nature of gravity.
sors describe small Schwarzschild black holes at the center

of AdS or what configurations of Wilson loops provide the

signal that a .black h'ole forms in a head-qn collision of two ACKNOWLEDGMENTS
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where we keep the 't Hooft coupling fixed and large and take

N— oo, In this limit the bulk theory is manifestly local as it is

well described by linearized supergravity. We do not con- APPENDIX A

sider 1N corrections in this paper since they are too small. i )

We think that their effect is to modify the original expecta- " this appendix, we show how to compute the expecta-

tion values of local gauge invariant operators by featureleson value of the energy momentum tensor in the “squeezed

components that do not carry any interesting informatiorstate” as given in Eq(2.11):

about the details of the relevant bulk process. For example,

in the case of the gravitational wave considered in Sec. ll,

the next-to-leading order W/ corrections depend on the total 5Some interesting issues concerning this particular case were re-

energy in the bulk, which is constant, but not on the detailedently studied irf14].
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Ti(y,7) 5 APPENDIX B
ij\Ys __ < _
<‘I’—N ‘I’> gmnsz dtf(t)e(r—t) In this appendix, we show how to compute the imaginary
part of the integral
X1m J ABEX(Tij (Y, ) Trn(X,1)). | o s ; ,
(A1) ~a ) S AT - B i e (B1)
The 2-point function can be found [i8]. It is given by whereA?=)\?—(r —1)? andB*=\?~(r+1)* as defined in
Sec. Ill. We first do thexs integration, closing the contour
1 from below and evaluating the residue at the poles. Only real
<T”(;,T)Tmn(;,t)>~|\|zx”mn S —, poles contribute to the imaginary part of the integral. We
[(x=y)?=(7=t)*+i€]? study the cases>1 and\<1 separately. Fok>1, A? is

(A2)  positive for 0<r<\+1 andB? is positive for 0<r<\—1.
_ _ For \<1, A? is positive for—\+1<r<\+1 while B is
where we drop numerical factors of order unity. The tensohegative for all values of.
Xjjmn involves terms with four derivatives with respectyto For \>1, the imaginary part of is obtained from the

The precise formula can be found ifi. imaginary part of the following expression:
Next we calculate the integral

im? (a1 1 1 1 }
— r— - = .
- 1 16a B—id)?® B-is
J’d3x*a2 — (A3) 0 ri(B=is)® r (B=id)
[(X=y)*—(7—1)"Fie€] im2 vl 1 1 1 1
N IS
and obtain its imaginary part. The integral is independent of 16aJo rUA=I8)" 1 (A=i9)
y. We can also scalgAt|=|7—t| out of the integral to ob- (B2)

tain the following expression: . o ) i
This expression is obtained after we calculate the residue at

Al the poles:
|At]” (A4) Xs=A—id (B3)
where and
° 2 X3=B—id. (B4)
| = fo dx(x2—1—+ie)2' (A5)

Here, § is a small number to be set to zero at the end of the
calculation.

Let us obtain the imaginary part for the case when1l
first. We show that it vanishes like XI7. We split the inte-
grals into three pieces:

1 1 1/1 1

Fta e A , (B5)
This integral can be done by contour integration. We close
the contour from below picking up the residue at the pole i (A1 1[ 1 1 1 }

Using integration by parts we can simplify the integral as
follows:

o]

=2 ,xdx(xf—1+ie)' (A6) | im? L 1
=16l T

x=1—i€e/2. We find IZZE 1 rF (B_|5)3_F(B_I5)
| = ' A7 .
4 (A7) and
N P2
Since the integral is independent ¢f only the term with | _m M rl[ L +£ L } (B7)
. R . . . . 3 3 . .
four time derivatives inX;j,, contributes to the expectation 16a): ri(A=ié)” r (A=io)
value. Then the expectation value reduces to the following
expression: The integrand in ; looks singular ar =0, but in fact it

behaves liker® asr—0. To see this, we Taylor exparfl

1 andB in powers ofr to obtain
g”f dtf(t)e(f—t)a‘;(m). (A8)
7 11 o o r2 ©9)
This is the same expression as E2.13 in Sec. Il. B A (\2-1) (A\2—1)52
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and

1
A3

B3

2 r
:()\2_1)3/2+O(()\2_1)5/2)' (Bg)

This can be done since<Or<1 and\>1. Thus the inte-
grand is of order N° and, therefore,

Im(1,)~ (B10)

arn’’

Next, consider,. The integrand is singular at=\—1
whenB=0, but as we will show the imaginary part is finite.
The small numbe# regulates the imaginary part. The imagi-
nary part is given by

@ (»-1 1[(B®-36°B) 1 B
|m(|2)=_f dr— T3 T RIS
16a /. ri (B<+6°) r (B=+69)
(B11)
Change variables by setting
r+1=yJ\?—x° (B12)
to find
7? (\\2=2
Im(I2)=ﬁfo dx
1
X
()\Z_XZ)l/Z[()\Z_XZ)UZ_ 1]
(x*—36°x?) 1 x2

i

(B13)

ErD (= x)2—1] (X*+ 69

Similarly, if we change variables
r—1=J\2—x2, (B14)

the imaginary part of ; becomes

1
()\2_ X2)1/2[()\2_ X2)1/2+ 1]

w? (A
Im(|3):ﬁf0 dx

(x*—368°%?)
O+ 69)°

1 2

[(\2=x)2+1] (X4 67) ] '
(B15)

X

Combining the two we are left with the following simpler
integrals:

PHYSICAL REVIEW &1 044001

T .
Yo (A°=1-x7)
(x*—36%?) 2 NG
(X¥+69)%  (ZN2—1-x%) (X2+67)
(B16)
and
e 1
= X
2 e (N2—x2) ¥ (\2—x2)1124 1]
X ! + ! (B17)
N [(\2—x?)Y2+1] :

In X, we drop the terms proportional thsince the integrand

is well behaved within the domain of integration. This inte-
gral can be obtained in terms of logarithms. We do not write
the whole expression down. Rather, we write its series ex-
pansion in terms of powers of X/

(B18)

Next we calculatexX;. First choose a cutofé which we will
take to be zero at the end. We must take the lifnit O first.
ThenX; reduces to the following two pieces:

fed 2 [(x*=36%3) o B19
o X()\Z_l) (X2+ 52)3 + (6) ( )
and
=2 2 1 )
L NI [ -1y O
(B20)
The first piece is given explicitly by
2e B21
(1—)\2)(524'62)2. ( )
The second piece reduces to
2 2
(B22)

- +0O(e).
(\*-1e 3N\2—4 (€
We see that after taking th&— 0 limit the singular term of

order 1k cancels and we are left with a finite result. Taylor
expanding in powers of 1/yields

1

Adding the result toX, obtained in Eq(B18), we find

(B23)

Im(1,+13)~ . (B24)
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Sincel ;~1/\° as well, the imaginary part dfdecreases like 1+e 2
A5, X3= dx
Then we study the case when-1". We set\—1=e 2erare?  [(1+e)?— x|V (x*—2e—e?)
and obtain the imaginary part as a power series expansion in 1 (2+2e+e2—x?)
e. We show that the imaginary part behaves lke’2 We S (B31)
study the imaginary part of each of the following integrals: X (x*—2e—¢)
] First note that
| i 2 o’ 1[ 1 1 } 629
2T Ten MR 53 T 'r_: heraieZ 1
16a)q  r|(B—id)® r (B—id) Xzzfvz(e+d)+e dx=5+O(ye). (B32)
\/2(e—d)+e2 X
and This in turn is of orded, and, therefore, it vanishes since we
., taked— 0. The first integral can be calculated as before. The
| _IT e+2drE 1 n } 1 (B26) small numbers regulates the integral near the lower limit
37 16a)q4 ri(A=id)® r (A=id)| x=0, exactly the same way as before. We are left with
Here,d is a small number that regulates each of the integrals X,=— 1 +finite ind. (B33)
nearr=0. At the end, after takingd— 0, the sum ofl, and Ve(2+e)d

I3 will turn out to be finite independent af

To evaluate the imaginary part ¢, we do the same Here, the finite piece id is of ordere %2 The singular term
change of variables as before, FB12), and obtain the same Of orderd ! arises from the second piece of the integrand
expression as EqB13) but now with the domain of integra- which diverges like
tion being 0<x<\2(e—d)+e?. For I3, however, we can-
not use the same change of variables as in(B&j4) within 1
the whole domain of integration since, forx1, r—1 is [Ve(2+e)—x]?
negative. Whem <1, we must set

(B34)

near the upper limit of integration. Finally, consider the in-
1—-r=\2—x2. (B27)  tegral Xs. This should be dominated by the singular terms
near the lower limit of integration. Near the upper limit of
integration the integrand behaves likeylHe—x, but the
integral converges. Therefore, we can expand in powers of
(x?>—2e—e?) and consider only the singular terms. We find

Then the imaginary part df; is given by Eq.(B15) plus an
additional term

e f)\ q 1 fﬂe 1 2
;0% X3= dxl — + —0——
1) zerare? (N =X — (2= x?)H241] ¥ ) aerare 12 XA(x—2e—€?)
2+ - (B28) +t oo : 5| +finite. (B35)
X2 [—(\2—x))V2+ 1] (x°—2e—e9)

The finite piece is finite both in thd—0 ande—0 limits.
Combining the three pieces together, one is left with thewe find that
following integrals:

1
X3=———=+finite ind, B36
m [T 2 (x*—35%) ~ ezre)d (839
Yo (2e+e”—x%)| (x*+6%)°
and so the singular term of order ! cancels. Again, the
2 x? piece finite ind is of ordere™ 3. After taking thed— 0 limit,
N (2e+e’—x%) (x°+ 8|’ (B29) we combine the finite piece iX; with the finite piece inX;
and expand in powers & to find
Yo \/2(e+d)+e2dx 1 1 7 o
27 Jae i@ (V=) (\2—x2) 124 1] x1+X3—_W+4—\/£+O(e ). (B37)
1 1 i i i
x| =+ , (B30) Thus the imaginary part df behaves like
X [()\2—X2)1/2+1]
Im(l)~— ——. B38)
and ( ) a()\_l)3/2 (
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We also note that the imaginary part is negativeXer1™". a2 1
This was also the case in the>1 limit. Thus we expect the —f dx +0(\%)=
imaginary part to be increasing negativelyyas: 1. 8alJo  J1-x? 16a

Finally, let us analyze the case whiere L. In this case” The first piece can be integrated using the same method as
is negative and does not contribute to the imaginary part. W% b g g . .
efore. Choose a small cuto# and write the integral in

have to extract the imaginary part from the following expres-

1 s
— —+0(\?). (B44)

sion: terms of
2 4 2,2
.9 7 (€ (X*=36x9)
im?pie 1 1 1 L :_J dx +0(e) (B49)
- — — 1 2(1_y\2 2 2\ 3
16af1,xdrr AR (A—ié)}' (B39 8aJo A (1A )
We choose to make the following change of variables first: and
2 ~1 1
u=r—1. (B40) L= | dx +0(8?
o . . 2 8ale A1 —x3(1- N2+ 22X (&)
The imaginary part is then given by (B46)
Im(l)=w—2fk du 1 (A3—352A)+ 1 A Next we observe that
16a) _, u+1l| (A%+6%)°  u+l (A?+6%)| ,
(B41) L2=7T—f1dx 1
8a/. 201 Y 2\v2.1 — 2
whereA?=\2—u?. This in turn can be written as follows: ML=V =X
2
7T2f>\ 1 [(A-35%A) 1+u? A G LV (B47)
8alo U1T-0?| (AT )T T 102 (AZ+ &) 8alo |1’
(B42) EvaluatingL; and takingé— 0, we are left with
Now change variables by settirkf=x> to get 2
ﬂ_ZJrld 1 (X4_362X2) Ll: B 83)\2(1_)\2)6. (B48)
— | dx
8alo  \(1—x2(1—\2+A22) [ NA(X*+8%)° Similarly, after takinge—0, L, reduces to
N Sk S, VR (B43) LT Lon? B49
(1-NZHA23P) (X2+ 89| 278an%(1-7\)e 16a (A5 (B49)

where we have rescaledwith 1/A. The second piece in the Adding the three pieces together, we see that the imaginary

integral becomes part tends to zero when<1 like \2.
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