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NÄ4 supersymmetric multidimensional quantum mechanics, partial SUSY breaking,
and superconformal quantum mechanics
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The multidimensionalN54 supersymmetric~SUSY! quantum mechanics~QM! is constructed using the
superfield approach. As a result, the component form of the classical and quantum Lagrangian and Hamiltonian
is obtained. In the SUSY QM considered, both classical and quantumN54 algebras include central charges,
and this opens various possibilities for partial supersymmetry breaking. It is shown that quantum-mechanical
models with one-quarter, one-half, and three-quarters of unbroken~broken! supersymmetries can exist in the
framework of the multidimensionalN54 SUSY QM, while the one-dimensionalN54 SUSY QM, con-
structed earlier, admits only one half or total supersymmetry breakdown. We illustrate the constructed general
formalism, as well as all possible cases of partial SUSY breaking taking as an example a direct multidimen-
sional generalization of the one-dimensionalN54 superconformal quantum-mechanical model. Some open
questions and possible applications of the constructed multidimensionalN54 SUSY QM to the known exactly
integrable systems and problems of quantum cosmology are briefly discussed.

PACS number~s!: 98.80.Cq, 04.65.1e, 04.70.Dy, 11.25.Hf
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I. INTRODUCTION

Supersymmetric~SUSY! quantum mechanics~QM!, first
introduced in Refs.@1# and@2# for theN52 case, turns out to
be a convenient tool for investigating problems of supersy
metric field theories, since it provides a simple and, at
same time, quite adequate understanding of various phen
ena arising in relativistic theories.

The important question of all modern theories of fund
mental interactions, including superstring and M theory,
the problem of the spontaneous breakdown of supersym
try. Supersymmetry, as the fundamental symmetry of the
ture, if it exists, has to be the spontaneously broken at
energies since particles with all equal quantum numbers,
cept the spin, are not observed experimentally. Sev
~rather different! mechanisms of spontaneous breakdown
supersymmetry have been proposed in particle physic
order to resolve this problem. One of them is to add to
supersymmetric Lagrangian, the so-calledD, or F terms,
which are invariant under supersymmetry transformati
but break supersymmetry spontaneously due to non
vacuum expectation values or, alternatively, introduce i
the theory some soft breaking mass terms ‘‘by hand;’’
latter procedure does not spoil the nonrenormalization th
rem of the supersymmetric field theories and was succ
fully applied to construct the minimal supersymmetric exte
sion of the standard model~see@3# and references therein!.
The next mechanism of SUSY breaking is the dynami

*Email address: edonets@sunhe.jinr.ru
†Email address: pashnev@thsun1.jinr.ru
‡Email address: rosales@thsun1.jinr.ru
§Email address: tsulaia@thsun1.jinr.ru
0556-2821/2000/61~4!/043512~11!/$15.00 61 0435
-
e
m-

-
s
e-
a-
w
x-
al
f
in
e

s
ro
o
e
o-
s-
-

l

~nonperturbative! breakdown of supersymmetry, caused
instantons~see, for example,@4# and references therein!. In
this case, the energy of tunneling between topologically d
tinct vacua produces an energy shift from the zero lev
hence leading to the spontaneous breakdown of supers
metry. And, finally, the mechanism of partial spontaneo
breaking of theN52 supersymmetry in the field theory wa
recently proposed in@5#. This mechanism is based on th
inclusion into the Lagrangian of two types of the Faye
Iliopoulos terms, electric and magnetic, and it leads to
corresponding modification of theN52 SUSY algebra@6#.

The problem of spontaneous breakdown of supersym
try could be investigated in the framework of the supersy
metric quantum mechanics as well. The conjecture that
persymmetry can be spontaneously broken by instan
@1, 2# was investigated in detail by several authors for t
case ofN52 SUSY QM @7–9#. However, the most physi
cally interesting case is provided by theN54 supersymmet-
ric quantum mechanics since it can be applied to the desc
tion of the systems resulting from the ‘‘realistic’’N51
supersymmetric field theories~including supergravity! in
four (D54) dimensions after the dimensional reduction
one dimension~see, for example,@10#!.

The one-dimensionalN54 SUSY QM was constructed in
@11–13#. Partial breaking of supersymmetry, caused by
presence of the central charges in the corresponding sup
gebra, was also discussed in@13#. It was the first example of
partial breaking of supersymmetry in the framework
SUSY QM and the corresponding mechanism is in full an
ogy with that in@5# in the field theory. The main point is tha
the presence of central charges in the superalgebra allow
partial supersymmetry breakdown, whereas according
Witten’s theorem@1#, no partial supersymmetry breakdow
is possible if the SUSY algebra includes no central charg
©2000 The American Physical Society12-1
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The main goal of our paper is further generalization of
construction, proposed in@13# to the multidimensional cas
and investigation of partial breaking of the supersymme
under consideration.

Consideration of the supersymmetric algebra with cen
charges is of particular importance for several reasons. F
it provides a good tool to study dyon solutions of quantu
field theory since in such theories the mass and electric
magnetic charges turns out to be the central charges@14#.
Second, the central charges produce the rich structure o
persymmetry breaking. Namely, it is possible to break par
all supersymmetries retaining all others exactly@15#. In fact,
the invariance of a state with respect to the supersymm
transformation means saturation of the Bogomol’nyi bou
and this situation takes place in theN52 andN54 super-
symmetric Yang-Mills theory@16,17# as well as in the theo
ries of extended supergravity@18#.

The investigation of supersymmetric properties of bra
the in M theory has also revealed that partial breakdown
supersymmetry takes place. Namely, the ordinary bra
break half of the supersymmetries, while ‘‘intersecting’’ a
rotating branes can leave only 1/4, 1/8, 1/16 or 1/32 of
supersymmetries unbroken@19#.

The main characteristic features of partial SUSY break
in the field theories with the extended supersymmetry can
revealed in supersymmetric QM, since in both cases pa
supersymmetry breakdown is provided by the central cha
in the SUSY algebra. Therefore, the detailed study of par
supersymmetry breakdown in supersymmetric quantum
chanics can lead to the deeper understanding of an analo
effect in supersymmetric field theories.

The known examples of the breakdown of supersymm
tries in the supersymmetric quantum mechanics are the c
where either all supersymmetries are broken~exact! or only
half of them are broken~exact! @13#. In this paper, we dem
onstrate the possibility of three-quarters or one-quarter
persymmetry breakdown in the framework of the multid
mensionalN54 SUSY QM. The later case~3/4 of the
supersymmetries are exact! has not been observed before
SUSY QM ~in the specificN54 supergravity model it was
observed in@20#! and seems to be quite interesting by its
even without specifying the physical origin of the pheno
enon.

The paper is organized as follows. In Sec. II, we prese
formal construction of theN54 multidimensional supersym
metric quantum mechanics: classical and quantum Ha
tonian and Lagrangian, SUSY transformations, algebra
supercharges and so on. In Sec. III, partial supersymm
breaking is investigated and all possible cases of the pa
SUSY breakdown are listed. In Sec. IV, we give an exac
solvable example which illustrates main properties of
introduced formal constructions. This example is interest
by itself since we consider the multidimensional generali
tion of the N54 superconformal quantum mechanics@13#,
@21# which is naturally related to the extremal Reissn
Nordström ~RN! black holes in the ‘‘near horizon’’ limit and
anti–de Sitter-conformal field theory correspondence@22#. In
Sec. V, we conclude with some open questions and fur
perspectives.
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II. D-DIMENSIONAL NÄ4 SUSY QUANTUM MECHANICS

In this section, we describe a general formalism of t
D-dimensional (D>1) N54 supersymmetric quantum me
chanics, starting with the superfield approach and conclud
with the component form of the desired Lagrangian a
Hamiltonian.

ConsiderN54 SUSY transformations

dt5
i

2
~eaūa1 ēaua!,

dūa5 ēa ,

dua5ea, ~2.1!

in the superspace spanned by the even coordinatet and mu-
tually complex-conjugated odd coordinatesua and ūa . The
parameters ofN54 SUSY transformationsea and ēa are
complex conjugate to each other as well.1 The generators of
the above supersymmetry transformations

Qa5
]

]ua
1

i

2
ūa

]

]t
, Q̄a5

]

]ūa

1
i

2
ua

]

]t
, ~2.2!

along with the time translation operatorH5 i ]/]t obey the
following ~anti!commutation relations:

$Qa ,Q̄b%5da
bH,

@H,Qa#5@H,Q̄a#50. ~2.3!

The automorphism group for a given algebra is SO(
5SU(2)3SU(2) and the generators of theN54 SUSY
transformations are in the spinor representation of one of
SU~2! groups.

The next step is to construct irreducible representation
the algebra~2.3!. The usual way of doing this is to use th
supercovariant derivatives

Da5
]

]ua
2

i

2
ūa

]

]t
, D̄a5

]

]ūa

2
i

2
ua

]

]t
, ~2.4!

and impose some constraints on the general superfield. H
after we deal with the superfieldF i ( i 51, . . . ,D) subjected
to the following constraints:

@Da ,D̄a#F i524mi ,

DaDaF i522ni ,

D̄aD̄aF i522n̄i , ~2.5!

1Our conventions for spinors are as follows:ua5ub«ba , ua

5«abub , ūa5 ūb«ba , ūa5«abūb , ūa5(ua)* , ūa52(ua)* , (uu)

[uaua522u1u2, (ū ū)[ūaūa5(uu)* , «1251, «1251.
2-2
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N54 SUPERSYMMETRIC MULTIDIMENSIONAL QUANTUM . . . PHYSICAL REVIEW D 61 043512
where mi are real constants, whileni and n̄i are mutually
complex-conjugated constants. Such constraints for the
of the one-dimensionalN54 SUSY QM were considered
first in @13# as a minimal consistent generalization of t
analogous constraints of@11# and@21# with a vanishing right-
hand side. The presence of the additional arbitrary par
eters leads, as we shall see below, to the considerably ri
structure of the theory. The explicit form of the superfieldF i

is the following:

F i5f i1uac̄a
i 2 ūac ia1uaBa

biūb1mi~uū !1
1

2
ni~uu!

1
1

2
n̄i~ ūū !1

i

4
~uu!ūaċ̄ai2

i

4
~ ūū !uaċa

i

1
1

16
~uu!~ ūū !f̈ i ~2.6!

(˙[] t). Note that in the case when all the constantsmi , ni ,
and n̄i are equal to zero, the superfield~2.6! representsD
‘‘trivial’’ copies of the superfieldF, given in @11#, which
describes the irreducible representation of the o
dimensionalN54 SUSY QM. The latter superfield contain
one bosonic fieldf, four fermionic fieldsca and c̄a , and
three auxiliary bosonic fieldsBa

b5(s I)a
bBI where (s I)a

b (I
51,2,3) are ordinary Pauli matrices.

Another irreducible representation of the algebra~2.3! can
be constructed after making the appropriate generalizatio
the constraints given in@12#:

~«acDcD̄
b1«bcDcD̄

a!F50. ~2.7!

The technique of constructingN54 SUSY invariant
Lagrangians is absolutely the same for both the cases
therefore, we shall not consider the second one separate

The components of the superfield~2.6! transform under
the N54 transformations as follows:

df i5eac̄a
i 2 ēacai,

dcai5ebBb
ai1

i

2
eaf i̇1eami2 ēan̄i ,

dBb
ai52

i

2
ebċ̄ai2

i

2
eaċ̄b

i 2
i

2
ēaċb

i 2
i

2
ēbċai.

~2.8!

Now one can write down the most general form of t
Lagrangian which is invariant under the above-mention
N54 SUSY transformations

L528S E d2ud2ū„A~F i !…1
1

16
lbi

a Ba
biD , ~2.9!
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where A(F i) is an arbitrary function of the superfieldF i

called the superpotential. The second term is the Fa
Iliopoulos term andlbi

a 5(s I)b
aL i

I are just constants. The ex
pression for the Lagrangian~2.9! is the most general one in
the sense that any otherN54 SUSY invariant terms adde
will lead with necessity to higher derivatives in the comp
nent form.

After the integration with respect to the Grassmanian
ordinatesua and ūa , one obtains the component form of th
Lagrangian~2.9!:

L5K2V, ~2.10!

where

K5
1

2

]2A

]f i]f j
ḟ iḟ j1 i

]2A

]f i]f j
~ c̄a

i ċa j1caiċ̄a
j !,

~2.11!

and

V52
]2A

]f i]f j
~mimj1nin̄j !2

]2A

]f i]f j
Bb

aiBa
b j

1
]3A

]f i]f j]fk
~2c̄a

i ca jmk1caica
j nk1c̄a

i c̄a jn̄k!

2
]3A

]f i]f j]fp
~ c̄a

i cb j1c̄ ibca
j !Bb

ap

1
1

2

]4A

]f i]f j]fk]f l
~ c̄a

i c̄ ja!~cbkcb
l !1

1

2
lbi

a Ba
bi .

~2.12!

Expressing the auxiliary fieldBa
bi in terms of the physical

fields

Bb
ai5S ]2A

]f i]f j D 21S 1

4
lb j

a 2
1

2

]3A

]f j]fk]fp

3~ c̄a
kcbp1c̄bkca

p!D , ~2.13!

using its equation of motion and inserting it back into t
Lagrangian~2.10!, one obtains a final form of the potentia
term
2-3
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V5
1

16
lbi

a la j
b S ]2A

]f i]f j D 21

12
]2A

]f i]f j
~mimj1nin̄j !1

]3A

]f i]f j]fk
~2c̄a

i ca jmk1caica
j nk1c̄a

i c̄a jn̄k!

2
1

2
lbp

a S ]2A

]fp]fkD 21
]3A

]f i]f j]fk
c̄a

i cb j1
1

2

]4A

]f i]f j]fk]f l
~ c̄a

i c̄ ja!~cbkcb
l !

2S ]2A

]fp]fqD 21S ]3A

]f i]fk]fp

]3A

]fq]f j]f l
1

1

2

]3A

]f i]f j]fp

]3A

]fq]fk]f l D c̄a
j c̄b

kcblcai, ~2.14!
n
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S ]2A

]fp]fqD 21
]3A

]f i]fk]fp

]3A

]fq]f j]f l
c̄a

i c̄alc jbcb
k

5S ]2A

]fp]fqD 21
]3A

]f i]fk]fp

]3A

]fq]f j]f l

3~ c̄a
i ca jc̄b

l cbk1c̄a
i cakc̄b

l cb j! ~2.15!

was used.
The formulas given above can be rewritten in a differe

and more natural form using the geometrical notation. Le
introduce the metric of some ‘‘target’’ manifold in the fo
lowing way:

gi j 5
]2A

]f i]f j
, ~2.16!

along with the corresponding Christoffel connection and
Riemann curvature

G jk
i 5

1

2

]3A

]fp]f j]fk S ]2A

]fp]f i D 21

, ~2.17!

Ri j ,kl5
1

4 S ]2A

]fp]fqD 21

3S ]3A

]f i]f l]fp

]3A

]fq]f j]fk

2
]3A

]f i]fk]fp

]3A

]fq]f j]f l D . ~2.18!

Now the Lagrangian~2.10!, rewritten in terms of these geo
metric quantities looks as follows:

K5
1

2
gi j ḟ

iḟ j1 igi j ~ c̄a
i ċa j1caiċ̄a

j !, ~2.19!

and
04351
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V5
1

16
lbi

a la j
b gi j 12gi j ~mimj1ni n̄j !14c̄a

i c j
aDim

j

12caica jDin
j12c̄a

i c̄ j
aDi n̄

j1c̄a
i cb jDilb j

a

1~DiG jkl1Rik,l j !c̄a
i c̄a jcbkcb

l 1Rjl ,kic̄a
i ca jc̄b

kcbl,

~2.20!

whereDi is a standard covariant derivative defined with t
help of the introduced Christoffel connection~2.17!. Using
the Noether theorem technique, one can find the class
expressions for the conserved supercharges, correspondi
the SUSY transformations~2.8!

Q̄a5c̄a
i pi22i c̄a

i mj
]2A

]f i]f j
12ica

i nj
]2A

]f i]f j

1
i

2
c̄c

i c̄c jca
k ]3A

]f i]f j]fk
2

1

2
ilai

c c̄c
i , ~2.21!

Qb5c ibpi12icbimj
]2A

]f i]f j
12i c̄bin̄ j

]2A

]f i]f j

1
i

2
c̄bicc jcc

k ]3A

]f i]f j]fk
1

1

2
ildi

b cdi. ~2.22!

These formulas for the conserved supercharges complete
classical description of the desiredN54 SUSY multidimen-
sional mechanics, and now to quantize it we should anal
its constraints.

Following the standard procedure of quantization of t
system with bosonic and fermionic degrees of freedom@23#,
we introduce the canonical Poisson brackets

$f i ,pj%5d j
i , $cai,p(c),b j%52db

ad j
i ,

$c̄a
i ,p(c̄), j

b
%52db

ad j
i , ~2.23!

wherepi , p(c),ai , andp(c̄),i
a are the momenta conjugated

f i , cai, andc̄a
i . From the explicit form of the momenta

pi5gi j ḟ
i , ~2.24!
2-4
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p(c),ai52 igi j c̄a
j , p(c̄),i

a
52 igi j c

a j, ~2.25!

with the metricgi j given by Eq.~2.16!, one can conclude
that the system possesses the second-class fermionic
straints

x (c),ai5p(c),ai1 igi j c̄a
j , and x (c̄),i

a
5p(c̄),i

a
1 igi j c

a j,
~2.26!

since

$x (c̄),i
a ,x (c),b j%522igi j db

a . ~2.27!

Therefore, the quantization has to be done using the D
brackets defined for any two functionsVa andVb as

$Va ,Vb%Dirac5$Va ,Vb%2$Va ,xc%
1

$xc ,xd%
$xd ,Vb%.

~2.28!

As a result, we obtain the following Dirac brackets for t
canonical variables:

$f i ,pj%Dirac5d j
i ,

$cai,c̄b
j %Dirac52

i

2
db

aS ]2A

]f i]f j D 21

52
i

2
db

agi j ,

$cai,pj%Dirac52
1

2
cap

]3A

]fp]fm]f j S ]2A

]fm]f i D 21

52cakG jk
i ,

$c̄a
i ,pj%Dirac52

1

2
c̄a

p ]3A

]fp]fm]f j S ]2A

]fm]f i D 21

52c̄a
kG jk

i , ~2.29!

and, finally,

$pi ,pj%Dirac52
i

2 S ]2A

]fp]fqD 21S ]3A

]f i]fk]fp

]3A

]fq]f j]f l

2
]3A

]f i]f l]fp

]3A

]fq]f j]fkD c̄a
kcal

52iRi j ,klc̄a
kcal. ~2.30!
04351
on-

c

The classical Hamiltonian, obtained after the usual Le
endre transformation from the Lagrangian~2.10!, has the
form

Hclass5
1

2 S ]2A

]f i]f j D 21

pipj1V. ~2.31!

The supercharges and the Hamiltonian form the follow
N54 SUSY algebra with respect to the introduced Dir
brackets

$Q̄a ,Qb%Dirac52 ida
bHclass2 ilai

b mi ,

$Q̄a ,Q̄b%Dirac52 ilabin
i ,

$Qa,Qb%Dirac5 il i
abn̄i . ~2.32!

Note the appearance of the central charges in the alge
This fact is extremely important especially for the investig
tion of partial supersymmetry breaking, given in the ne
section.

Replacing the Dirac brackets by~anti!commutators using
the rule

i $,%Dirac5$,%, ~2.33!

one obtains the quantum algebra

$Q̄a ,Qb%5da
bHquant1lai

b mi ,

$Q̄a ,Q̄b%5labin
i , $Qa,Qb%52l i

abn̄i , ~2.34!

under the definite choice of operator ordering in the sup
charges~2.21!, ~2.22! and, in the Hamiltonian~2.31!,
Q̄a5c̄a
i Ri22i c̄a

i mj
]2A

]f i]f j
12ica

i nj
]2A

]f i]f j
2

1

2
ilai

c c̄c
i , ~2.35!

Qb5Lic
bi12icbimj

]2A

]f i]f j
12i c̄bin̄ j

]2A

]f i]f j
1

1

2
ildi

b cdi, ~2.36!
2-5
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Hquant5
1

2
LiS ]2A

]f i]f j D 21

Rj1
1

16
lbi

a la j
b S ]2A

]f i]f j D 21

12
]2A

]f i]f j
~mimj1nin̄j !1

]3A

]f i]f j]fk
~@c̄a

i ca j#mk1caica
j nk

1c̄a
i c̄a jn̄k!2

1

4
lbp

a S ]2A

]fp]fkD 21
]3A

]f i]f j]fk
@c̄a

i ,cb j#1
1

2

]4A

]f i]f j]fk]f l
~ c̄a

i c̄ ja!~cbkcb
l !

2S ]2A

]fp]fqD 21S ]3A

]f i]fk]fp

]3A

]fq]f j]f l
1

]3A

]f i]f j]fp

]3A

]fq]fk]f l D c̄a
j c̄b

kcblcai, ~2.37!
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where

Li5pi1 i c̄a
j cak

]3A

]f i]f j]fk
2

i

2 S ]2A

]f j]fkD 21
]3A

]f i]f j]fk
,

Ri5pi2 i c̄a
j cak

]3A

]f i]f j]fk
1

i

2 S ]2A

]f j]fkD 21
]3A

]f i]f j]fk
.

~2.38!

The momentum operators are Hermitian with respect to
integration measuredDfAudet(]2A/]f i]f j )u if they have
the following form:

pi52 i
]

]f i
2

i

4

]

]f i
ln~ udetgiku!22iv iabc̄a

acab,

~2.39!

with the new fermionic variablesc̄a
a andcab connected with

the old ones via the tetradei
a (ei

aej
bhab5gi j )

c̄a
a5ei

ac̄a
i and ca

a5ei
aca

i , ~2.40!

andv iab in Eq. ~2.39! is the corresponding spin connectio
Therefore, the quantum supercharges~2.35!, ~2.36! are mu-
tually Hermitian conjugated and the resulting quantu
Hamiltonian Hquant is a Hermitian self-adjoint operator a
well.

As a result, Eqs.~2.34!–~2.40! completely describe the
general formalism of theN54 SUSYD-dimensional quan-
tum mechanics, and this provides the basis for the analys
its main properties.

III. PARTIAL SUSY BREAKING

Let us investigate in detail the question of partial sup
symmetry breakdown in the framework of the construc
N54 SUSY QM in an arbitraryD number of dimensions. As
it has been mentioned in the introduction, the problem
partially broken supersymmetry is very important for app
cations in supergravity, superstring theories and in theM
theory as well, and the supersymmetric quantum mecha
turns out to be an adequate tool for investigating of the c
responding problems in supersymmetric field theories.

We shall see that in contrast with the one-dimensio
N54 SUSY QM, the multidimensional one provides al
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possibilities when either only one-quarter of all supersymm
tries is exact~for D>2), or one quarter of all supersymme
tries is broken~for D>3).

In order to study partial SUSY breaking it is convenient
introduce a new set of real-valued supercharges

Sa5Q̄a1Qa, ~3.1!

Ta5 i ~Q̄a2Qa!. ~3.2!

In the above equations the SU~2! covariance is obviously
damaged. This is the price we pay for passing to the re
valued supercharges. However, for a further discussion
loss of the covariance does not cause any problems.
label ‘‘a’’ has now to be considered as just the number
supercharges denoted byS andT.

The new supercharges form the followingN54 superal-
gebra with the central charges

$Sa,Sb%5H~db
a1da

b!1~lbi
a 1lai

b !mi1~labin
i2l i

abn̄i !,
~3.3!

$Ta,Tb%5H~db
a1da

b!1~lbi
a 1lai

b !mi2~labin
i2l i

abn̄i !,
~3.4!

$Sa,Tb%5 i ~lbi
a 2lai

b !mi1 i ~labin
i1l i

abn̄i !, ~3.5!

wherelbi
a 5(s I)b

aL i
I andL i

I are real parameters.
The algebra~3.3!–~3.5! is still nondiagonal. However

some particular choices of the constant parametersmi , ni ,
and L i

I bring the algebra to the standard form, i.e., to t
form when the right-hand side of Eq.~3.5! vanishes and the
right-hand sides of Eqs.~3.3! and ~3.4! are diagonal with
respect to the indices ‘‘a’’ and ‘‘ b.’’

Now we consider several cases separately.

A. Four supersymmetries exact and four supersymmetries
broken

If we set equal to zero all central charges appearing in
algebra, then no partial breakdown of supersymmetry is p
sible. In this case, all supersymmetries are exact if the ene
of the ground state is zero; otherwise all of them are brok
This statement is obviously independent of the number
dimensionsD.
2-6
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B. Two supersymmetries exact

The case of partial supersymmetry breakdown, when
half of supersymmetries are exact, have been considered
lier @13# in the framework of one-dimensionalN54 SUSY
QM, but we shall describe it for completeness as well. C
sider the one-dimensional (D51) N54 SUSY QM and put
all the constants entering into the right-hand sides of E
~3.3!–~3.5! equal to zero, except

m1 and L1
3 . ~3.6!

Then, the algebra~3.3!–~3.5! takes the form

$S1,S1%52H12m1L1
3 ,

$S2,S2%52H22m1L1
3 ,

$T1,T1%52H12m1L1
3 ,

$T2,T2%52H22m1L1
3 . ~3.7!

It means that if the energy of the ground state is equa
m1L1

3 and the last-mentioned product is positive, thenS2 and
T2 supersymmetries are exact, while the other two are b
ken. If m1L1

3 is negative, thenS1 and T1 supersymmetries
are exact provided the energy of the ground state is equ
2m1L1

3.

C. One supersymmetry exact

The case of the three-quarters breakdown of supersym
try is possible if the dimension ofN54 SUSY QM is at least
two (D>2). Indeed, forD52 let us keep the following se
of parameters nonvanished:

L1
3 ,L2

1 ,m1 and Re~n2![N2. ~3.8!

Then, one obtains

$S1,S1%52H12m1L1
322L2

1N2,

$S2,S2%52H22m1L1
312L2

1N2,

$T1,T1%52H12m1L1
312L2

1N2,

$T2,T2%52H22m1L1
322L2

1N2. ~3.9!

A further choice

m1L1
35L2

1N2 ~3.10!

leads to the case when only theT2 supersymmetry is exact
while all others are broken if the energy of the ground stat
equal to 2m1L1

3, andm1L1
3.0. If m1L1

3 is negative, thenT1

is exact provided the energy of the ground state is equa
2m1L1

3.

D. Three supersymmetries exact

The situation of the one-quarter breakdown of supersy
metry can exist, if we add to the consideration one m
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dimension, i.e., consider the three-dimensionalD53 N54
supersymmetric quantum mechanics.

Keeping the following set of the parameters nonvanish

L1
3 ,L2

1 ,L3
2 ,m1,N2 and Im~n3![M3, ~3.11!

we have

$S1,S1%52H12m1L1
322L2

1N222L3
2M3,

$S2,S2%52H22m1L1
312L2

1N222L3
2M3,

$T1,T1%52H12m1L1
312L2

1N212L3
2M3,

$T2,T2%52H22m1L1
322L2

1N212L3
2M3. ~3.12!

If

m1L1
35L2

1N2, ~3.13!

L2
1N252L3

2M3, ~3.14!

and

m1L1
3,0, ~3.15!

thenT2 supersymmetry is broken, while all others are ex
under the condition that the energy of the ground state
equal to2m1L1

3. If the last-mentioned product is positive
thenT2 supersymmetry is exact, while all others are brok
provided that the energy of the ground state is 3m1L1

3 and
we arrive at the three-dimensional generalization of caseC.

Obviously, when considering the three-dimensionalN
54 SUSY QM, one can either keep the parameters~3.8!
under the condition~3.10!, or the parameters~3.6!, or set all
of them equal to zero and, therefore, obtain all particu
cases of spontaneous breakdown of supersymmetry
cussed earlier. It is also obvious that all these cases ca
obtained from the higher dimensional (D>3) N54 super-
symmetric quantum mechanics.

To summarize this section one should note that accord
to the given general analysis of partial SUSY breaking in
N54 multidimensional SUSY QM, there exist possibilitie
of constructing the models with14 , 1

2 , and3
4 supersymmetries

unbroken, as well as models with totally broken or tota
unbroken supersymmetries. However, the answer to
question which of these possibilities can be realized for
considered system, crucially depends on the form of the c
sen superpotential and on the imposed boundary condit
of the quantum-mechanical problem.

IV. EXPLICIT EXAMPLE

For a better illustration of the ideas of the previous sect
it is useful to consider a particular choice of the superpot
tial A(F i). As it has been mentioned before, to consider
possible cases of partial supersymmetry breakdown,
minimal amount of the superfields needed is three. The
fore, let us take three superfields of the type~2.6! and choose
2-7
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the constantsmi ,ni ,n̄i andL i
I in accordance with expression

~3.6!, ~3.8!, and~3.11!.
A simple and at the same time interesting example is

case when the superpotential is the direct sum of terms, e
being a function of only one superfield. This gives the p
sibility of the considerable simplification of the classical a
quantum Hamiltonians, and the supercharges as well@13#.
We choose the explicit form of the superpotential as

A~F i !5F i ln F i , i 51,2,3 ~4.1!

and consider the physical bosonic components of the su
fields F i as functions of the new variablesxi , namely,

f i5~xi !2. ~4.2!

Making the following redefinition of the fermionic variable

jai5caiA2
]2A

~]f i !2
, j̄a

i 5c̄a
iA2

]2A

~]f i !2
, ~4.3!

where no summation over the repeated indices is assum
one obtains the canonical commutation relations betw
fermions

$jai,j̄b
j %5db

ad i j . ~4.4!

Inserting expressions~4.1!, ~4.2!, and ~4.3! into Eq. ~2.37!,
one obtains the three-dimensional superconformalN54
quantum mechanics@21# with

Hquant5H11H21H3, ~4.5!

i.e., as it could be concluded from the fact that the super
tential is diagonal with respect to the superfields conside
the total Hamiltonian is also a direct sum of three Hamil
nians, each of them containing the bosonic and fermio
operators of only one type. The explicit form of the Ham
toniansHi , (i 51,2,3) is

H152
1

8

d2

~dx1!2
1

1

4
L1

3~s3!a
bj̄b

1ja11
1

8
~L1

3!2~x1!2

1
1

~x1!2 S 2~m1!21
3

32
2m1~ j̄a

1ja121!2
1

4
j̄a

1ja1

1
1

8
~ j̄a

1ja1!~ j̄b
1jb1! D , ~4.6!

H252
1

8

d2

~dx2!2
1

1

4
L2

1~s1!a
bj̄b

2ja21
1

8
~L2

1!2~x2!2

1
1

~x2!2 S 2~N2!21
3

32
2

1

2
N2~ja2ja

21 j̄a
2j̄a2!

2
1

4
j̄a

2ja21
1

8
~ j̄a

2ja2!~ j̄b
2jb2! D , ~4.7!
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1

8

d2

~dx3!2
1

1

4
L3

2~s2!a
bj̄b

3ja31
1

8
~L3

2!2~x3!2

1
1

~x3!2 S 2~M3!21
3

32
2

i

2
M3~ja3ja

32 j̄a
3j̄a3!

2
1

4
j̄a

3ja31
1

8
~ j̄a

3ja3!~ j̄b
3jb3! D . ~4.8!

The next step is to find the energy spectrum of the quan
Hamiltonian~4.5!.

Since the bosonic and fermionic variables of each type
completely separated, the eigenfunctions of the Hamilton
~4.5! is a direct product of the eigenfunctions of the Ham
tonians~4.6!–~4.8! and the total energy is just a sum of th
energies corresponding to the HamiltoniansHi .

Let us find the energy spectrum of the HamiltonianH1.
Consider the general state in the ‘‘reduced’’ Fock spa
spanned by the fermionic creation and annihilation opera
j̄a

1 andja1 obeying the anticommutation relations~4.4! with
i 51:

ur&5X1~x1!u0&1Y1
a~x1!j̄a

1u0&1Z1~x1!j̄a
1j̄a1u0&.

~4.9!

The operatorH1, acting on the state vector~4.9!, gives the
following four Shrödinger equations for the unknown func
tions X1(x1), Y1

a(x1), andZ1(x1):

F2
1

2

d2

~dx1!2
1

1

2
~L1

3!2~x1!2

1
1

~x1!2 S 8~m1!214m11
3

8D GX1~x1!

54EI
1X1~x1!, ~4.10!

F2
1

2

d2

~dx1!2
1L1

31
1

2
~L1

3!2~x1!2

1
1

~x1!2 S 8~m1!22
1

8D GY1
1~x1!

54EII
1 Y1

1~x1!, ~4.11!

F2
1

2

d2

~dx1!2
2L1

31
1

2
~L1

3!2~x1!2

1
1

~x1!2 S 8~m1!22
1

8D GY1
2~x1!

54EIII
1 Y1

2~x1!, ~4.12!
2-8
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F2
1

2

d2

~dx1!2
1

1

2
~L1

3!2~x1!2

1
1

~x1!2 S 8~m1!224m11
3

8D GZ1~x1!

54EIV
1 Z1~x1!. ~4.13!

The wave functions and the energy spectrum of the Ham
tonian of the type

H52
1

2

d

dx2
1

1

2
x21g

1

x2
, ~4.14!

have been investigated in detail for the nonsupersymme
theory@24,25# and in the framework of theN52 supersym-
metric quantum mechanics@25–28# as well. The most de-
tailed and complete study has been done by Das and Pe
@25# where the eigenfunctions and energy spectrum of
Hamiltonian of the type~4.14! were found after appropriat
regularization of the potential and superpotential, depend
on whether one considers nonsupersymmetric orN52 su-
persymmetric problem. However, as it can be seen from E
~4.1! and ~4.2! the superpotential in ourN54 case for the
Hamiltonian with the 1/x2 term in the potential energy i
regular in contrast with the case ofN52 supersymmetric
quantum mechanics and, therefore, we use the results of@25#
which are obtained after the regularization of the potent
but not of the superpotental.

For the problem considered one obtains~we take the
value of the parameterL1

3 without loss of generality to be
equal to11!

For m1,2 1
4 ,

4EI
152kI

124m1,

4EII
1 52kII

1 24m112,

4EIII
1 52kIII

1 24m1,

4EIV
1 52kIV

1 24m112, ~4.15!

where kM
A 50,1,2, . . . , (A51,2,3) and (M5I ,II ,III ,IV).

Each energy levelEM
A corresponds to a couple~even and

odd! of wave functions and, therefore, is doubly degenera
The minimal energy corresponds to the minima ofEI

1 and
EIII

1 for kI
15kIII

1 50 and equals2m1. Let us denote the cor
responding states byp I

16 andp III
16 .

For 2 1
4 ,m1,0 one has

4EI
152kI

114m112,

4EII
1 52kII

1 24m112,

4EIII
1 52kIII

1 24m1,

4EIV
1 52kIV

1 24m112. ~4.16!
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The minimal energy corresponds to the minimum ofEIII
1

for kIII
1 50 and equals2m1. We denote the correspondin

ground states byp III
16 .

For 0,m1, 1
4 one has

4EI
152kI

114m112,

4EII
1 52kII

1 14m112,

4EIII
1 52kIII

1 14m1,

4EIV
1 52kIV

1 24m112. ~4.17!

The minimal energy ism1 for kIII
1 50, and the corresponding

ground state is againp III
16 .

Finally, for m1. 1
4 :

4EI
152kI

114m112,

4EII
1 52kII

1 14m112,

4EIII
1 52kIII

1 14m1,

4EIV
1 52kIV

1 14m1. ~4.18!

The minimal energy ism1 for kIII
1 5kIV

1 50, and the cor-
responding ground states arep III

16 andp IV
16 .

The points6 1
4 and 0 are the branching points. Whenm1

gets these values, the corresponding energies and wave
tions of the system in the regions of the parameter, divid
by these points, just coincide.

If we also chooseL2
15L3

251, the energy spectra of th
HamiltoniansH2 andH3 are absolutely the same as in Eq
~4.15!–~4.18!. The only difference is that the parameterm1

should be replaced byN2 or M3, respectively. However, the
eigenfunctions, corresponding toEI

2 andEIV
2 , are linear com-

binations of the states of zero and two fermionic sect
since the fermionic number operatorj̄a

2ja2 does not com-
mute with the HamiltonianH2. The energiesEII

2 andEIII
2 are

also linear combinations of both the states of one fermio
sector because the matrix (s1)a

b is not diagonal. An analo-
gous situation takes place for the HamiltonianH3.

Now we are in a position to describe partial supersymm
try breaking following the lines of the previous section.

First, let us consider the one-dimensional case withm1

equal to zero. As mentioned above, the zero value ofm1 is
the branching point and, therefore, the energy spectra~4.16!
and ~4.17! as well as the wave functions in these regio
completely coincide. Therefore, one has a couple of sup
symmetric ground statesp III

16 and all supersymmetries ar
exact.

As it has been mentioned in the previous section, in or
to describe the halfbreaking of supersymmetry it is enough
consider only the spectrum of the HamiltonianH1. Inserting
the corresponding eigenvalues of the operatorH1 for each
range of the parameterm1 into Eqs.~3.7!, one obtains that
half of supersymmetries are always broken.
2-9
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Considering the spectra of the HamiltoniansH1 andH2,
one can obtain the three-quarter breakdown of supersym
try. Indeed, from Eqs.~3.9!, ~3.10!, and ~4.15!–~4.18!, one
can conclude that eitherT1 or T2 supersymmetries are exa
depending on the range of the parameterm1. The corre-
sponding ground-state wave functions obviously are,
m1,2 1

4 ,

p I
163p I

26 , p I
163p III

26 , p III
163p I

26 , p III
163p III

26 ,
~4.19!

for 2 1
4 ,m1,0

p III
163p III

26 , ~4.20!

for 0,m1, 1
4

p III
163p III

26 , ~4.21!

for m1. 1
4

p III
163p III

26 , p III
163p IV

26 , p IV
163p III

26 , p IV
163p IV

26 .

~4.22!

In order to study the possibility of the one-quarter brea
down of supersymmetry, one has to consider the thr
dimensional case, i.e., the spectra and the wave function
the HamiltoniansH1, H2, and H3. Using Eqs. ~3.12!,
~3.13!–~3.15!, and ~4.15!–~4.18! one can conclude that fo
the considered model the one-quarter supersymmetry br
down is impossible since the energy of the ground s
equals 3m1 rather thanm1, as is required for the annihilatio
of the ground state by the operatorsS1, S2, and T1. This
obviously does not mean that one-quarter supersymm
breakdown is impossible, in principle; it means instead t
this effect is impossible for the simple model we consider

Indeed, let us consider the same three-dimensional p
lem, but restricting ourselves to non-negative values of
ordinatex1, i.e., x1>0.

The spectrum ofH Eq. ~4.14!, when x belongs to the
non-negative half-axis is slightly different@24#2 and it opens
the possibility of constructing the ground state which is
variant under three unbroken supersymmetries. Accordin
@24#, we have

Ek
(6a)52k6a11, ~4.23!

wherea is given by

a51
1

2
A118g, ~4.24!

andk is the nonnegative integer. Ifa>1, then the energies
Ek

(2a) must be excluded from the spectrum since the co
sponding wave functions are no longer normalizable. Oth
wise one has to consider both sets of solutions. Apply

2In fact, as it has been recently shown by Das and Pernice@25#,
the energy spectrum, obtained in@24# is correct if one considers th
problem only on the half-axis.
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these results to the problem under consideration, and se
againL1

35L2
15L3

251, one obtains, forH1,

a I
15u4m111u,

a II
1 5u4m1u,

a III
1 5u4m1u,

a IV
1 5u4m121u. ~4.25!

And, therefore, the energy spectra have the form

4EI
1,(6)52kI

16u4m111u11,

4EII
1,(6)52kII

1 6u4m1u12,

4EIII
1,(6)52kIII

1 6u4m1u,

4EIV
1,(6)52kIV

1 6u4m121u11. ~4.26!

Both the signs before the second terms have to be taken
EI if 2 1

2 ,m1,0; for EII and for EIII if 2 1
4 ,m1, 1

4 ; for
EIV if 0 ,m1, 1

2 . Let us further restrict the value of th
parameter so that it belongs to the open interval2 1

4 ,m1

,0. Then due to Eqs.~3.13!–~3.15!, ~4.16!, ~4.17!, and
~4.26!, the minimal energy of the system withkIII

1 5kIII
2

5kIII
3 50 is

Emin5EIII
1,21EIII

2,61EIII
3,652m1, ~4.27!

and according to Eq.~3.12! we have the supersymmetri
ground states with three supersymmetries being unbroke

In this section we have considered quite schematically
one-, two-, and three-dimensionalN54 supersymmetric ver-
sions of the quantum oscillator with the additional 1/x2 term
in the potential energy. However, we believe that even t
simple analysis gives a good illustration of all possible ca
of the partial supersymmetry breakdown in the multidime
sional N54 SUSY QM. One should also stress the cruc
meaning of the boundary conditions in the question of par
supersymmetry breakdown, as it has been shown for the
of one-quarter supersymmetry breakdown in the conside
example.

V. DISCUSSION

In this paper, we have described the general formalism
the multidimensionalN54 supersymmetric quantum me
chanics and studied various possibilities of partial supers
metry breaking, illustrating them by the exactly solvable e
ample.

However, several questions, which seem to be of part
lar importance, are left still open. Indeed, it would be inte
esting to investigate other possibilities of changing t
bosonic end fermionic variables, namely, for the cases, w
in contrast with Eqs.~4.1! and ~4.2!, the superpotentia
A(F i) is not a direct sum of the terms, each containing o
one superfieldF i and when the bosonic components of the
superfields depend on several variablesxi . A detailed study
2-10
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of this problem can lead to possibleN54 supersymmetriza
tion and quantization of various pure bosonic integrable s
tems such asn-particle Calogero and Calogero-Moser mo
els, which are related to the Reissner-Nordstro¨m ~RN! black
hole quantum mechanics and toD52 Super Yang-Mills
~SYM! theory@29#. This approach can also answer the qu
tion about the general class of potentials which lead to
perconformalN54 theories in higher dimensions.

Another topic, which is left uncovered in this paper, is t
possible application of the constructed multidimensionaN
54 SUSY QM to the problems of quantum cosmology. P
sible embedding of pure bosonic effective Lagrangians,
rived from the homogeneous cosmological models toN54
SUSY QM can shed new light on the old problems of boun
ary conditions and spontaneous SUSY breaking in quan
cosmology which have recently been investigated in
m
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of
um

an
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framework of N52 supersymmetrics-model approach
@30,31#. All these questions are now under intensive stu
and will be reported elsewhere.
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