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Conserved cosmological structures in the one-loop superstring effective action
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A generic form of a low-energy effective action of superstring theories with one-loop quantum corrections
is well known. Based on this action we derive the complete perturbation equations and general analytic
solutions in cosmological spacetime. Using the solutions we identify the conserved quantities characterizing
the perturbations, the amplitude of the gravitational wave and the perturbed three-space curvature in the
uniform-field gauge both in the large-scale limit, and the angular momentum of rotational perturbation are
conserved independently of changing gravity sector. The implications for calculating perturbation spectra
generated in the inflation era based on the string action are presented.

PACS number~s!: 98.80.Cq, 04.30.Db, 11.25.Mj, 11.27.1d
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I. INTRODUCTION

Superstring theory is often regarded as the leading ca
date for unifying gravity with the other fundamental forc
and for quantum theory of gravity@1#. If it is the correct
theory, it may have important consequences in the early
tory of our universe. The low-energy effective action
string theory differs from Einstein gravity, and the diffe
ences may leave distinct cosmological evidence which
be probed by astronomical observations of cosmic mic
wave background radiation and large-scale cosmic st
tures. The gravitational aspect of string theory can be stud
using the low-energy effective action of string theory w
loop and string tension (a8) expansions. Although the effec
tive action probes the full string theory only perturbatively
may show some generic features of the full theory, and
expected to be applicable in the low-energy limit before
full quantum gravitational effect becomes important. The
neric form of the effective action of the four-dimension
superstring model with a one-loop correction is known in
literature@2#. Many studies have been made on the effects
this action with some new results found in black hole phys
and comology. On the cosmological side, the studies are
ten concerned with the possibility of realizing the nonsing
lar universe or the inflation mechanism@3#. Recent cosmo-
logical studies ~based on the paradigm of inflation
generated-cosmic-structures! show, however, that the
quantitative aspects of observational constraints on phy
in the inflation era are available through cosmic struct
formation processes@4#. The results of such analyses bas
on the low-energy effective action can be found in@5,6#.

In this paper we consider the evolution of linear sta
cosmic structures based on sigma-model one-loop corre
string action. We start with a general action which includ
both the one-loop string effective action and Einstein grav
On a conventional cosmological model we apply the m
general perturbations. Complete sets of equations are de
and the analytic form solutions with important cosmologic
implications are found. Based on the general solutions
identify some quantities characterizing complete cosm
0556-2821/2000/61~4!/043511~5!/$15.00 61 0435
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structures which remain conserved even under the chang
the underlying gravity. In the following we do not consid
any specific cosmological scenario; instead, we derive g
eral results which are applicable to any such a scenario b
on the cosmological background. In order to make this pa
self-contained we present useful equations in the Appen

II. GRAVITY AND PERTURBED WORLD MODEL

We consider the following general action:

S5E d4xA2gF1

2
f ~f,R!2

1

2
v~f!f ;af ,a2V~f!

2
1

8
j~f!RGB

2 1LmG , ~1!

wheref (f,R) is an algebraic function of a scalar fieldf and
the scalar curvatureR, andv(f), V(f), andj(f) are gen-
eral functions off; RGB

2 [RabcdRabcd24RabRab1R2, and
Lm is a Lagrangian of additional energy-momentum conte
The field equation and the equation of motion are presen
in Eqs.~A1!,~A2!. Einstein gravity with a minimally coupled
scalar field is a case withf 5R, v51, andj50. The low-
energy effective action of string theories is a case withf
5e2fR, v52e2f, V50, and withj}e2f from the one-
loop string correction. In a conformally transformed Einste
frame we have the theory withf 5R, v51, V50, and
with j5j(f) from the one-loop string correction. Equatio
~1! also includes Brans-Dicke theory, nonminimally coupl
scalar field, induced gravity,R2-gravity, etc. Studies of Eq
~1! without theRGB

2 term have been made in@7–9#. Notice
that our perturbation analyses in the following will be app
cable for the general theory in Eq.~1!. An important advan-
tage of such a unified analysis will be explained in Sec.

We consider as the metric a spatially homogeneous,
tropic model with the most general perturbations
©2000 The American Physical Society11-1
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ds252a2~112a!dh22a2~b ,a1Ba!dhdxa

1a2@gab
(3)~112w!12g ,aub12Caub12Cab#dxadxb,

~2!

wherea(t) is the cosmic scale factor withdt[adh. a(x,t),
b(x,t), w(x,t), andg(x,t) characterize the scalar-type pe
turbation.Ba(x,t) andCa(x,t) are tracefree (Ba

ua50) and
correspond to the vector-type perturbation.Cab(x,t) is trans-
verse and tracefree (Caub

b 505Ca
a), and corresponds to th

tensor-type perturbation. Indices are based ongab
(3) as the

metric, and a vertical bar indicates a covariant derivat
based ongab

(3) . We decompose the energy-momentum ten
and the scalar field asTb

a(x,t)5T̄b
a(t)1dTb

a(x,t) and
f(x,t)5f̄(t)1df(x,t); an overbar indicates a backgroun
order quantity and will be omitted unless necessary. T
equations for the background cosmological model are p
sented in Eqs.~A3!–~A6!. The three types of perturbation
decouple from each other due to the symmetry in the ba
ground world model and the linearity of the structures we
assuming. Thus, we can handle them individually. The co
plete sets of equations for three perturbation types in a
tially flat model are presented in Eqs.~A7!–~A19!.

III. SCALAR-TYPE PERTURBATION

Equations~A7!–~A15! are presented in a gauge-rea
form @10#. Thus, we still have a right to choose one tempo
gauge condition; all variables used in the equations are
tially gauge-invariant. Some choices are the following: t
synchronous gauge (a[0), the uniform-curvature gaug
(w[0), the uniform-expansion gauge (k[0), the zero-shea
gauge (x[0), the uniform-field gauge (df[0), the
uniform-F gauge (dF[0), etc. Except for the synchronou
gauge, each one of the other gauge conditions comple
fixes the temporal gauge condition; a variable in such
gauge condition is equivalent to a gauge-invariant comb
tion of the variable concerned and the variable used in
gauge condition. A proper choice of the gauge condition
often essential for a convenient handling of the probl
which is the case in our situation.

We take the uniform-field gauge which setsdf[0, thus
dj5j ,fdf50. Equivalently, we can setdf50 and replace
each variable with its corresponding gauge-invariant com
nation withdf. For example,w in the uniform-field gauge is
the same as the gauge-invariant combination usingw anddf

which is w2Hdf/ḟ[wdf . Assuming F5F(f) we also
have dF50. We assumedTb

(s)a50. From Eqs.~A7!,~A9!

we can expressa in terms ofẇ. From Eqs.~A8!,~A7! we can
expressk andx in terms ofw andẇ. Thus, using either Eq
~A10! for k or Eq. ~A11! for x we can derive a closed form
second-order differential equation forwdf as @11#

1

a3Q
~a3Qẇdf!•2s~ t !

D

a2 wdf50, ~3!

where
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Q[

vḟ21
3

2

~ Ḟ2H2j̇ !2

F2H j̇

S H1
1

2

Ḟ2H2j̇

F2H j̇
D 2 ,

s~ t ![11 j̇

1

2S Ḟ2H2j̇

F2H j̇
D 2S j̈

j̇
2H24Ḣ

F2H j̇

Ḟ2H2j̇
D

vḟ21
3

2

~ Ḟ2H2j̇ !2

F2H j̇

.

Equation~3! can be written in the following form:

c91~sk22z9/z!c50,

c[zwdf , z[aAQ, ~4!

where a prime indicates a time derivative based on a con
mal time h, adh[dt, and we introduced a comovin
wave number usingD→2k2. In the large-scale limit,sk2

!z9/z; thus ignoring the Laplacian term in Eq.~3! we have
an exact solution

wdf~x,t !5C~x!1D~x!E
0

t 1

a3Q
dt, ~5!

whereC(x) andD(x) indicate the coefficients of the grow
ing and decaying solutions, respectively. Thus, ignoring
transient solution~which is higher order in the large-sca
expansion compared with the solutions in the other gau
@7#!, wdf is conservedin the large-scale limit. Solutions fo
the other variables~even in the other gauge conditions! can
be easily derived from our complete set of gauge-ready fo
equations in Eqs.~A7!–~A15!.

IV. ROTATION

From Eqs.~A16!–~A18!, using notations in Eq.~A20!, we
have

k2

2a2 ~F2H j̇ !C5~m1p!vv ,

1

a4 @a4~m1p!3vv#•52
k

2a
ppT . ~6!

If we ignore the anisotropic stress,ppT , the angular momen-
tum of the fluid is conserved as

a4~m1p!3vv~x,t !;L~x!. ~7!

V. GRAVITATIONAL WAVE

From Eq.~A19! we have

1

a3Qg
~a3QgĊb

a!•2sg~ t !
D

a2 Cb
a5

1

Qg
dTb

(t)a , ~8!
1-2
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where

Qg[F2H j̇, sg~ t ![
F2 j̈

F2H j̇
. ~9!

Equation~8! was studied in the string frame@13# and in the
Einstein frame@12#. Equation~8! can be written in the fol-
lowing form:

cg91~sgk22zg9/zg!cg50,

cg[zgCb
a , zg[aAQg. ~10!

In the large-scale limit,sgk2!zg9/zg ; thus ignoring the La-
placian term in Eq.~8!, and ignoring the anisotropic stres
we have an exact solution

Cb
a~x,t !5Cgb

a ~x!1Dgb
a ~x!E

0

t dt

a3Qg
, ~11!

where Cgb
a (x) and Dgb

a (x) indicate the coefficients of the
growing and decaying solutions, respectively. Ignoring
transient solutionCb

a is conservedin the large-scale limit.

VI. DISCUSSIONS

We have shown that the nontransient solutions ofwdf and
Cb

a both in the large-scale limit and the angular moment
are generally conserved: see the solutions in Eqs
~5!,~7!,~11!. Remarkably, these conservation properties
valid considering generally time varyingV(f), j(f), v(f),
and F(f,R) @F(f) or f (R) for wdf], thus are validinde-
pendently of changes in underlying gravity theory. The uni-
fied analyses of Eq.~1! is crucially important to make this
point: that is, since the solutions and the conservation pr
erties are valid considering generalf, v, V, andj, the quan-
tities wdf , Cb

a and the angular momentum remain conserv
independently of changing gravity sector. As an examp
since Eq.~1! includes both the string theory~possibly includ-
ing the one-loop correction term! and Einstein gravity, the
conservation properties are valid while the underlying gr
ity changes from the former to the latter one. Indeed, thi
a powerful result in the context of an inflation added ea
universe scenario. Under this scenario, the observation
relevant large-scale cosmic structures are supposed t
generated from the quantum fluctuations~of the field and the
metric! and are pushed outside the horizon during the in
tion. During the inflation-to-radiation transition phase the o
servationally relevant scales stay in the super-horizon sc
and in such a case our conservation properties ofwdf andCb

a

are applicable. In fact,it does not matter how the transitio
can be realized in reality: as long as there occur transitio
while the relevant scale is in the large-scale limit, we ha
the quantities conserved. Meanwhile, Eqs.~3!,~6!,~8! are the
exact equations valid in general scale.

Compared with our previous publications in@7–9#, in this
paper we have included the Gauss-Bonnet coupling term
have shown that we still have similar conserved quantit
This extension would be particularly useful if we have
inflation scenario where the Gauss-Bonnet coupling term
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a role during the inflation. In such a scenario, if we c
calculate the quantum fluctuations~based on the vacuum ex
pectation values! of the metric and field variables when th
scale is already pushed outside the Hubble horizon~such
calculations are usually available in the many known infl
tion scenarios, see@5,8,9,15#! the structures can be describe
by the conserved quantities derived in the present work
order to make an application we need a specific inflat
model based on the action in Eq.~1! with the RGB term.
Applications to specific inflation scenarios are made in E
stein gravity with a minimally coupled scalar field@14#, in a
nonminimally coupled scalar field@15#, in the low-energy
effective action of string theory@5,9#, etc.

We expect our solutions and the general formulatio
made in this paper will be useful in probing the observatio
ally relevant consequences of the superstring effective the
with one-loop correction. In this paper, however, we ha
considered the roles of a dilaton field together with a Gau
Bonnet type of sigma-model one-loop correction term. W
can also consider other stringy contributions from mod
fields and the antisymmetric tensor fields~axion! and the
dual product of Riemann tensors@2,3,16#. The roles of the
axion coupling term,n(f)RR̃ with RR̃[habcdRab

e fRcde f ,
have been recently considered in@17#: this term vanishes in
the homogeneous-isotropic background world model, has
contributions to the scalar- and vector-type perturbatio
and the gravitational wave is again described by conser
quantities which depend on the polarization states.

Apparently, by considering these additional fields we w
have the multicomponent situation which will especially a
fect the scalar-type perturbation: in then-component situa-
tion, generally, we will have a coupled 2nth order differen-
tial equation and in general we do not expect a conser
quantity in such a situation. However, we expect the rotat
~of the fluid components! and the gravitational wave will no
be affected by the presence of the additional fields in
sense that the conservation properties of such perturba
will remain valid. We would like to investigate the roles o
these additional contributions in the process of cosmolog
structure formation in future occasions.
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APPENDIX

A. The field equation and the equation of motion:From
variations of Eq.~1! we have

FGb
a5vS f ;af ,b2

1

2
db

af ;cf ,cD2
1

2
db

a~RF2 f 12V!1F ;a
b

2db
ahF1~Ra

cbd2Rcddb
a1Rcbdd

a!j ;cd1Gc
aj ;c

b

2Gb
ahj1Tb

a , ~A1!
1-3
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hf1
1

2v S v ,ff ;af ,a1 f ,f22V,f2
1

4
j ,fRGB

2 D50,

~A2!

whereF[] f /]R, and Tab is an additional energy momen
tum tensor defined asd(A2gLm)[ 1

2 A2gTabdgab .
B. Background equations:From Eqs.~A1!,~A2!,~2!, and

T0;b
b 50 we have

H21
K

a2 5
1

F2H j̇
F1

6
~vḟ21RF2 f 12V!2HḞ2

1

3
T0

0G ,
~A3!

Ḣ2
K

a2 5
1

2~F2H j̇ !
F2vḟ22F̈1HḞ1~ j̈2H j̇ !

3S H21
K

a2D1T0
02

1

3
Ta

aG , ~A4!

f̈13Hḟ1
1

2vFv ,fḟ22 f ,f12V,f16j ,f~Ḣ1H2!

3S H21
K

a2D G50, ~A5!

Ṫ0
013HT0

05HTa
a , ~A6!

where an overdot indicates the time derivative based ont and
K is the sign of three-space curvature;H[ȧ/a and R

56(Ḣ12H21K/a2). Equation~A5! also follows from Eqs.
~A3!,~A4!,~A6!.

C. Perturbation equations:From Eqs.~A1!,~A2!,~2! we
can derive the following set of equations~we assume a spa
tially flat model, thusK50 andgab

(3)5dab):

k[23~ ẇ2Ha!2
D

a2 x, ~A7!

dT0
(s)052~F2H j̇ !S Hk1

D

a2 w D2vḟ2a1~ Ḟ2H2j̇ !

3~k13Ha!1vḟdḟ1
1

2
~v ,fḟ22 f ,f12V,f!df

23HdḞ1S 3Ḣ13H21
D

a2D dF

1H2S 3Hdj̇2
D

a2 dj D , ~A8!

dTa
(s)05

1

a F2
2

3
~F2H j̇ !S k1

D

a2 x D2~ Ḟ2H2j̇ !a1vḟdf

1dḞ2HdF2H2~dj̇2Hdj!G
,a

, ~A9!
04351
dTg
(s)g2dT0

(s)052~F2H j̇ !S k̇12Hk13Ḣa1
D

a2 a D
1@ Ḟ1H2j̇22~H j̇ !•#~k13Ha!

13~ Ḟ2H2j̇ !ȧ12~2vḟ213F̈

23H3j̇ !a22~ j̈2H j̇ !
D

a2 w

24vḟdḟ2~2v ,fḟ21 f ,f22V,f!df

23dF̈23HdḞ1S 6H21
D

a2D dF

13H2dj̈1~2Ḣ1H2!S 3Hdj̇2
D

a2 dj D ,

~A10!

dTb
(s)a2

1

3
dTg

(s)gdb
a52

1

a2 S ¹a¹b2
1

3
db

aD D @~F2H j̇ !

3~w1a2ẋ2Hx!2~F2H j̇ !•x

2~ j̈2H j̇ !w1dF2~Ḣ1H2!dj#,

~A11!

dṪ0
(s)01H~3dT0

(s)02dTa
(s)a!1~3T0

02Ta
a!ẇ2

1

a
dTa

(s)0ua

1
1

a2 ~T0
0Dx2Tb

ax ub
a!50, ~A12!

Ṫa
(s)014HTa

(s)01
1

a
T a,b

(s)b 1
1

a
~a13w! ,bTa

b2
1

a
~T0

0a

1Tb
bw! ,a50, ~A13!

df̈1S 3H1
v ,f

v
ḟ D dḟ1F S v ,f

v D
,f

ḟ2

2
1S 2 f ,f12V,f

2v D
,f

13H2~Ḣ1H2!S j ,f

v D
,f

2
D

a2Gdf

5ḟ~k1ȧ !

1S 2f̈13Hḟ1
v ,f

v
ḟ2Da

1
1

2v
~F ,f2H2j ,f!dR1

2

v
j ,fḢS Hk1

D

a2 w D ,

~A14!
1-4
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dR522F k̇14Hk13Ḣa1
D

a2 ~2w1a!G ;
dRGB

2 54H2dR216ḢS k1
D

a2w D , ~A15!

dTa
(v)052

1

2
~F2H j̇ !

D

a2 ~Ba1aĊa!, ~A16!

dTb
(v)a5

1

2a3$a
2~F2H j̇ !@~Bb

ua1Ba
,b!

1a~Cb
ua1Ca

,b!•#%•, ~A17!

Ṫa
(v)014HTa

(v)01
1

a
dT a,b

(v)b 50, ~A18!

dTb
(t)a5~F2H j̇ !C̈b

a1@~F2H j̇ !•13H~F2H j̇ !#Ċb
a

2~F2 j̈ !
D

a2 Cb
a , ~A19!

where D is a Laplacian based ondab . Equations~A7!–
~A15!, Eqs. ~A16!–~A18!, and Eq. ~A19! completely de-
7

c

04351
scribe the scalar-, vector-, and tensor-type perturbations
spectively; we decomposed the perturbed energy-momen
tensor asdTb

a5dTb
(s)a1dTb

(v)a1dTb
(t)a , where superscripts

(s), (v), and~t! indicate the three perturbation types. Equ
tions ~A12!,~A13!,~A18! follow from Ta;b

b 50. Some useful
quantities for deriving the equations can be found in o
study ofRabRab gravity in @18#.

For the scalar-type perturbation we introduced a spati
gauge-invariant combinationx[a(b1aġ). In the above set
of equations we have not fixed any gauge condition; thus
equations are written in a gauge-ready form. Equation~A14!
also follows from Eqs.~A7!–~A10!,~A12! and Eq.~A4!. For
the vector-type perturbation we introduce the following va
ables:

Ta
(v)0[~m1p!vvYa , dTb

(v)a[ppTYb
a ,

Ba1aĊa[CYa ; DYa[2k2Ya ,

Yab[2
1

2k
~Yaub1Ybua!, ~A20!

where m[2T0
0 and p[ 1

3 Tg
g ; Ya is a vector-type (Ya

ua
50) harmonic function with a wave numberk.
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lly

ai,
n
rt
@1# M. Green, J. Schwarz, and E. Witten,Superstring Theory
~Cambridge University Press, Cambridge, England, 198!,
Vols. 1 and 2; J. Polchinski,String Theory~Cambridge Uni-
versity Press, Cambridge, 1998!, Vols. I and II.

@2# C. G. Callan, D. Friedan, E. J. Martinec, and M. J. Perry, Nu
Phys.B262, 593 ~1985!; B. Zwiebach, Phys. Lett.156B, 315
~1985!; S. Deser and A. N. Redlich, Phys. Lett. B176, 350
~1986!; D. J. Gross and J. H. Sloan, Nucl. Phys.B291, 41
~1987!.

@3# I. Antoniadis, J. Rizos, and K. Tamvakis, Nucl. Phys.B415,
497 ~1994!; J. Rizos and K. Tamvakis, Phys. Lett. B326, 57
~1994!; R. Easther and K. Maeda, Phys. Rev. D54, 7252
~1996!; P. Kanti, J. Rizos, and K. Tamvakis,ibid. 59, 083512
~1999!.

@4# J. E. Lidsey,et al., Rev. Mod. Phys.69, 373 ~1997!; D. H.
Lyth and A. Riotto, Phys. Rep.314, 1 ~1999!.

@5# J. Hwang, Astropart. Phys.8, 201 ~1998!.
@6# E. J. Copeland, J. E. Lidsey, and D. Wands, Phys. Lett. B443,

97 ~1998!; G. Veneziano, hep-th/9902097.
@7# J. Hwang, Phys. Rev. D53, 762~1996!; J. Hwang and H. Noh,

ibid. 54, 1460 ~1996!; J. Hwang, Class. Quantum Grav.14,
1981 ~1997!.

@8# J. Hwang, Class. Quantum Grav.14, 3327~1997!.
l.

@9# J. Hwang and H. Noh, Class. Quantum Grav.15, 1387~1998!;
J. Hwang,ibid. 15, 1401~1998!.

@10# J. Hwang, Astrophys. J.375, 443 ~1991!.
@11# The authors of@12# tried to analyze the scalar-type equatio

in the Einstein frame without success. In order to derive t
equation, our choice of the uniform-field gauge is essentia
important to make the analyses simple.

@12# S. Kawai, M. Sakagami, and J. Soda, Phys. Lett. B437, 284
~1998!; gr-qc/9901065; J. Soda, M. Sakagami, and S. Kaw
gr-qc/987056; S. Kawai, ‘‘Cosmological perturbation o
modulus driven non-singular cosmological model,’’ repo
~1998!.

@13# M. Gasperini, Phys. Rev. D56, 4815~1997!.
@14# D. H. Lyth and E. D. Stewart, Phys. Lett. B274, 168~1992!; J.

Hwang, Phys. Rev. D48, 3544 ~1993!; E. D. Stewart and D.
H. Lyth, Phys. Lett. B302, 171 ~1993!.

@15# J. Hwang and H. Noh, Phys. Rev. Lett.81, 5274~1998!; Phys.
Rev. D60, 123001~1999!.

@16# E. Witten, Phys. Lett. B149, 351 ~1984!; K. Choi, Phys. Rev.
D 56, 6588~1997!.

@17# K. Choi, J. Hwang, and K. W. Hwang, hep-ph/9907244.
@18# H. Noh and J. Hwang, Phys. Rev. D55, 5222 ~1997!; J.

Hwang and H. Noh,ibid. 57, 2617 ~1998!; H. Noh and J.
Hwang, ibid. 59, 047501~1999!.
1-5


