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Gravitational collapse of gravitational waves in 3D numerical relativity
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We demonstrate that evolutions of three-dimensional, strongly non-linear gravitational waves can be fol-
lowed in numerical relativity, hence allowing many interesting studies of both fundamental and observational
consequences. We study the evolution of time-symmetric, axisymmetric and non-axisymmetric Brill waves,
including waves so strong that they collapse to form black holes under their own self-gravity. An estimate for
the critical amplitude for black hole formation in a particular interpolating family of initial data is obtained.
The gravitational waves emitted in the black hole formation process are compared to those emitted in the
head-on collision of two Misner black holes.

PACS number~s!: 04.25.Dm, 04.30.Db, 95.30.Sf, 97.60.Lf
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Gravitational waves have been an important area of
search in Einstein’s theory of gravity for years. Einstein
equations are nonlinear, and therefore can cause wa
which normally would disperse if weak enough, to be he
together by their own gravity. This property characteriz
Wheeler’s geon@1,2# proposed more than 40 years ago, a
is responsible for many interesting phenomena. Even in
nar symmetric spacetimes, there are many interesting res
such as the formation of singularities from colliding pla
waves~see@3# and references therein!. In axisymmetry, Ref.
@4# studied the formation of black holes~BHs! by imploding
gravitational waves, finding critical behavior@5#.

These discoveries are all in spacetimes with special s
metries, but they raise important questions about gen
three-dimensional~3D! spacetimes, e.g., the nature of critic
phenomena in the absence of symmetries has only rece
been studied through a perturbative approach@6#. A few
studies of gravitational wave evolutions have been p
formed in the linear and near linear regimes@7–9#, in prepa-
ration for the study ofnonlinear, strong field3D wave dy-
namics. However, until now no such studies have b
successfully carried out.

In this paper we present the first successful simulation
highly nonlinear gravitational waves in 3D; i.e., we study t
process of strong waves collapsing to form BHs under th
own self-gravity. We obtain an estimate for the critical a
plitude for the formation of BHs based on a particular fam
of interpolating initial data. We show that one can now ca
out these evolutions for long times. For waves that are
strong enough to form BHs, we follow their implosio
bounce and dispersal. For waves strong enough to collap
a BH under their own self-gravity, we find the dynamica
formed apparent horizons~AHs!, and extract the gravita
tional radiation generated in the collapse process. Th
wave forms can be compared in axisymmetry to head-on
collisions~performed earlier and reported in@10#!. The wave
forms are similar at late times, dominated by the qua
normal modes of the resulting BHs as expected. The dif
ence in the wave forms at early times for these two v
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different collapse scenarios shows to what extent one
extract information about the BH formation process from t
observation of the gravitational radiation emitted by the s
tem. All the simulations presented here were performed w
the newly developedCACTUS code. For a description of the
code and the numerical methods used, see@11–15#.

We take as initial data a pure Brill@16# type gravitational
wave, later studied by Eppley@17,18# and others@19#. The
metric takes the form

ds25C4@e2q~dr21dz2!1r2df2#5C4d̂s2, ~1!

whereq is a free function subject to certain boundary con
tions. Following@13,20,21#, we chooseq of the form

q5ar2e2r 2F11c
r2

~11r2!
cos2~nf!G , ~2!

wherea,c are constants,r 25r21z2 andn is an integer. For
c50, these data sets reduce to the Holz@19# axisymmetric
form, recently studied in 3D Cartesian coordinates in pre
ration for the present work@22#. Taking this form forq, we
impose the condition of time-symmetry, and solve t
Hamiltonian constraint numerically in Cartesian coordinat
An initial data set is thus characterized only by the para
eters (a,c,n). For the case (a,0,0), we found in@22# that no
AH exists in initial data fora,11.8, and we also studied th
appearance of an AH for other values ofc andn.

Such initial data can be evolved in 3D using theCACTUS

code, which allows the use of different formulations of t
Einstein equations, different coordinate conditions, and
ferent numerical methods. Our focus here is on new phys
but since stable evolutions of such strong gravitational wa
have not been obtained before, we comment briefly on
method used for the results in this paper. In@23#, Baumgarte
and Shapiro note for weak waves that a system, which
essentially the conformally decomposed Arnowitt-Des
Miner ~ADM ! system of Shibata and Nakamura@7#, shows
greatly increased numerical stability over the standard AD
©2000 The American Physical Society01-1
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FIG. 1. ~a! Evolution of the
log of the lapsea at r 50 for the
axisymmetric data ~4,0,0!. The
dashed/dotted/solid lines represe
simulations at low/medium/high
resolution. ~b! Evolution of the
Riemann invariantJ at r 50. The
wave disperses after dynamic evo
lution, leaving flat space behind.
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formulation @24#. We will refer to this system as th
Baumgarte-Shapiro-Shibata-Nakamura~BSSN! formulation.
The use of a particular connection variable in BSSN is re
niscent of the Bona-Masso´ formulation @25,26#. We found
that BSSN as given in@23# with maximal slicing, a three-step
iterative Crank-Nicholson~ICN! scheme, and a radiativ
~Sommerfeld! boundary condition is very stable and reliab
even for the strong waves considered here. The key
extensions to previous BSSN results are that the stability
be extended to~i! strong, dynamical fields and~ii ! maximal
slicing, where the latter requires some care. Maximal slic
is defined by vanishing of the mean extrinsic curvatureK
50, and the BSSN formulation allowed us to cleanly imp
ment this feature numerically, in contrast with the stand
ADM equations.~A related idea to improve stability with
maximal slicing is that of K-drivers, which helps drama
cally, but is ultimately not sufficient for very strong waves
standard ADM formulations@27#, but compare@26#.!

We begin our discussion of the physical results with
parameter set (a54, c50, n50); a rather strong axisym
metric Brill wave~BW!. Even though this data set is axisym
metric, the evolution has been carried out in 3D, exploit
the reflection symmetry on the coordinate planes to evo
only one of the eight octants. The evolution of this data
shows that part of the wave propagates outward while
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implodes, re-expanding after passing through the orig
However, due to the non-linear self-gravity, not all of it im
mediately disperses out to infinity; again part re-collap
and bounces again. After a few collapses and bounces
wave completely disperses out to infinity. Here one has
keep in mind that this description is based on the particu
coordinates that we have chosen. This behavior is show
Fig. 1~a!, where the evolution of the central value of th
lapse is given for simulations with three different grid size
Dx5Dy5Dz50.16 ~low resolution!, 0.08 ~medium resolu-
tion! and 0.04~high resolution!, using 323, 643 and 1283 grid
points, respectively. At late times, the lapse returns to 1~the
log returns to 0!. Figure 1~b! shows the evolution of the log
of the central value of the Riemann invariantJ for the same
resolutions. At late timesJ settles on a constant value th
converges rapidly to zero as we refine the grid. With the
results, and direct verification that the metric functions b
come stationary at late times, we conclude that spacet
returns to flat~in non-trivial spatial coordinates; the metric
decidedly non-flat in appearance!.

Next we increase the amplitude toa56, holding other
parameters fixed. Figure 2 shows the evolution of the la
and the Riemann invariantJ for this case, showing a clea
contrast with Fig. 1. The lapse now collapses immediate
and the Riemann invariant after an initial drop grows to
d-
s

d

FIG. 2. ~a! Evolution of the
lapse a at r 50 for the axisym-
metric data set ~6,0,0!. The
dashed, dotted, solid and dashe
dotted lines represent simulation
at low, medium, intermediate an
high resolutions, respectively.~b!
Evolution of the Riemann invari-
antJ at r 50. ~c! Coordinate loca-
tion of the dynamically formed
AH on thex-z plane att510.
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large value at the origin until it is halted by the collapse
the lapse. For this amplitude the low resolution is now t
crude and the code crashes att.10. We have therefore
added an extra simulation withDx50.053 ~‘‘intermediate’’
resolution! using 963 grid points.

To confirm that a BH has indeed formed, we searched
an AH in the a56 case~using a minimization algorithm
@22#!. For high resolution, an AH was first found att57.7,
which grows slowly in both coordinate radius and area. F
ure 2 shows the location of the AH on thex-z plane at time
t510 for the three resolutions. The mass of the horizon
this time is aboutMAH50.87, but then due to poor resolutio
of the grid stretching~a common problem of all BH simula
tions with singularity avoiding slicings!, it continues to
grow, ultimately exceeding the initial ADM mass of th
spacetime, which for this data set isMADM50.99 ~obtained
in the way described in@22#!. However, the total energy
radiated is about 0.12, computed from the Zerilli function
completely consistent withMAH50.87 and an initial mass o
MADM50.99 . CPU time constraints make it difficult to ru
long term, higher resolution simulations~high resolution
used;120 hours running on 16 processors of an SGI/Cr
Origin 2000!. We also confirmed that an event horizon do
not exist in the initial data by integrating null surfaces o
from the origin during the simulation.

From these two studies we conclude that the critical a
plitude a* for BH formation for the axisymmetric BW
packet isa* 5561. We have performed more simulation
within this range, and have narrowed down the interval
a* 54.8560.15, although near the critical solution high
resolution is required to establish convergence. Our stud
these near-critical solutions is still under way and will
presented elsewhere.

It is particularly exciting that the dynamical evolution ca
be followed long enough for the extraction of gravitation
wave forms even for the BH formation case. One import
question is what physical information of the gravitation
collapse process can be extracted from the observation o
radiation. How much will the wave forms from different BH
formation processes be different? For this purpose we c
pare the BW collapse wave forms to those of a very differ
collapse process, namely the head-on collision of two B
In Fig. 3 we show the$ l 52,m50% Zerilli function c, ob-
tained from the evolution of Misner data form51.2, 1.8, 2.2
@10#, and from the axisymmetrica56 BW collapse.~The
casem51.2 represents a single perturbed black hole, am
52.2 there are two separate black holes that are outside
perturbative regime.! We adjust the time coordinate of th
BW wave forms based on the time delay for different ‘‘d
tector’’ positions, which for the BW is atr 54.6MADM and
for the BHs atr 520MADM . We also scale the Zerilli func
tion amplitude for the BHs byMADM and the BW by
10MADM to put them on the same figure.

We notice the following:~1! The BW wave form is domi-
nated by quasi-normal modes~QNMs! at late times just like
in the 2BH case, as expected. A QNM fit shows that at ab
10Madm from the beginning of the wave-train the fundame
tal mode dominates.~2! However, the BW wave form ha
more high frequency QNM components in the early pha
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The wave forms start with a different offset from zero, whi
is substantially larger in magnitude in the Brill wave cas
but note that in the BW case the detector is put much clo
in ~at 4.6Madm) and the Zerilli function extraction proces
@28,13# gives a larger ‘‘Coulomb’’ component@29#. ~3! The
fundamental QNMs that dominate the late time evolutio
for the two cases have the same phase. We see that
wave forms dip at 30Madm, and peak at 38Madm, to high
accuracy. We note that the 2BH wave forms for allm<2.2
have their fundamental QNM appearing with about the sa
phase, and we see here the BW collapse case also ha
same phase. This and other interesting comparisons betw
the two collapse scenarios will be discussed further e
where. The features noted above are not sensitive to thm
value chosen, within the range ofm51.222.2.

Next we go to a pure strong wave case with non-2D f
tures~the first ever simulated!, where the initial wave form is
even more dominated by details of the BH formation p
cess. Figure 4 shows the development of the data sea
56, c50.2, n51), which has reflection symmetry acros
coordinate planes; it again suffices to evolve only an octa
The initial ADM mass of this data set turns out to b
MADM51.12. Figure 4~a! shows a comparison of the AHs o
this 3D and the previous axisymmetric cases, using the s
high resolution, att510 on thex-z plane. The mass of the
3D AH case is larger, weighing in atMAH50.99 @compared
to MAH(2D)50.87#.

In Fig. 4~b! we show the$ l 52,m50% wave form of this
3D case, compared to the previous axisymmetric case.
c50.2 wave form has a longer wave length at late tim
consistent with the fact that a larger mass BH is formed
the 3D case. Figures 4~c! and 4~d! show the same compari
son for the$ l 54,m50% and $ l 52,m52% modes, respec-
tively. Notice that while the first two modes are of simila
amplitude for both runs, the 3D$ l 52,m52% mode is com-
pletely different; as a non-axisymmetric contribution, it
absent in the axisymmetric run~in fact, it does not quite

FIG. 3. We compare thel 52,m50 extracted wave form for the
head-on collision of BHs obtained by@10# of the m51.2, 1.8, 2.2
Misner data~solid lines, increasing amplitude! to that of thea56
collapsing BW~dotted line!.
1-3
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FIG. 4. ~a! The solid ~dotted!
line is the AH for the 3D data se
~6,0.2,1! ~6,0,0! at t510 on the
x-z plane. ~b! The $ l 52,m50%
wave form for the 3D~6,0.2,1!
case atr 54 ~solid line! is com-
pared to axisymmetric~6,0,0! case
~dotted line!. The dashed line
shows the fit of the 3D case to th
corresponding mode for a BH o
mass 1.0.~c! Same comparison
for the $ l 54,m50% wave form.
~d! Same comparison for the non
axisymmetric $ l 52,m52% wave
form.
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vanish due to numerical error, but it remains of order 1026).
We also show a fit to the corresponding QNM’s of a BH
mass 1.0. The fit was performed in the time interval~10,36!,
and is noticeably worse if the fit is attempted to earlier tim
again showing that the lowest QNM’s dominate at arou
10. The early parts of the wave formst,10 reflect the details
of the initial data and BH formation process. This is esp
cially clear in the$ l 52,m52% mode, which seems to pro
vide the most information about the initial data and the
BH formation process. At present no 3D BH formation sim
lation from other scenarios~e.g., true spiraling BH coales
cence! are available for comparison, as in the axisymme
case, but such simulations may actually be available s
@15#. It will be interesting to compare such studies with 3
wave collapses, such as that presented here.
.
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In conclusion, we demonstrated numerical evolutions
3D, strongly non-linear gravitational waves, and stud
gravitational collapse of axisymmetric and non-
axisymmetric gravitational waves. We compared the wa
collapse to the head-on collision of two black holes. T
research opens the door to many investigations.
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