RAPID COMMUNICATIONS

Gravitational collapse of gravitational waves in 3D numerical relativity

PHYSICAL REVIEW D, VOLUME 61, 04150(R)

Miguel Alcubierre! Gabrielle Allen! Bernd Brigmannt Gerd Lanfermann,Edward Seidet;? Wai-Mo Suer’*
and Malcolm Tobia$
IMax-Planck-Institut fu Gravitationsphysik, Schlaatzweg 1, 14473 Potsdam, Germany
2National Center for Supercomputing Applications, Beckman Institute, 405 N. Mathews Ave., Urbana, lllinois 61801
3Department of Physics, Washington University, St. Louis, Missouri 63130
“4Physics Department, Chinese University of Hong Kong, Hong Kong
(Received 6 April 1999; published 31 January 2000

We demonstrate that evolutions of three-dimensional, strongly non-linear gravitational waves can be fol-
lowed in numerical relativity, hence allowing many interesting studies of both fundamental and observational
consequences. We study the evolution of time-symmetric, axisymmetric and non-axisymmetric Brill waves,
including waves so strong that they collapse to form black holes under their own self-gravity. An estimate for
the critical amplitude for black hole formation in a particular interpolating family of initial data is obtained.
The gravitational waves emitted in the black hole formation process are compared to those emitted in the
head-on collision of two Misner black holes.

PACS numbsg(s): 04.25.Dm, 04.30.Db, 95.30.Sf, 97.60.Lf

Gravitational waves have been an important area of redifferent collapse scenarios shows to what extent one can
search in Einstein’s theory of gravity for years. Einstein’sextract information about the BH formation process from the
equations are nonlinear, and therefore can cause waveshservation of the gravitational radiation emitted by the sys-
which normally would disperse if weak enough, to be heldtem. All the simulations presented here were performed with
together by their own gravity. This property characterizesthe newly developedAcTus code. For a description of the
Wheeler’s geori1,2] proposed more than 40 years ago, andcode and the numerical methods used, [4de-15.
is responsible for many interesting phenomena. Even in pla- We take as initial data a pure Br[lL6] type gravitational
nar symmetric spacetimes, there are many interesting result4ave, later studied by Eppleyi7,18 and other{19]. The
such as the formation of singularities from colliding plane Metric takes the form
waves(see[ 3] and references thergirin axisymmetry, Ref. -

[4] studied the formation of black hoIéBHs)yby impﬁl)ding ds’=w[e*(dp®+dZ’) +pd¢®]=P4ds®, (1)
gravitational waves, finding critical behavifs]. . . . . .

These discoveries are all in spacetimes with special Sym\/_yhereq is a f.ree function subject to certain boundary condi-
metries, but they raise important questions about genergl'lons' Following[13,20,21, we chooseg of the form
three-dimensiondBD) spacetimes, e.qg., the nature of critical
phenomena in the absence of symmetries has only recently
been studied through a perturbative approfgh A few
studies of gravitational wave evolutions have been per-
formed in the linear and near linear regini@s-9], in prepa-  wherea,c are constants,?=p2+z? andn is an integer. For
ration for the study ohonlinear, strong fiel3D wave dy- c¢=0, these data sets reduce to the Hdl8] axisymmetric
namics. However, until now no such studies have beefiorm, recently studied in 3D Cartesian coordinates in prepa-
successfully carried out. ration for the present work22]. Taking this form forg, we

In this paper we present the first successful simulations oimpose the condition of time-symmetry, and solve the
highly nonlinear gravitational waves in 3D; i.e., we study theHamiltonian constraint numerically in Cartesian coordinates.
process of strong waves collapsing to form BHs under theiAn initial data set is thus characterized only by the param-
own self-gravity. We obtain an estimate for the critical am-eters @,c,n). For the cased,0,0), we found if22] that no
plitude for the formation of BHs based on a particular family AH exists in initial data form<11.8, and we also studied the
of interpolating initial data. We show that one can now carryappearance of an AH for other valuesméandn.
out these evolutions for long times. For waves that are not Such initial data can be evolved in 3D using thecTus
strong enough to form BHs, we follow their implosion, code, which allows the use of different formulations of the
bounce and dispersal. For waves strong enough to collapse Einstein equations, different coordinate conditions, and dif-
a BH under their own self-gravity, we find the dynamically ferent numerical methods. Our focus here is on new physics,
formed apparent horizon6AHs), and extract the gravita- but since stable evolutions of such strong gravitational waves
tional radiation generated in the collapse process. Thedeave not been obtained before, we comment briefly on the
wave forms can be compared in axisymmetry to head-on BHinethod used for the results in this paper[28], Baumgarte
collisions(performed earlier and reported[ib0]). The wave and Shapiro note for weak waves that a system, which is
forms are similar at late times, dominated by the quasiessentially the conformally decomposed Arnowitt-Deser-
normal modes of the resulting BHs as expected. The differMiner (ADM) system of Shibata and Nakamura], shows
ence in the wave forms at early times for these two verygreatly increased numerical stability over the standard ADM
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formulation [24]. We will refer to this system as the implodes, re-expanding after passing through the origin.
Baumgarte-Shapiro-Shibata-NakamyBSSN formulation.  However, due to the non-linear self-gravity, not all of it im-
The use of a particular connection variable in BSSN is remimediately disperses out to infinity; again part re-collapses
niscent of the Bona-MasSsfmrmulation [25,26. We found and bounces again. After a few collapses and bounces the
that BSSN as given if23] with maximal slicing, a three-step wave completely disperses out to infinity. Here one has to
iterative Crank-Nicholson(ICN) scheme, and a radiative keep in mind that this description is based on the particular
(Sommerfeld boundary condition is very stable and reliable coordinates that we have chosen. This behavior is shown in
even for the strong waves considered here. The key neWwig. 1(a), where the evolution of the central value of the
extensions to previous BSSN results are that the stability calapse is given for simulations with three different grid sizes:
be extended tdi) strong, dynamical fields an@) maximal ~Ax=Ay=Az=0.16 (low resolutior), 0.08 (medium resolu-
slicing, where the latter requires some care. Maximal slicingion) and 0.04(high resolution, using 32, 64° and 128 grid
is defined by vanishing of the mean extrinsic curvatite, points, respectively. At late times, the lapse returns tthé&
=0, and the BSSN formulation allowed us to cleanly imple-log returns to 0. Figure 1b) shows the evolution of the log
ment this feature numerically, in contrast with the standardf the central value of the Riemann invariahtor the same
ADM equations.(A related idea to improve stability with resolutions. At late times settles on a constant value that
maximal slicing is that of K-drivers, which helps dramati- converges rapidly to zero as we refine the grid. With these
cally, but is ultimately not sufficient for very strong waves in results, and direct verification that the metric functions be-
standard ADM formulation$27], but comparg26].) come stationary at late times, we conclude that spacetime
We begin our discussion of the physical results with thereturns to flatin non-trivial spatial coordinates; the metric is
parameter seta=4, c=0, n=0); a rather strong axisym- decidedly non-flat in appearance
metric Brill wave (BW). Even though this data set is axisym-  Next we increase the amplitude #o=6, holding other
metric, the evolution has been carried out in 3D, exploitingparameters fixed. Figure 2 shows the evolution of the lapse
the reflection symmetry on the coordinate planes to evolvand the Riemann invariank for this case, showing a clear
only one of the eight octants. The evolution of this data setontrast with Fig. 1. The lapse now collapses immediately,
shows that part of the wave propagates outward while parnd the Riemann invariant after an initial drop grows to a
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large value at the origin until it is halted by the collapse of 0.40 . . .

the lapse. For this amplitude the low resolution is now too — ue12,18,22
crude and the code crashestat10. We have therefore 0.30 - N Brill Ax=0.040 |
added an extra simulation withx=0.053 (“intermediate” P

resolution using 96 grid points. 0.20
To confirm that a BH has indeed formed, we searched for
an AH in thea=6 case(using a minimization algorithm
[22]). For high resolution, an AH was first found &£7.7,
which grows slowly in both coordinate radius and area. Fig-
ure 2 shows the location of the AH on thez plane at time &
t=10 for the three resolutions. The mass of the horizon at> _g ,,
this time is abouM ;= 0.87, but then due to poor resolution
of the grid stretchinga common problem of all BH simula-
tions with singularity avoiding slicings it continues to
grow, ultimately exceeding the initial ADM mass of the 030 ‘ . . . ‘
spacetime, which for this data setNé,py=0.99 (obtained o 20 30 40 50 60
in the way described in22]). However, the total energy t M)
radiated is about 0.12, computed from the Zerilli functions,
completely consistent witM 4= 0.87 and an initial mass of
Mapm=0.99 . CPU time constraints make it difficult to run . data(solid lines, increasing amplitudl¢o that of thea=6
long term, higher resolution simulationg$igh resolution collapsing BW(dotted ling.
used~ 120 hours running on 16 processors of an SGI/Cray-
Origin 2000. We also confirmed that an event horizon doesThe wave forms start with a different offset from zero, which
not exist in the initial data by integrating null surfaces outis substantially larger in magnitude in the Brill wave case,
from the origin during the simulation. but note that in the BW case the detector is put much closer
From these two studies we conclude that the critical amin (at 4.68M ,4,) and the Zerilli function extraction process
plitude a* for BH formation for the axisymmetric BW [28,13 gives a larger “Coulomb” componerf29]. (3) The
packet isa* =5+1. We have performed more simulations fundamental QNMs that dominate the late time evolutions
within this range, and have narrowed down the interval tofor the two cases have the same phase. We see that both
a* =4.85+0.15, although near the critical solution higher wave forms dip at 30,4, and peak at 38,4, to high
resolution is required to establish convergence. Our study adccuracy. We note that the 2BH wave forms for @h2.2
these near-critical solutions is still under way and will be have their fundamental QNM appearing with about the same
presented elsewhere. phase, and we see here the BW collapse case also has the
It is particularly exciting that the dynamical evolution can same phase. This and other interesting comparisons between
be followed long enough for the extraction of gravitationalthe two collapse scenarios will be discussed further else-
wave forms even for the BH formation case. One importantvhere. The features noted above are not sensitive tquthe
question is what physical information of the gravitational value chosen, within the range pf=1.2—2.2.
collapse process can be extracted from the observation of the Next we go to a pure strong wave case with non-2D fea-
radiation. How much will the wave forms from different BH tures(the first ever simulatedwhere the initial wave form is
formation processes be different? For this purpose we comeven more dominated by details of the BH formation pro-
pare the BW collapse wave forms to those of a very differentess. Figure 4 shows the development of the data et (
collapse process, namely the head-on collision of two BHs=6, c=0.2, n=1), which has reflection symmetry across
In Fig. 3 we show thgl=2m=0} Zerilli function ¢, ob-  coordinate planes; it again suffices to evolve only an octant.
tained from the evolution of Misner data far=1.2, 1.8, 2.2  The initial ADM mass of this data set turns out to be
[10], and from the axisymmetria=6 BW collapse.(The = Mpy=1.12. Figure 4a) shows a comparison of the AHs of
caseu=1.2 represents a single perturbed black holegat this 3D and the previous axisymmetric cases, using the same
=2.2 there are two separate black holes that are outside thegh resolution, at=10 on thex-z plane. The mass of the
perturbative regim¢.We adjust the time coordinate of the 3D AH case is larger, weighing in & 5= 0.99[compared
BW wave forms based on the time delay for different “de-to M4(2D)=0.87].
tector” positions, which for the BW is at=4.6M sp\ and In Fig. 4b) we show the{l =2,m=0} wave form of this
for the BHs atr =20M spy - We also scale the Zerilli func- 3D case, compared to the previous axisymmetric case. The
tion amplitude for the BHs byM,py and the BW by ¢=0.2 wave form has a longer wave length at late times,
10M opwm to put them on the same figure. consistent with the fact that a larger mass BH is formed in
We notice the following(1) The BW wave form is domi- the 3D case. Figures(@ and 4d) show the same compari-
nated by quasi-normal mod¢é®NMs) at late times just like son for the{l=4m=0} and {I=2m=2} modes, respec-
in the 2BH case, as expected. A QNM fit shows that at aboutively. Notice that while the first two modes are of similar
10M a4, from the beginning of the wave-train the fundamen-amplitude for both runs, the 301 =2,m=2} mode is com-
tal mode dominates2) However, the BW wave form has pletely different; as a non-axisymmetric contribution, it is
more high frequency QNM components in the early phaseabsent in the axisymmetric ru@in fact, it does not quite
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FIG. 3. We compare the=2m=0 extracted wave form for the
head-on collision of BHs obtained Ky0] of the u=1.2, 1.8, 2.2
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vanish due to numerical error, but it remains of order 90 In conclusion, we demonstrated numerical evolutions of

We also show a fit to the corresponding QNM'’s of a BH of 3D, strongly non-linear gravitational waves, and studied
mass 1.0. The fit was performed in the time interid#,36,  gravitational collapse of axisymmetricand non-
and is noticeably worse if the fit is attempted to earlier timesaxisymmetric gravitational waves. We compared the wave
again showing that the lowest QNM’s dominate at aroundcollapse to the head-on collision of two black holes. The
10. The early parts of the wave forms 10 reflect the details research opens the door to many investigations_

of the initial data and BH formation process. This is espe- _

cially clear in the{l=2m=2} mode, which seems to pro- This work was supported by AEI, NCSA, NSF PHY
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case, but such simulations may actually be available sooimportant discussions. Calculations were performed at AEI,
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wave collapses, such as that presented here.
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