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Conserved cosmological structures in the one-loop superstring effective action
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A generic form of a low-energy effective action of superstring theories with one-loop quantum corrections
is well known. Based on this action we derive the complete perturbation equations and general analytic
solutions in cosmological spacetime. Using the solutions we identify the conserved quantities characterizing
the perturbations, the amplitude of the gravitational wave and the perturbed three-space curvature in the
uniform-field gauge both in the large-scale limit, and the angular momentum of rotational perturbation are
conserved independently of changing gravity secldre implications for calculating perturbation spectra
generated in the inflation era based on the string action are presented.

PACS numbegps): 98.80.Cq, 04.30.Db, 11.25.Mj, 11.27d

[. INTRODUCTION structures which remain conserved even under the changes of
the underlying gravity. In the following we do not consider

Superstring theory is often regarded as the leading candny specific cosmological scenario; instead, we derive gen-
date for unifying gravity with the other fundamental forces eral results which are applicable to any such a scenario based
and for quantum theory of gravitjd]. If it is the correct ~On the cosmological background. In order to make this paper
theory, it may have important consequences in the early hisself-contained we present useful equations in the Appendix.
tory of our universe. The low-energy effective action of
string theory differs from Einstein gravity, and the differ-
ences may leave distinct cosmological evidence which can [l. GRAVITY AND PERTURBED WORLD MODEL
be probed by astronomical observations of cosmic micro-
wave background radiation and large-scale cosmic struc-
tures. The gravitational aspect of string theory can be studied
using the low-energy effective action of string theory with 1 1
loop and string tensiona’) expansions. Although the effec- S:J' d4x\/__g{_f(¢,R)_ Zw(P)ped .~ V()
tive action probes the full string theory only perturbatively, it 2 2 '
may show some generic features of the full theory, and is 1
expected to be applicable in the low-energy limit before the - —g(qs)RéBJr Ly
full quantum gravitational effect becomes important. The ge- 8
neric form of the effective action of the four-dimensional

superstring model with a one-loop correction is known in the ] ) ] i
literature[2]. Many studies have been made on the effects o¥Vheref(¢,R) is an algebraic function of a scalar fiefdand

this action with some new results found in black hole physicghe scalar curvaturg, andw(4), V(¢), and¢(¢) are gen-
and comology. On the cosmological side, the studies are ofral functions ofg; REg=R***Rapcq— 4R*R,p+R?, and
ten concerned with the possibility of realizing the nonsingu-Lm is @ Lagrangian of additional energy-momentum content.
lar universe or the inflation mechanisi@]. Recent cosmo- The field equation and the equation of motion are presented
logical studies (based on the paradigm of inflation- in Egs.(Al),(A2). Einstein gravity with a minimally coupled
generated-cosmic-structujesshow, however, that the scalar field is a case with=R, w=1, and¢=0. The low-
quantitative aspects of observational constraints on physicgnergy effective action of string theories is a case With
in the inflation era are available through cosmic structure=e™ “R, o=—e~?%, V=0, and with¢xe™? from the one-
formation processelgt]. The results of such analyses basedloop string correction. In a conformally transformed Einstein
on the low-energy effective action can be found5). frame we have the theory with=R, =1, V=0, and

In this paper we consider the evolution of linear stagewith §=£(¢) from the one-loop string correction. Equation
cosmic structures based on sigma-model one-loop correctdd) also includes Brans-Dicke theory, nonminimally coupled
string action. We start with a general action which includesscalar field, induced gravityg?-gravity, etc. Studies of Eq.
both the one-loop string effective action and Einstein gravity(1) without theR3; term have been made [7—9]. Notice
On a conventional cosmological model we apply the mosthat our perturbation analyses in the following will be appli-
general perturbations. Complete sets of equations are derivedble for the general theory in E(l). An important advan-
and the analytic form solutions with important cosmologicaltage of such a unified analysis will be explained in Sec. VI.
implications are found. Based on the general solutions we We consider as the metric a spatially homogeneous, iso-
identify some quantities characterizing complete cosmidropic model with the most general perturbations

We consider the following general action:

; ()
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ds’=—a?(1+2a)dn*—a?B ,+B,)dndx* - 3 (E— H2p)2
w e —
+a2[g5A(1+2¢) +2y 45+ 2C 45+ 2C,gldx*dxP, o= 2 | F—ng
) 1F—H2%\""
H+ = .
. . . 2 F—H¢
wherea(t) is the cosmic scale factor wittht=ad». a(Xx,t),
B(x,1), o(x,1), andy(x,t) characterize the scalar-type per- 1 F—H2g 2 : F—HE
turbation.B,(x,t) andC,(x,t) are tracefreeB“,=0) and _( i ) 2 _H-4H- : )
correspond to the vector-type perturbati@.(x,t) is trans- 14 2\ F—H¢) \ & F-H%¢
verse and tracefreGC\'ﬁf‘B:OZCg), and corresponds to the s()=1+¢ . 3(F—H%)? :
tensor-type perturbation. Indices are basedg@?j as the a)¢2+§—.
metric, and a vertical bar indicates a covariant derivative F—H¢

based org(fg. We decompose the energy-momentum tenso

and the scalar field asTé(x,t)=TA(t)+ oT3(x) and Equatlon(3) can be written in the following form:

d(x,1) = ¢(t) + 5é(x,t); an overbar indicates a background W'+ (sk—2"12) =0,
order quantity and will be omitted unless necessary. The
equations for the background cosmological model are pre- V=205, z=a\Q, (4)

sented in Eqs(A3)—(A6). The three types of perturbations

decouple from each other due to the symmetry in the backwhere a prime indicates a time derivative based on a confor-
ground world model and the linearity of the structures we argnal time », ad»=dt, and we introduced a comoving
assuming. Thus, we can handle them individually. The comwave number usingA ——k?. In the large-scale limitsk?

plete sets of equations for three perturbation types in a spazz”/z; thus ignoring the Laplacian term in E(B) we have
tla”y flat model are presentEd in Eqﬁ?)—(Alg) an exact solution

lll. SCALAR-TYPE PERTURBATION e55(6)=C(X)+D(X) Jt% dt, ®)
Equations(A7)—(A15) are presented in a gauge-ready °

form [10]. Thus, we still have a right to choose one temporalwherec(x) andD(x) indicate the coefficients of the grow-
gauge condition; all variables used in the equations are Spang and decaying solutions, respectively. Thus, ignoring the
tially gauge-invariant. Some choices are the following: thewransient solutionwhich is higher order in the large-scale
synchronous gaugeaf=0), the uniform-curvature gauge expansion compared with the solutions in the other gauges
(¢=0), the uniform-expansion gauge<0), the zero-shear [7]), ¢, is conservedn the large-scale limit. Solutions for
gauge §=0), the uniform-field gauge d¢=0), the the other variablegeven in the other gauge conditionsan

uniform+ gauge ¢F=0), etc. Except for the synchronous pe easily derived from our complete set of gauge-ready form
gauge, each one of the other gauge conditions completelyquations in Eqs(A7)—(A15).

fixes the temporal gauge condition; a variable in such a
gauge conditio_n is equivalent to a gauge—in.variant combina- V. ROTATION
tion of the variable concerned and the variable used in the
gauge condition. A proper choice of the gauge condition is From Eqs(A16)—(A18), using notations in EQA20), we
often essential for a convenient handling of the problemhave
which is the case in our situation.

We take the uniform-field gauge which sei$=0, thus
6é=¢& 4,0¢4=0. Equivalently, we can set¢=0 and replace
each variable with its corresponding gauge-invariant combi-
nation with8¢. For exampleg in the uniform-field gauge is 1, _
the same as the gauge-invariant combination ugirgid 5¢ Al (ntpIxv, ] =—_pmr. (6)
which is ¢—Hdd/p=¢s,. Assuming F=F(¢p) we also
have sF=0. We assumeéTgS 8=0. From Egs.(A7),(A9) If we ignore the anisotropic stregss, the angular momen-
we can expresa in terms ofe. From Eqs(A8),(A7) we can  (Um of the fluid is conserved as
express and y in terms ofe and¢. Thus, using either Eq. a%(+p) XV (x, ) ~L(X). @)
(A10) for x or Eqg.(A11) for y we can derive a closed form @
second-order differential equation fer;, as[11]

k2 )
52 (FHOV=(utp)v,,

V. GRAVITATIONAL WAVE

1 : A From Eg.(A19) we have
%(33Q€05¢)'_S(t)¥€05¢201 3 9.(A19)

%(asQ C%) —s (U%Ca:iﬂma 8
where a’Qq 9~k S atTE Qe P
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where

F-¢
F-H¢

Q=F—H¢, sy(t)= 9)

Equation(8) was studied in the string franjé@3] and in the
Einstein framg12]. Equation(8) can be written in the fol-
lowing form:

Pyt (Sgk?— 24/ 2g) =0,
Yy=124Cgp, (10

In the large-scale Iimitsgk2<z’é/zg; thus ignoring the La-
placian term in Eq(8), and ignoring the anisotropic stress,
we have an exact solution

zy=a\Qg.

t dt
CE(X,t):Cgﬁ(X)+Dgﬁ(x)f()%, 11
g
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a role during the inflation. In such a scenario, if we can
calculate the quantum fluctuatioftsased on the vacuum ex-
pectation valuesof the metric and field variables when the
scale is already pushed outside the Hubble hori@arch
calculations are usually available in the many known infla-
tion scenarios, sdé,8,9,19) the structures can be described
by the conserved quantities derived in the present work. In
order to make an application we need a specific inflation
model based on the action in E@l) with the Rgg term.
Applications to specific inflation scenarios are made in Ein-
stein gravity with a minimally coupled scalar fig]dl4], in a
nonminimally coupled scalar fielfil5], in the low-energy
effective action of string theor}5,9], etc.

We expect our solutions and the general formulations
made in this paper will be useful in probing the observation-
ally relevant consequences of the superstring effective theory
with one-loop correction. In this paper, however, we have
considered the roles of a dilaton field together with a Gauss-
Bonnet type of sigma-model one-loop correction term. We
can also consider other stringy contributions from moduli

where Cg4(x) and DZ4(x) indicate the coefficients of the fields and the antisymmetric tensor fiel@xion) and the

growing and decaying solutions, respectively.
transient solutiorCj is conservedn the large-scale limit.

VI. DISCUSSIONS

We have shown that the nontransient solutiong gf and

Ignoring thedual product of Riemann tensof2,3,16. The roles of the

axion coupling termp(¢)RR with RR= 72°°R,,6'Rege,
have been recently considered[it¥]: this term vanishes in
the homogeneous-isotropic background world model, has no
contributions to the scalar- and vector-type perturbations,
and the gravitational wave is again described by conserved

Cg both in the large-scale limit and the angular momentunuantities which depend on the polarization states.

are generally conserved see the solutions in Egs.

Apparently, by considering these additional fields we will

(5),(7)’(11) Remarkab|y, these conservation properties aré]ave the multicomponent situation which will eSpeCia”y af-

valid considering generally time varying ¢), &( ), o(¢),
andF(#,R) [F(¢) or f(R) for ¢,], thus are validinde-
pendently of changes in underlying gravity thecfe uni-
fied analyses of Eq(l) is crucially important to make this
point: that is, since the solutions and the conservation pro
erties are valid considering genefably, V, and¢, the quan-

tities ¢ 54, Cz and the angular momentum remain conserveqi/

fect the scalar-type perturbation: in tinecomponent situa-
tion, generally, we will have a couplechth order differen-

tial equation and in general we do not expect a conserved
quantity in such a situation. However, we expect the rotation
(of the fluid componenjsand the gravitational wave will not

pE)e affected by the presence of the additional fields in the

ense that the conservation properties of such perturbation
ill remain valid. We would like to investigate the roles of

independently of changing gravity sector. As an exampleihese additional contributions in the process of cosmological

since Eq(1) includes both the string theofpossibly includ-
ing the one-loop correction tejnand Einstein gravity, the

conservation properties are valid while the underlying grav-
ity changes from the former to the latter one. Indeed, this is
a powerful result in the context of an inflation added early
universe scenario. Under this scenario, the observationall

relevant large-scale cosmic structures are supposed to
generated from the quantum fluctuatido$ the field and the

metric) and are pushed outside the horizon during the infla

structure formation in future occasions.
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tion. During the inflation-to-radiation transition phase the ob-og_5 from the interdisciplinary research program of the KO-
servationally relevant scales stay in the super-horizon scalggpg.

and in such a case our conservation propertigs,gfandCyp
are applicable. In facit does not matter how the transition

can be realized in reality: as long as there occur transitions
while the relevant scale is in the large-scale limit, we have

the quantities conservetleanwhile, Eqs(3),(6),(8) are the
exact equations valid in general scale.
Compared with our previous publications[if-9], in this

APPENDIX

A. The field equation and the equation of motiGnom
variations of Eq(1) we have

1 1
FG3=0| ¢~ 5 856 ¢ |~ 5 HRF—T+2V) +F,

paper we have included the Gauss-Bonnet coupling term and
have shown that we still have similar conserved quantities.
This extension would be particularly useful if we have an

inflation scenario where the Gauss-Bonnet coupling term has

— SOF + (R pg— Rogdp+ Ropdd) €94+ GR£S,
—GROE+TE, (A1)
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1 _ 1
D¢+ 5| 04678 atf =2V - ng,,RgB) =0,
(A2)

whereF=0f/JR, and T, is an additional energy momen-

tum tensor defined a8(v/—gL)=3%V—gT2%69,p.
B. Background equationgz=rom Egs.(Al1),(A2),(2), and
T9.,=0 we have

Mot e = X0 #2 RF— 1+2V)—HE— =T
2 Fon: glod ) 370
(A3)
S #—E+HE+(E-H)
A | e _
a® 2(F—Hg)
K 1
X|H?+ — +T8—§Tg}, (A4)
. | - L
$+3Hb+ 5 0 41 4+ 2V, +6¢ y(H+H?)
K
X H2+? Fo, (A5)
To+3HTo=HT?, (A6)

where an overdot indicates the time derivative basetiam
K is the sign of three-space curvaturel=a/a and R

=6(H+2H2+K/a?). Equation(A5) also follows from Egs.

(A3),(A4),(A6).
C. Perturbation equationsFrom Egs.(Al),(A2),(2) we

can derive the following set of equatiofise assume a spa-

tially flat model, thusk =0 andg’})=&,,):

) A
KE_3((,D_HC¥)_;X, (A7)

. A . . .
STE =2(F—H&)| Hr+ ¢ | —wp?a+(F-H%)

| .
X(K+3Ha)+w¢5¢+E(w'¢¢2—f1¢+2vy¢)5¢

—3HsF+ SF

. A
3H+3H*+ —
a

A
+H2(3H5§—§25§), (A8)

Tt —E(F—H'g) P —(F—H%¢)a+wpdd
« “al 3 azX

+6|':—H5F—H2(5'§—H5§)} , (A9)

, &
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STY7—5THO=2(F—H¢) k+2HK+3Ha+aéza
+[F+H2E—2(HE) 1(k+3Ha)
+3(F—H2&) a+2(2wp?+3F

: LA
—3H%)a—2(6-Hé) ¢
—40pSp— (2w 4>+ 4= 2V 4) ¢

. . A
—36F —3HSF +| 6H?+ 2

oF

+3H26¢+ (2H+H?)

. A
3H6E— ?55),

(A10)

1

() _

1
Syga— _ =
ST 5=~

1 .
V“VB—gﬁgA)[(F—Hf)

X(@+a—x—Hxy)—(F—H¢) x
—(§—H& @+ F—(H+H?)5¢],
(A11)

: Sl
STE +H(36TE = 6T ) +(3To—To) o~ - STl

1
+ ;(TSAX—Tgx‘Ba)ZO, (A12)

: 1 1 1
TEO0L gHTO04 aT(S)£B+ a(a+3¢)'BTg— a(Tga

+T5¢) =0, (AL3)
2
5¢+3H+w¢5¢+ w) >+ 50
¢ ¢
. A
+3H2(H+H2)(ﬂ> ——|0¢
w a
¢
=¢(k+a)
y v Lo
+|2¢+3Hp+ - | a
1 5 2 . A
(A14)
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_ . A
OR==2 k+4Hx+3Ha+ 5 (2¢+a) ;
2 2 i A
SREg=4H2R—16H| x+ ¢ |, (A15)
wo_ _ 1L e (
STV =—§(F—H§)¥(Ba+aca)' (A16)
STWa— 1 F-HE&)[(B*+B
o= sla’( O[(Bg )
+a(cﬁ|a+ca’ﬁ)<]}.’ (A17)
_ 1
TWIOL 4HTWIO = 5T(V)fﬁ:°' (A18)

ﬁTg)a:(F_Hg)Cz+[(F_H§)+3H(F_H§)]Cg
A
—(F—f);CB, (Alg)

where A is a Laplacian based o#,z. Equations(A7)—

(A15), Egs. (A16)—(A18), and Eq.(A19) completely de-
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scribe the scalar-, vector-, and tensor-type perturbations, re-
spectively; we decomposed the perturbed energy-momentum
tensor assTa=5T(d2+ 6T(V2+ 5T(V?, where superscripts
(s), (v), and(t) indicate the three perturbation types. Equa-
tions (A12),(A13),(A18) follow from Tg;b:o. Some useful
quantities for deriving the equations can be found in our
study of R®’R,,, gravity in [18].

For the scalar-type perturbation we introduced a spatially
gauge-invariant combinatiop=a(B+avy). In the above set
of equations we have not fixed any gauge condition; thus the
equations are written in a gauge-ready form. Equatilt¥)
also follows from Eqs(A7)—(A10),(A12) and Eq.(A4). For
the vector-type perturbation we introduce the following vari-
ables:

T(ch)OE(/*L+p)VwYa! ngl)aEpﬂ-TYg:

B,+aC,=¥Y,; AY,=-k%Y,,

1
Ya,BE - E(YaLB—’—YBM)r (A20)

where ,uE—Tg and pE%Tz; Y, is a vector-type Y%,
=0) harmonic function with a wave numbler
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