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Regular bouncing cosmological solutions in effective actions in four dimensions

C. P. Constantinidis,* J. C. Fabris,† R. G. Furtado,‡ and M. Picco§

Departamento de Fı´sica, Universidade Federal do Espı´rito Santo, 29060-900, Vito´ria, Espı́rito Santo, Brazil
~Received 30 June 1999; published 25 January 2000!

We study cosmological scenarios resulting from effective actions in four dimensions which are, under some
assumptions, connected with multidimensional, supergravity and string theories. These effective actions are
labeled by the parametersv, the dilaton coupling constant, andn which establishes the coupling between the
dilaton and a scalar field originating from the gauge field existing in the original theories. There is a large class
of bouncing as well as Friedmann-like solutions. We investigate under which conditions bouncing regular
solutions can be obtained. In the case of the string effective action, regularity is obtained through the inclusion
of contributions from the Ramond-Ramond sector of superstring.

PACS number~s!: 98.80.Hw, 04.50.1h, 04.65.1e, 98.80.Cq
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Higher dimensional space-time, supersymmetry a
strings are some of the most outstanding concepts emplo
currently for the construction of a theory unifying all phys
cal interactions. The emergence of the idea of a string rep
ing point particles as the fundamental element in nature
permitted one to obtain a multiplet including the gravit
together with massless spin 1 particles@1#. Supersymmetry is
naturally included in it, completing the fermionic sector
the multiplet. The critical dimension of the bosonic string
26, while its supersymmetric version, the superstring, ha
critical dimension equal to 10. In this way, supergravity a
Kaluza-Klein theories are, in some sense, inserted in
framework of this unification program. The true nature
superstring theories is revealed on very high energy lev
near the Planck scale,Ep;1019 GeV. Hence, the early Uni
verse is the most viable laboratory to test this theory, un
some phenomenology can be obtained at a much sm
energy scale, which is not the case until now.

The structure of string theory is very complex, and
trying to study its cosmological consequences, it comes
more feasible to work with the effective theory in the lo
energy level@1,2#. Even at this level the theory presents
non-trivial field composition: essentially, there is the grav
sector, the dilaton and a three-form field. In the gravity s
tor, at one loop approximation, the Gauss-Bonnet te
comes to scene. The dilaton field couples non-minimally
gravity. All these terms are written in ten dimensions and
reduction to four dimensions leads to the appearance
moduli fields via the compactification process.

These moduli fields appear also in multidimensional th
ries, not necessarily related to strings. In principle, a p
multidimensional theory must contain just geometry, the
duction to four dimensions producing gauge and sca
fields. But if we consider a supergravity theory in high
dimensions~the most famous ones being the eleven and
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dimensional supergravities!, gravity, in its higher dimen-
sional formulation, is generally coupled to gauge or sca
fields, composing the bosonic sector. The reduction to f
dimensions leads to a non-trivial coupling between grav
and scalar fields and among scalar fields themselves, som
them coming from the compactification of the internal d
mensions.

The cosmological consequences of these effective mo
in four dimensions has been extensively studied. Some
amples are the string@3,6,4,5#, multidimensional@7# and su-
pergravities@8,9# effective models. In some cases, multid
mensional effective models with gauge fields have be
considered and, in particular, with a higher dimensional c
formal gauge field theory@10#. The low energy superstring
effective model is the basis of the so-called pre-big-bang@5#
scenario, where there is a phase, prior to the radiative
during which the Universe could be either in an expand
inflationary regime or in a contraction phase, without rea
ing the singularity.

The structure of the coupling between gravity and sca
fields in these effective theories in 4 dimensions can be,
der certain assumptions to be specified later, represente
the following expression:

L5A2gF S fR2v
f ;rf ;r

f
2fnC ;rC ;rD2x ;rx ;rG1Lm .

~1!

The termLm represents ordinary matter. Here, we will b
interested in the radiative fluid only, since it seems mo
realistic when we have in mind the primordial Universe. A
examples of this Lagrangian, we note that:

~1! It corresponds to pure multidimensional theories w
C5x5 constant andv5(12d)/d, whered is the number
of compactified dimensions~in this case, we consider th
compactification on the torus!.

~2! If we consider a two form-gauge field in higher d
mensions we obtainCÞconst andn522/d11.

~3! A conformal gauge field, represented by
(d14)/2-form, leads ton522/d.

~4! In string theoryv521; moreover, the fact that in
general the three-form fieldHmnl has, in four dimensions
ss:
©2000 The American Physical Society03-1
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just one degree of freedom permits one to writeHmnl

5f21emnlsC ;s which corresponds ton521 in ~1! @11#.
The x term is the scalar component coming from anoth

three-form field which is present in the Ramond-Ramo
sector of type IIB superstring. Note that this field does n
couple directly with the dilaton. Since we are interested
cosmological applications, we have set all gauge fields eq
to zero in the effective model in four dimensions. Moreov
in all these cases, there are some simplifications in the
cess of obtaining the effective action. For string theory,
example, the moduli fields and the Gauss-Bonnet term
absent; in what concerns multidimensional models,
moduli fields are taken into account but the curvature of
internal space is zero.

The purpose of this article is to consider the Lagrang
~1! with v and n arbitrary. In this way, we can map man
possible cosmological scenarios resulting from the existe
of supersymmetry and extra dimensions, with the assu
tions specified above. Our interest is to verify the genera
of bouncing and, in some cases, inflationary solutions. I
bouncing cosmological scenario the scale factor has initi
an infinite value, decreasing then to a minimum value diff
ent from zero, after which it follows an expanding phase.
course, a bouncing solution has necessarily an inflation
phase, since a minimum for the scale factor impliesȧ50 and
ä.0 near it. The main question we try to answer is t
conditions under which a bouncing or inflationary univer
may be found in the realm of the effective theories descri
by Eq. ~1!. We remark, however, that the existence of
bouncing solution is not a sufficient condition for havin
singularity-free models, as will be shown later. We will an
lyze also the existence of complete regular solutions. In
sense, we must investigate divergences of the curvature
variants as well as, in the special case of string models,
vergences in the loop expansion parameter.

In fact, if we restrict ourselves first to the string cosmo
ogy program, it is has already been shown@11,12# that the
existence of an axion field in the tree level string effect
action leads to the existence of a minimum for the sc
factor, that is a bouncing solution. However, a singularity
still present in the beginning of the evolution of the Un
verse, even if the scale factor is non-zero. In this sense,
introduction of loop approximations is an essential ingredi
of string cosmology since it permits one to avoid the sing
larity. However, these analyses were made consideringv5
21 andn521, i.e. string cosmology with a particular cou
pling between the dilaton and axion fields. We will exte
them here, showing that forv521 a singularity seems to b
unavoidable. To avoid this singularity, we must haven,1
and2 3

2 .v.2 4
3 . In string cosmology, this implies consid

ering moduli fields, whose analysis is more complex sinc
third scalar field, with non-trivial coupling with the othe
two, appears in Eq.~1!. But we will show that the introduc-
tion of terms coming from the Ramond-Ramond sector
superstring can render the bouncing solutions regular eve
the tree level.

We will study essentially the predictions of models d
scribed by Eq.~1! concerning the evolution of the scale fa
tor in the primordial Universe. We will verify that bouncin
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solutions are most favored by the conditionsv,0 and n
,1, even if in some situations it can occur for other valu
of these parameters. Complete regular solutions can be
tained whenv50 and n,1 ~which, on the other hand
seems to be unstable! or for 2 3

2 .v.2 4
3 . We will perform

our study in the vacuum case, where only those fundame
fields are present, and when they are coupled to a radia
fluid. The radiative fluid will be minimally coupled to the
geometry in Jordan’s frame, where dilaton is non-minima
coupled to gravity.

The field equations coming from Lagrangian~1! are

Rmn2
1

2
gmnR5

8p

f
Tmn1

v

f2 S f ;mf ;n2
1

2
gmnf ;rf ;rD

1
1

f
~f ;m;n2gmnhf!

1fn21S C ;mC ;n2
1

2
gmnC ;rC ;rD

1
1

f S x ;mx ;n2
1

2
gmnx ;rx ;rD , ~2!

hf1
12n

312v
fnC ;rC ;r1

x ;rx ;r

312v
5

8p

312v
T, ~3!

hC1n
f ;r

f
C ;r50, ~4!

hx50, ~5!

Tmn
;m50. ~6!

We insert in these equations the Friedmann-Lemai
Robertson-Walker~FLRW! metric

ds25dt22a~ t !2S dr2

12er 2
1r 2~du21sin2udf2!D . ~7!

A flat, open and closed spatial section impliese50,21 and
1, respectively. We consider also a barotropic perfect flu

Tmn5~r1p!umun2pgmn, p5ar21<a<1. ~8!

As happens in general when we are treating gravity in
presence of scalar fields, it is more convenient to repar
etrize the time coordinate such that

dt5a3du. ~9!

In this new parametrization and with primes denoting deri
tives with respect tou, the equations of motion read

3S a8

a D 2

13ea45
8p

f
ra61

v

2 S f8

f D 2

23
a8

a

f8

f
1

fn21

2
C821

1

2

x82

f
, ~10!
3-2
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f91
12n

312v
fnC821

x82

312v
5

8p

f
~r23p!a6, ~11!

C91n
f8

f
C850, ~12!

x950, ~13!

r813
a8

a
~r1p!50. ~14!

Equations~12!,~13!,~14! are easily integrated, leading to

C85Af2n, x5Bu1C, r5r0a23(11a), ~15!

whereA, B, C andr0 are integration constants. The int
gration of the other two equations depends on whetherx5
constant or not and on the presence of ordinary matter.
will consider separately these different cases.

~I! Vacuum case,r50.
~Ia! x5const. In this case, Eq.~11! admits a first integral:

f82

2
1

A2

312v
f12n5

D

2
, ~16!

whereD is an integration constant. From Eqs.~9!,~16! we
obtain a transcendental relation forf as function of u,
through hypergeometric functions

u52
2

~n21!AD
f2F1S 1

12n
,
1

2
,
22n

12n
,~rf!12nD ,

~17!

wherer 5@(312v)D/2A2#2. In order to integrate Eq.~10!,
we redefine the scale factora5f21/2b, obtaining the equa-
tion

3S b8

b D 2

13e
b4

f2
5

312v

4 S f8

f D 2

1
A2

2
f212n. ~18!

We will first study the cases wherenÞ1; the casen51 will
be studied separately. Using Eq.~16!, Eq. ~18! becomes

b8

b
5S 312v

12
D2eb4D 1/2 1

f
. ~19!

Eliminating againdu through Eq.~16!, one obtains the inte
gral relation

E dy

yA12ey2
5

2

12n
A312v

3 E dx

xA12x2
, ~20!

where

x5A 2A2

~312v!D
f (12n)/2

and
04350
e

y5A 12

~312v!D
b2.

In order to impose thatx2,1, we definex5sinj. Integrating
Eq. ~20! and using the definitions given above, we obtain t
following solution fora:

a5a0~sinj!1/(n21)F tanp
j

2

11ek2tan2p~j/2!
G 1/2

, ~21!

wherek is another integration constant and

p5
2

12n
A11

2

3
v.

The cosmic time is connected with the variablej through the
relation

t5
L

12nE a3 sin(11n)/(12n)jdj, ~22!

where

L52S 2A2

~312v!D D 1/(12n)

.

The integrand of this relation being always positive,t is a
monotonic function ofj.

For e50, the asymptotic behavior forj→0 is

a}j [1/(12n)]( 211A11(2/3)v), while for j5p2z, z→0, the

asymptotic behavior readsa}z[ 21/(12n)](11A11(2/3)v). From
these expressions, we can classify the possible scenario
n,1, v,0, Eq. ~21! represents a bouncing solution; forn
.1 andv,0, we find a big bang followed by a big crunch
in spite of the fact that the spatial section is flat; all oth
cases represent an expanding universe.

Following the same asymptotic analysis we find bounc
solutions foreÞ0 only whenv,0 andn,1. For the other
cases, the corresponding Friedmann-like scenarios are re
ered.

A special case isv50. Then, the solution~21! takes the
form

a5a0

1

Acos4/(12n)~j/2!1ek2sin4/(12n)~j/2!
. ~23!

In this case, ifn,1, we are at the boundary of two differen
behaviors and this special solution reflects this fact. Foe
50, n,1, Eq. ~23! is a sequence of bouncing universes.
e521, we find again a bouncing universe. Whene51 the
universe oscillates, the scale factor never reaching zero.
last case is an example of a complete, eternal, regular
verse. In particular, whenk51, we find a static universe
even if the scalar fields evolve with time. Ifn.1, on the
other hand, Eq.~23! represents, fore50,1, an oscillating
universe, the minimum value of the scale factor being ze
For e521 we find again a bouncing universe.
3-3
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There exists also the limit casen51 for which the scalar
field behaves asf5Eu, E being a constant. The equatio
for the scale factor can be integrated in a similar way
before, leading to the following expressions:

e51,21, a5a0u21/2A u6q

11eu62q
, ~24!

e50, a5a0t (q61)/(3q61), ~25!

where

q5A11 2
3 v1A2. ~26!

These solutions represent an expanding universe with an
tial singularity, for any value of the curvature constante.
There are inflationary expanding solutions when2 3

2 2A2

,v,2 4
3 2A2.

~Ib! xÞconst. This case seems to admit an exact solu
only for n521. The first integrals forC andx are

C85Af, x5Eu. ~27!

Using these first integrals, the solution for the scalar fieldf
reads

f5C sinku2
E2

2A2
, k5A 2A2

312v
, ~28!

while the equation for the scale factor can be reduced to

E dy

yA12y2
5

2D

A3
E du

f
, ~29!

wherea5f21/2b, y25(A3e/D2)b4. The final solutions are

e51, a5a0

1

Asinku2s
cosh21/2f ~u!, ~30!

e50, a5a0

1

Asinku2s
exp@ f ~u!#, ~31!

e521, a5a0

1

Asinku2s
sinh21/2f ~u!,

~32!

where

f ~u!5
4D

A3Ck

1

Aus221u
arctanF12s tan~ku/2!

Aus221u
G , s5

E2

2A2C
.

~33!

These solutions are valid fors,1, which is the most inter-
esting case. The solutions~30!,~31!,~32! represent a bounc
ing universe for any value ofv. Moreover, there is a loca
maximum for the scale factor whene51 and u
5(2/k)arctan(1/s).
04350
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~II ! Radiative fluid case andx5const.
The integration of the equations follows the same pro

dure as before. We note that for the radiative caseTr
r5T

50. Hence the equations for the scalar fields, and their c
responding first integrals, keep their form. However, for t
scale factor, and after redefininga5f21/2b, we obtain

b8

b
5S 312v

12
D1mb223eb4D 1/2 1

f
, ~34!

where we have writtenm58pr0. The first integral of Eq.
~11! permits us again to employ the reparametrizat
f12n5sinj. We can then integrate the equations forb, re-
constructing the solutions fora. We will present the solution
for the casee50. It reads

a5a0~sinj!1/(n21)H tanp/2~j/2!

12tanp~j/2!
J , ~35!

wherep is defined as before. This solution exhibits bounci
solutions forv,0 andn,1.

The different scenarios exposed here have many inter
ing features that deserve a more detailed analysis, ma
through the construction of realistic models and testing th
against observations. We studied the behavior of cosmol
cal models inspired in string, supergravities and Kalu
Klein theories. These different effective models can be rec
in a unified form, labeled essentially by the two parametern
and v. In what concerns the effective model coming fro
string there are two important simplifications: the Gau
Bonnet term is not included; the compactification from ten
four dimensions is performed on the torus, with a const
internal scale factor. Concerning effective models com
from multidimensional theories, one of the most importa
restrictions is the absence of curvature in the internal sp

The solutions obtained reveal bouncing, in general,
n,1 and v,0. The presence of the termx, originating
from the Ramond-Ramond sector, leads in general to
presence of a bounce. However, we must remark that the
that the scale factor goes to an infinite value in the init
state of the Universe does not mean an absence of sing
ity. To verify this, we investigate the behavior of a curvatu
scalar, likeR, the Ricci scalar. It is written as

R526F ä

a
1S ȧ

a
D 2G , ~36!

and whena}tm ~what can be an approximation for the sol
tions founded before for small intervals of time!, R}t22.
Hence,R→` if the initial states occurs att50. It is regular
if t→2`, meaning a singularity-free universe. For examp
in the vacuum and radiative cases, withx5const ande50,
the Universe is completely regular forn,1 and2 3

2 ,v,
2 4

3 . WhenxÞconst, withn521, the solutions are alway
regular. In all other cases, even if the scale factor never g
to zero, the curvature invariants diverge att50 in spite of
the fact that the scale factor has an infinite value. In orde
have a bouncing regular solution, where the Universe beg
and ends in a Minkowskian state, in the context of stri
3-4
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(v521), the fieldx must be considered. Otherwise, the
is a singular initial state and the corrections coming from
one loop approximation must be taken into account. T
question of the conditions of validity of the string effectiv
model, with respect to curvature divergences, has been
sidered in@13# where the moduli fields are taken into a
count.

In the special case of string cosmology, there is als
singularity in the expansion parameter. This parameter
be related to the dilaton fieldF by the expressiongs

25eF.
Since in our case we have the relationf5e2F, whenf goes
to zero,gs

2→`. Hence, the loop expansion has no mean
anymore. However, the type IIB superstring theory, fro
which comes the fieldx considered in this paper, has ans
duality, where the strong coupling regime is mapped onto
weak coupling regime. This duality is verified, for examp
in a flat background; for curved backgrounds, as is the c
here, it is not straightforward to verify whether thes duality
can be employed or not. This question is not a trivial one,
due to thes-duality properties of type IIB superstring th
model considered here might make sense even with the
vergence in the expansion parameter. In the study perfor
before, this remark is restricted to the casev521, which
correspond to the string effective action.

Regular bouncing solutions are not so common in the
erature. In principle, one may think that the existence o
bounce by itself can lead to singularity-free cosmologi
models. But this is not true, as has been shown in@10,11# for
example. However, such kinds of cosmological models
they are regular everywhere, represent an interesting alte
tive, or amending, to the standard one since~1! they are free
of an initial singularity, which is one of the most importa
problems in the standard cosmological model;~2! they con-
tain naturally an inflationary phase, which ends at a giv
moment after the beginning of the expansion phase;~3! they
can join the radiative phase of the standard model, keep
all of its advantages from the observational point of view.
principle, a bouncing universe must constitute a primord
scenario, and perhaps we must consider the possibility
decaying of the primordial scalar fields, originating ordina
matter, from where a smooth transition to the ordinary rad
tive phase can be obtained. But this leads us to consid
more complicated scenario~from technical and conceptua
point of view! of baryogenesis.

The introduction of a radiative fluid may permit one
obtain some observational constraints on these models
7
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this case, it is possible to associate a temperature that v
as the inverse of the scale factor, as usual. Hence, the bo
ing universe has a cold origin and the temperature mount
a maximum value, decreasing from that moment on. This
leave traces in the primordial nucleosynthesis with spec
predictions for the relative abundances of light elements
on the anisotropy of the cosmic microwave background. T
determination of these observational traces is outside
scope of the present work, but evidently it will constraint t
parametersv andn.

Another good criterion to select viable models is the s
bility against small perturbations. Because of the complex
of the background solutions, this is a very difficult analys
to be performed. However, we note that the fieldf plays the
role of a variable gravitational constant and in general th
is an instability when there is an anti-gravity phase, i.
whenf takes negative values during a certain period@9,14#
or when it takes a zero value in a finite proper time. In t
solutions determined before, the gravitational coupling is
ways positive and this kind of problem is absent, except
for some values of the parametern when v50, where the
gravitational coupling can become negative or zero dur
the evolution of the Universe. Hence, the vacuum case w
v50 must be unstable.

It is important to notice that in the case of a bounci
universe, there is a primordial phase where not only
strong energy condition can be violated~leading to an infla-
tionary phase!, but also in some cases the weak energy c
dition @15#. However, there are many examples of physi
systems that can violate the weak energy condition un
certain circumstances@16# and this can not be viewed as
drawback of the models exhibiting a bounce, mainly wh
these models concern a primordial phase.

Finally, we must stress the fact that we have worked h
in the Jordan frame. However, the solutions can also be w
ten in the Einstein frame, since the redefinitiona5f21/2b
employed to solve the equations is just a conformal trans
mation that transports the action from one frame to anoth
It is important to remark that, in the Einstein frame, all s
lutions have a singular initial state. This leads us to the pr
lem of what is the physical frame@17–19#. Our choice was
to work in the Jordan frame since the effective model a
pears naturally in it.

We thank K. Bronnikov and Loriano Bonora for usef
discussions. We also thank CNPq and CAPES~Brazil! for
financial support.
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