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Regular bouncing cosmological solutions in effective actions in four dimensions
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We study cosmological scenarios resulting from effective actions in four dimensions which are, under some
assumptions, connected with multidimensional, supergravity and string theories. These effective actions are
labeled by the parametess, the dilaton coupling constant, amdwhich establishes the coupling between the
dilaton and a scalar field originating from the gauge field existing in the original theories. There is a large class
of bouncing as well as Friedmann-like solutions. We investigate under which conditions bouncing regular
solutions can be obtained. In the case of the string effective action, regularity is obtained through the inclusion
of contributions from the Ramond-Ramond sector of superstring.

PACS numbes): 98.80.Hw, 04.50t+h, 04.65+¢, 98.80.Cq

Higher dimensional space-time, supersymmetry andlimensional supergravitigsgravity, in its higher dimen-
strings are some of the most outstanding concepts employegional formulation, is generally coupled to gauge or scalar
currently for the construction of a theory unifying all physi- fields, composing the bosonic sector. The reduction to four
cal interactions. The emergence of the idea of a string replaglimensions leads to a non-trivial coupling between gravity
ing point particles as the fundamental element in nature hagnd scalar fields and among scalar fields themselves, some of
permitted one to obtain a multiplet including the gravitonthem coming from the compactification of the internal di-
together with massless spin 1 partidlés Supersymmetry is Mmensions.
naturally included in it, completing the fermionic sector of ~ The cosmological consequences of these effective models
the multiplet. The critical dimension of the bosonic string isin four dimensions has been extensively studied. Some ex-
26, while its supersymmetric version, the superstring, has amples are the strin,6,4,9, multidimensiona[7] and su-
critical dimension equal to 10. In this way, supergravity andpergravities[8,9] effective models. In some cases, multidi-
Kaluza-Klein theories are, in some sense, inserted in th&ensional effective models with gauge fields have been
framework of this unification program. The true nature ofconsidered and, in particular, with a higher dimensional con-
superstring theories is revealed on very high energy leveldormal gauge field theory10]. The low energy superstring
near the Planck scalg&,~10" GeV. Hence, the early Uni- effective model is the basis of the so-called pre-big-bidiig
verse is the most viable laboratory to test this theory, unlesgcenario, where there is a phase, prior to the radiative era,
some phenomenology can be obtained at a much smalléluring which the Universe could be either in an expanding
energy scale, which is not the case until now. inflationary regime or in a contraction phase, without reach-

The structure of string theory is very complex, and ining the singularity.
trying to study its cosmological consequences, it comes out The structure of the coupling between gravity and scalar
more feasible to work with the effective theory in the low fields in these effective theories in 4 dimensions can be, un-
energy level[1,2]. Even at this level the theory presents ader certain assumptions to be specified later, represented by
non-trivial field composition: essentially, there is the gravity the following expression:
sector, the dilaton and a three-form field. In the gravity sec-
tor, at one loop approximation, the Gauss-Bonnet term
comes to scene. The dilaton field couples non-minimally to L= \/_H(ﬁR 1)
gravity. All these terms are written in ten dimensions and the
reduction to four dimensions leads to the appearance of
moduli fields via the compactification process.

These moduli fields appear also in multidimensional theo-The termL,, represents ordinary matter. Here, we will be
ries, not necessarily related to strings. In principle, a purénterested in the radiative fluid only, since it seems more
multidimensional theory must contain just geometry, the resealistic when we have in mind the primordial Universe. As
duction to four dimensions producing gauge and scalaexamples of this Lagrangian, we note that:
fields. But if we consider a supergravity theory in higher (1) It corresponds to pure multidimensional theories with
dimensions(the most famous ones being the eleven and tef?’ = y= constant andv=(1—d)/d, whered is the number

of compactified dimensionén this case, we consider the
compactification on the torus
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just one degree of freedom permits one to write" solutions are most favored by the conditions<0 andn
= ¢~ te*" V. which corresponds ta=—1 in (1) [11]. <1, even if in some situations it can occur for other values
The x term is the scalar component coming from anotherof these parameters. Complete regular solutions can be ob-
three-form field which is present in the Ramond-Ramondained whenw=0 and n<1 (which, on the other hand,
sector of type 1IB superstring. Note that this field does notseems to be unstabler for — >w>—%. We will perform
couple directly with the dilaton. Since we are interested inour Study in the vacuum case, where On|y those fundamental
cosmological applications, we have set all gauge fields equajelds are present, and when they are coupled to a radiative
to zero in the effective model in four dimensions. Moreover flyid. The radiative fluid will be minimally coupled to the
in all these cases, there are some simplifications in the prggeometry in Jordan’s frame, where dilaton is non-minimally
cess of obtaining the effective action. For string theory, forcoupled to gravity.
example, the moduli fields and the Gauss-Bonnet term are The field equations coming from Lagrangiéh) are
absent; in what concerns multidimensional models, the
moduli fields are taken into account but the curvature of the 1 87 ® 1 _
internal space is zero. Ruv=59uR= 7TM+—2( Db Egﬂy¢;p¢’p)
The purpose of this article is to consider the Lagrangian ¢
(1) with @ andn arbitrary. In this way, we can map many 1
possible cosmological scenarios resulting from the existence +E(¢;M;V—9WD )
of supersymmetry and extra dimensions, with the assump-

tions specified above. Our interest is to verify the generality 1

of bouncing and, in some cases, inflationary solutions. In a +¢”_1(‘I’;M‘I’;V—§gw‘l’;p‘l’;”)

bouncing cosmological scenario the scale factor has initially

an infinite value, decreasing then to a minimum value differ- 1 1 _

ent from zero, after which it follows an expanding phase. Of + % X;,LX;V—EQMVX;pX’p)- 2

course, a bouncing solution has necessarily an inflationary

phase, since a minimum for the scale factor impdieso and 1-n XpX? 8

a>0 near it. The main question we try to answer is the Do+ 3+2 ¢“\If;p\lrv/’+3;rz 352 T
w w w

conditions under which a bouncing or inflationary universe

may be found in the realm of the effective theories described &

by Eq. (1). We remark, however, that the existence of a qu+n7”qu20, (4)

bouncing solution is not a sufficient condition for having

singularity-free models, as will be shown later. We will ana- Cx=0 (5)

lyze also the existence of complete regular solutions. In this '

sense, we must investigate divergences of the curvature in- THv. =0, (6)

variants as well as, in the special case of string models, di- i

vergences in the loop expansion parameter. We insert in these equations the Friedmann-Lemaitre-

In fact, if we restrict ourselves first to the string cosmol- Ropertson-WalkefFLRW) metric
ogy program, it is has already been shojtd,12 that the
existence of an axion field in the tree level string effective
action leads to the existence of a minimum for the scale dszzdtz—a(t)z(
factor, that is a bouncing solution. However, a singularity is
still present in the beginning of the evolution of the Uni-
verse, even if the scale factor is non-zero. In this sense, t
introduction of loop approximations is an essential ingredien
of string cosmology since it permits one to avoid the singu-
larity. However, these analyses were made considevirg

—1andn=—1, i.e. string cosmology with a particular cou-  As happens in general when we are treating gravity in the
pling between the dilaton and axion fields. We will extend presence of scalar fields, it is more convenient to reparam-
them here, showing that fes= — 1 a singularity seems to be gtrize the time coordinate such that

unavoidable. To avoid this singularity, we must have 1
and—2>w>—3%. In string cosmology, this implies consid- dt=a%dé. 9)
ering moduli fields, whose analysis is more complex since a

third scalar field, with non-trivial coupling with the other In this new parametrization and with primes denoting deriva-
two, appears in Eq.1). But we will show that the introduc- tives with respect t®, the equations of motion read

tion of terms coming from the Ramond-Ramond sector of

2

— +r2(de?+sirfed¢?) |. (7)

flat, open and closed spatial section implees0,—1 and
, respectively. We consider also a barotropic perfect fluid

TH'=(p+p)uu’—pg"’, p=ap—1l<a<l. (8)

superstring can render the bouncing solutions regular even at S(a—, 2+36a4=8—77 a6+2 ¢_’)2
the tree level. o ° 2\ ¢

We will study essentially the predictions of models de- S no1 o
scribed by Eq(1) concerning the evolution of the scale fac- _3a_ ¢;+¢_q,,2+ TX (10)
tor in the primordial Universe. We will verify that bouncing a ¢ 2 2 ¢’
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¥ 32,9 3120 ¢ PT3PAL (D
” ¢’ r_
P'+n—Wv'=0, (12
¢
x"=0, (13
’ a'
p'+35(p+p)=0. (14

Equations(12),(13),(14) are easily integrated, leading to

V'=A¢ ", x=BO+C, p=pea "%, (15

whereA, B, C andp, are integration constants. The inte-

gration of the other two equations depends on whegher
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[ 12 .
Y=NGB+20)D" "

In order to impose that?< 1, we definex=sin¢. Integrating
Eq. (20) and using the definitions given above, we obtain the
following solution fora:

1/2
tarPg
a=ag(sin&) Vb -z (21)
1+ ek2tar(&/2)|

wherek is another integration constant and

_ 2 /1 2
p—m +§w.

The cosmic time is connected with the variabléhrough the

constant or not and on the presence of ordinary matter. Wgz|ation

will consider separately these different cases.
(I) Vacuum casep=0.
(la) y=const. In this case, Eql1) admits a first integral:
12 2
7. A fione D
2 3+2w 2

(16)

whereD is an integration constant. From Ed9),(16) we
obtain a transcendental relation f@gf as function of 6,
through hypergeometric functions

1

I\)
3

()t ”)
17

wherer =[(3+ 2w)D/2A?]%. In order to integrate Eq10),
we redefine the scale factar= ¢~ Y%, obtaining the equa-
tion

I\)II—\

"1-

2
(n 1)\/—¢2 1(

2 b4
+3e— =

yER (18)

3+2w(¢’)2 A?

3(3 E +?¢717n.

We will first study the cases where# 1; the casen=1 will
be studied separately. Using E46), Eq. (18) becomes

1/2

1
D— b4) —.
Rl

Eliminating againd 6 through Eq.(16), one obtains the inte-
gral relation

f /3+2wf (20
yv1 —ey2 1-n x\1—x2'
where
2A
=) =0
X \/(3+2w)D¢l i

b’ _(3+2w

b 12 (19

and

L
t=7—;| a SsinITM/(A-Meqge, (22)
where
2A2 1/(1—n)
LZZ((3+2w)D)

The integrand of this relation being always positivés a
monotonic function oft.
For =0, the asymptotic behavior foré—0 is

acc gUA=MI(-1+\1+(23)w) - \while for ¢&=m—2z, z—0, the

asymptotic behavior readsszl = Y(1-MIA+V1+(23)) Erom
these expressions, we can classify the possible scenario: for
n<1l, <0, Eq.(21) represents a bouncing solution; for

>1 andw<0, we find a big bang followed by a big crunch,

in spite of the fact that the spatial section is flat; all other
cases represent an expanding universe.

Following the same asymptotic analysis we find bouncing
solutions fore#0 only whenw<<0 andn<1. For the other
cases, the corresponding Friedmann-like scenarios are recov-
ered.

A special case i=0. Then, the solutiori21) takes the
form

1

_ . (23
4780 o TN 72) + k2SI £12) 23

In this case, in<1, we are at the boundary of two different
behaviors and this special solution reflects this fact. Eor
=0, n<1, Eq.(23) is a sequence of bouncing universes. If

=—1, we find again a bouncing universe. Whea 1 the
universe oscillates, the scale factor never reaching zero. This
last case is an example of a complete, eternal, regular uni-
verse. In particular, whelk=1, we find a static universe
even if the scalar fields evolve with time. f>1, on the
other hand, Eq(23) represents, foe=0,1, an oscillating
universe, the minimum value of the scale factor being zero.
For e= —1 we find again a bouncing universe.

043503-3



CONSTANTINIDIS, FABRIS, FURTADO, AND PICCO PHYSICAL REVIEW 1 043503

There exists also the limit case=1 for which the scalar (Il Radiative fluid case ang=const.
field behaves ag)=E#, E being a constant. The equation  The integration of the equations follows the same proce-
for the scale factor can be integrated in a similar way aslure as before. We note that for the radiative caég=T

before, leading to the following expressions: =0. Hence the equations for the scalar fields, and their cor-
responding first integrals, keep their form. However, for the
g+ scale factor, and after redefinitag= ¢~ *?b, we obtain
e=1,—1, a=ayf —, (24)
1+ep™ b’ 342w vz2q
—= D+mb?—3eb*| —, (34)
€=0, a=ayt@* /(1) (25) b 12 4
where we have writtetm=8mrp,. The first integral of Eq.
where : ; e
(11) permits us again to employ the reparametrization
1-n_ qi i ; .
4= V1t 2w+ AL (26) b siné&. We can then integrate the equations lpre

constructing the solutions fa. We will present the solution

These solutions represent an expanding universe with an infgr the cases=0. It reads

tial singularity, for any value of the curvature constant tarP(£/2)
There are inflationary expanding solutions wher —A? a=ay(sing)V- ) — >} (35)
<w<-—4%—-AZ 1—tarP(£/2)
(Ib) x#const. This case seems to admit an exact solution i i _ ) . )
only for n=—1. The first integrals fol and y are wherep is defined as before. This solution exhibits bouncing
solutions fore<0 andn<1.
v'=A¢, x=E0. (27 The different scenarios exposed here have many interest-

. o _ . ing features that deserve a more detailed analysis, mainly
Using these first integrals, the solution for the scalar figld through the construction of realistic models and testing them

reads against observations. We studied the behavior of cosmologi-
cal models inspired in string, supergravities and Kaluza-
. E? 2A° Klein theories. These different effective models can be recast

¢=Csinkb— a2 T N33 20 (28 in a unified form, labeled essentially by the two parameters

and w. In what concerns the effective model coming from
while the equation for the scale factor can be reduced to string there are two important simplifications: the Gauss-
Bonnet term is not included; the compactification from ten to
f dy 2D [ do 29 four dimensions is performed on the torus, with a constant
== internal scale factor. Concerning effective models coming
yvi-y SR from multidimensional theories, one of the most important
restrictions is the absence of curvature in the internal space.
The solutions obtained reveal bouncing, in general, for
n<1l and w<0. The presence of the term, originating
cosh Y2 ( g), (300  from the Ramond-Ramond sector, leads in general to the
Vsinkf—s presence of a bounce. However, we must remark that the fact
that the scale factor goes to an infinite value in the initial
1 state of the Universe does not mean an absence of singular-
€=0, a= ao\/ﬁexpﬁ( 0)], (3D ity. To verify this, we investigate the behavior of a curvature
KO=s scalar, likeR, the Ricci scalar. It is written as

wherea= ¢~ %, y?=(\/3e/D?)b*. The final solutions are

e=1, a=a

_ _ 1 i 12 a (a\?
e=—1, a ao\/msmh f(0), R=-6 23] | (36)
(32)
and whermaxt™ (what can be an approximation for the solu-
where tions founded before for small intervals of timeRoct 2.
5 Hence,R— oo if the initial states occurs d&=0. It is regular
f(6)= 4D 1 arcta 1-stan(«6/2) . E if t— —oe, meaning a singularity-free universe. For example,
V3Ck \[]s?—1] JIs?2—1| 2A2C° in the vacuum and radiative cases, wjtk const ande=0,

(33)  the Universe is completely regular for<1 and —i<w<
— 2. When y # const, withn=—1, the solutions are always
These solutions are valid f&<<1, which is the most inter- regular. In all other cases, even if the scale factor never goes
esting case. The solutior{80),(31),(32) represent a bounc- to zero, the curvature invariants divergetatO in spite of
ing universe for any value ab. Moreover, there is a local the fact that the scale factor has an infinite value. In order to
maximum for the scale factor where=1 and #  have a bouncing regular solution, where the Universe begins
=(2/k)arctan(1s). and ends in a Minkowskian state, in the context of string
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(w=—1), the fieldy must be considered. Otherwise, therethis case, it is possible to associate a temperature that varies
is a singular initial state and the corrections coming from theas the inverse of the scale factor, as usual. Hence, the bounc-
one loop approximation must be taken into account. Theéng universe has a cold origin and the temperature mounts to
question of the conditions of validity of the string effective @ maximum value, decreasing from that moment on. This can
model, with respect to curvature divergences, has been coffave traces in the primordial nucleosynthesis with specific

sidered in[13] where the moduli fields are taken into ac- Predictions for the relative abundances of light elements and
count. on the anisotropy of the cosmic microwave background. The

In the special case of string cosmology, there is also éietermination of these observational traces is outside the

singularity in the expansion parameter. This parameter cafcope of the present work, but evidently it will constraint the
be related to the dilaton fiel® by the expressiorgﬁze‘b. parameterso andn.

Since in our case we have the relatigrre~®, wheng goes Another good criterion to select viable models is the sta-
to 7ero.?—so. Hence. the loop ex ansion’ has no meanin bility against small perturbations. Because of the complexity
'Is ' ' P exp . %f the background solutions, this is a very difficult analysis
anymore. HOWE"eT' the typ_e B s_uper_strmg theory, fromto be performed. However, we note that the figlghlays the
wh|c.h comes the fieldy conS|dgred n th|§ paper, has an role of a variable gravitational constant and in general there
duality, where the strong coupling regime is mapped onto th?s an instability when there is an anti-gravity phase, i.e.

yveak coupling regme. This duality is verified, for gxample,when¢ takes negative values during a certain pefiod4]
In a flat_backgrou_nd, for curved ba(_:kgrounds, as1s the casgr when it takes a zero value in a finite proper time. In the
here, it is not straightforward to verify whether theluality §olutions determined before, the gravitational coupling is al-

832 tig ?&g%ﬁi?itor ng}t. ZQ:ZQ%?S:'OZ'T&O;S tg;’;tarlir?nihguways positive and this kind of problem is absent, excepting
Y Prop yp b 9 for some values of the parameterwhen w=0, where the

model considered here might make sense even with the di-_~." . . . _
avitational coupling can become negative or zero during

vergence in the expansion parameter. In the study pe_rform e evolution of the Universe. Hence, the vacuum case with
before, this remark is restricted to the case — 1, which -
»=0 must be unstable.

correspond to the string effective action. o . : :
. . . . It is important to notice that in the case of a bouncing
Regular bouncing solutions are not so common in the lit- . . . :
L . . universe, there is a primordial phase where not only the
erature. In principle, one may think that the existence of g

X . . ~__strong energy condition can be violatédading to an infla-
bounce by itself can lead to singularity-free cosmologlcal,[ionar hasg but also in some cases the weak energy con-
models. But this is not true, as has been showi.th11] for yp gy

example. However, such kinds of cosmological models, ifdltlon [15]. However, there are many examples of physical

) . systems that can violate the weak energy condition under
they are regular everywhere, represent an interesting alterna:

tive, or amending, to the standard one sifbethey are free Certain circumstanced6] and this can not be viewed as a
» Or amending, 1o L e drawback of the models exhibiting a bounce, mainly when
of an initial singularity, which is one of the most important

roblems in the standard cosmological modg});they con- these models concern a primordial phase.
pre . : g . they . Finally, we must stress the fact that we have worked here
tain naturally an inflationary phase, which ends at a given . .
S . In the Jordan frame. However, the solutions can also be writ-
moment after the beginning of the expansion ph&ethey

o s . ten in the Einstein frame, since the redefinitiar ¢~ Y%
can join the radiative phase of the standard model, keepin . S

X . . . mployed to solve the equations is just a conformal transfor-
all of its advantages from the observational point of view. In

L X . . . . |mation that transports the action from one frame to another.
principle, a bouncing universe must constitute a primordial, .

scenario, and perhaps we must consider the possibility of " IS Important t(.) remar_k _t_hat, in the I_Emsteln frame, all so
, . . ) S . utions have a singular initial state. This leads us to the prob-
decaying of the primordial scalar fields, originating ordinary . . .

e . 2 lem of what is the physical framel7—-19. Our choice was
matter, from where a smooth transition to the ordinary radia . . )
. . . . "to work in the Jordan frame since the effective model ap-
tive phase can be obtained. But this leads us to consider a g

: . . pears naturally in it.
more complicated scenaridrom technical and conceptual
point of view) of baryogenesis. We thank K. Bronnikov and Loriano Bonora for useful
The introduction of a radiative fluid may permit one to discussions. We also thank CNPq and CAP@BEazil) for

obtain some observational constraints on these models. financial support.
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