PHYSICAL REVIEW D, VOLUME 61, 043505

Holographic bound in Brans-Dicke cosmology
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We apply the holographic principle to Brans-Dicke cosmology. We analyze the holographic bound in both
the Jordan and Einstein frames. The holographic bound is satisfied for bdtk thhendk= — 1 universes, but
it is violated for thek=1 matter-dominated universe.

PACS numbd(s): 04.50+h, 98.80.Hw

I. INTRODUCTION IIl. BRANS-DICKE COSMOLOGY
IN THE JORDAN FRAME

In black hole theory, we know that the total entropy of
matter inside a black hole cannot be greater than th
Bekenstein-Hawking entropy, which is 1/4 of the area of the
event horizon of the black hole measured in Planck ydits N a,0d,¢
The extension of this statement to more general situations EBD:E —w?”“’#T
leads to the holographic princip[€]. The most radical ver-
sion of the holographic principle motivated by the AdS con-The above Lagrangiafil) is conformal invariant under the
formal field theory(CFT) conjecture is that all information conformal transformations
about a physical system in a spatial region is encoded in the

The Brans-Dicke Lagrangian in the Jordan frame is given

boundary. The application of this idea to cosmology was first P A 1
considered by Fischler and Susskif#]. Because the uni- =0, Q=¢ AF P
verse does not have a boundary, how can we apply the ho-

lographic principle to cosmology? Fischler and Susskind an- =gt p= w—6A(A—1)

swered this question by considering a space inside the @ (2n—1)2

particle horizon. They proposed that the matter entropy in- _ _
side a spatial volume of the particle horizon would not ex-For the casé =1/2, we make the following transformations:

ceed 1/4 of the area of the particle horizon measured in

Planck units. They found that flat universes and open uni- 9ur =" Yur 2
verses obeyed this version of the holographic principle.
; ; ‘e Arine : 8
However, a closed universe violates this principle. This may b= — e, 3)
K

imply that our universe is flat or open. On the other hand,

this may imply that we need to revise the holographic prin- - B -
ciple somehow. Easther and Lowe use the generalized sefN€ré«"=87G, a=p«, andp"=2/(2w+3). Remember

ond law of thermodynamics to replace the holographic prin_t at the Jordan-Brans-Dicke Lagrangian is not invariant un-

ciple [4]. Bak and Rey[5] considered an apparent horizon der the above transformatiof®) and(3). The homogeneous

instead of an event horizon to solve the problem. In cosmolf’.lnd isotropic Friedmann-Robertson-WalkéfRW) space-

ogy, there is a natural choice of length scale, the Hubbl Ime metric Is
distanceH 1. H™! coincides with the particle horizon and

apparent horizon apart from an order 1 numerical factor for ds’= —dt?+a?(t)
the flat universe, but it becomes much larger than the appar-

ent horizon for a closed universe. So we know that the . .
choice ofH ! as the horizon cannot solve the problem of theand the above metric can be written as

violation of the holographic principle in a closed universe. 2, .2 20N2/ 402 1 i 2

The holographic principle in cosmology is also discussed in ds’=—dt*+a’(t)[dx"+2%(d6°+sif9dg?)],  (5)
[6]. Einstein’s theory may not describe gravity at very high,hare

energy. The simplest generalization of Einstein’s theory is

2

1—kr?

+r2dﬂ}, (4)

Brans-Dicke theory. The recent interest in scalar-tensor theo- X, k=0,

ries of gravity arises from inflationary cosmology, super- ,

gravity, and string theory. There exists at least one scalar 3 =9 sinhy, k=-1, (6)
field, the dilaton field, in the low energy effective bosonic siny, k=1.

string theory. Scalar degrees of freedom arise also upon com-

pactification of higher dimensions. In this paper, we apply Based on the FRW metric and the perfect flTil" = (p

the Fischler-Susskind proposal to Brans-Dicke cosmology int-p)U#U"+pg*” as the matter source, we can get the evo-
both the Jordan and Einstein frames. lution equations of the universe from the actidn:
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. . 2 ~
k ¢ w(d}) 8w ft dt 4+3w(1— %)

H2+_+H___ —| ==—p, 7 rgy= — = tlip. 13
21576l Tagf " 0a®) ad2tel-paraplt ¥
¢+3Hp=4mB%(p—3p), ) . o .

Therefore, the ratio between the entropy inside the particle
b+3H(p+ p)=0. (9) horizon and the area of the horizon is

If we are given a state equation for the mafper yp, then 5
the solution to Eq(9) is S _ iér_H ae 4+3w(1-79) 1-3p
GA/4 3G a’ 3G aj[2+w(1—7y)(1+3y)] '

palrti=c;. (10) (14)

Most of the cosmological solutions in this paper were
given in[7]. For the cas&k=0, we can get the power-law where € is the constant comoving entropy density, and 1

solutions to Egs(7) and (8) with the help of Eq.(10): —3p=—[2+3w(1-17)?]/[4+3w(1—9%)]. The holo-
graphic bound is satisfied foy in the range given by Eq.
a(t)=aotP, ()= ot (1) (12) if the above ratio is not greater than 1 initially.

For the cas&= £ 1, we do not have a general solution for

where all values ofy, so we consider two special cases: the matter-
2+2w(1—7) 2(1-3y) dominated universe withy=0 and the radiation-dominated
p= m q= m gr;\;e(;.:,/ea\(/\él)thyz 1/3. It is convenient to use the cosmic time

For y=1/3, we can solve E(q8) to get

J— g S —
1<y<1 YT (12
. . a’$p=C,, (15)
ap, and ¢, are integration constants, anflq(q—1)
+3pqlpo=4mB%(1—3y)Cray """ 1. The particle hori-
zon is whereC,#0 is an integration constant.

(i) k=1.The solutions are

8mCytart 5+ 7o)/3+ (64m?CHI9+ 2CF35% — 27367 | ¥

8wCytan 5+ 70)/3+ /64w2C3/9+ 2C3/3B8%+ \/2C35/3B2

) 47C, 1 [64m°C5 2C5
a(me(n=—73—+5 9 +3—’323|r[2(77+770)], 17

where 7 is an integration constant. The entropy to area ratio is

(n)= o (16)

S _ €(2n—sin 29) $(n)
GA4 G sir?p{4mC I3+ \64m2C2/9+ 2C5/3B%siN 2( n+ 7o) 1}

(18)

Note that G=2(7+ 7)<, SO we see that the holographic bound can be satisfied if it is satisfied initially.
(i) k=—1 andC3<327282C3/3. We have the solutions

64w2C2  2C3
9 352

47C, 1
a¥ () h(n)=— —35—+ 15" 0+

)3—2(77+ 710), (19

( & ) 2138 (—4mCy/3—b)tank 7+ 7o) —c+C, /64 (20)

o " (—4mC/3—b)tanH + ) —c— C,/ 68’

whereb=1/16+ 6472C3/9— 2C3/38% andc= 1/16— 647°C2/9+ 2C3/332. The Brans-Dicke scalar field changes very slowly
compared to the scale factor. Therefore the holographic bound
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S e(sinh2yp—2n) ¢

— <1
GAA G sintPy[ —47C I3+ €T 1[16+ (6472C2/9— 2C3/35%)e 27+ 70)]

will be satisfied if it is satisfied initially.
(iii) k=0. The solutions are

2

87C
@ (=5 (10 g zs (22
pom— i T 70— \6C,116m6C, |7 3
7720 g+ mo+ JBC /16w AC,

The Brans-Dicke scalar fielg slowly increases up te, as
the universe expands. The holographic bound

S _4e 79(n) 1
GA/4 3G 87wCy(n+ 59)2/3—C5/16wB>C,
(24)
can be satisfied if it is satisfied initially.
For y=0, the solutions are
a(n)=ace®”, ¢=doe "7, (25)

whereb?= — 2k/(2+ w) and 4w 3°C,= — agpeb>.
(@) k=—1 and—2<w<—3/2. The above solution®5)
are exponential expansion in the cosmic timeor linear

expansion in the coordinate timeThe entropy to area ratio

is

S _e(sinhzn—zn)
GA4  GaZe?7sintty

(26)

So the holographic bound can be satisfied foR<w<
—3/2 if it is satisfied initially.

(b) k=1 andw< —2. The solutiong25) are linear in the
coordinate timd. The entropy to area ratio is

S e2np- sin 27)
GA4  GaZe®7sirty’

(27)

It is obvious that the holographic bound can be violated

when »=ns for any integem.
In fact, the current experimental constraint enis

>500 or32<0.002. The solution&25) may not be physical.

(21)

Ill. BRANS-DICKE COSMOLOGY
IN THE EINSTEIN FRAME

The Brans-Dicke Lagrangian in the Einstein frame is ob-
tained by the conformal transformatiof® and (3):

1
L=+— —R——g“"ﬁ 00,0 | = Ln(h,799,,).

(28)

The perfect fluid becomesT~’=e 22[(p+p)UrU”
+pg””]. From the FRW metric in the Einstein frame, we
can get the evolution equations of the universe from the ac-
tion (28):

k «%/1.

24 |22 2a0
H +a2 3(20' +e p), (29
oc+3Ho= 2a0(,—3p) (30)

3
p+3H(p+p)= —cw(p+ p). (32)
With p= vyp, the solution to Eq(31) is
paS('y+1)e—3a(y+l)U'/2: C31 (32)

where C; is a constant of integration. For the flat universe
k=0, combining Eqs(29), (30), and(31), we have

aefa(lw)olﬁz(lfsw:cm (33

whereC, is an integration constant and the above equation is
valid for —1<y<1-2/(3+6/B) and y# 1/3. To obtaln
the above solution, we assume tha#a®—0 andaa®—0
whena—0. From Egs(29), (32), and(33), we get

2k2(1— y)2C4CF A 30201
6(1—y)*—BA(1-3y)?

% gl = 6(1- )= B%(1-39)%/2(1~ )

2:

(34)

In order to see the main result clearly, | omit constant coef-
ficients in the following Eqgs(35) and (36). The particle
horizon is

However, the low energy effective theory of the string theory
can lead tow=—1; we may need to explore the possibility
of negativew. For positivew, we need to solve the equations
numerically. Whenn— o and at late times, the Brans-Dicke
cosmological solutions become general relativistic solutionsThe entropy to area ratio is

" _faﬁwa[Z(l NA+39+F21-39) 417 (35
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iNa[—e(l—7)2—52(1—3y)21/4<1—y> (36)
GA/4 '
For y=1, we find that
1.
(e—2a0p+ _0.2 aGZCG,
2
whereCg is an integration constant:
a®=\3k%Cqt,
S _ 2e
GA4  G\3k%Cq
For y=1/3, we have
alo=Csg, (37)
whereC5#0 is an integration constant.
(1) k=0. The entropy to area ratio is
S 4e  \Cza%+CZ2—\CiI2 -
GA/4  \[3GC;k a’ '

Therefore, from Eqgs(36) and (38), we see that the holo-
graphic principle is satisfied for 1<y<1-2/(3+ \6/B)
provided that it is satisfied initially.

(2) k=—1 and«?C3=6C2. We have

_ 2\a'+ k’C3a%/3+ k’CEl6+ 28+ k*C4/3

erH
2k?CEl6+ k*C4/3
(39
The entropy to area ratio is
S e(sinh2yy—2
_ ( XH ™~ 2XH) (40)

GA/4  Ga’sintfyy
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As aincreases, 8/GA decreases. The holographic bound is
satisfied if it is satisfied initially.

(3) k=1. We have

) , kCy ¢ arcsi 6a’— k’Cy
= arcsit-——— + arcsit-—————.
X Jx2C2+6C2 JKk*C2+6x2C2
(41
The holographic bound
S €(2xy—sin2
_ (2xw XH) <1 42)

GA/4  Ga’sirfyy
is satisfied if it is satisfied initially.

For y=0 andk?®=1, we do not have any analytical solu-
tion. We need to solve the problem numerically.

IV. CONCLUSIONS

We analyze the holographic principle in Brans-Dicke
theory. For a flat universe, we find that the holographic
bound can be satisfied for any matter withl<y<1
—2/(3+/6/B). For a universe wittkk?=1, we do not have
general analytical solutions for all values f In particular,
we do not have an analytical solution for the matter-
dominateck?=1 universe. We know that in standard Fried-
mann cosmology the holographic principle is violated for a
closed matter-dominated universe near the maximal expan-
sion. To check the holographic bound for tke 1 matter-
dominated Brans-Dicke cosmological model, we need to do
a numerical calculation. However, the numerical results in
[8] tell us that the expansion rate in Brans-Dicke models is
slower than that in Friedmann models. At large times, the
difference becomes negligible. Therefore we expect that the
holographic bound is also violated for tHe=1 matter-
dominated universe in Brans-Dicke cosmology.
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