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Calculation of density fluctuations in the inflationary epoch
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Starting from an initial state of thermal equilibrium, we derive an expression for the quantum fluctuation in
the energy density during the inflationary epoch in terms of the mode functions for the inflaton field. The effect
of this particular initial quantum state is not washed out in the final formula, contrary to what is usually
believed. Numerically, however, the effect is completely negligible, validating the use of the two point function
in the vacuum state. We also point out the requirement of conventional quantum field theory during inflation,
that the quantum fluctuation in a wavelength must be evaluated, at the latest, when the wavelength crosses the
Hubble length, in contrast with the usual practice in the literature.

PACS numbegs): 98.80.Cq

[. INTRODUCTION maintained at least until the beginning of inflation.
It must be pointed out here that the initial condition we

The most attractive aspect of inflationary models of thediscuss here concerns the computation of the scalar propaga-
early universd 1] is their potential to predict the present day tor in quantumfield theory during the inflationary epoch.
density inhomogeneity from first principlg®]. In these This condition has little to do with the usual initial condi-
models it is possible to calculate quantum fluctuation in theions needed to have inflation at all, in particular, enough
energy density on the homogeneous background in a regidmomogeneity of theslassicalscalar field on the scale of the
within the causal horizoifgiven by the Hubble lengjhdur- ~ Hubble radius at the begining of inflatid®]. Indeed, the
ing the inflationary epoch. This fluctuation provides the ini-volume of space in thermal equilibrium turns out to be only
tial spectrum of density perturbation. As the region inflatesa small fraction of the Hubble volume at this time.
into the observed universe or bigger, its propagation through The other point we discuss is the time at which quantum
different eras can be followed until the present time by thefluctuation must be evaluated. It relates to the applicability of
equations of linear perturbation theory of classical gravityquantum field theory in curved space-time. As emphasized
[3-5]. by DeWitt [10], conventional quantum field theory requires

In this work we consider some points in the calculation ofthe mode functions to be oscillatory in time, allowing posi-
guantum fluctuations during inflation. The basic ingredient isive and negative frequencies to be identified. While on flat
the expectation value of the product of two scalar field op-space-time such modes naturally arise for field theories de-
erators at a time when considerable inflation has alreadgcribing physical particles, their existence is not guaranteed
taken place. It is generally believed that as the inflation proon space-times with non-zero curvature. The reason is that
ceeds, the effects of all scales associated with a particuldhe curvature gives rise to a damping-like term in the equa-
initial state tend to be wiped out, retaining only the ex-tion of motion for the mode functions. In the inflationary
tremely high energies associated with quantum fluctuationperiod this makes a mode oscillatory or damped, according
in the vacuum. So the expectation value is evaluated for thas the associated physical wavelength is smaller or bigger
homogeneous background, which corresponds to the vacuuthan the Hubble length. During this period physical wave-
state of quantum field theory. lengths grow at a tremendous rate, while the Hubble length

Here we investigate how far the density fluctuation be-remains constant or approximately so. Thus even a wave-
comes actually independent of the initial condition prevailinglength lying initially deep inside the Hubble length would
at the beginning of inflation. For this purpose, we start witheventually go outside this length. So this time of exit marks
a definite initial state, namely that of thermal equilibrium. the latest time at which we can evaluate the quantum fluc-
The first attempt in this direction was by Guth and®i We  tuation belonging to that particular wavelength.

discuss it here in a more general framewf8k7]. The ther- In the literature, however, quantum fluctuations are actu-
mal propagator can be followed until the time when theally evaluated at a time, when the modes have evolved well
guantum fluctuations are evaluated. outside the Hubble length, so as to be frog&h]. Of course,

The existence of an initial thermal equilibrium distribu- the complete problem of predicting the density fluctuation at
tion of particles, at least for the high wave numbers needethe time of Hubble length reentry in a later radiation or mat-
for the calculation of density fluctuation, appears quite probter dominated phase does involve the evolution of the fluc-
able. Even if the collision rates among the particles are toduation over a much longer period of tifi¢]. But the ques-
small to produce such a state, there could be another mechéien at hand is where the quantum fluctuation can be
nism at work. As pointed out by Weinbef@], the strong evaluated reliably.
gravitational interaction at very early times would bring In Sec. Il we review the derivation of the thermal scalar
about thermal equilibrium, which, as we shall show, could bgropagator in the early universe. In particular, we show the
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behavior of mode functions as the wavelengths grow and to G

discuss the validity of the assumed initial thermal equilib- to— e G

rium state. In Sec. Ill we write the formula for density fluc-

tuation in terms of the mode functions and discuss its depen- Ca

dence on the initial condition. As an example, we take the

simple, original model of extended inflatigd2] and com- to—if

ment on the earlier calculations of density fluctuation in this

model in the context of the present wgrk3,14]. Finally our FIG. 1. Time path of real time thermal field theory.

concluding remarks are contained in Sec. IV.
g p=e Pl TreFoHl(to), (2.3

II. FINITE TEMPERATURE SCALAR PROPAGATOR where 18,=T(t,) is the temperature at timg. The ex-

Consider a region of space in the early universe within thePlicit time dependence of the Hamiltoniai(t) arises from_
causal horizon. It can then be taken to be homogeneous aﬁaat of the scale factor and the homogeneous classical field.

isotropic, admitting théspatially flaj line element, Note that the density matrix is constant in the Heisenberg
representation. Thus once the system is in the thermal equi-
dSZZdtZ_aZ(t)d;(Z, (2.2 librium state, the thermal propagator continues to hold even

when the system deviates from this state.
where the scale factaa(t) describes the expansion of the  To describe the time evolution of the system, it is most
region of the universe. It constitutes the background spacesonvenient to use the real time formulation of thermal field
time, which is perturbed by quantum fluctuations. The actiortheory [15]. In the context of the early universe, the time
for the scalar field in this space-time may be generally writ-path C in the action integral consists of three segments as

ten as shown in Fig. 1[6]. The points on it may be labeled by a
1 1 complex parameter such that
Sfif d3xdta3(t)(ii>2— —az(t)(V@Z—Mz(t)cbz t onC; andCy,
T= . (2.9
to—it on C;.

“N(1) PP Ny() P+ f (2.2

The action in the path integral corresponding to the seg-
) _ ) mentsC,; andC, is in Minkowski space, while it is Euclid-
Here we have already shifted the scalar field by its homogeean onC;. It should be noted, however, that the scale factor

neous classical part, if any. The dot grindicates differen- s not continued to Euclidean space @g: since the Hamil-
tiation with respect to time and the other dots indicate interignjan for the segment i%{(t,), the scale factor remains

action terms, if any, of the scalar field with othglauge and  fixed att,,.

matte) fields. We now review the derivation of the thermal propagator

We assume the different species of particles to be in ther[-6’7]_ After a partial integration, the quadratic termsSp
mal equilibrium around some initial timi, which we con-  pecomeg16]

veniently take to be the time of transition of the radiation

dominated phase to the inflationary phase. In particular, the 1 3

scalar particles belonging i(x) are also assumed to be in So=— EdeTf d°x#D ¢+ boundary terms, (2.5
thermal equilibrium.(This assumption will be examined at

the end of this sectionThe density matrix is then given by where

a3 d_2+3gi+ 2 2( ):_ V2+ 2( ) 7eC,.C
a2 Cadr ) O a%(7) s Lz

o7 3 d2 2 2__ 1 2 2 (26)
aO P"‘wo), wo——a—SV +,LL (to), TEC3.

We use the abbreviationsay=a(ty), wo=w(tg), To  Will be denoted byG4(x,7;x’,7") or (Te(x) p(x")). It sat-
=T(ty). For the boundary terms to vanish, it is necessaryisfies
that both¢ andd¢/d+ match at the joining of the segments o o
C, andC,, of C, andCj; as well as at the free ends Gf DGg(x,7x",7")= —i}(x—x"é(r—1'), (2.7
andC;.

The (time orderegl thermal propagatof r pT ¢(X) p(x") with boundary conditions following from the matching &f
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andd¢/dr mentioned above. For the spatial Fourier trans-positive and negative frequencies, at least in a quasi-static
form of the propagator, defined by way. We show below that this is indeed the case around the
time ty, when we can solve E¢2.14) in the JWKB approxi-

. k- .
Gﬁ(X,T, T’): f (Zw)gelk'xG’B(k,T, T’), (28) mation to get[l?]

it reduces to gi(T)z—e:‘ffodT/;(T'), r=tg. (2.17)

DGy(k;,7")=—i8(1—1"), (2.9

We thus have a valid quantum field theory around the time

where— V? appearing in the expressions fof(7) andw3 is t
0

to be replaced now bi?. S . . .
To construct the propagator we first find the mode func- Butin the inflationary phasepe-1), a mode is oscillatory

. . only if its physical wavelength 2a(t)/k is small compared
tions. On the contouCs they satisfy to the Hubble lengttH ~%(t). As inflation progresses, the

d2 scale factor increases enormously, whil€t) is approxi-
(F+w§)h+(7)=0, (2.10 mately constant. Thus more and more modes go out of

T Hubble length and behave as damped waves, having no in-
terpretation in quantum field theory.

ivin + . -
gnving The solutionsg=(7) and h=(7) may now be joined to
1 _ form the functionsf=(7) on the entire contou€,
h*(7)= ———=e"'9", r=ty—iteCs. (2.11)
Vzwoag . gi(T), TE C1’2
(=1 . (2.18
The normalization satisfies the Wronskian condition, h=(7), 7eCs.

h*(r)h~(r)—h~(r)h"(7r)=—i/a3. The mode functions

on the real segment; andC, are the solutions of By definition, f~(7) obey the continuity conditions relating

the segment€,; andC,. Using Egs.(2.1) and(2.17), we

d2 ad see that the conditions connecti@g and C; are also well
F+35 d—+w2(7) g*(71)=0, 7=teCy,, ;atisfied ifH(tO) is small compared tck/a(tp) [18]. A par-
T (2.12 ticular solution to Eq(2.9 may now be written as
with normalization fixed again by the Wronskian condition, Go(k:7,7)=1"(D)f " (7')6o(7—7')
g™ (N9 (n)—g (nNg*(r)=—ila%(7). To see the nature of +EH () (1) 0 (7' —7), (2.19
these solutions, we put
* —3/2 * where 6. is a step function on the contour. This solution
g (n=a g (7n), (2.13  satisfies the continuity conditions at the junctions of seg-
- mentsC, and C, as well as ofC, and C;, becausd “ ()
whereg satisfies does it. To satisfy the remainingherma) continuity condi-
42 tion at the ends o€, andC;, we add to it the most general
(P+ wz(r))gi(r)=0, (2.14 solution of the homogeneous equation,
2
with Gﬁ(k;T,T')zeo(k,T,T’HijZ:l fi(r)ATH(7).
— k2 9 2. a(t) (2.20
208y — 2_ T lyg2y 5 _ 7
w ()= +p’= 7| H +3H), H= J-

(2.15 The superscript=) on the mode functions are replaced tem-
' porarily by 1 and 2 to use matrix notation. Th&2 constant

For a power law behavior of the scale factaft)~tP, it  coefficient matrixA is uniquely determined by the thermal
becomes conditions[19]. We get

Gk, 7,7 )=f" (1) (7' ){0c(7— ')+ n(wo)}

+I(DF ()07 — 1) +n(wo)},

It is now simple to identify the modes, which belong to (2.21)
conventional guantum field theory. The magnitude«f) is
usually small compared td(t). Thus in the radiation domi- wheren(w,) is the bosonic distribution function

nated phased=1), ? is positive for all values ok and it
may be possible to define oscillatory modes belonging to n(wo)=(efovo—1)"1, (2.22

=542 21 2w 2.1
o ()= +u—7 3" (2.19
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For tree level calculations we need the Green’s function [ll. DENSITY FLUCTUATION FORMULA
gil:/l’)a/nogythe real axisC, . Writing henceforthr=t, this is The density inhomogeneitiat timet) is measured b}/ the
mean square fluctuation in the density functipifx,t)
(XD 1)) (2021,
3 2 <) —o(t)) 2
(2.23

where(- - -), denotes averaging over space anis the ho-

where the mode functiors™(t) are solutions of Eq(2.12.  mogeneous background densipy(p(x,t))x. In the infla-

We now come back to the assumption of the initial ther-tionary scenario, this inhomogeneity in the early universe is
mal equilibrium state. Such an initial state can be ensured iBupposed to arise from quantum fluctuation in the energy
an expanding universe if collisions among particles occur aflensity on a homogeneous background. We may calculate
a rate faster than the expansion rate of the universe. Whilghe latter by evaluating an expression similar to E2j1),

this condition holds for species interacting througkla- replacingp(i,t) by the corresponding operaté(f,t) and

tively large gauge coupling, it may not hold for particles of {he ayeraging by the expectation value in an appropriate
the inflaton field, which is a gauge singlet and has Wea‘&uantum state.

self-interaction. We discuss below the other mechanism, There is. however. a technical problem with this quantum
mentioned in the introduction, which could give rise to ther- ’ :

mal equilibrium around the time, same space-time point, which is not defined in quantum field

At the Planck timép, the strong gravitational interaction , .
brings about thermal equilibrium for all specig®]. Let us theor_y. The problem may be avoided by taking the smeared
density function5]

guantize the system at this time in a cubic volume with sides
of physical length,L(tp), small compared to the Hubble

version, as it involves the product f)()?,t) with itself at the

length, L(tp)<H (tp)~ms', where mp is the Planck p|(>2,t)=Nf diye Y2 p(x+y,1), (3.2
mass. Then the longest wavelength will be well inside this
length, i.e. wherel is an arbitrary smearing length aidan irrelevant
normalization factor. The classical fluctuation gn is then
> 7H(tp), (2.24 9Vvenby
a(tp) 5 - — 2
Spi\ [ [ ) — (1) 3.3
even for the smallest wave number. Then Efj16 simpli- P () ' 3.3
c X

fies, to a good approximation, to that for a massless particle,
where the subscrift stands for classical. The corresponding

— k . .
_ quantum fluctuation, denoted by the subscgpis now well
ote)= 3tp) (229 fefined,
So the density distribution at the Planck time becomes (5p|)2_ < (ﬁ,(i,t)—;(t)) 2> 34
Pl p(t) ' '
N(w(tp))= ekla(tp)T(tp) _ 1 (2.26 where(- - -) stands for the expectation value in the initial

thermal state defined by E¢R.3).

The inequality(2.24, in turn, causes the wave numbers at To treat perturbation on different length scales, one writes

the timet, to satisfy p()?,t)z?(t)(lJr 5()2’0), 3.5

k >a(tP) H(tp)
a(tg) a(tg) H(ty)

7H(tg) = r_:_]—:wH(tO), (2.27  and Fourier analyzes the so-called density cont@(st,t),

In the last step we have used the radiation dominated solu- S(x,t)= i
tion for a(t). The temperaturé&j is given by the grand uni- W
fication scaleJT,~10'° GeV, so thamp/Ty~10°. Thus the
relation (2.24) at timetp continues to hold throughout the
radiation dominated phase; in fact, it becomes more an
more accurate asincreases frontp . Clearly the equilibrium (

; S (e X, (3.6)

whereV is a volume within the Hubble length. In the limit of
!]arge volume, Eq(3.3 becomes

]
P

2 od%
distribution (2.26) established at times is well maintained ) - W|5k(t)|2e’k2'2.
a
Cc

at least until the time .

(3.7)
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The density inhomogeneity is conventionally expressed as

op\%_ K3l&(b)]?
7 T 27

1 .
|5k(th)|2:?(l+ N(wo)|r (th) Gi(th) +S(th) gi(ty) %

(3.9 (3.1
k

_ .. _ It now evolves as linear perturbation in classical graj/gy

The energy density operatgr(x,t) is obtained from the |t first oscillates with constant amplitude urkitaH~ 1, and
time-time component of energy momentum tensor, then its evolution as super-horizon sized perturbation is
gauge dependent, until its re-entry within the horizon after

T,,=0,%3,%—g V(Egaﬁaaq,é,ﬂqf_v(q,) . (3.9 inflation. But it turns out that the quantitgp/(p+p), has a
e k2 gauge invariant meaning: its magnitude on reentry has ap-
proximately the same value as it had at exit during inflation

for the full scalar fleld\If(X) Here the potential function [4,20] Assuming radiation dominance at re-entry, we thus
V(¥) depends on the model considered. We sfffiftx) by  get

the homogeneous classical figldx),

. . rgg+s
W(x,t)=(t)+ p(x,t), (3.10 (@) =& VK31 + n(wo))|gi—_gklt“, (3.17
ply 3T (ptP,
such that for the quantum field#(x))=0. Thenp(x) in
guantum theory may be written as where the subscrigtl denotes horizon reentry.
It is simple to estimat@(w,) in the range ok/ay, which
p(x)=p(t)+0(x), (3.1) s of interest. We write
where the two terms are k k a(tp) alte)

(3.18

. ap  a(ty) a(te) alty)”
— 1,
()= 2"0 V), (312 From the timet, when the inflation ends until the present
time t,, the universe expands adiabatically, so that
and a(tp)/a(te)=Ty/T,. The other ratioa(te)/a(to)=Z gives
. _ the magnitude of inflation. We thus get
U(X)=r(t) p(x) +s(t) p(x), (3.13
k 27 Z 1 Z (3.19
to first order ing(x). The coefficients (t),s(t) in Eq.(3.13 T N T N 1 .
depend on the classical field and other parameters in the BTo Mtp) To Mupe 107

potentialV(¥). Terms inU, which are of higher order i where T,=2.7 K=11.8 cm® and Ay is A(t,) ex-
p= < : pc P

would give loop contribution to the densit_y fluctuation and ressed in Mpc. The wavelengths of interest stretch over the
2L%S§gajlfgstzg.rel\’lote here also the expression for the homoglazqgg KAype< 10*. In all quels of inflationz exceefjs
y many orders of magnitude. ThlgagyT, is large in
these models and we may setwy)=0 in the expression
P2=V(y). (3.19 (B.19. o -
We thus see that although the initial thermal equilibrium
] ) state does produce a factor in the expression for the density
The expectation value in E¢3.4 may now be evaluated t0  jnhomogeneity, its magnitude turns out to be unity, justifying
give the use of zero temperature propagator for its evaluation.
Nevertheless it is important to know the initial state, as there
are other quantities, such as the duration of inflation, which
may depend sensitively on it.
In the discussion so far, we have been implicitly assuming

N

5P|)2 1 30 B0 — (v 22/ ~
— d3xd (x“+y“)/2 Ux,t)U(y,
(m q psz xdye (00 0(y.b)

1 d3k that the initial thermal region of physical length(tp)
= _Z_(t)f (27)3(1+ N(wo)) ~mp* at the Planck time grows to a siz€t,), which must
P be at least of order £ the observed size of the universe. It
><|r(t)gk(t)+s(t)gk(t)|2e*k2'2, (3.19 is simple to check that this is indeed the case. The two

lengths are related by

where we used Eq2.23 for the two point function.
As a wavelength crosses the Hubble length at time L(t )=L(tp)a(tp)
P

[k/a(ty)=2mH(t,)], we identify the associated quantum a(tp)’
fluctuation with the classical density inhomogeneity. Com-
paring Eq.(3.7) with Eq. (3.15 we immediately get Evaluating the ratio of scale factors, we get
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1 vacuum propagator by the factofl+ (e/2To—1)"11
L(tp)= 1_OL(tP)mPZ cm. Clearly the factor does not go to unity as time passes but is a
constant depending on the physical wave number and the
ThusL(t,) can easily exceed #dcm. temperature referred to the initial tintg.

Finally we consider the example of the well-studied, It turns out, however, that for wave numbers of interest in
original model of extended inflatidri2] in the context of the the present universe, this factor is unity in models where the
ideas presented here. Attaining thermalization due to gravitgmount of inflation exceeds by many orders of magnitude the
in the Planck era is relevant for this model, as the collisionminimal amount required to solve the problems of standard
rate of the scalar particles is known to be too small to procosmology. Thus numerically the calculation of fluctuation
duce it. Also the inflationary solution for the homogeneousin the vacuum state is justified.
classical field can be shown to join smoothly to its constant We also point out that the conventional quantum field
values during the two radiation dominated eras, before antheory applies on curved space-time as long as the modes
after the inflation. We have already evaluateiplp),, in  oscillate. This requires that we evaluate the quantum fluctua-
this model using the formulé3.17), which we now justify  tion, at the latest, when the corresponding wavelength
quite generallyf14]. The difference in the time at which the crosses the Hubble length. Previous wofk4], however,
mode functions are evaluated does show up in the numericalvaluate it as a rule for wavelengths well outside this length,
evaluation: Our estimate is about an order of magnitude bigwhere the modes freeze. As we have shown in a recent work

ger than that of otherfgl3]. [14], this difference in the calculation leads to an increase in
the result by about an order of magnitude for the model of
IV. CONCLUSION extended inflation.

) ) Finally we note that during inflation as long as the modes

In the present work we assume the inflationary epoch teyre within the Hubble length, they retain a thermal equilib-
begin in a state of thermal equilibrium and study its effect onrjum distribution. Thus although the initial state of thermal
the quantum fluctuation in the energy density calculated durequilibrium comprising all modes is not maintained during
ing this epoch. This initial quantum state including the scalaiinfiation, the modes relevant for the calculation of density
particles appears quite likely even if their self-interaction isf|yctuation are those still in an equilibrium distribution.
too feeble to ensure it. We show that the thermal equilibrium
established at very early times through the then strong gravi-
tational interaction would be maintained until the beginning ACKNOWLEDGMENTS
of inflation. By evaluating the scalar field propagator with
thermal boundary conditions, we find a result for the density One of us(S.M.) would like to thank Dr. S. Sarkar for his
fluctuation, which differs from the one calculated with the encouragement.
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