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Calculation of density fluctuations in the inflationary epoch
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Starting from an initial state of thermal equilibrium, we derive an expression for the quantum fluctuation in
the energy density during the inflationary epoch in terms of the mode functions for the inflaton field. The effect
of this particular initial quantum state is not washed out in the final formula, contrary to what is usually
believed. Numerically, however, the effect is completely negligible, validating the use of the two point function
in the vacuum state. We also point out the requirement of conventional quantum field theory during inflation,
that the quantum fluctuation in a wavelength must be evaluated, at the latest, when the wavelength crosses the
Hubble length, in contrast with the usual practice in the literature.

PACS number~s!: 98.80.Cq
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I. INTRODUCTION

The most attractive aspect of inflationary models of
early universe@1# is their potential to predict the present da
density inhomogeneity from first principles@2#. In these
models it is possible to calculate quantum fluctuation in
energy density on the homogeneous background in a re
within the causal horizon~given by the Hubble length! dur-
ing the inflationary epoch. This fluctuation provides the i
tial spectrum of density perturbation. As the region infla
into the observed universe or bigger, its propagation thro
different eras can be followed until the present time by
equations of linear perturbation theory of classical grav
@3–5#.

In this work we consider some points in the calculation
quantum fluctuations during inflation. The basic ingredien
the expectation value of the product of two scalar field o
erators at a time when considerable inflation has alre
taken place. It is generally believed that as the inflation p
ceeds, the effects of all scales associated with a partic
initial state tend to be wiped out, retaining only the e
tremely high energies associated with quantum fluctuati
in the vacuum. So the expectation value is evaluated for
homogeneous background, which corresponds to the vac
state of quantum field theory.

Here we investigate how far the density fluctuation b
comes actually independent of the initial condition prevaili
at the beginning of inflation. For this purpose, we start w
a definite initial state, namely that of thermal equilibrium
The first attempt in this direction was by Guth and Pi@5#. We
discuss it here in a more general framework@6,7#. The ther-
mal propagator can be followed until the time when t
quantum fluctuations are evaluated.

The existence of an initial thermal equilibrium distrib
tion of particles, at least for the high wave numbers nee
for the calculation of density fluctuation, appears quite pr
able. Even if the collision rates among the particles are
small to produce such a state, there could be another me
nism at work. As pointed out by Weinberg@8#, the strong
gravitational interaction at very early times would brin
about thermal equilibrium, which, as we shall show, could
0556-2821/2000/61~4!/043508~7!/$15.00 61 0435
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maintained at least until the beginning of inflation.
It must be pointed out here that the initial condition w

discuss here concerns the computation of the scalar prop
tor in quantumfield theory during the inflationary epoch
This condition has little to do with the usual initial cond
tions needed to have inflation at all, in particular, enou
homogeneity of theclassicalscalar field on the scale of th
Hubble radius at the begining of inflation@9#. Indeed, the
volume of space in thermal equilibrium turns out to be on
a small fraction of the Hubble volume at this time.

The other point we discuss is the time at which quant
fluctuation must be evaluated. It relates to the applicability
quantum field theory in curved space-time. As emphasi
by DeWitt @10#, conventional quantum field theory require
the mode functions to be oscillatory in time, allowing pos
tive and negative frequencies to be identified. While on
space-time such modes naturally arise for field theories
scribing physical particles, their existence is not guarant
on space-times with non-zero curvature. The reason is
the curvature gives rise to a damping-like term in the eq
tion of motion for the mode functions. In the inflationar
period this makes a mode oscillatory or damped, accord
as the associated physical wavelength is smaller or big
than the Hubble length. During this period physical wav
lengths grow at a tremendous rate, while the Hubble len
remains constant or approximately so. Thus even a wa
length lying initially deep inside the Hubble length wou
eventually go outside this length. So this time of exit mar
the latest time at which we can evaluate the quantum fl
tuation belonging to that particular wavelength.

In the literature, however, quantum fluctuations are ac
ally evaluated at a time, when the modes have evolved w
outside the Hubble length, so as to be frozen@11#. Of course,
the complete problem of predicting the density fluctuation
the time of Hubble length reentry in a later radiation or m
ter dominated phase does involve the evolution of the fl
tuation over a much longer period of time@4#. But the ques-
tion at hand is where the quantum fluctuation can
evaluated reliably.

In Sec. II we review the derivation of the thermal sca
propagator in the early universe. In particular, we show
©2000 The American Physical Society08-1
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behavior of mode functions as the wavelengths grow
discuss the validity of the assumed initial thermal equil
rium state. In Sec. III we write the formula for density flu
tuation in terms of the mode functions and discuss its dep
dence on the initial condition. As an example, we take
simple, original model of extended inflation@12# and com-
ment on the earlier calculations of density fluctuation in t
model in the context of the present work@13,14#. Finally our
concluding remarks are contained in Sec. IV.

II. FINITE TEMPERATURE SCALAR PROPAGATOR

Consider a region of space in the early universe within
causal horizon. It can then be taken to be homogeneous
isotropic, admitting the~spatially flat! line element,

ds25dt22a2~ t !dxW2, ~2.1!

where the scale factora(t) describes the expansion of th
region of the universe. It constitutes the background spa
time, which is perturbed by quantum fluctuations. The act
for the scalar field in this space-time may be generally w
ten as

Sf5
1

2E d3xdta3~ t !H ḟ22
1

a2~ t !
~¹f!22m2~ t !f2

2l1~ t !f32l2~ t !f41•••J . ~2.2!

Here we have already shifted the scalar field by its homo
neous classical part, if any. The dot onf indicates differen-
tiation with respect to time and the other dots indicate int
action terms, if any, of the scalar field with other~gauge and
matter! fields.

We assume the different species of particles to be in th
mal equilibrium around some initial timet0, which we con-
veniently take to be the time of transition of the radiati
dominated phase to the inflationary phase. In particular,
scalar particles belonging tof(x) are also assumed to be
thermal equilibrium.~This assumption will be examined a
the end of this section.! The density matrix is then given b
ar
ts
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r5e2b0H(t0)/Tre2b0H(t0), ~2.3!

where 1/b05T(t0) is the temperature at timet0 . The ex-
plicit time dependence of the HamiltonianH(t) arises from
that of the scale factor and the homogeneous classical fi
Note that the density matrix is constant in the Heisenb
representation. Thus once the system is in the thermal e
librium state, the thermal propagator continues to hold e
when the system deviates from this state.

To describe the time evolution of the system, it is mo
convenient to use the real time formulation of thermal fie
theory @15#. In the context of the early universe, the tim
path C in the action integral consists of three segments
shown in Fig. 1@6#. The points on it may be labeled by
complex parametert such that

t5H t on C1 and C2 ,

t02 i t on C3 .
~2.4!

The action in the path integral corresponding to the s
mentsC1 andC2 is in Minkowski space, while it is Euclid-
ean onC3 . It should be noted, however, that the scale fac
is not continued to Euclidean space onC3: since the Hamil-
tonian for the segment isH(t0), the scale factor remain
fixed at t0 .

We now review the derivation of the thermal propaga
@6,7#. After a partial integration, the quadratic terms inSf
becomes@16#

S052
1

2EC
dtE d3xfDf1boundary terms, ~2.5!

where

FIG. 1. Time path of real time thermal field theory.
D55 a3S d2

dt2 13
ȧ

a

d

dt
1v2D , v2~t!52

1

a2~t!
¹21m2~t!, tPC1 ,C2

a0
3S d2

dt2 1v0
2D , v0

252
1

a0
2 ¹21m2~ t0!, tPC3 .

~2.6!
We use the abbreviations,a05a(t0), v05v(t0), T0
5T(t0). For the boundary terms to vanish, it is necess
that bothf anddf/dt match at the joining of the segmen
C1 andC2, of C2 andC3 as well as at the free ends ofC3
andC1 .

The ~time ordered! thermal propagatorTr rTf(x)f(x8)
y
will be denoted byGb(x,t;x8,t8) or ^Tf(x)f(x8)&. It sat-
isfies

DGb~xW ,t;xW8,t8!52 id3~xW2xW8!d~t2t8!, ~2.7!

with boundary conditions following from the matching off
8-2
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and df/dt mentioned above. For the spatial Fourier tran
form of the propagator, defined by

Gb~xW ,t,t8!5E d3k

~2p!3eikW•xWGb~kW ,t,t8!, ~2.8!

it reduces to

DGb~kW ;t,t8!52 id~t2t8!, ~2.9!

where2¹2 appearing in the expressions forv2(t) andv0
2 is

to be replaced now byk2 .
To construct the propagator we first find the mode fu

tions. On the contourC3 they satisfy

S d2

dt2 1v0
2Dh6~t!50, ~2.10!

giving

h6~t!5
1

A2v0a0
3

e7 iv0t, t5t02 i t PC3 . ~2.11!

The normalization satisfies the Wronskian conditio
ḣ1(t)h2(t)2ḣ2(t)h1(t)52 i /a0

3 . The mode functions
on the real segmentsC1 andC2 are the solutions of

S d2

dt2 13
ȧ

a

d

dt
1v2~t! D g6~t!50, t5tPC1,2,

~2.12!

with normalization fixed again by the Wronskian conditio
ġ1(t)g2(t)2ġ2(t)g1(t)52 i /a3(t). To see the nature o
these solutions, we put

g6~t!5a23/2ḡ6~t!, ~2.13!

whereḡ satisfies

S d2

dt2 1v̄2~t! D ḡ6~t!50, ~2.14!

with

v̄2~ t !5
k2

a2 1m22
9

4 S H21
2

3
Ḣ D , H~ t !5

ȧ~ t !

a~ t !
.

~2.15!

For a power law behavior of the scale factor,a(t);tp, it
becomes

v̄2~ t !5
k2

a2 1m22
9

4 S 12
2

3pDH2. ~2.16!

It is now simple to identify the modes, which belong
conventional quantum field theory. The magnitude ofm(t) is
usually small compared toH(t). Thus in the radiation domi-
nated phase (p5 1

2 ), v̄2 is positive for all values ofk and it
may be possible to define oscillatory modes belonging
04350
-

-
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positive and negative frequencies, at least in a quasi-s
way. We show below that this is indeed the case around
time t0, when we can solve Eq.~2.14! in the JWKB approxi-
mation to get@17#

ḡ6~t!5
1

A2v̄~t!
e7 i * t0

t dt8v̄(t8), t.t0 . ~2.17!

We thus have a valid quantum field theory around the ti
t0 .

But in the inflationary phase (p@1), a mode is oscillatory
only if its physical wavelength 2pa(t)/k is small compared
to the Hubble lengthH21(t). As inflation progresses, th
scale factor increases enormously, whileH(t) is approxi-
mately constant. Thus more and more modes go out
Hubble length and behave as damped waves, having no
terpretation in quantum field theory.

The solutionsg6(t) and h6(t) may now be joined to
form the functionsf 6(t) on the entire contourC,

f 6~t!5H g6~t!, tPC1,2

h6~t!, tPC3 .
~2.18!

By definition, f 6(t) obey the continuity conditions relatin
the segmentsC1 andC2 . Using Eqs.~2.11! and ~2.17!, we
see that the conditions connectingC2 and C3 are also well
satisfied ifH(t0) is small compared tok/a(t0) @18#. A par-
ticular solution to Eq.~2.9! may now be written as

G0~k:t,t8!5 f 1~t! f 2~t8!uc~t2t8!

1 f 1~t8! f 2~t!uc~t82t!, ~2.19!

where uc is a step function on the contour. This solutio
satisfies the continuity conditions at the junctions of se
mentsC1 and C2 as well as ofC2 and C3, becausef 6(t)
does it. To satisfy the remaining~thermal! continuity condi-
tion at the ends ofC1 andC3, we add to it the most genera
solution of the homogeneous equation,

Gb~k;t,t8!5G0~k,t,t8!1 (
i , j 51

2

f i~t!L i j f j~t8!.

~2.20!

The superscript~6! on the mode functions are replaced tem
porarily by 1 and 2 to use matrix notation. The 232 constant
coefficient matrixL is uniquely determined by the therma
conditions@19#. We get

Gb~k,t,t8!5 f 1~t! f 2~t8!$uc~t2t8!1n~v0!%

1 f 2~t! f 1~t8!$uc~t82t!1n~v0!%,

~2.21!

wheren(v0) is the bosonic distribution function

n~v0!5~eb0v021!21. ~2.22!
8-3
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For tree level calculations we need the Green’s funct
only on the real axisC1 . Writing hencefortht5t, this is
given by

^f~xW ,t !f~xW8,t8!&

5E d3k

~2p!3eikW•(xW2xW8)
„11n~v0!…g1~ t !g2~ t8!, t.t8,

~2.23!

where the mode functionsg6(t) are solutions of Eq.~2.12!.
We now come back to the assumption of the initial th

mal equilibrium state. Such an initial state can be ensure
an expanding universe if collisions among particles occu
a rate faster than the expansion rate of the universe. W
this condition holds for species interacting through~rela-
tively large! gauge coupling, it may not hold for particles o
the inflaton field, which is a gauge singlet and has we
self-interaction. We discuss below the other mechani
mentioned in the introduction, which could give rise to the
mal equilibrium around the timet0 .

At the Planck timetP , the strong gravitational interactio
brings about thermal equilibrium for all species@8#. Let us
quantize the system at this time in a cubic volume with si
of physical length,L(tP), small compared to the Hubbl
length, L(tP),H21(tP);mP

21 , where mP is the Planck
mass. Then the longest wavelength will be well inside t
length, i.e.

k

a~ tP!
.pH~ tP!, ~2.24!

even for the smallest wave number. Then Eq.~2.16! simpli-
fies, to a good approximation, to that for a massless part

v̄~ tP!5
k

a~ tP!
. ~2.25!

So the density distribution at the Planck time becomes

n„v~ tP!…5
1

ek/a(tP)T(tP)21
. ~2.26!

The inequality~2.24!, in turn, causes the wave numbers
the timet0 to satisfy

k

a~ t0!
.

a~ tP!

a~ t0!

H~ tP!

H~ t0!
pH~ t0!5

mP

T0
pH~ t0!. ~2.27!

In the last step we have used the radiation dominated s
tion for a(t). The temperatureT0 is given by the grand uni-
fication scale,T0;1015 GeV, so thatmP /T0;105 . Thus the
relation ~2.24! at time tP continues to hold throughout th
radiation dominated phase; in fact, it becomes more
more accurate ast increases fromtP . Clearly the equilibrium
distribution ~2.26! established at timetP is well maintained
at least until the timet0 .
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III. DENSITY FLUCTUATION FORMULA

The density inhomogeneity~at timet) is measured by the
mean square fluctuation in the density functionr(xW ,t)
@20,21#,

S dr

r D 2

5K S r~xW ,t !2 r̄~ t !

r̄~ t !
D 2L

x

, ~3.1!

where^•••&x denotes averaging over space andr̄ is the ho-
mogeneous background density,r̄5^r(xW ,t)&x . In the infla-
tionary scenario, this inhomogeneity in the early universe
supposed to arise from quantum fluctuation in the ene
density on a homogeneous background. We may calcu
the latter by evaluating an expression similar to Eq.~3.1!,
replacingr(xW ,t) by the corresponding operatorr̂(xW ,t) and
the averaging by the expectation value in an appropr
quantum state.

There is, however, a technical problem with this quant
version, as it involves the product ofr̂(xW ,t) with itself at the
same space-time point, which is not defined in quantum fi
theory. The problem may be avoided by taking the smea
density function@5#

r l~xW ,t !5NE d3ye2y2/2l 2r~xW1yW ,t !, ~3.2!

where l is an arbitrary smearing length andN an irrelevant
normalization factor. The classical fluctuation inr l is then
given by

S dr l

r l
D

c

2

5K S r l~xW ,t !2 r̄ l~ t !

r̄ l~ t !
D 2L

x

, ~3.3!

where the subscriptc stands for classical. The correspondin
quantum fluctuation, denoted by the subscriptq, is now well
defined,

S dr l

r l
D

q

2

5K S r̂ l~xW ,t !2 r̄~ t !

r̄~ t !
D 2L , ~3.4!

where ^•••& stands for the expectation value in the initi
thermal state defined by Eq.~2.3!.

To treat perturbation on different length scales, one wri

r~xW ,t !5 r̄~ t !„11d~xW ,t !…, ~3.5!

and Fourier analyzes the so-called density contrast,d(xW ,t),

d~xW ,t !5
1

AV
(

k
dk~ t !eikW•xW, ~3.6!

whereV is a volume within the Hubble length. In the limit o
large volume, Eq.~3.3! becomes

S dr l

r l
D

c

2

5E d3k

~2p!3 udk~ t !u2e2k2l 2. ~3.7!
8-4
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CALCULATION OF DENSITY FLUCTUATIONS IN THE . . . PHYSICAL REVIEW D 61 043508
The density inhomogeneity is conventionally expressed a

S dr

r D
k

2

[
k3udk~ t !u2

2p2 . ~3.8!

The energy density operatorr̂(xW ,t) is obtained from the
time-time component of energy momentum tensor,

Tmn5]mC]nC2gmnS 1

2
gab]aC]bC2V~C! D , ~3.9!

for the full scalar fieldC(x). Here the potential function
V(C) depends on the model considered. We shiftC(x) by
the homogeneous classical fieldc(x),

C~xW ,t !5c~ t !1f~xW ,t !, ~3.10!

such that for the quantum field,^f(x)&50. Then r̂(x) in
quantum theory may be written as

r̂~x!5 r̄~ t !1Û~x!, ~3.11!

where the two terms are

r̄~ t !5
1

2
ċ21V~c!, ~3.12!

and

Û~x!5r ~ t !f~x!1s~ t !ḟ~x!, ~3.13!

to first order inf(x). The coefficientsr (t),s(t) in Eq. ~3.13!
depend on the classical field and other parameters in
potentialV(C). Terms inÛ, which are of higher order inf
would give loop contribution to the density fluctuation a
are neglected. Note here also the expression for the hom
neous pressure,

p̄5
1

2
ċ22V~c!. ~3.14!

The expectation value in Eq.~3.4! may now be evaluated to
give

S dr l

r l
D

q

2

5
1

r̄2~ t !
E d3xd3ye2(x21y2)/2l 2^Û~x,t !Û~y,t !&

5
1

r̄2~ t !
E d3k

~2p!3 „11n~v0!…

3ur ~ t !gk~ t !1s~ t !ġk~ t !u2e2k2l 2, ~3.15!

where we used Eq.~2.23! for the two point function.
As a wavelength crosses the Hubble length at timeth ,

@k/a(th)52pH(th)#, we identify the associated quantu
fluctuation with the classical density inhomogeneity. Co
paring Eq.~3.7! with Eq. ~3.15! we immediately get
04350
he

e-

-

udk~ th!u25
1

r̄2
„11n~v0!…ur ~ th!gk~ th!1s~ th!ġk~ th!u2.

~3.16!

It now evolves as linear perturbation in classical gravity@3#.
It first oscillates with constant amplitude untilk/aH;1, and
then its evolution as super-horizon sized perturbation
gauge dependent, until its re-entry within the horizon af
inflation. But it turns out that the quantity,dr/( r̄1 p̄), has a
gauge invariant meaning: its magnitude on reentry has
proximately the same value as it had at exit during inflat
@4,20#. Assuming radiation dominance at re-entry, we th
get

S dr

r D
H

5
2A2

3p
Ak3

„11n~v0!…
urgk1sġku th

~ r̄1 p̄! th

, ~3.17!

where the subscriptH denotes horizon reentry.
It is simple to estimaten(v0) in the range ofk/a0, which

is of interest. We write

k

a0
5

k

a~ tp!

a~ tp!

a~ te!

a~ te!

a~ t0!
. ~3.18!

From the timete when the inflation ends until the prese
time tp , the universe expands adiabatically, so th
a(tp)/a(te).T0 /Tp . The other ratioa(te)/a(t0)[Z gives
the magnitude of inflation. We thus get

k

a0T0
5

2p

l~ tp!

Z

Tp
;

1

lMpc

Z

1025
, ~3.19!

where Tp52.7 K 511.8 cm21 and lMpc is l(tp) ex-
pressed in Mpc. The wavelengths of interest stretch over
range 1,lMpc,104 . In all models of inflationZ exceeds
1029 by many orders of magnitude. Thusk/a0T0 is large in
these models and we may setn(v0)50 in the expression
~3.17!.

We thus see that although the initial thermal equilibriu
state does produce a factor in the expression for the den
inhomogeneity, its magnitude turns out to be unity, justifyi
the use of zero temperature propagator for its evaluat
Nevertheless it is important to know the initial state, as th
are other quantities, such as the duration of inflation, wh
may depend sensitively on it.

In the discussion so far, we have been implicitly assum
that the initial thermal region of physical lengthL(tP)
;mP

21 at the Planck time grows to a sizeL(tp), which must
be at least of order 1028, the observed size of the universe.
is simple to check that this is indeed the case. The t
lengths are related by

L~ tp!5L~ tP!
a~ tp!

a~ tP!
.

Evaluating the ratio of scale factors, we get
8-5
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AMIT KUNDU, S. MALLIK, AND D. RAI CHAUDHURI PHYSICAL REVIEW D 61 043508
L~ tp!5
1

10
L~ tP!mPZ cm.

ThusL(tp) can easily exceed 1028 cm.
Finally we consider the example of the well-studie

original model of extended inflation@12# in the context of the
ideas presented here. Attaining thermalization due to gra
in the Planck era is relevant for this model, as the collis
rate of the scalar particles is known to be too small to p
duce it. Also the inflationary solution for the homogeneo
classical field can be shown to join smoothly to its const
values during the two radiation dominated eras, before
after the inflation. We have already evaluated (dr/r)H in
this model using the formula~3.17!, which we now justify
quite generally@14#. The difference in the time at which th
mode functions are evaluated does show up in the nume
evaluation: Our estimate is about an order of magnitude
ger than that of others@13#.

IV. CONCLUSION

In the present work we assume the inflationary epoch
begin in a state of thermal equilibrium and study its effect
the quantum fluctuation in the energy density calculated d
ing this epoch. This initial quantum state including the sca
particles appears quite likely even if their self-interaction
too feeble to ensure it. We show that the thermal equilibri
established at very early times through the then strong gr
tational interaction would be maintained until the beginni
of inflation. By evaluating the scalar field propagator w
thermal boundary conditions, we find a result for the dens
fluctuation, which differs from the one calculated with th
th
.
d

v.

D
n,

.

r-
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vacuum propagator by the factor$11(ek/a0T021)21%.
Clearly the factor does not go to unity as time passes but
constant depending on the physical wave number and
temperature referred to the initial timet0 .

It turns out, however, that for wave numbers of interest
the present universe, this factor is unity in models where
amount of inflation exceeds by many orders of magnitude
minimal amount required to solve the problems of stand
cosmology. Thus numerically the calculation of fluctuati
in the vacuum state is justified.

We also point out that the conventional quantum fie
theory applies on curved space-time as long as the mo
oscillate. This requires that we evaluate the quantum fluc
tion, at the latest, when the corresponding wavelen
crosses the Hubble length. Previous works@11#, however,
evaluate it as a rule for wavelengths well outside this leng
where the modes freeze. As we have shown in a recent w
@14#, this difference in the calculation leads to an increase
the result by about an order of magnitude for the model
extended inflation.

Finally we note that during inflation as long as the mod
are within the Hubble length, they retain a thermal equil
rium distribution. Thus although the initial state of therm
equilibrium comprising all modes is not maintained duri
inflation, the modes relevant for the calculation of dens
fluctuation are those still in an equilibrium distribution.
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