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The multidimensionaN=4 supersymmetri¢SUSY) quantum mechanic€QM) is constructed using the
superfield approach. As a result, the component form of the classical and quantum Lagrangian and Hamiltonian
is obtained. In the SUSY QM considered, both classical and quaNtam algebras include central charges,
and this opens various possibilities for partial supersymmetry breaking. It is shown that quantum-mechanical
models with one-quarter, one-half, and three-quarters of unbr@keken supersymmetries can exist in the
framework of the multidimensiondN=4 SUSY QM, while the one-dimension&l=4 SUSY QM, con-
structed earlier, admits only one half or total supersymmetry breakdown. We illustrate the constructed general
formalism, as well as all possible cases of partial SUSY breaking taking as an example a direct multidimen-
sional generalization of the one-dimensioiNak 4 superconformal quantum-mechanical model. Some open
guestions and possible applications of the constructed multidimen$iendlSUSY QM to the known exactly
integrable systems and problems of quantum cosmology are briefly discussed.

PACS numbegs): 98.80.Cq, 04.65-e, 04.70.Dy, 11.25.Hf

[. INTRODUCTION (nonperturbative breakdown of supersymmetry, caused by
instantons(see, for exampld,4] and references therginin
Supersymmetri¢SUSY) quantum mechanic€M), first  this case, the energy of tunneling between topologically dis-
introduced in Refd.1] and[2] for theN=2 case, turns outto tinct vacua produces an energy shift from the zero level,
be a convenient tool for investigating problems of supersymhence leading to the spontaneous breakdown of supersym-
metric field theories, since it provides a simple and, at themetry. And, finally, the mechanism of partial spontaneous
same time, quite adequate understanding of various phenorbreaking of theN=2 supersymmetry in the field theory was
ena arising in relativistic theories. recently proposed if5]. This mechanism is based on the
The important question of all modern theories of funda-inclusion into the Lagrangian of two types of the Fayet-
mental interactions, including superstring and M theory, islliopoulos terms, electric and magnetic, and it leads to the
the problem of the spontaneous breakdown of supersymmeorresponding modification of thd=2 SUSY algebrd6].
try. Supersymmetry, as the fundamental symmetry of the na- The problem of spontaneous breakdown of supersymme-
ture, if it exists, has to be the spontaneously broken at loviry could be investigated in the framework of the supersym-
energies since particles with all equal quantum numbers, exnetric quantum mechanics as well. The conjecture that su-
cept the spin, are not observed experimentally. Severglersymmetry can be spontaneously broken by instantons
(rather different mechanisms of spontaneous breakdown of/1, 2] was investigated in detail by several authors for the
supersymmetry have been proposed in particle physics ibase ofN=2 SUSY QM[7-9]. However, the most physi-
order to resolve this problem. One of them is to add to thecally interesting case is provided by the=4 supersymmet-
supersymmetric Lagrangian, the so-callBd or F terms, ric quantum mechanics since it can be applied to the descrip-
which are invariant under supersymmetry transformationgion of the systems resulting from the “realisticN=1
but break supersymmetry spontaneously due to nonzersupersymmetric field theorie@ncluding supergravity in
vacuum expectation values or, alternatively, introduce intdour (D=4) dimensions after the dimensional reduction to
the theory some soft breaking mass terms “by hand;” theone dimensior(see, for exampld,10]).
latter procedure does not spoil the nonrenormalization theo- The one-dimensiondl=4 SUSY QM was constructed in
rem of the supersymmetric field theories and was succes$11-13. Partial breaking of supersymmetry, caused by the
fully applied to construct the minimal supersymmetric exten-presence of the central charges in the corresponding superal-
sion of the standard modésee[3] and references thergin  gebra, was also discussed[i8]. It was the first example of
The next mechanism of SUSY breaking is the dynamicapartial breaking of supersymmetry in the framework of
SUSY QM and the corresponding mechanism is in full anal-
ogy with that in[5] in the field theory. The main point is that

*Email address: edonets@sunhe.jinr.ru the presence of central charges in the superalgebra allows the
TEmail address: pashnev@thsund.jinr.ru partial supersymmetry breakdown, whereas according to
*Email address: rosales@thsuni.jinr.ru Witten’s theorenm(1], no partial supersymmetry breakdown
$Email address: tsulaia@thsund.jinr.ru is possible if the SUSY algebra includes no central charges.
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The main goal of our paper is further generalization of thell. D-DIMENSIONAL N=4 SUSY QUANTUM MECHANICS
construction, proposed i3] to the multidimensional case
and investigation of partial breaking of the supersymmetryy

under consideration. hanics, starting with the superfield approach and concluding

Consideration of the supersymmetric algebra with centra\fvith the component form of the desired Lagrangian and
charges is of particular importance for several reasons. Firsgysmiitonian.

it provides a good tool to study dyon solutions of quantum  considerN=4 SUSY transformations
field theory since in such theories the mass and electric and

magnetic charges turns out to be the central chaf@éb P
Second, the central charges produce the rich structure of su- ot= §(€a9a+ €.6%),
persymmetry breaking. Namely, it is possible to break part of

all supersymmetries retaining all others exa¢fl§]. In fact, — —

the invariance of a state with respect to the supersymmetry 00a= €a,
transformation means saturation of the Bogomol'nyi bound,
and this situation takes place in the=2 andN=4 super-

;?érsnrgfeg(t:e\rqug-gﬂdgsé:grea?/?[[;%’m as well as in the theo- in the superspace spanned by the even coordinatel mu-

The investigation of supersymmetric properties of branedually complex-conjugated odd coordinatés and 6, . The
the in M theory has also revealed that partial breakdown oparameters oN=4 SUSY transformationg® and e, are
supersymmetry takes place. Namely, the ordinary branegomplex conjugate to each other as wellhe generators of
break half of the supersymmetries, while “intersecting” andthe above supersymmetry transformations
rotating branes can leave only 1/4, 1/8, 1/16 or 1/32 of the
supersymmetries unbrok¢h9]. g i—a — 9 i 3

The main characteristic features of partial SUSY breaking Qa:ﬁ 50, Q 2 o (22
in the field theories with the extended supersymmetry can be a

revealed in supersymmetric QM, since in both cases partialiong with the time translation operatbr=id/dt obey the
supersymmetry breakdown is provided by the central Charg%llowing (antjcommutation relations:
in the SUSY algebra. Therefore, the detailed study of partial

supersymmetry breakdown in supersymmetric quantum me- Q 6b}:5bH
chanics can lead to the deeper understanding of an analogous a a”
effect in supersymmetric field theories. _

The known examples of the breakdown of supersymme- [H.Qa]=[H,Q]=0. 23
tries in the supersymmetric quantum mechanics are the Case]sq , ) )
where either all supersymmetries are brokexaci or only 1 1€ automorphism group for a given algebra is SO(4)
half of them are brokefiexaci [13]. In this paper, we dem- —SU(2)XSU(2) and the generators of thé=4 SUSY
onstrate the possibility of three-quarters or one-quarter gransformations are in the spinor representation of one of the

persymmetry breakdown in the framework of the multidi- SU2) groups. _ _ .
mensionalN=4 SUSY QM. The later casé3/4 of the The next step is to constructlrreduqlble rgpresentatlons of
supersymmetries are exattas not been observed before in the algebra(2.3). The qsual way of doing this is 1o use the
SUSY QM (in the specifictN=4 supergravity model it was supercovariant derivatives
observed if20]) and seems to be quite interesting by itself . _
even without specifying the physical origin of the phenom- D.= 9 _ '_;ﬂ Bazi_ '_aai (2.4)
enon. & 92 2%t 90, 2 ot '

The paper is organized as follows. In Sec. Il, we present a
formal construction of th& =4 multidimensional supersym- and impose some constraints on the general superfield. Here-
metric quantum mechanics: classical and quantum Hamilafter we deal with the superfiet’ (i=1,... D) subjected
tonian and Lagrangian, SUSY transformations, algebra ofo the following constraints:
supercharges and so on. In Sec. lll, partial supersymmetry

In this section, we describe a general formalism of the
dimensional D=1) N=4 supersymmetric quantum me-

56%= €2, (2.9

breaking is investigated and all possible cases of the partial [Da,ﬁa]q)i: —4m,

SUSY breakdown are listed. In Sec. IV, we give an exactly

solvable example which illustrates main properties of the DD, ®'=-2n',

introduced formal constructions. This example is interesting

by itself since we consider the multidimensional generaliza- Saﬁad)‘: —on, (2.5

tion of the N=4 superconformal quantum mechan|ds],
[21] which is naturally related to the extremal Reissner-
Nordstran (RN) black holes in the “near horizon” limit and

anti—de Sitter-conformal field theory correspondefi®g. In 'our conventions for spinors are as follows;=6°sy,, 62
Sec. V, we conclude with some open questions and further e*°0,, 0.=0"cpa, 0*=20,, 0,=(6°)*, 6°=—(6)*, (66)
perspectives. =0%0,=—200%, (00)=0,0°=(00)*, e>=1, £,,=1.
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wherem' are real constants, while' andn' are mutually ~Where A(®') is an arbitrary function of the superfield’
complex-conjugated constants. Such constraints for the cas@lled the superpotential. The second term is the Fayet-
of the one-dimensionaN=4 SUSY QM were considered lliopoulos term and\j;=(o)5A; are just constants. The ex-
first in [13] as a minimal consistent generalization of the pression for the Lagrangiai2.9) is the most general one in
analogous constraints fif1] and[21] with a vanishing right-  the sense that any othdl=4 SUSY invariant terms added
hand side. The presence of the additional arbitrary paranwill lead with necessity to higher derivatives in the compo-
eters leads, as we shall see below, to the considerably richeent form.
structure of the theory. The explicit form of the superfiélt After the integration with respect to the Grassmanian co-
is the following: ordinatesf? and 6, , one obtains the component form of the
Lagrangian(2.9):

AT — 1
D= '+ 02y, — 09/ + 6°By 6+ m'(66) + S 1'(66)

L=K-V, (2.10
1 i —_ 0 —
—_n! _ ai__ a.
+2n(00)+4(00)0a¢ 4(00)0 /A
where
= D i
+ 16(00)(60)¢ (2.6
= i { i 1 2 e 2 — .. .
( a_tl) Note that in the case when a.II the constamts n', K= = — b il i — (g 3+ AT,
andn' are equal to zero, the superfield.6) representD 2 9¢' o) adp'od
“trivial” copies of the superfield®, given in[11], which (2.11

describes the irreducible representation of the one-
dimensionaN=4 SUSY QM. The latter superfield contains

one bosonic fieldp, four fermionic fieldsy® and ,, and and
three auxiliary bosonic field82=(o)2B' where ) (I
=1,2,3) are ordinary Pauli matrices.

Another irreducible representation of the alget®#) can B FPA R e z ainbj
be constructed after making the appropriate generalization of V= 2(9¢i(7¢j (mm'+nn’)— PP EYN B, Ba
the constraints given ifl2]:

A i ajko ai ] ko 71 Taik
B B +m(2¢a¢ Mo+ "+ P gh?In’)
(e2°D D"+ £P°D DD =0. (2.7
FcA L
A B o) ib,/ ap
The technique of constructingN=4 SUSY invariant a¢ia¢ia¢p(¢aw Y R)By
Lagrangians is absolutely the same for both the cases and,
therefore, we shall not consider the second one separately. 1 J*A — = bkl s L8 obi
The components of the superfie(@.6) transform under TS g (e () T S NGBy
2 9¢'aplag s 2

the N=4 transformations as follows:
(2.12
5¢i = ea'r//:a_ eawai!
Expressing the auxiliary fiel®.' in terms of the physical

. A R :
5¢a|:6ngl+ §6a¢|+ mi— ean' fields
oBaI = — i—e YR i—eaw - I—?al//' - i—? P Bdi= A l E)\a-— 1 —a3A
b 5 €b 2 € Vo™ 5€ YT e b I I 4"bj 2 9l adP
(2.8
. Kk 1
Now one can write down the most general form of the X (PP + gyl ) (213
Lagrangian which is invariant under the above-mentioned
N=4 SUSY transformations
using its equation of motion and inserting it back into the
L=-8 j d20d2§(A(®i))+i)\a‘Bbi (2.9 Lagrangian(2.10), one obtains a final form of the potential
16" bi-a ) ' term
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V_i)\a )\b P*A 1+2 P*A imi + in + A 2—| ajmk 4 Al j k+—|_aj_l<
_16 bitaj a¢|a¢1 a¢|a¢1(mm nn) ﬂ(ﬁla(bja(ﬁk( lzbal// m l;b l/lan l;[/a¢ n)
O R o N O L ST
72700 S gmggr ad)iaqu(?(ﬁkwad/ +§m(¢ad/ ) (4 ihy,)
2A Y A 7°A 1 oA FA |\ .
- +5 PheP' g (214
agPagd] \aplagtog? aplaglad' 2 adladlagP agiagtag) T T
|
where the identity 1 b I — .
V= 1—6)\§i)\ajg”+2gij(m'mJ+n'nJ)+4¢'alpjaDimJ
2 -1 3 3
A ke A T + 208, Dini+ 200 gD + YL yPID R
IPpPI P a¢'5¢k&¢p &d’q&(ﬁj&d’l aj-i a¥jti a iNpj
2A V71 g2 A +(Dirjkl+Rik,|j)Z|aEaj¢bk¢lb+le,kizla'paj%wbl,
ogPagt]  aglagtagP adlagiod (2:20
(D BB UK G 2K P 21 whereD; is a standard covariant derivative defined with the
(Wal ol ™™ 219 help of the introduced Christoffel connecti¢®.17). Using
was used the Noether theorem technique, one can find the classical

The formulas given above can be rewritten in a differentteﬁ( (f rSGLSJSSI(\)(ntSr;(r)]rs;g?n?;t?c?r?g :)d supercharges, corresponding to

and more natural form using the geometrical notation. Let us
introduce the metric of some “target” manifold in the fol-

owng vy Qu=Fip 217

2 2

2iginl ——
+2i¢g,n Py

o)
9’A 5

- I o’

9i (2.18 = — (I
H g 2 e (22D

along with the corresponding Christoffel connection and the

Riemann curvature I —= P
Q°=¢""pi+2i p°'m ———— + 2i ¢°'n!———
3 il ol il ol
1 PA P*A 217 . .
kT2 saPadiadk | gaPas | ' i ci k_ OA Lob i
dPprag’d dprad + — Y/ —————— N .
2 -1
R klzl A These formulas for the conserved supercharges complete the
TN ggPaga classical description of the desirdb=4 SUSY multidimen-
sional mechanics, and now to quantize it we should analyze
J°A JPA its constraints.
X I 3B 9P 39 9 Following the standard procedure of quantization of the

system with bosonic and fermionic degrees of freed@8],

BA BA we introduce the canonical Poisson brackets

—— _ . (2.18
AP I IPP dpi9P) P! i i i i
$ 99709 9¢°9¢0¢ {o'pi}=6;, {4*.pybit=— 89,
Now the Lagrangiari2.10), rewritten in terms of these geo- — b .
metric quantities looks as follows: {a.pgy,t=— %9, (2.23
Lo i A wherep;, p(y).ai- andpf‘%i are the momenta conjugated to

K=20i ' diH1g; (Y™ + 47 4), (219 ¢', ', andy,. From the explicit form of the momenta
and pizgij¢i, (2.29
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The classical Hamiltonian, obtained after the usual Leg-
endre transformation from the Lagrangi&®.10, has the

with the metricg;; given by Eq.(2.16, one can conclude form
that the system possesses the second-class fermionic con-

Pwy.ai=—i0i ¥k,  Pyi=—igiv, (.29

straints .
— a a , _ 1 A
X(z//),a|:p(¢),a|+|glj Ir/fja, and X(E) I:p(% I+|g|]l//aj, HC|aSS:§ i i plp]+v (231)
’ ’ (2.26) I¢o¢
since
The supercharges and the Hamiltonian form the following
{X?J),i X (9.0t = — 210 65 - (2.27 N=4 SUSY algebra with respect to the introduced Dirac

brackets
Therefore, the quantization has to be done using the Dirac
brackets defined for any two functiovg andV, as

1 {6a va}Dirac: —i 52H class™ I )\gimi'
{Va aVb}Dirac: {Va !Vb} - {Va vXc}m{Xd va}'
(2.28

As a result, we obtain the following Dirac brackets for the
canonical variables:

{6a u6b}Dirac: =i Aabinia

{¢irpj}Dirac: 5} , {Qain}Dirac:i)\iabﬁ- (2.32
- N ,
{02 Wblorac= — 58| — | =—5%9", Note the appearance of the central charges in the algebra.
dp i This fact is extremely important especially for the investiga-
. tion of partial supersymmetry breaking, given in the next
ai _ E ap aSA azA section.
{0%,Pj}irac= 2 4 IBPIGT I \ apMa Replacing the Dirac brackets gnti)commutators using
_ the rule
=— Ty,
- 1. PA 2a |7t i{,}oirac={,} (2.33
{l//[’:\vpj}Dirac= - —L/IQ - -
27%0gPagMad) | a¢Tad!
_ _El; ;k (2.29 one obtains the quantum algebra
and, finally,
- Q4,0 = 6°H guanet A2m',
{ } - | (?2A 1( (73A (93A {Qa Q } a' 'quant ai
pl vpj Dirac 2 ﬂ¢pa¢q ﬁ¢lﬁ¢kﬂ¢p 0¢qa¢13¢|
A A {Qa Qub=hapin’,  {Q%Q%=—A{"n" (234
— - - kaal
AP ad' PP agplagiapk| °
. — ol under the definite choice of operator ordering in the super-
=2iRjj ™. (230 charges(2.21), (2.22 and, in the Hamiltoniari2.31),
. . 2 ) 2 1 .
=4 R —=2i4m iin — —i\NCu
Qa lpaRl 2' wam &¢Ia¢] +2| an &¢'&¢' 2”\a|l//(:v (235)
2 o 2 1 )
b_ . biy i bij S Ziybodi
Q=L +2iy m&¢ia¢j+2|zp na¢ia¢i+2md'¢ , (2.39
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-1

H _ 1 L (92A R ayb (92A ' 2 (92A (] in (93A T aj k aijj nk
quant= 5 L W it TgMbiraj W + Shag (m'm'+n'n)) + m([%d/ Im*+ ¢ gn
T (i N g P N S
nt)—— - - y -
: ATPP\ ggPagk| agiaglagk 2 gplaglaghag °
PA N\ P A A PA oy
- i Kk i |+ i i Kk | ‘pg‘ﬂb‘p ‘ﬂalu (237)
PP P9 AP AP PP dpIadl o P IP IPP PP ap
|
where possibilities when either only one-quarter of all supersymme-
. tries is exactfor D=2), or one quarter of all supersymme-
L= oot i A i[ oA A tries is broken(for D=3).
TRy T T TS i 1k TS In order to study partial SUSY breaking it is convenient to
9P ¢ 9¢ I$l9¢ 9P ¢ 04 introduce a new set of real-valued supercharges
_ PA i[ 2A |t oA —~
R=pi— i Pt 2| — — §'=Qa+ Q% (3.0
apladlagt 2\ aglagt aglaplag
(239 T=i(Qu— QY. (3.2

The momentum operators are Hermitian with respect to the

integration measurel® ¢[det(@?Ala¢ a4l if they have [N the above equations the &) covariance is obviously
the following form: damaged. This is the price we pay for passing to the real-

valued supercharges. However, for a further discussion the
loss of the covariance does not cause any problems. The

J i d _
pi=—i —~z —iIn(|detgik|)—2iwmﬁ¢//§z//aﬁ, label “a” has now to be considered as just the number of
¢ 1z supercharges denoted BandT.
(2.39 The new supercharges form the followihg=4 superal-

. L . —, . gebra with the central charges
with the new fermionic variableg¢? and®? connected with

the old ones via the tetragf' (ei”‘efnw:gij) {Sa,sb}:H(gﬁ_i_ 5g)+()\gi+)\gi)miﬂ)\abini_)\?bﬁ),
T a i a3 a i (33)
‘;ba:ei ‘zbla and wa:ei ‘/’131: (2-4()
{TA T =H(35+ 8+ (N + A2 m' = (A gpin' = A1),

andwj,g in Eq. (2.39 is the corresponding spin connection. 3.4

Therefore, the quantum supercharg2s85, (2.36 are mu-

tually Hermitian conjugated and the resulting quantum _ _ _

Hamiltonian Hane is @ Hermitian self-adjoint operator as {S T =i (Mg =AM +i(Aapin' +A°n'), (3.5

well.

As a result, Eqs(2.34—(2.40 completely describe the whererd,=(o,)2A! andA| are real parameters.

general formalism of th&l=4 SUSY D-dimensional quan- The algebra(3.3—(3.5) is still nondiagonal. However,

tum mechanics, and this provides the basis for the analysis @ome particular choices of the constant parametgrsn',

its main properties. and A! bring the algebra to the standard form, i.e., to the

form when the right-hand side of E¢3.5) vanishes and the

IIl. PARTIAL SUSY BREAKING right-hand sides of Eq9.3.3) and (3.4) are diagonal with

. . . . . . respect to the indicesd” and “b.”
Let us investigate in detail the question of partial super-  Now we consider several cases separately.
symmetry breakdown in the framework of the constructed

N=4 SUSY QM in an arbitraryp number of dimensions. As
it has been mentioned in the introduction, the problem o
partially broken supersymmetry is very important for appli-
cations in supergravity, superstring theories and in the If we set equal to zero all central charges appearing in the
theory as well, and the supersymmetric quantum mechanicslgebra, then no partial breakdown of supersymmetry is pos-
turns out to be an adequate tool for investigating of the corsible. In this case, all supersymmetries are exact if the energy
responding problems in supersymmetric field theories. of the ground state is zero; otherwise all of them are broken.

We shall see that in contrast with the one-dimensionalThis statement is obviously independent of the number of
N=4 SUSY QM, the multidimensional one provides alsodimensionsD.

f A. Four supersymmetries exact and four supersymmetries
broken
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B. Two supersymmetries exact dimension, i.e., consider the three-dimensiobat3 N=4
The case of partial supersymmetry breakdown, when th€UP€rsymmetric quantum mechanics. _
half of supersymmetries are exact, have been considered ear- K€€ping the following set of the parameters nonvanished
lier [13] in the framework of one-dimensiondl=4 SUSY 341 A2 12 3y—p3
QM, but we shall describe it for completeness as well. Con- A1,Az,A3,mTNT and In(n)=M% 313
sider the one-dimensionaD(=1) N=4 SUSY QM and put | o have
all the constants entering into the right-hand sides of Eqgs.
(3.3 (3.5 equal to zero, except {Sl,Sl}= 2H + ZmlAi_ 2A%N2— 2A§M 3
m' and A3, 3.6
! 36 (S?,S?}=2H—2m*A3+2AIN2—2A3M3,
Then, the algebr&3.3—(3.5) takes the form
{THLTY=2H+2m'AS+2A5N?+2A3M°3,
{Sh, S =2H+2m!A3,
{5 = 2H - 2mtA? {T?, T2 =2H-2m'AS-2A;N*+2A3M%. (3.12

{TLTH=2H+2m!A3,

1A3_ A1pn2
m-A7=A35N?, (3.13
(T2, T2 =2H—2m*A3, 3.7 v

IN2_ _ A2n 13
It means that if the energy of the ground state is equal to AN"=—A3M7, (3.1
m'A?$ and the last-mentioned product is positive, ts8rand

2 . : and
T“ supersymmetries are exact, while the other two are bro-
ken. If m'A$ is negative, ther8* and T* supersymmetries mA3<0 (3.15
. ) 1<0, .
are exact provided the energy of the ground state is equal to
—miA3 2 ; ;
1 thenT< supersymmetry is broken, while all others are exact

under the condition that the energy of the ground state is
C. One supersymmetry exact equal to—m'A3. If the last-mentioned product is positive,
The case of the three-quarters breakdown of supersymmé&en T? supersymmetry is exact, while all others are broken

try is possible if the dimension d=4 SUSY QM is at least Provided that the energy of the ground state is'a? and
two (D=2). Indeed, foD =2 let us keep the following set Wwe arrive at the three-dimensional generalization of case

of parameters nonvanished: Obviously, when considering the three-dimensional
=4 SUSY QM, one can either keep the paramei@s®8)
A3,A3,m! and Reén?)=N2, (3.8 under the conditiori3.10), or the parameter&.6), or set all

) of them equal to zero and, therefore, obtain all particular

Then, one obtains cases of spontaneous breakdown of supersymmetry dis-

cussed earlier. It is also obvious that all these cases can be
obtained from the higher dimensiond £3) N=4 super-
symmetric quantum mechanics.

To summarize this section one should note that according
to the given general analysis of partial SUSY breaking in the
N=4 multidimensional SUSY QM, there exist possibilities
of constructing the models with, 3, and3 supersymmetries
unbroken, as well as models with totally broken or totally
unbroken supersymmetries. However, the answer to the
question which of these possibilities can be realized for the

mlAi:A%NZ (3.10 considered system, crucially depends on the form of the.c.ho—
sen superpotential and on the imposed boundary conditions
leads to the case when only thié supersymmetry is exact, ©Of the quantum-mechanical problem.
while all others are broken if the energy of the ground state is

{sh,St=2H+2m!A3-2AIN?,
(2,87 =2H—2m*A 3+ 2A N2,
{TLTH=2H+2m*A3+2AN?,
(T2, T2} =2H—2m!A3—2AIN2. 3.9

A further choice

equal to *A3, andm*A3>0. If m*A? is negative, the* IV. EXPLICIT EXAMPLE
is exact provided the energy of the ground state is equal to ) i ) i )
—mtA3. For a better illustration of the ideas of the previous section

it is useful to consider a particular choice of the superpoten-
tial A(®'). As it has been mentioned before, to consider all
possible cases of partial supersymmetry breakdown, the
The situation of the one-quarter breakdown of supersymminimal amount of the superfields needed is three. There-
metry can exist, if we add to the consideration one mordore, let us take three superfields of the tyges) and choose

D. Three supersymmetries exact
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the constantsn’,n’,n’ andA! in accordance with expressions

(3.6), (3.8, and(3.11.

A simple and at the same time interesting example is the
case when the superpotential is the direct sum of terms, each
being a function of only one superfield. This gives the pos-
sibility of the considerable simplification of the classical and

guantum Hamiltonians, and the supercharges as 8]l
We choose the explicit form of the superpotential as

A(D)=d'Ind', i=1,23 4.2

and consider the physical bosonic components of the sup

fields ®' as functions of the new variables, namely,

¢'=(x)2. (4.2

Making the following redefinition of the fermionic variables:

£l=yfy[2 A T \/2 A 43
(agh? 7% RN (agh?

where no summation over the repeated indices is assumepil

PHYSICAL REVIEW 1 043512

1 d? 1
H3=— ——+ZA§(UZ)Z§ 83+~

8 0 S(A920)2

8

3 i -
32, T £\3(£a3£3_ £3sa3

1 1
- ZEESH S (EE(EE) ). (4.8

The next step is to find the energy spectrum of the quantum

“Hamiltonian (4.5).

Since the bosonic and fermionic variables of each type are
completely separated, the eigenfunctions of the Hamiltonian
(4.5 is a direct product of the eigenfunctions of the Hamil-
tonians(4.6—(4.8) and the total energy is just a sum of the
energies corresponding to the Hamiltoniai's

Let us find the energy spectrum of the Hamiltonidh.
Consider the general state in the “reduced” Fock space
spanned by the fermionic creation and annihilation operators

_1 and &2 obeying the anticommutation relatiof.4) with

one obtains the canonical commutation relations between

fermions
(&2 elv =635, (4.4)
Inserting expression&t.1), (4.2), and (4.3) into Eq. (2.37),

one obtains the three-dimensional superconforiNat 4
guantum mechanid1] with

|p)=X1(x})]0) + Y3(x1) £1]0) + Z; (x*) £5°0). ws

The operatoH?, acting on the state vectd4.9), gives the
following four Shralinger equations for the unknown func-
tions X;(x1), Y3(x1), andz,(xh):

Hquan= H + HZ+H3, (4.5
_ _ 1 d 1
i.e., as it could be concluded from the fact that the superpo- —> st E(Al)z(xl)2
tential is diagonal with respect to the superfields considered, (dx)
the total Hamiltonian is also a direct sum of three Hamilto- 3
nians, each of them containing the _b_osomc and fermlo_mc — 8(mY)2+4mb+ = | [ X (xh)
operators of only one type. The explicit form of the Hamil- (xh) 8
toniansH', (i=1,2,3) is L
=4E X (xY), (4.10
1 d? 1 1
[ al —(A3\2/y1\2
H 8 (Xm)Z l( 3) g g + 8(Al) (X ) 1 d2
R _ 2/y1\2
5 (dx1)2+ (A )2(xY)
1\2 3 1 1 1_1 1
5| 2mYP -Gt - 1) - J6e
(X ) 4 1 l 2_ 1,1
L ( 02 8(m™) = 2] | Y1(x?)
+§<€;§“>(Eé§bl)), (4.6 -
=4E{Y1(XD), (4.1
et L B e 1 o2 1
Bl 40 8 AT (MDA
2 (dxy2 Tt 20t
3
+— 2(2(N2)2+———N2<§a2§a+§a§a2> 1
(x%) + (8(m1)2 ) Yi(xh)
L L (Xl)Z
L Tg2pa2 ) T g2 pa2\( £2 £b2
2628+ g (&™) (68 |, (4.7) =4EL Y3(xb), (4.12

043512-8
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d2 1 The minimal energy corresponds to the minimurrE(,JqfI

+ E(Af)z(xl)z for ki, =0 and equals-m'. We denote the corresponding
ground states byri .

2 (dx1)?

( 3 For 0<m'<% one has
g(mYH2—4amt+ —||Zy(xh)
(xh)? 8 4Er=2K'+4mi+ 2,

_2pl 1

~ 4BV 22X, 413 4B} =2Kh +4mt+ 2,
The wave functions and the energy spectrum of the Hamil- 1 1 L
tonian of the type 4Ej = 2kj, +4m?,

o 1 i+ }x2+ 1 414 AE}, =2k}, —4mi+2. (4.17)

2gx2 27 2 . L _
The minimal energy isn™ for k;;;, =0, and the corresponding

have been investigated in detail for the nonsupersymmetriground state is agaim i

theory[24,25 and in the framework of th&l=2 supersym- Finally, for m*>3:

metric quantum mechanid25-28 as well. The most de- N 1 N

tailed and complete study has been done by Das and Pernice 4By =2kj +4m"+2,

[25] where the eigenfunctions and energy spectrum of the

Hamiltonian of the typ€4.14) were found after appropriate 4E,1I =2k,1, +4mt+2,

regularization of the potential and superpotential, depending

on whether one considers nonsupersymmetridNer2 su- 4E|1II :2k|1II +4m?,

persymmetric problem. However, as it can be seen from Egs.

(4.1) and (4.2 the superpotential in ouN=4 case for the AE, =2k}, +4m?, (4.18

Hamiltonian with the 24 term in the potential energy is

regular in contrast with the case &f=2 supersymmetric The minimal energy isn' for k, =k%,=0, and the cor-
guantum mechanics and, therefore, we use the resulz5bf responding ground states aﬂ%f and 7T|1Vi _

which are obtained after the regularization of the potential, The points= % and 0 are the branching points. Whe

but not of the superpotental. gets these values, the corresponding energies and wave func-

For the problem cor;S|d_ered one obtaifvse t"’_‘ke the tions of the system in the regions of the parameter, divided
value of the parametefy without loss of generality to be by these points, just coincide.

equal to+1) If we also choose\}=A3=1, the energy spectra of the

Formi<-—1%, - 2 % .
HamiltoniansH< andH* are absolutely the same as in Egs.
AE =2k — am? (4.15—(4.18. The only difference is that the parametet
' ! ’ should be replaced biy? or M3, respectively. However, the
1_ o1 1 eigenfunctions, correspondinglﬁﬁ andE,ZV, are linear com-
4E;; = 2k;; —4m*+2, 2 T
binations of the states of zero and two fermionic sectors
4E|1|| :Zkllll —amt, since the fermionig nu_mber operatgigal2 dzoes nog com-
mute with the Hamiltoniaii?. The energie&, andEf, are
4E|1v=2k|1v—4m1+2, (4.15 also linear combinations .of bk())t.h the st_ates of one fermionic
sector because the matrixr{), is not diagonal. An analo-
where k&=0,1,2 ..., (A=1,2,3) and =111 111,Iv).  gous situation takes place for the Hamiltonid#.

Each energy IeveE’,\) corresponds to a coupl@ven and Now we are in a positior_1 to describe partial supersymme-
try breaking following the lines of the previous section.

odd of wave functions and, therefore, is doubly degenerate:'” ~ : . . .
9 y deg First, let us consider the one-dimensional case with

The minimal energy corresponds to the minimaEgf and .
9y P Edf equal to zero. As mentioned above, the zero valuebis

Ej,, for ki=Kki;, =0 and equals- m’. Let us denote the cor- ; :
responding states by'* and 7% the branching point and, therefore, the energy spedto)

| 1 and (4.17 as well as the wave functions in these regions
For —3<m"<0 one has completely coincide. Therefore, one has a couple of super-
symmetric ground states,ll,i and all supersymmetries are
exact.

As it has been mentioned in the previous section, in order
to describe the halfbreaking of supersymmetry it is enough to
consider only the spectrum of the Hamiltonidd. Inserting
the corresponding eigenvalues of the operaidrfor each
L L N range of the parameten! into Eqgs.(3.7), one obtains that
4Ej,=2kjy —4m-+2. (416 half of supersymmetries are always broken.

AE!=2ki+4m*+2,
AE] =2k}, —4mt+2,

4E}, =2k, —4m*,

043512-9
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Considering the spectra of the Hamiltoniad$ andH?2,  these results to the problem under consideration, and setting
one can obtain the three-quarter breakdown of supersymmegainA3=Al=A2=1, one obtains, foH?,
try. Indeed, from Eqs(3.9), (3.10, and (4.15-(4.18), one

can conclude that eithd@* or T? supersymmetries are exact all: [4m'+1],

depending on the range of the parameter. The corre- N L

sponding ground-state wave functions obviously are, for aj =|4m?,

mi<-—1, 1 1

1+ 2+ 1+ 2+ 1+ 2+ 1+ 2+ an :|4m |’
mo X, m X s T X T T X L
(4.19 apy=4mt—1]. (4.29

for —z<m'<0 And, therefore, the energy spectra have the form

i X (4.20 4EM) =2kt [4mi+ 1)+ 1,
1.1 +

for 0<m"<3 AELC) =2k} = | 4ml|+ 2,

i X i (4.22)

4EL P =2kt +|4mY|,
for m*>1% )
4ELF) =2k, + [4mt— 1]+ 1. (4.26
1+ 2+ 1+ 2+ 1+ 2+ 1+ 2+
T X, T X Ty, Ty Xy, Ty X Ty _
(4.22 Both the signs before the second terms have to be taken for

In order to study the possibility of the one—quarter break—EIV if 0<ml<3. Let us further restrict the value of the
down of supersymmetry, one has to consider the threeparameter so that it belongs to the open intervadl<m?
dimensional case, i.e., the spectra and the wave functions &tg Then due to Egs(3.13—(3.15, (4.16, (4.17), and

the HamiltoniansH?, H?, and H3. Using Egs. (3.12 e a1 2
’ ’ J 4.26), the minimal energy of the system witky;, =k
(3.13—(3.195, and(4.15—(4.18 one can conclude that for (:k36) 9y y ﬂkﬁ' '

the considered model the one-quarter supersymmetry break- " =01is

down is |lmp055|ble sw;ce the energy of the gro_ur_1d _state Ein= E|1|,|—+ Eﬁ'li+ Elal,lt: —mt, (4.27)

equals 3n" rather tharm*, as is required for the annihilation

of the ground state by the operatd8$, S?, and T*. This  and according to Eq(3.12 we have the supersymmetric

obviously does not mean that one-quarter supersymmetrgyround states with three supersymmetries being unbroken.

breakdown is impossible, in principle; it means instead that |n this section we have considered quite schematically the

this effect is impossible for the simple model we consideredone-, two-, and three-dimensiord= 4 supersymmetric ver-
Indeed, let us consider the same three-dimensional prolxions of the quantum oscillator with the additionat?ferm

lem, but restricting ourselves to non-negative values of coin the potential energy. However, we believe that even this

ordinatex*, i.e.,x'=0. simple analysis gives a good illustration of all possible cases
The spectrum ofH Eq. (4.14, when x belongs to the of the partial supersymmetry breakdown in the multidimen-

non-negative half-axis is slightly differef@4]* and it opens  sionalN=4 SUSY QM. One should also stress the crucial

the possibility of constructing the ground state which is in-meaning of the boundary conditions in the question of partial

variant under three unbroken supersymmetries. According tgupersymmetry breakdown, as it has been shown for the case

[24], we have of one-quarter supersymmetry breakdown in the considered

N example.

ElF9=2k+a+1, (4.23

where« is given by V. DISCUSSION

In this paper, we have described the general formalism of
a=+ }m (4.24  the multidimensionalN=4 supersymmetric quantum me-
2 chanics and studied various possibilities of partial supersym-
) o . metry breaking, illustrating them by the exactly solvable ex-
andk is the nonnegative integer. =1, then the energies ample.
EL ) must be excluded from the spectrum since the corre-  However, several questions, which seem to be of particu-
sponding wave functions are no longer normalizable. Othergr importance, are left still open. Indeed, it would be inter-
wise one has to consider both sets of solutions. Applyingsting to investigate other possibilities of changing the
bosonic end fermionic variables, namely, for the cases, when
in contrast with Egs.(4.1) and (4.2), the superpotential
2n fact, as it has been recently shown by Das and Pefiggp ~ A(®P') is not a direct sum of the terms, each containing only
the energy spectrum, obtained[®¥] is correct if one considers the one superfieldd' and when the bosonic components of these
problem only on the half-axis. superfields depend on several variabtésA detailed study

043512-10



N=4 SUPERSYMMETRIC MULTIDIMENSIONAL QUANTUM . .. PHYSICAL REVIEW D 61 043512

of this problem can lead to possilie=4 supersymmetriza- framework of N=2 supersymmetrico-model approach
tion and quantization of various pure bosonic integrable sysf30,31]. All these questions are now under intensive study
tems such as-particle Calogero and Calogero-Moser mod- and will be reported elsewhere.

els, which are related to the Reissner-Nordst(&N) black

hole quantum mechanics and @=2 Super Yang-Mills

(SYM) theory[29]. This approach can a}Iso answer the ques- ACKNOWLEDGMENTS
tion about the general class of potentials which lead to su-
perconformalN=4 theories in higher dimensions. We would like to thank E. A. Ivanov for helpful and

Another topic, which is left uncovered in this paper, is thestimulating discussions and A. V. Gladyshev and C. Soch-
possible application of the constructed multidimensioNal ichiu for some comments. The work of A.P. was supported
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