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Wilson loops as precursors

Leonard Susskind and Nicolaos Toumbas
Department of Physics, Stanford University, Stanford, California 94305-4060

~Received 6 October 1999; published 13 January 2000!

There is substantial evidence that string theory on AdS53S5 is a holographic theory in which the number of
degrees of freedom scales as the area of the boundary in Planck units. Precisely how the theory can describe
bulk physics using only surface degrees of freedom is not well understood. A particularly paradoxical situation
involves an event deep in the interior of the bulk space. The event must be recorded in the~Schrödinger
picture! state vector of the boundary theory long before a signal, such as a gravitational wave, can propagate
from the event to the boundary. In a previous paper with Polchinski, we argued that the ‘‘precursor’’ operators
which carry information stored in the wave during the time when it vanishes in a neighborhood of the boundary
are necessarily non-local. In this paper we argue that the precursors cannot be products of local gauge invariant
operators such as the energy momentum tensor. In fact gauge theories have a class of intrinsically non-local
operators which cannot be built from local gauge invariant objects. These are the Wilson loops. We show that
the precursors can be identified with Wilson loops whose spatial size is dictated by the UV-IR connection.

PACS number~s!: 04.50.1h
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I. INTRODUCTION

This paper is concerned with the mechanism by whic
holographic boundary theory can describe bulk physics.
emphasized in@1–3# a holographic description entails a va
reduction of the number of degrees of freedom needed
describe a region of bulk spacetime. Despite the la
amount of circumstantial evidence for the holographic pr
ciple it is still very mysterious how such a sparse set
degrees of freedom can describe all local bulk physics
particular challenge is to understand how events deep in
interior of the bulk space are recorded in the instantane
~Schrödinger picture! state vector of the boundary theo
long before a signal can propagate from the event to
boundary@4#.

Let us consider an example. For definiteness we will c
sider the~311!-dimensional super Yang-Mills~SYM! de-
scription of bulk physics in 5-dimensional AdS space1 @5–7#.
We will be interested in the limit of large radius of curvatu
compared to the string scale. In this limit stringy excitatio
are negligible and the low energy supergravity approxim
tion to bulk physics is reliable. On the SYM side we mu
take N large, keeping the ’t Hooft coupling constantg2N
fixed and large.

Suppose as in@4# an event takes place at the center2 of
AdS which radiates a gravitational wave toward the bou
ary. No signal including the wave itself can arrive at t
boundary until a certain time elapses. If the original even
well localized near the center of a very large AdS space,
original bulk fields will typically be very spherically sym
metric and time independent. In fact the only bulk field
importance is the time-time component of the metric who

1The usualS5 factor in the correspondence plays no role in t
present paper and will be ignored.

2Since AdS is a homogeneous space, it has no preferred po
Center here means the origin of cavity coordinates.
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behavior near the boundary records the presence of a ce
amount of energy in the interior. On the SYM side th
means that the energy momentum tensor is almost exa
homogeneous and consists of an homogeneous energy
sity and the pressure needed to make^Tm

m&50. However, this
effect is featureless and provides no information about
profile of the gravitational wave. In addition, it is vanishing
small in the largeN limit since corrections to the metric du
to the energy of the wave are smaller than the wave itsel
factors ofAG5;N21. We refer the reader to@4# for notation
and conventions. Thus, within a neighborhood of the bou
ary, all supergravity field functionals retain their origina
vacuum-like expectation values, at least until light has ha
chance to propagate fromr;0 to the boundary. The impli-
cation for the SYM theory is that all expectation values
local gauge invariant operators corresponding to the b
fields, as well as expectation values of products of such
erators, should initially be identical to their vacuum valu
and contain no information about the propagating wave.

This situation continues until the outgoing wave arrives
the boundary. At that time the perturbation on the bound
becomes nonzero and begins oscillating over the wh
3-sphere. From the SYM point of view, the energy mome
tum tensor and its products suddenly begin to cohere
oscillate. The features of the gravitational wave can then
recovered from expectation values of the energy momen
tensor and its products.

Thus during the time when the wave vanishes within
neighborhood of the boundary, the SYM theory is excited
a non-vacuum-like state which we cannot distinguish fro
the vacuum by taking expectation values of local gauge
variant operators or any of their products.3 In @4#, it was
argued that the holographic boundary theory must con

ts.

3We are assuming that local gauge invariant operators are in
to-one correspondence with local observables of the bulk the
evaluated near the boundary.
©2000 The American Physical Society01-1
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LEONARD SUSSKIND AND NICOLAOS TOUMBAS PHYSICAL REVIEW D61 044001
special non-local operators, called precursors, that dis
guish such states and code in detail local bulk informati
The precursors should become increasingly non-local
further the corresponding bulk process is from the bound
in accordance with the UV-IR connection@3#. In those cases
in which the boundary theory has a gauge symmetry,
precursors must also be gauge invariant since they con
physical information. In the case ofN54 SYM theory, this
suggests that the precursors are Wilson loops whose si
dictated by the UV-IR relation.

We remark that there exists a rich class of generaliz
equal-time Wilson loops as candidates for the precurs
Apart from conventional spatial Wilson loops, we may co
sider spatial Wilson loops with insertions of local gauge c
variant operators. For example, we can consider the ope

Tr PFmn~x1!Fmn~x2!W, ~1.1!

whereW is a Wilson loop passing through the pointsx1 and
x2 andP denotes path ordering. Presumably, such opera
and their products form a complete set of observables in
boundary theory.

In @4#, it was shown how a plane gravitational wave c
be modeled by ‘‘squeezed states’’ constructed in free fi
theory. In particular, it was shown how to account for t
oscillating energy density and the apparent acausality in
behavior of the energy momentum tensor required by
correspondence. It was found that this behavior is consis
with bounds required by general principles of quantum m
chanics. In addition, apart from possible numerical coe
cients, the free field theory model reproduces correction
the linearized solution induced by non-linear terms in E
stein’s equations involving the energy density of the wav

In this paper we model bulk waves with ‘‘squeez
states’’ constructed in the interacting SYM theory. We co
pute expectation values of local gauge invariant operator
the ‘‘squeezed states’’ and match them with the bound
data of the wave. We show that expectation values of pr
ucts of local gauge invariant operators contain no additio
information about the profile of the wave in agreement w
bulk causality. Our computations are done in the ’t Ho
limit, keeping only the leading terms in the 1/N expansion.
Finally, using the correspondence, we calculate expecta
values of Wilson loops in the ‘‘squeezed states’’ and sh
how they carry non-trivial information if their size is as di
tated by the UV-IR connection. We discuss the implicatio
of our results for holography at the end.

Before concluding the introduction we will review som
facts and conventions about the AdS and conformal fi
theory ~CFT! correspondence. The metric of AdS in cavi
coordinates is

ds25R2F ~11r 2!2

~12r 2!2 dt22
4

~12r 2!2 ~dr21r 2dV2!G5R2dS2,

~1.2!

where the coordinates anddS2 are dimensionless anddV2 is
the metric of the unit 3-sphere. The center of AdS means
point r 50. Near a point of the boundary atr 51 the metric
has the form
04400
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ds25R2F 1

z2 ~dt22dz22dxidxi !G ~1.3!

wherez512r and x1,x2,x3 replace the coordinates of th
3-sphere. For our purposes the metric~1.3! is to be regarded
as a local approximation to the cavity metric. It is true, b
irrelevant to our purposes, that the same metric also give
exact description of a patch of AdS space. In any case
will call these the half-plane coordinates. The two dime
sionless parametersR/ l s andgs of the bulk theory—l s is the
string length scale—are related to the SYM quantitiesN and
g by

R/ l s5~g2N!1/4

gs5g2. ~1.4!

The 5- and 10-dimensional Newton constants are given

G55G10/R5

G105gs
2l s

8 . ~1.5!

We setR51 for simplicity. The string length scale is the
given by l s51/(g2N)1/4. Throughout we neglect numerica
factors of order unity.

II. BULK WAVES

As in @4#, we model bulk waves with ‘‘squeezed states
in the boundary theory. Our goal is to study expectation v
ues of various operators in the ‘‘squeezed states’’ and id
tify the precursors that store local bulk information.

For definiteness, let us consider a gravitational wa
propagating radially outward fromr;0. In the next section,
we will be interested in the case of a dilaton wave. Assu
that the wave is in one of the lowest spherical harmonics
the 3-sphere. In half-plane coordinates the plane fron
wave has the form

gmn~z,x,t !5jmnAG5

F~z,t !

z2 , ~2.1!

wheregmn(z,x,t) is defined by

ds25F 1

z2 ~dt22dz22dxidxi !G1gmn~z,x,t !dxmdxn

~2.2!

andjmn is a transverse traceless polarization tensor with n
vanishing components in thex directions. The polarization
tensor is assumed normalized to unity.

Far away from the original sources,F(z,t) satisfies the
same wave equation as a free, minimally coupled, mass
scalar field in AdS. We use normalization conventions
that F(z,t) is canonically normalized. Thus we keep th
amplitudeuF(z,t)u finite, independent ofN, and the energy
of the wave is finite. The corresponding operator in the SY
theory isj i j Ti j /N. The 2-point function of this operator is o
1-2
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WILSON LOOPS AS PRECURSORS PHYSICAL REVIEW D61 044001
order N0. Non-linear terms in the gravitational field equ
tions are suppressed by additional factors ofAG5;N21 and
will be ignored in this paper.4

Near the boundary, normalizable solutions to the wa
equation behave as follows:

F~z,t !;z4E dvuvu3f~v!e2 ivt, ~2.3!

with f(v)5f* (2v) since the field is real. According to
the AdS-CFT correspondence, the wave makes a contr
tion to the SYM energy momentum tensor given by@11#

K Ti j

N L ;2j i j z
24F~z,t !uz50 . ~2.4!

We are interested in describing a wave emitted at a p
ticular timet0 in the past, nearr;0, so that, whent,0, the
perturbation vanishes within a neighborhood of the bou
ary. This can be achieved if we choose the funct
uvu3f(v) to be analytic in the upper halfv plane and have
the right asymptotic behavior asv→ i`. Then the boundary
data vanish fort,0 and so does the contribution to^T/N&.
In general, the boundary data will be non-vanishing whet
.0 sincef(v) will have singularities in the lower half
plane. Also, causality of the bulk theory ensures that
function F(z,t) describes a wave which, at anyt0,t,0,
exactly vanishes forz,utu. In addition, bulk causality re-
quires that all local bulk fields evaluated in a neighborho
of the boundary, as well as products of such fields, re
their vacuum expectation values untilt50. Therefore, on the
SYM side, expectation values of local gauge invariant ope
tors and their products must be identical to their vacu
values untilt50.

Squeezed states in Yang-Mills theory

We propose that during the propagation of the wave,
SYM theory is excited in the ‘‘squeezed state’’ defined b

uC&5expF i j i j

N E d3xWdt f~ t !Ti j ~xW ,t !G uV&, ~2.5!

whereuV& is the vacuum of the interacting theory andf (t) is
some real function related to the boundary data of the wa
The polarizationj i j is taken to be traceless and symmetric
will turn out to be the polarization of the wave. The sta
thus defined is unit normalized.5

4In @4#, these effects were included and it was shown how th
can be reproduced in free field theory up to possible numer
coefficients. In the largeN limit they are suppressed. However, the
are important to recover consistency in the behavior of the ene
momentum tensor required by general principles of quantum
chanics. We refer the reader to Refs.@4,10# for a discussion of this
point.

5In the free theory, to leading order in 1/N, it reduces to the
‘‘squeezed state’’ considered in@4#, up to some normalization fac
tor. Also, the energy momentum tensor is normal ordered so
the vacuum energy density is zero.
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Our motivation in writing Eq.~2.5! is as follows. In the
largeN limit with the ’t Hooft coupling held fixed and large
uC& corresponds to a coherent state in the bulk. To see
note that if we Fourier expand any local gauge invaria
operatorO(xW ,t),

O~xW ,t !5E
v.0

dvd3kWO~v,kW !e2 ivt1 ixW•kW1H.c., ~2.6!

then, to leading order in 1/N, the positive frequency mode
O(v,kW ) behave like annihilation operators and the negat
frequency modesO †(v,kW ) behave like creation operator
@13#. In particular, their commutator is ac-number function.
Thus, up to some irrelevant normalization factor, the st
uC& takes the form

uC&;expF E dv f ~v!O †~v,0!G uV&. ~2.7!

We see that if we identify the SYM vacuum with the bu
vacuum and the modesO(v,kW ) with the Fourier modes of
the bulk field corresponding toO, uC& becomes a coheren
bulk state. This can always be done in the limit we are c
sidering since, in this limit, the relation

O~x!5z24F~z,x!uz→0 ~2.8!

holds as an exact operator relation@12,13#. Coherent states in
the bulk describe classical waves.

Next we calculate the expectation value

K CU Ti j ~yW ,t!

N
UCL 5

1

N K VUexpS 2
i jmn

N E f ~ t !Tmn~x! D
3Ti j ~y!expS i jmn

N E f ~ t !Tmn~x! D UV L .

~2.9!

In the ’t Hooft limit and to leading order in 1/N, the com-
mutator@Ti j (y),Tmn(x)# is ac-number function proportiona
to the central charge of the theory. Therefore, it is of ord
N2. In fact, it is independent of the ’t Hooft coupling and ca
be calculated in the free theory. This function vanishes b
inside and outside the light cone; it receives contributio
only when the pointsx and y are at light-like separation
Hence, we can commuteT(y) past the exponential, picking
factor proportional to this commutator. Recall also that t
energy momentum tensor has zero expectation value in
vacuum. Then, to leading order in 1/N, the expectation value
is given by

K CUTi j ~yW ,t!

N
UCL 5

i jmn

N2 E dtd3xW f ~ t !

3@Ti j ~yW ,t!,Tmn~xW ,t !#. ~2.10!
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LEONARD SUSSKIND AND NICOLAOS TOUMBAS PHYSICAL REVIEW D61 044001
The commutator is determined by the imaginary part of
time-ordered 2-point function of the energy momentum t
sor, and so

K CUTi j ~yW ,t!

N
UCL 52jmn

2

N2E dt f~ t !e~t2t !

3Im E d3xW ^Ti j ~yW ,t!Tmn~xW ,t !&

1OS 1

ND . ~2.11!

The expectation value inside the integral is in the vacuu
All other components of the energy momentum tensor h
expectation values of order 1/N in this state.

The details of the calculation can be found in Append
A. Here, we write down the results. The spatial integral
imaginary and independent ofyW . Simple dimensional analy
sis shows that it behaves like

1

ut2tu5
. ~2.12!

Thus the expectation value of the energy momentum ten
in the ‘‘squeezed state’’ is given by

K CU Ti j ~yW ,t!

N
UCL ;j i j E dt f~ t !

1

~t2t !5 . ~2.13!

If we Fourier transformf (t),

f ~ t !5E dv
f ~v!

v
e2 ivt, ~2.14!

with f (v)52 f * (2v), we obtain

K CUTi j ~yW ,t!

N
UCL ; i j i j E dv f ~v!uvu3e2 ivt.

~2.15!

Comparing with Eq.~2.3!, we must set

f~v!; i f ~v!. ~2.16!

Note that we have chosenf(v) so that the boundary dat
vanish for t,0. This does not imply thatf (t) is zero for t
,0.

Finally, consider expectation values of products of t
energy momentum tensor. Using the same method as be
we can easily see that these will differ from their vacuu
values only by products of commutators. Schematically,
have

1

N2 ^CuT1T2uC&5
1

N2 ^VuT1T2uV&

2
1

N2E @T2 ,T#E @T1 ,T#. ~2.17!
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The non-trivial component is just the produ
^CuT1uC&^CuT2uC&. Therefore, fort1 ,t2,0, the expecta-
tion value is identical to its vacuum value since each fac
vanishes by construction. In any case, products of lo
gauge invariant operators contain no additional informat
about the profile of the wave. This is of course a con
quence of largeN factorization.

III. WILSON LOOPS

In this section we show how the expectation value o
Wilson loop in a squeezed state carries non-trivial inform
tion about a dilaton wave. Since we are interested in
instantaneous state vector, a Wilson loop will typically me
a spatial loop with no extension in the time direction. T
model a dilaton wave in the SYM theory, we repla
j i j Ti j /N with O5Tr F2/N in Eq. ~2.5!.

We consider a conventional Wilson loop

W~C!5Tr PexpS i R Amdxm D ~3.1!

for simplicity. In the ’t Hooft limit and large ’t Hooft cou-
pling, the vacuum expectation value of this loop can be
tained from the area of a minimal world sheet in AdS th
ends on the loop at the boundary@8#. We consider a spatia
Wilson loop evaluated att,0 and oriented in thex1-x2
plane. We take the loop to be circular with sizea. We regu-
larize the vacuum expectation value~VEV! of this loop by
dividing the divergent term proportional to the circumfe
ence.

We wish to calculate the expectation value^CuWuC& in
the case whenf is small. In this case, we can expand t
exponential, keeping only linear terms inf. We do not expect
higher order terms to modify our conclusions significant
since in the ’t Hooft limit their expectation values shou
factorize into products involving the linear term togeth
with featureless~independent oft anda) factors such as the
VEV of products ofO.

Then the expectation value reduces to the following
pression involving the commutator of the loop with the o
eratorO:

^CuWuC&5^W&1 i E dtd3xW f ~ t !^@W~t!,O~xW ,t !#&.

~3.2!

All expectation values on the right-hand side~RHS! of the
equation are vacuum expectation values. The first term
irrelevant to us since, by conformal invariance, it should
independent of the size of the loopa ~and t). In terms of
time-ordered vacuum expectation values the second t
takes the form

i E dtd3xW f ~ t !e~t2t !@^W~t!O~xW ,t !&2^W†~t!O~xW ,t !&* #.

~3.3!

The Hermitian conjugate of the loop operator is obtained
reversing the orientation of the loop in thex1-x2 plane.
1-4
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WILSON LOOPS AS PRECURSORS PHYSICAL REVIEW D61 044001
The Euclidean version of the ‘‘2-point functions’’ appea
ing in Eq. ~3.3! has been computed in@9# using the corre-
spondence. One first finds a minimal world sheet with
loop as its boundary. The world sheet in turn induces
source term in the dilaton field equations through the c
pling

1

2pa8
E d2sAhef/2. ~3.4!

Here,hi j is the metric induced on the world sheet when t
background metric is in the Einstein frame. The term in
world sheet action involving the curvature of the world sh
is suppressed when the ’t Hooft coupling is large and can
ignored. The 2-point function is given by the boundary d
of the dilaton profile obtained by solving the classical fie
equations in the presence of the source. It depends onl
two parameters, which are the polar coordinate of the op
tor O on the plane defined by the loopr and its perpendicula
distance from the plane of the loopy5A(t2t)21x3

2 @9#:

^W~t!O~xW ,t !&;
^W&
N

a4

@~y21r 22a2!214a2y2#2
.

~3.5!

We see that the 2-point function behaves like 1/d4 when the
operator approaches the loop, whered5Ay21(r 2a)2 is the
distance of the operator from the loop. To obtain the expr
sion in Minkowski signature, we replace (t2t)2→2(t
2t)21 i e.

Before we continue with our calculation, we make som
remarks about this correlation function. First, we see that
of orderN0 since the expectation value of the loop itself is
orderN. In fact, we may think of the operatorO5Tr F2/N as
a small Wilson loop. The disconnected part of the 2-po
function is zero sinceO has vanishing VEV. The connecte
part of the 2-point function receives contributions fro
world sheets in the bulk that have the two loops as bou
aries. The topology of these surfaces implies that the 2-p
function is of order zero in the largeN expansion. Second
reversing the orientation of the loop does not change
result for the dilaton profile since the coupling of the wor
sheet in the bulk to the dilaton field, Eq.~3.4!, remains the
same. Hence, Eq.~3.2! reduces to the following expression

^CuWuC&5^W&22E dt f~ t !e~t2t !

3Im E d3xW ^W~t!O~xW ,t !&. ~3.6!

First we do the spatial integration over the 2-point fun
tion and obtain the imaginary part as a function of the ra

l5
ut2tu

a
. ~3.7!
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We also rescalex3 and r so that the variables of integratio
are dimensionless. In polar coordinates the integral takes
form

I 5
2p

a E drdx3

r

@x3
22A21 i e#2@x3

22B21 i e#2 , ~3.8!

where

A25l22~r 21!2 ~3.9!

and

B25l22~r 11!2. ~3.10!

The integrand has poles whenA2 andB2 are positive. There-
fore the integral has a non-vanishing imaginary part. W
explain the physical origin of these poles at the end of t
section. We integrate overx3 first, closing the contour from
below and picking up the residues at the poles in the low
half plane. Only non-negative real poles contribute to
imaginary part as a result of thei e prescription.

In Appendix B, we analyze the behavior of the imagina
part of the integral for three cases. Whenl@1, we find

Im~ I !;
1

al5 5
a4

ut2tu5
. ~3.11!

The result is identical to the result found in Eq.~2.12! for the
case of local operators. This is of course the behavior
should expect to see. In this case, the temporal separa
between the loop and the operatorO is much bigger than the
size of the loop, and we should be able to use the oper
product expansion of the loop in terms of local gauge inva
ant operators to calculate the 2-point function. Note also t
the 2-point function behaves like

^WO&;
a4

@x22~t2t !2#4 ~3.12!

when l@1, as the 2-point function ofO with itself. As l
→1, the imaginary part increases. Whenl;1, it is the big-
gest and behaves like

Im~ I !;
1

a~l21!3/2
. ~3.13!

Whenl!1, we find that the imaginary part tends to ze
like

Im~ I !;
l2

a
. ~3.14!

We can understand the result as follows. As explained
low, in this case, the imaginary part of the integral receiv
contributions only when the operator is very close to the lo
at r;1 andx3;0. Their temporal separation is also sma
Thus, using the Heisenberg equations of motion, we can
proximateO(xW ,t) with
1-5
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LEONARD SUSSKIND AND NICOLAOS TOUMBAS PHYSICAL REVIEW D61 044001
O~xW ,t !5O~xW ,t!2] tO~xW ,t !u t5t~t2t !. ~3.15!

We see that the operatorO commutes with the Wilson loop
unless the two are in contact. Essentially, only a single p
of the loop contributes to the commutator, a measure z
effect. The commutator in turn determines the imaginary p
of the integral as we can see from Eqs.~3.2! and~3.3!. So we
expect the imaginary part of the integral to vanish like
power ofl2 or faster.

Let us now see how the expectation value of the Wils
loop in the ‘‘squeezed state,’’

^CuW~t!uC&522E dt f~ t !e~t2t !Im~ I !, ~3.16!

carries information about the corresponding dilaton wa
The imaginary part of the integral is a function ofl5ut
2tu/a. As before, we choosef (t) so that^CuO(t)uC& ex-
actly vanishes whent,0. At any t,0, the corresponding
bulk wave vanishes forz,utu. On the other hand, the expe
tation value of the Wilson loop has a non-trivial time depe
dence whent,0. Early in the remote past, whenutu@a, we
can approximate Im(I );1/ut2tu5. Therefore, the expecta
tion value tends to zero since it behaves exactly the s
way as the expectation value of local gauge invariant op
tors given in Eq.~2.13!. Whenutu!a, the imaginary part of
I is essentially independent oft within most of the domain of
integration but a small interval whenutu;utu. Thus the ex-
pectation value receives its time dependence from this s
region of integration. Within this region, though,l!1 and
so the imaginary part ofI is tiny. Hence, the expectatio
value is featureless, having essentially no time depende
When utu;a, the expectation value receives a non-triv
time dependence due to competition effects betweenf (t) and
the imaginary part ofI. It receives its biggest contributio
from the region of integration neart;0 since thenl;1 and
the imaginary part ofI diverges. Whenutu;a, the wave is at
coordinate distance;a from the boundary. Thus the Wilso
loop ‘‘detects’’ the wave when its distance from the boun
ary is comparable to the size of the loop, and reprodu
details that depend on the profile of the wave. This is
course a manifestation of the UV-IR relation@3#.

Another interesting example is the case whenf (t) is os-
cillatory near t50 and exponentially small otherwise. Th
oscillations are well concentrated neart50. For example,
we may takef (t) to be a polynomial int times a Gaussian
At any timet other than zero, the corresponding bulk wa
should be oscillatory nearz5utu and very small in a neigh
borhood of the boundary. In this case, expectation value
local gauge invariant operators behave like

^CuO~t!uC&;
f ~0!dt

utu5 ~3.17!

and so they remain small unless the wave is at the boun
at t50. Here,dt is the characteristic decay time of the o
cillations in f (t). The expectation value of the Wilson loo
though has a very different time dependence. Again, us
the results for the behavior of the imaginary part ofI as a
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function of the ratioutu/a, one can see that the expectatio
value is oscillatory whenutu;a and suppressed whenutu
@a or utu!a.

In short, when the wave is very close to the bounda
only small Wilson loops are excited. At that time, howeve
expectation values of local gauge invariant operators be
to oscillate. On the other hand, when the wave is far from
boundary only big Wilson loops are excited. This shows t
the precursors are in fact Wilson loops.

Finally, let us try to understand the physical origin of th
poles in the integrand in Eq.~3.8!. When the denominators
vanish, the 2-point function has a non-vanishing imagin
part since then thei e prescription for treating the poles be
comes relevant. As one can see from Eqs.~3.2! and~3.3!, the
imaginary part of the 2-point function is determined by t
vacuum expectation value of the commutator between
Wilson loop and the operatorO. Therefore, at the poles th
commutator is non-vanishing. Now, the commutator can
non-zero only when some part of the loop of non-trivial me
sure is on the light cone ofO. Then the commutator betwee
the vector potential at any point whose separation fromO is
light-like andO is non-zero, and in turn all of them contrib
ute to the commutator between the Wilson loop itself andO.
This is precisely what happens at the poles as we show
low. The imaginary part of the 2-point function vanish
when the loop is not intersecting the light cone, and
contribution to the integral from this region of integration
real. Then, the 2-point function is non-singular as well.

Suppose the operator is att50. Then the loop can inter
sect with the past light cone ofO only. For ux3u,l, the light
cone intersects thex1-x2 plane at a circle of radius

r5Al22x3
2. ~3.18!

The polar coordinater of O is the distance of the center o
this circle from the center of the loop. The point of the loo
closest to the center of the light-cone circle is at distanceur
21u from it, while the one that is the farthest is at distan
r 11. Clearly, whenA2 is negative, the loop is outside th
light cone and so no contributions to the imaginary part
the integral arise from this region of integration for anyl.

When A2 is positive the loop and the light-cone circ
intersect. We may choose, however,ux3u5A so that the two
circles are tangent to each other. This is precisely when
integrand is singular. When the two circles are tangent
set of points on the loop that are close enough to the li
cone is of bigger measure and we get a contribution to
commutator and a pole in the 2-point function. Forl.1 the
light-cone circle is tangent to the loop from the outside. T
opposite is true forl,1. In this case, the light-cone circl
becomes smaller and smaller asl→0 and the effect cease
to be important.

For l>1, we can choosex3 small enough so thatr is
bigger than the radius of the loop. IfB2 is positive, then, for
ux3u,B, the loop is inside the light cone. Forux3u5B the
two circles are tangent and again we have a pole in
2-point function.

For l>1, the 2-point function becomes even more sing
lar when A5B at r 50 and r51. In this case, the whole
1-6
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WILSON LOOPS AS PRECURSORS PHYSICAL REVIEW D61 044001
loop is on the light cone. Therefore, we should expect a
contribution to the imaginary part of the integral from th
small r region. We expect this effect to amplify whenl;1
since, then,x3;0, and the operator is closer to the plane
the loop. Note also that the 2-point function is as singu
when A or B is zero andx350. The two effects combine
whenl51. The 2-point function can be the most singular
this case and we expect the imaginary part of the integra
be the biggest.

IV. DISCUSSION

The main purpose of this paper is to identify the non-lo
precursor fields of the SYM boundary theory that record
formation about local processes occurring deep in the i
rior of the bulk AdS spacetime. Causality of the bulk theo
requires that the precursors be intrinsically non-local. Th
are not simple products of local operators corresponding
the classical supergravity fields in the standard AdS-C
dictionary. Correlation functions of such products essentia
remain featureless until the signal from the event arrives
the boundary. Yet, as in@4#, we argue that the precurso
store the information long before the signal can propagat
the boundary.

In this paper, we study a rather simple case involving
propagation of a classical bulk wave toward the boundary
is shown that when the wave vanishes within a neighborh
of the boundary, products of local gauge invariant opera
retain their vacuum expectation values, whereas Wil
loops are excited when their size is of the same order as
coordinate distance of the wave from the boundary. A
tailed translation of all the configurations of the bulk theo
to the SYM theory is not yet available, but as in the exam
of the wave, we believe that the precursors will involve W
son loops with size dictated by the UV-IR connection. T
precise way Wilson loops would store information abo
complicated processes in the bulk is very difficult to see.
particular, it remains a challenge to understand what pre
sors describe small Schwarzschild black holes at the ce
of AdS or what configurations of Wilson loops provide th
signal that a black hole forms in a head-on collision of tw
very energetic gravitons@4#. However, Wilson loops and
their products form a complete set of gauge invariant ope
tors in the SYM theory. This means that at any time o
should be able to recover all information about the state
the theory from their expectation values and expectation
ues of their products.

Our analysis has been carried out in the ’t Hooft lim
where we keep the ’t Hooft coupling fixed and large and ta
N→`. In this limit the bulk theory is manifestly local as it i
well described by linearized supergravity. We do not co
sider 1/N corrections in this paper since they are too sm
We think that their effect is to modify the original expect
tion values of local gauge invariant operators by feature
components that do not carry any interesting informat
about the details of the relevant bulk process. For exam
in the case of the gravitational wave considered in Sec
the next-to-leading order 1/N corrections depend on the tot
energy in the bulk, which is constant, but not on the deta
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profile of the wave. Any interesting effect of bulk intera
tions should be recovered from such expectation values o
when the signal of the event arrives at the boundary.

We believe that the ‘‘squeezed states’’ constructed in
SYM theory continue to accurately describe gravitation
waves including the effect of bulk interactions. Evidence
this was found in@4#, where the success of the free fie
theory model considered was linked with the no
renormalization theorem for the 3-point function of the e
ergy momentum tensor. It would be very interesting to stu
the exact description of a gravitational wave in the flat sp
limit considered in@15,16#. In this limit we takeN large and
g fixed. We also keep bulk energies fixed in string units. T
means that we have to consider energies in the SYM the
that scale likeN1/4. In flat space, plane gravitational wave
are exact solutions of the theory and do not receive
stringy corrections@17#. However, we do not have any com
putational control in the SYM theory in this limit apart from
conjectured non-renormalization theorems for the 2-po
and 3-point functions of chiral primaries.

What really distinguishes the precursors in the case
N54 SYM theory from other non-local observables in t
theory is that Wilson loops cannot be expressed in term
finite polynomials of local gauge invariant operators cor
sponding to the bulk fields. Gauge invariance equips
boundary holographic theory with this rich class of intrins
cally non-local observables so that it can reproduce trace
bulk causality and locality. Thus gauge invariance is cruc
in the way this particular local conformal theory describ
bulk physics. It would be interesting to understand the p
cise nature of the precursors in other AdS-CFT dualities
which the CFT is not a conventional gauge theory: for e
ample, the AdS3 case.6 In some of these examples the CFT
obtained from a gauge theory through renormalization gro
flows; however, there is no remnant of the original gau
symmetry at the fixed point. It is particularly challenging
find special non-local observables in these examples as
so as to understand better the holographic nature of gra
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APPENDIX A

In this appendix, we show how to compute the expec
tion value of the energy momentum tensor in the ‘‘squee
state’’ as given in Eq.~2.11!:

6Some interesting issues concerning this particular case were
cently studied in@14#.
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K CUTi j ~yW ,t!

N
UCL 52jmn

2

N2E dt f~ t !e~t2t !

3Im E d3xW ^Ti j ~yW ,t!Tmn~xW ,t !&.

~A1!

The 2-point function can be found in@6#. It is given by

^Ti j ~yW ,t!Tmn~xW ,t !&;N2Xi jmn

1

@~xW2yW !22~t2t !21 i e#2
,

~A2!

where we drop numerical factors of order unity. The ten
Xi jmn involves terms with four derivatives with respect toy.
The precise formula can be found in@6#.

Next we calculate the integral

E d3xW
1

@~xW2yW !22~t2t !21 i e#2
~A3!

and obtain its imaginary part. The integral is independen
yW . We can also scaleuDtu5ut2tu out of the integral to ob-
tain the following expression:

4pI

uDtu
, ~A4!

where

I 5E
0

`

dx
x2

~x2211 i e!2 . ~A5!

Using integration by parts we can simplify the integral
follows:

I 5
1

4E2`

`

dx
1

~x2211 i e!
. ~A6!

This integral can be done by contour integration. We clo
the contour from below picking up the residue at the p
x512 i e/2. We find

I 52
ip

4
. ~A7!

Since the integral is independent ofyW , only the term with
four time derivatives inXi jmn contributes to the expectatio
value. Then the expectation value reduces to the follow
expression:

j i j E dt f~ t !e~t2t !]t
4S 1

ut2tu D . ~A8!

This is the same expression as Eq.~2.13! in Sec. II.
04400
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APPENDIX B

In this appendix, we show how to compute the imagina
part of the integral

I 5
2p

a E dx3dr
r

@x3
22A21 i e#2@x3

22B21 i e#2 , ~B1!

whereA25l22(r 21)2 andB25l22(r 11)2 as defined in
Sec. III. We first do thex3 integration, closing the contou
from below and evaluating the residue at the poles. Only r
poles contribute to the imaginary part of the integral. W
study the casesl.1 andl,1 separately. Forl.1, A2 is
positive for 0,r ,l11 andB2 is positive for 0,r ,l21.
For l,1, A2 is positive for2l11,r ,l11 while B2 is
negative for all values ofr.

For l.1, the imaginary part ofI is obtained from the
imaginary part of the following expression:

ip2

16aE0

l21

dr
1

r F 1

~B2 id!3 2
1

r

1

~B2 id!G
1

ip2

16aE0

l11

dr
1

r F 1

~A2 id!3 1
1

r

1

~A2 id!G .
~B2!

This expression is obtained after we calculate the residu
the poles:

x35A2 id ~B3!

and

x35B2 id. ~B4!

Here,d is a small number to be set to zero at the end of
calculation.

Let us obtain the imaginary part for the case whenl@1
first. We show that it vanishes like 1/l5. We split the inte-
grals into three pieces:

I 15
ip2

16aE0

1

dr
1

r F 1

B3 1
1

A3 2
1

r S 1

B
2

1

AD G , ~B5!

I 25
ip2

16aE1

l21

dr
1

r F 1

~B2 id!3 2
1

r

1

~B2 id!G ,
~B6!

and

I 35
ip2

16aE1

l11

dr
1

r F 1

~A2 id!3 1
1

r

1

~A2 id!G . ~B7!

The integrand inI 1 looks singular atr 50, but in fact it
behaves liker 0 as r→0. To see this, we Taylor expandA
andB in powers ofr to obtain

1

B
2

1

A
5

2r

~l221!3/2
1OS r 2

~l221!5/2D ~B8!
1-8
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and

1

B3 1
1

A3 5
2

~l221!3/2
1OS r

~l221!5/2D . ~B9!

This can be done since 0,r ,1 andl@1. Thus the inte-
grand is of order 1/l5 and, therefore,

Im~ I 1!;
1

al5 . ~B10!

Next, considerI 2. The integrand is singular atr 5l21
whenB50, but as we will show the imaginary part is finit
The small numberd regulates the imaginary part. The imag
nary part is given by

Im~ I 2!5
p2

16aE1

l21

dr
1

r F ~B323d2B!

~B21d2!3 2
1

r

B

~B21d2!G .
~B11!

Change variables by setting

r 115Al22x2 ~B12!

to find

Im~ I 2!5
p2

16aE0

Al224
dx

3H 1

~l22x2!1/2@~l22x2!1/221#

3F ~x423d2x2!

~x21d2!3 2
1

@~l22x2!1/221#

x2

~x21d2!G J .

~B13!

Similarly, if we change variables

r 215Al22x2, ~B14!

the imaginary part ofI 3 becomes

Im~ I 3!5
p2

16aE0

l

dxH 1

~l22x2!1/2@~l22x2!1/211#

3F ~x423d2x2!

~x21d2!3 1
1

@~l22x2!1/211#

x2

~x21d2!G J .

~B15!

Combining the two we are left with the following simple
integrals:
04400
X15E
0

Al224
dx

2

~l2212x2!

3F ~x423d2x2!

~x21d2!3 2
2

~l2212x2!

x2

~x21d2!G
~B16!

and

X25E
Al224

l

dx
1

~l22x2!1/2@~l22x2!1/211#

3F 1

x2 1
1

@~l22x2!1/211#
G . ~B17!

In X2 we drop the terms proportional tod since the integrand
is well behaved within the domain of integration. This int
gral can be obtained in terms of logarithms. We do not wr
the whole expression down. Rather, we write its series
pansion in terms of powers of 1/l:

X25
2

3l
1

4

3l3 1
2

l51OS 1

l7D . ~B18!

Next we calculateX1. First choose a cutoffe which we will
take to be zero at the end. We must take the limitd→0 first.
ThenX1 reduces to the following two pieces:

E
0

e

dx
2

~l221! F ~x423d2x2!

~x21d2!3 G1O~e! ~B19!

and

E
e

Al224
dx

2

~l2212x2! F 1

x2 2
2

~l2212x2!G1O~d2!.

~B20!

The first piece is given explicitly by

22e3

~12l2!~d21e2!2 . ~B21!

The second piece reduces to

2

~l221!e
2

2

3Al224
1O~e!. ~B22!

We see that after taking thed→0 limit the singular term of
order 1/e cancels and we are left with a finite result. Tayl
expanding in powers of 1/l yields

X152
2

3l
2

4

3l3 2
4

l5 1OS 1

l7D . ~B23!

Adding the result toX2 obtained in Eq.~B18!, we find

Im~ I 21I 3!;
1

al5 . ~B24!
1-9
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SinceI 1;1/l5 as well, the imaginary part ofI decreases like
l25.

Then we study the case whenl;11. We setl215e
and obtain the imaginary part as a power series expansio
e. We show that the imaginary part behaves likee23/2. We
study the imaginary part of each of the following integral

I 25
ip2

16aEd

e

dr
1

r F 1

~B2 id!3 2
1

r

1

~B2 id!G ~B25!

and

I 35
ip2

16aEd

e12

dr
1

r F 1

~A2 id!3 1
1

r

1

~A2 id!G . ~B26!

Here,d is a small number that regulates each of the integ
nearr 50. At the end, after takingd→0, the sum ofI 2 and
I 3 will turn out to be finite independent ofd.

To evaluate the imaginary part ofI 2, we do the same
change of variables as before, Eq.~B12!, and obtain the same
expression as Eq.~B13! but now with the domain of integra
tion being 0,x,A2(e2d)1e2. For I 3, however, we can-
not use the same change of variables as in Eq.~B14! within
the whole domain of integration since, forr ,1, r 21 is
negative. Whenr ,1, we must set

12r 5Al22x2. ~B27!

Then the imaginary part ofI 3 is given by Eq.~B15! plus an
additional term

p2

16aEA2(e1d)1e2

l

dx
1

~l22x2!1/2@2~l22x2!1/211#

3F 1

x2 1
1

@2~l22x2!1/211#
G . ~B28!

Combining the three pieces together, one is left with
following integrals:

X15E
0

A2(e2d)1e2

dx
2

~2e1e22x2! F ~x423d2x2!

~x21d2!3

2
2

~2e1e22x2!

x2

~x21d2!G , ~B29!

X25E
A2(e2d)1e2

A2(e1d)1e2

dx
1

~l22x2!1/2@~l22x2!1/211#

3F 1

x2 1
1

@~l22x2!1/211#
G , ~B30!

and
04400
in

ls

e

X35E
A2(e1d)1e2

11e

dx
2

@~11e!22x2#1/2~x222e2e2!

3F 1

x2 1
~212e1e22x2!

~x222e2e2! G . ~B31!

First note that

X25E
A2(e2d)1e2

A2(e1d)1e2

dx
1

x2 1O~Ae!. ~B32!

This in turn is of orderd, and, therefore, it vanishes since w
taked→0. The first integral can be calculated as before. T
small numberd regulates the integral near the lower lim
x50, exactly the same way as before. We are left with

X152
1

Ae~21e!d
1finite in d. ~B33!

Here, the finite piece ind is of ordere23/2. The singular term
of order d21 arises from the second piece of the integra
which diverges like

1

@Ae~21e!2x#2
~B34!

near the upper limit of integration. Finally, consider the i
tegral X3. This should be dominated by the singular term
near the lower limit of integration. Near the upper limit o
integration the integrand behaves like 1/A11e2x, but the
integral converges. Therefore, we can expand in power
(x222e2e2) and consider only the singular terms. We fin

X35E
A2(e1d)1e2

11e

dxF 1

x2 1
2

x2~x222e2e2!

1
4

~x222e2e2!2G1finite. ~B35!

The finite piece is finite both in thed→0 ande→0 limits.
We find that

X35
1

Ae~21e!d
1finite in d, ~B36!

and so the singular term of orderd21 cancels. Again, the
piece finite ind is of ordere23/2. After taking thed→0 limit,
we combine the finite piece inX3 with the finite piece inX1
and expand in powers ofe, to find

X11X352
1

A2e3/2
1

7

4A2e
1O~e0!. ~B37!

Thus the imaginary part ofI behaves like

Im~ I !;2
1

a~l21!3/2
. ~B38!
1-10
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We also note that the imaginary part is negative forl;11.
This was also the case in thel@1 limit. Thus we expect the
imaginary part to be increasing negatively asl→1.

Finally, let us analyze the case whenl!1. In this caseB2

is negative and does not contribute to the imaginary part.
have to extract the imaginary part from the following expre
sion:

ip2

16aE12l

11l

dr
1

r F 1

~A2 id!3 1
1

r

1

~A2 id!G . ~B39!

We choose to make the following change of variables fir

u5r 21. ~B40!

The imaginary part is then given by

Im~ I !5
p2

16aE2l

l

du
1

u11 F ~A323d2A!

~A21d2!3 1
1

u11

A

~A21d2!G ,
~B41!

whereA25l22u2. This in turn can be written as follows:

p2

8aE0

l

du
1

12u2 F ~A323d2A!

~A21d2!3 1
11u2

12u2

A

~A21d2!G .
~B42!

Now change variables by settingA25x2 to get

p2

8aE0

1

dx
1

A12x2~12l21l2x2!
F ~x423d2x2!

l2~x21d2!3

1
~11l22l2x2!

~12l21l2x2!

x2

~x21d2!G , ~B43!

where we have rescaledx with 1/l. The second piece in th
integral becomes
’

in

ba

tt

rg

an

04400
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p2

8aE0

1

dx
1

A12x2
1O~l2!5

p3

16a
1O~l2!. ~B44!

The first piece can be integrated using the same metho
before. Choose a small cutoffe and write the integral in
terms of

L15
p2

8aE0

e

dx
~x423d2x2!

l2~12l2!~x21d2!3 1O~e! ~B45!

and

L25
p2

8aEe

1

dx
1

l2x2A12x2~12l21l2x2!
1O~d2!.

~B46!

Next we observe that

L25
p2

8aEe

1

dx
1

l2~12l2!x2A12x2

2
p2

8aE0

1

dx
1

A12x2
1O~l2!. ~B47!

EvaluatingL1 and takingd→0, we are left with

L152
p2

8al2~12l2!e
. ~B48!

Similarly, after takinge→0, L2 reduces to

L25
p2

8al2~12l2!e
2

p3

16a
1O~l2!. ~B49!

Adding the three pieces together, we see that the imagin
part tends to zero whenl!1 like l2.
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