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Using the trace anomaly relation, low-energy theorem, and Witten-Veneziano formula, we have developed
an analytical formalism which allows one to calculate the gluon condensate, the topological susceptibility, and
the mass of the;” meson in the chiral limit as functions of the nonperturbative vacuum energy density. It is
used for numerical evaluation of the chiral QCD topology within the QCD vacuum model consisting mainly of
the quantum component given by the recently proposed zero modes enhancement model and the classical
component given by the random instanton liquid model. We sum up both contributions into the total, nonper-
turbative vacuum energy density. A very good agreement with the phenomenological values of the topological
susceptibility, the mass of thg’ meson in the chiral limit, and the gluon condensate has been obtained. This
puts the above-mentioned QCD vacuum model on a firm phenomenological ground.

PACS numbes): 11.15.Tk, 12.38.Lg

[. INTRODUCTION density. We propose to minimize the effective potential at a
fixed scale as a function of a parameter which has a clear

The nonperturbative QCD vacuum has a very rich dy-physical meaning. When it is zero then only the perturbative
namical and topological structufd]. It is a very compli- phase remains in our model. Equivalently one can minimize
cated medium and its dynamical and topological Comp|exitylhe corresponding auxiliary effective potential as a function
means that its structure can be organized at various leveRf the ultraviolet(UV) cutoff itself. The nonperturbative chi-
(quantum, classicaland it can contain many different com- ral QCD vacuum is found stable since its main
ponents and ingredients which may contribute to the vacuurharacteristic—the vacuum energy density—has no imagi-
energy density, one of the main characteristics of the QCmary part and it is always negative.
ground state. The quantum part of the vacuum energy den- Within the ZME quantum model of the QCD ground state
sity is determined by the effective potential approach forl4], the vacuum energy density depends on a scale at which
Composite operators introduced by Cornwall, Jackiw, andhe nonperturbative effects become important. If QCD itself
Tomboulis (CJT) [2] (see also Ref[3]). It allows us to in- IS & confining theory, such a characteristic scale should cer-
vestigate the nonperturbative QCD vacuum, since in the againly exist. The quark part of the vacuum energy density
sence of external sources the effective potential is nothinglepends in addition on the constant of integration of the
but the vacuum energy density. It gives the vacuum energgorresponding Schwinger-Dys¢8D) equation. The numeri-
density in the form of the |00p expansion where the numbeﬁﬁ' value of the nonperturbative scale as well as the above
of the vacuum |00p$c0nsisting of the Confining quarks and mentioned constant of integration is obtained from the
nonperturbative gluons properly regularized with the help ofoounds
ghosts is equal to the power of the Plank constat,

In our previous work[4] we have formulated a new,
guantum model of the QCD ground stdits nonperturbative
vacuumn), the so-called zero modes enhancemé&fME)
model. It is based on the existence and importance of su
kind of nonperturbative, topologically nontrivial quantum
excitations of the gluon field configuratiofdue to the self-

87.2<F°<93.3 (MeV), (1.9

for the pion decay constant in the chiral limit by implement-

ing a physically well-motivated scale-setting scherhe We
ave obtained the following numerical results for the non-

perturbative vacuum energy densiey €5+ Neg

interactions of massles gluons onlwhich can be effec- e=—(0.01425-N;0.00196 GeV*, (1.2)
tively, correctly described by thg *-type behavior of the
full gluon propagator in the deep infrared domain. It allows e=—(0.01087-N;0.00150 GeV*, (1.3

one to calculate the nonperturbative vacuum energy density

from first principles using the CJT approach for compositewhere, obviously, the first and second values are due to up-

operatorg2]. We have also formulated the method of how to per and lower bounds in E¢L.1), respectively. Let us recall

determine numerically the finite part of the vacuum energythat these numerical values have been obtained by approxi-
mating the full gluon propagator by its nonperturbative term
in the whole range, i.e., it has been assumed that the pertur-

*Email address: gogohia@rcnp.osaka-u.ac.jp and gogohibative contribution has been already subtracted. Let us recall
@rmki.kfki.hu that here and further on beloW; is the number of light
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TABLE I. The gluon condensate in the strong coupling limit. where® ,, is the trace of the energy-momentum tensor and
5 — G‘;V being the gluon field strength tensor whilg=g?/4r.
Fr (MeV) G, (Gev) Ni=0 N¢=1 Ni=2 Ni=3  gandwiching Eq(2.1) between vacuum states and on ac-
count of the obvious relatiof0|® ,,|0) =4e,, one obtains

87.2 0.043 0.037 0.031 0.025
93.3 0.057 0.049 0.041 0.033
1 Blay) . 4 1 0/m—
€= 201 . ClCLI0)+7 2 mi(0laiai0),
flavors and in what follows we will use= e;=e€yy in Egs. (2.2
(1.2, (1.3) in the case of pure Yang-MillsYM) fields, N¢ i ) )
=0. wheree, is the sum of all possible independent, nonpertur-

On the other hand, many models of the QCD vacuunfative contributions to the vacuum energy densgihe total
involve some extra classical color field configuratigssch ~ vacuum energy densitand(0|qg¢q¢|0) is the quark conden-
as randomly oriented domains of constant color magnetisate. From this equation in the chiral limimf=0), one
fields, background gauge fields, averaged over spin andbtains
color, stochastic colored background fields, etsd ingre-
dients such as color-magnetic and Abelian-projected mono-,—, [ B(as) _,\| Blas) ., .
poles(see Refs[1,5] and references thergiriThe relevance (G)=- 4—asG =—(0| Aoy GMVGMV|0>: —4e,
of center vortices to QCD by both latti¢€] and analytical (2.3
method[7] was recently investigated as well. However, the
most elaborated classical models are the random and intewhere we need to introduce a new quantity, namely the
acting instanton liquid modelRILM and IILM) of the QCD  gluon condensate in the strong coupling limit, i.e., not using
vacuum[8]. They are based on the existence of the topologiin general the weak coupling limit solution to tigefunction
cally nontrivial instanton-type fluctuations of gluon fields, (see Sec. V belo If confinement happens then tj#efunc-
which are solutions to the classical equations of motion irtion is always in the domain of attractidne., always nega-
Euclidean spacg8] (and references thergin tive) without IR stable fixed poinf14]. Thus the non-

~ In this paper we treat the chiral QCD vacuum as consistperturbative gluon condensat&?), defined in Eq(2.3), is
ing mainly of the two components, the classical one given bygiways positive as it should be. Saturatiagby our values

RILM [8] and the quantum one given by ZME], by sum-  (1.2), (1.3) which are relevant in the strong coupling limit,
ming up their contributions into the total, nonperturbative gne obtains

vacuum energy density. The main purpose of this paper is to
show that this model of the nonperturbative QCD vacuum is 52§<gz>: —4(e,+Niey), (2.4)
in fair agreement with phenomenology. For example, it ex- g d

actly reproduces the phenomenological value of the topologiwhich gives the gluon condensate in the strong coupling

cal susceptibility. In Secs. Il, lll, and IV using the trace |imit as a function ofN;. The numerical results are shown in
anomaly relation[9], low-energy theorem[10,11] and Taple I.

Witten-VeneziangWV) formula[12] we develop an analyti-
cal formalism which allows us to calculate the gluon conden-
sate, the topological susceptibility and the mass of #te
meson in the chiral limit as functions of the total, non- One of the main characteristics of the QCD nonperturba-
perturbative vacuum energy densithe bag constant, apart tive vacuum is the topological density operatpological
from the sign, by definition In Sec. V we present our esti- susceptibility in gluodynamics K;=0)

mate of the nonperturbative vacuum energy density in the

chiral limit due to instantons. Section VI is devoted to dis- e [ a4y ax

cussion and our conclusions are given in Sec. VII. The nu- Xt= I|m|J d*x €7(0[T{a(x)q(0)}[0), ~ (3.9)
merical results are shown in Tables I-IX. -0

Ill. THE TOPOLOGICAL SUSCEPTIBILITY

where q(x) is the topological charge density, defined as

q(x) = (as/87)G(X)G(x) = (as/8m) G5 ,(x)G3,(x)  and

- o _ ézv(x)=(1/2)e‘”’”620(x) is the dual gluon field strength
The vacuum energy density is important in its own righttensor. In the definition of the topological susceptibilisy1)

as the main characteristic of the nonperturbative vacuum df is assumed that the corresponding regularization and sub-

QCD. Furthermore it assists in estimating such an importanfraction of the perturbative contribution have been already

phenomenological parameter as the gluon condensate, intrgone in order(3.1) to stand for the renormalized, finite and

duced in the QCD sum rules approach to resonance physigge nonperturbative topological susceptibilisee Refs[10—

[13]. The famous trace anomaly relati¢8] in the general 12 15). Precisely this quantity measures the fluctuation of

II. THE GLUON CONDENSATE IN THE STRONG
COUPLING LIMIT

case(nonzero current quark masseg) is the topological charge in the nonperturbative vacuum.
Blag) As it was shown in Refd.10,11], the topological suscep-
o _ e ;
0,,= 4as GZVGZVJFE m?qqu, (2.1) tibility can be related to the nonperturbative gluon conden-
s f

sate via the low energy theorem in gluodynamics as follows:
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TABLE Il. ZME model values fory{* andm,, in MeV units. IV. THE U(1) PROBLEM
Fo XONSVZ) (Hz) m°,  (NSVZ)  (HZ) . The topological susceptibilitﬁ.l) assists in the resolu-
n tion of theU(1) problent [16] via the WV formula for the
87.2 159.6 129.8 710 473.3 mass of thep’ meson[12]. Within our notations it is ex-
93.3 170 139 759.7  506.5 pressed asfsf],mzn,=(16Nf/N§)Xt, wheref ,, is the ' resi-

due defined as ~(0|Eq=u'dysayﬂy5q|n’>=iJN_ff,],p#
and (0|N¢(as/4m)GG| 7'y =(NcyNi/2)f ,m?, . So, fol-

Iimifd4xeiqx<0|T(:—sGé(x):—SGé(o) |0) lowing Witten [12], the anomaly equation isd,Jg
-0 i i =2N¢(2/N.)(as/8m)GG. Using also the normalization re-
i — 0 . .
o/ Blas) lation f .= \2F)., one finally obtains
=&\ 5 —0C (3.2)
s s o BN »
Fam’, =z Xt= 2N 4.1
Cc

There exist two proposals to fix the numerical value of the
coefficienté. The valueé=2/b, b=11 was suggested a long where the topological susceptibility is introduced in a useful
time ago by Novikov, Schifman, Vanshtein, and ZakharovWV form for numerical calculations, as it was mentioned
(NSVZ), who used the dominance of self-dual fields hypoth-above in Eq(3.4). In previous expression we omit for sim-
esis in the YM vacuunj10]. A second one{=4/3b, was  plicity the superscript “0” in the pion decay constant as well
advocated very recently by Halperin and Zhitnitsi¢yZ), as in mi,. In the numerical evaluation of the expression
using a one-loop connection between the conformal ang4.1), we will put, of courseN;=N.= 3, while the topologi-
axial anomalies in the theory with auxiliary heavy fermionscal susceptibility will be evaluated &=0 as it should be
[11] (and references thergirHowever, in our numerical cal- py definition. Using then Eq(3.4), one obtains
culations we will use both values for tlieparameter. Using
the trace anomaly relatio2.3) and saturating the total 2 4¢ \?
vacuum energy density by its partldt=0, ey, the topo- m,, = _ZNf(_)
logical susceptibility(3.1), on account 0f3.2), can be easily ¢
expressed as follows: which expresses the mass of thé meson as a function of
the nonperturbative vacuum energy density. This allows one
Y= —(28)2eyy. (3.3  toeasily calculate it in the chiral limit within our formalism
(see again Table )l

o _ ) o ~ltis instructive to reproduce the WV formuld.1) in the
The significance of this formula is that it gives the topologi- nonchiral case as well, namely

cal susceptibility as a function of the nonperturbative

EVYM (42)

vacuum energy d_ensity for pure gluodynamies,,\,,. For_ » 2Nf
numerical calculations, however, it is much more convenient m,=—5 Xt +A, (4.3
(see below, next sectipmo use the topological susceptibility Fa

in the WV form[12], which is related to Eq(3.3) as s _ .
where A=2mj —mj,. The precise validity of the WV for-

5 ) mula (4.3) is, of course, not completely clear, nevertheless,
wv_(i _ ﬁ (3.4) let us regard it(for simplicity) as exact. Using now experi-
Xt N, X7 TN fYm ' mental values of all physical quantities entering this formula,

one obtains that the phenomenologiddexperimental”)
value of the topological susceptibility is

whereN_. is the number of different colors. In what follows
all our numerical results for this quantity stand fgf’¥ and Phen_( 001058 Ge¥=(180.36 MeV.  (4.4)

not for x;, shown in Eq.(3.3), however the superscript Xt ' ' ' '
“WV” will be omitted for simplicity. It is easy to show that In the chiral limit A=0 sinceK* and 7 particles are
one obtains the same expression for the topological SUSCERrambu-GoldstonéNG) bosons. Omitting formally this con-
tibility (3.3 or (3.4) as a function of the nonperturbative YM tribution from the right hand side of E¢4.3 and on account
vacuum energy density if one would use the weak couplingy¢ (1 1) one is able to derive an upper and absolute lower

limit solution to thes function from the very beginningsee o hds for the mass of the' meson in the chiral limit
Sec. V below. The numerical results due to ZME model are

shown in Table Il. 854<m°,<913.77 (MeV) 4.5
In conclusion, let us note that there exists an interesting K '

relation between the HZ and NSVZ values for th@aram-

eter, namelyé,z=(2/N.) énsvz: Ne=3, which in principle

may be traced back to the different definitions of anomaly we are going to consider here only one aspect of this problem,

equations. namely the large mass of thg meson.
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which should be compared with its experimental valuemerically its contribution is at 20% and thus comparable
mf]’,‘p‘: 957.77 MeV. One can conclude that the mass;bf ~ with the systematic error in the determination of the gluon
meson remains large even in the chiral limit. It is worth condensate itse(f13,17].
noting that neither the numerical value of the topological —Saturating the total vacuum energy in the weak coupling
susceptibility nor the mass of thg meson in the chiral limit  limit by instanton componen¢, and using the above men-
cannot exceed their phenomenological and experimental vafioned estimate, from Eq5.2) for dilute ensemble, one fi-
ues. So the WV formulé4.3) in the chiral limit provides an  nally obtains
absolute lower bound for the pion decay constant in this
case, namelfF2=83.2 MeV.

In order to directly apply this formalism to RILM we need
the realistic estimate of the corresponding chiral vacuum en-
ergy density in this model.

= b><10 fm 4
Zn——z . m

=—(0.00417N;0.00025 GeV*. (5.4

E|:_

Thus instanton contribution to the vacuum energy density
V. THE VACUUM ENERGY DENSITY was not calculated independently but was postulated via the
DUE TO INSTANTONS trace anomaly relation using the phenomenological value of
the gluon condensatéb.3) as well as weak coupling limit
sical phenomena, nevertheless also contributed to th%OI.Ution to thes function (.5'1)' .It is well k”OW'f‘ that denSitY .
vacuum energy density through a tunneling effect which Wa§)f |n§tanton-type fluctuations is suppresseq in the chiral limit
known to lower the energy of the ground stigd. It can an_d is again restored because of dynar_nlcal breakdown of
be estimated as follows. Let us consider again the tra08hlral symmetry[S] (and r_efergnc_es thergirin any case It
anomaly relation (2.2 in the chiral limit, ie. e cannot be large in the chiral I|m|t,_ so the fu_nctlonal depen—
_ a ~a . dence of the vacuum energy density on the instanton density,
=(1/4)(0[(B(as)/4a5)G},,G},,|0). Using the weak cou- blished i q il N
ling limit solution to theB function now establishe n Eq.(5.4)' ue to dilute gas apprOX|mat|.on,
ping seems to be justified in this case. The only problem is the
numerical value of the instanton density itself, which can be
taken either from phenomenology or from lattice simula-

The instanton-type topological fluctuations, being a clas

ag . 2
B(as):_bﬂ—’—o(as)v b:]-l__Nf; (51)

3 tions.
In Ref.[10] it was argued that the gluon condensate in the
one obtains chiral limit is approximately two times less than the above

mentioned phenomenologicéémpirica) value (5.3, i.e.,
b 1 a (G?)ch=0.5G?)pnen. This means that in this case instanton
«="7 ><§<o| ;GZVGZJO)- (5.2)  densityn=0.5 fm~* and the vacuum energy density due to
instantons approximately two times less than ). How-
] . ever, it has been already pointed du8] that QCD sum
The phenomenological analysis of QCD sum rul&8] for  ryjes substantially underestimate the value of the gluon con-
the gluon condensate implies densate. The most recent phenomenological calculation of
the gluon condensate is given by Narison in R&€l], where
ag ag a brief review of many previous calculations is also pre-
GZE<62>E<?GZ> E<o|?Ga G},,|0)=0.012 GeV, sented. His analysis Iegdz to the update average valuepas

) 2ua 3%
(5.3

nv= v

s .a ~a _
which can be changed within a factor of tyd3]. From the (0l T GGl 0)=(0.02260.0029 GeV’. (5.5

phenomenological estimatés.3), one easily can calcu-

Iate(1/8)<O|(as/w)GiniJO}:0.00lS GeV=1.0fm 4.  This means that instanton density is approximately two times
Having in mind this and assuming that the gluon condensatbigger than it was estimated by Shuryak for instanton liquid
in the weak coupling limit is determined by the instanton-model[8], but in the chiral limit we are again left with Eq.
type fluctuations only, Shuryak8] (see also references (5.4).

therein has concluded that the “average separation” be- In lattice QCD situation with instanton density and their
tween instantons waR=1.0 fm, so the corresponding den- sizes is also ambigious. In quenched € 0) lattice QCD by
sity of the instanton-type fluctuations should be  using the so-called “cooling” method the role of the
=1.0 fm “. Let us note that the second parameter of thanstanton-type fluctuations in the QCD vacuum was investi-
instanton liquid model of the QCD vacuum, the instantongated[20]. In particular, it was found that the instanton den-
size po=1/3, was chosen to reproduce standéatso as sity should ben=(1+ 6) fm~4, wheres=0.3-0.6 depend-
gluon condensajghenomenologically estimated from QCD ing on cooling steps. Moreover, by studying the topological
sum rules[13]) value of the quark condensate. This contri- content of the vacuum ddU(2) pure gauge theory using a
bution to the vacuum energy density via the trace anomalynethod of RG mappinf21], it is concluded that the average
relations(2.1), (2.2) vanishes in the chiral limit. However, radius of an instanton is about 0.2 fm, at a density of about 2
due to all reasonable estimates of light quark masses, niim *. However, in Ref[22] the topological content of the
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TABLE llI. Chiral topology due to instantons. TABLE IV. Chiral QCD topology FS’T=87.2 MeV).

n (fm=4 0.5 1.0 ezmet €(0.5 fm %) ezmet €(1.0 fm™ %)
€ (GeVh) —0.002085 —0.00417 ¢ (GeVh) —0.013 —-0.015
G, (GeV 0.006 0.012 x* (MeV)
X7 (MeV) (NSVZ) 166.2 172.3
(NSV2) 104 125 (HZ) 135.7 140.7
(HZ) 86 102 m, (MeV)

m), (MeV) (NSVZ2) 776.4 834

F?T:87.2 MeV (HZ) 517.6 556

(NSV2) 311 439.7

(HZ) 207.3 293 _ . o

m®, (MeV) ie., .th_e gluon condensate in the Wea]( coupling limit dogs not
Fo”: 93.3 MeV exphcnly depend orN;. As was mentioned above, prec!sely
(I\TSVZ) 290.6 211 this glu_on cpndgnsate was introduced I(_)ng ayd). This
(HZ) 193.7 274 unphysical situation takes place because in instanton calculus

[8] there is no other way to calculate the vacuum energy
density than the trace anomaly relatiof@s1), (2.2) which

becomes finally Eq(6.1) as it was described above. In this

SU(3) vacuum was studied using the same method as fOL,se it 5 preferable to have the dependent vacuum energy
SU(2) gauge theory earlier and was obtained a fair agré€gengity than the gluon condensate since the former is the

ment with Shuryak’s phenomenologically estimated numberg, 5in characteristic of the nonperturbative vacuum. Contrast

for the insta_mton liquid model. At the same time, in Refs_.t0 this, we have calculated the vacuum energy density com-
[23,24] considerably larger values were reported. Thus at th'?)letely independently from the trace anomaly relation. We

stage it is rather diffi_cult to choose some ngl—justified NU-yse it only to calculate the gluon condensate in the strong
merical v_alue of the instanton-type contribution to th_e NON-c 1 nling limit. That is why in our case both quantities Are
perturbative vacuum energy density. In any case, in Wha&ependent functions

follows we will consider Eq(5.4) as a realistic upper bound
for the instanton contribution to the vacuum energy density[h
in the chiral limit. If the instanton number density is about
n=2 fm~* then in the chiral limit we again are left with B(ay)
Eq. (5.4), but if it is aboutn=1 fm~*, we will be left with 0.025< —(0| >
half of Eq. (5.4). Then the instanton contributions to the

topological susceptibility and the mass of thé meson in

the chiral limit are to be calculated via EG8.4) and(4.2),  gre comparable with recent phenomenological determination
respectively, on account of the substitutieyy— € (Ni  of the standard gluon condensate by Nari¢6ss). The pa-
=0), whereg, is given in Eq.(5.4) with the two different  ametrization(the left hand sideof the two types of the
values for instanton number densities in the chiral limit, gluon condensate may be, of course, the same but their nu-
=0.5 fm %, 1.0 fm * The numerical results are shown in merical valuegthe right hand sidésare not to be the same.
Table 1lI. In conclusion, we note that for densitigs  Thjs difference is not only due to different physical observ-
>2 fm™* (which means1>1 fm~* in the chiral limi} the  aples as was noticed in RéB]. Though both quantities are
applicability of the dilute gas approximation becomes, apparthe nonperturbative phenomena, nevertheless this difference
ently, doubtful. reflects different underlying physics. Our gluon condensate
(2.3) is the strong coupling limit result and reflects the non-
trivial topology of the true QCD vacuum where quantum
excitations of gluon fields play an important role. As was

Our bounds for full QCD N;=3) gluon condensate in
e strong coupling limit

G2,G? |0)=<0.033 (GeV),

Gag HrOmY
6.2

VI. DISCUSSION

A. The gluon condensate
_ o TABLE V. Chiral QCD topology F2=93.3 MeV).
It becomes almost obvious that we must distinguish the

two types of gluon condensates, both of which are the non- ervet €(0.5 fm?) exmet € (1.0 fm?)
perturbative quantities. The first one is determined by Eg-
(2.3 and is the one which is relevant in the strong couplinge: (GeV’) —0.016 —0.018
limit. In this case the total vacuum energy is mainly saturatedi’ (MeV)
by the ZME component as it is precisely shown in Ej4). (NSVZ) 175 180.3
In the weak coupling limit, saturating, by ¢, from Eqgs. (HZ) 1423 147.2
(5.2—(5.4) one obtains m‘;, (MeV)
32 32 (NSVZ) 805 854
<“_st> = Ce=— e =8n: 6. (H2 536.6 569.2
T b b
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TABLE VI. The bag constant K%=87.2 MeV, n TABLE VIIl. The bag constant E°=87.2 MeV, n
=0.5 fm 4. =1 fm™%).
BZ*EI Nf=0 Nf:]. Nf:2 Nf:3 BZ*EK Nf:O Nf:1 Nf:2 Nf:3
GeV* 0.013 0.01133 0.097 0.008 GeV* 0.015 0.0133 0.01154 0.0098
MeV* (337.7¢ (326.25f (313.8) (300)* MeV* (350)* (339.6) (327.75f (314.6)
GeV/fn 1.7 1.47 1.26 1.04 GeV/fm® 1.95 1.73 1.5 1.27

shown in our preceding papdi,25] precisely these type of

However, the total vacuum energy densky, is, in prin-

gluon field configurations are mainly responsible for quarkciple, the sum of all possible independent, the nonperturba-
confinement and DCSB. At the same time, the standar@ive contributions. Thus, at least it is the sum of the two
gluon condensat¢5.3) is the weak coupling phenomenon well-established contributions, quanturs €7y and classi-
due to classical instanton-type fluctuations in the true QCLQval ¢, i.e., ;= ezye+ €,+ - - -, Where the dots denote other

vacuum which by themselves do not confine qudikis26—
28].

possible independent contributions. In this case an excellent
agreement with phenomenology is achieved indésee

Concluding let us note that in the lattice simulations thereTables IV and V. The numerical values of the bag constant
already exist calculations of the gluon condensate which arg, defined as the difference between the perturbative and
one order of magnitude bigger than the standard valuenonperturbative vacua are given now by the relatidn

namelyG,=0.1046 GeV for SU(3) in Ref.[29] and G,
=0.1556 GeV for SU(2) in Ref.[30] (see also reviey8)).
In phenomenology also there exist large values, namely

0.04s<o|$G;VG;V|o>so.105(Gev“), 6.3

which were recently derived from the families &V andY
mesons in Ref[31].

B. Topology of chiral QCD vacuum

Our numerical results for the quantum part of the nonper
turbative vacuum energy density and for the topological sus

ceptibility with the mass of the;” meson in the chiral limit

are presented in Eq$l1.2), (1.3) and in Table II, respec-
tively. In general our values for the vacuum energy densit)f1
are an order of magnitude bigger than RILM can provide

all in various modificationgsee Table Ill. That is why the

guantum part of the nonperturbative vacuum energy densi
saturates the phenomenological value of the topological su

ceptibility and the mass of the' meson in the chiral limit
much better than the classical part given by instantoom-

t

— ¢ and can be explicitly evaluated using E@$.2), (1.3

for e;we and Eq.(5.4) for € on account of the above men-
tioned two different instanton number densitisge Tables
VI-IX). For the readers convenience the bag condgmd
consequently the total, nonperturbative vacuum energy den-
sity) is given in often used different physical units.

VII. CONCLUSIONS

In summary, using the trace anomaly relation, NSVZ and
HZ low-energy theorem and Witten-Veneziano formula, we
have developed an analytical formalism which allows one to
calculate the gluon condensate, the topological susceptibility
and the mass of the@’ meson in the chiral limit as functions
of the nonperturbative vacuum energy density. It was imme-
diately used for numerical investigation of the chiral QCD
onperturbative vacuum topology within the recently pro-

aposed ZME quantum model. We have explicitly shown that

precisely our values for the nonperturbative vacuum energy
ensity(1.2), (1.3) are of the necessary order of magnitude in
g_rder to saturate the large mass of fflemeson in the chiral
Imit. We have obtained good approximation to the phenom-
enological value of the topological susceptibility as well. The
NSVZ value of the¢ parameter, introduced in the low-

pare Tables Il and I)I Especially this is obvious for the
NSVZ value of the¢ parameter, introduced in the low-
energy theorem, Eq.3.2). The instanton contribution sub- . X L
stantially underestimates the phenomenological value of thglear tTat m_stant((j)n-l?ducehq contr|but|or|1| sr;ould be ad(:ed.ttﬁ
topological susceptibility and therefore cannot account foPEr r\]/ar::eﬁ Iln or |$]:j 0 dacfrlvr?] '?:nbleX(i/eiteP ”a\?vre(ta?(tan wi
the large mass of th@’ meson in the chiral limit alonésee phenomenalogy. Indeed, from Table oflows tha

energy theoren(3.2), especially nicely saturates thefor all
results mentioned above; see Table At the same time, it is

Table Il1).
xt(NSV2=(180.3 MeVW* (7.0
TABLE VII. The bag constant I{?r=93.3 MeV, n

=0.5 fm 4. TABLE IX. The bag constantf2=93.3 MeV,n=1 fm %).
B:_Et Nf:0 Nf:]. Nf:2 Nf:3 B:_Et Nf:O Nf:l Nf:2 Nf:3
GeV* 0.016 0.01426 0.01216 0.01  GeV 0.01842 0.0162 0.014 0.0118
MeV* (355.65f  (345.56} (332)* (316 MeV* (368.4Y (356.76) (344 (330
GeV/fm® 2.0 1.8 1.58 1.30 GeV/fn 2.4 2.1 1.82 1.53
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and consequentl{as it should bg lated. Here we have explicitly shown its important and novel
0 feature, namely it itself passes the chiral limit test justified
m, (NSVZ2 =854 MeV, (7.2)  thereby for use in the nonchiral case as well. Complemented

. . . , by instanton-induced contribution it is in a fair agreement
which are in fair agreement with Eq4.4) and the lower with phenomenology.

bound in Eq(4.5), respectively. Let us recall that these num- | concjusion a few remarks are in order. It is well known
bers have been obtained when the pion decay constant Wgy; jnstanton-type fluctuations require the topological
premsely approximated by its expenmental value. The abov%harge to be integer{1) and the vacuum anglé, nonzero,
displayed excellent agreement with phenomenological valuegichy viplatesP and CP invariance of strong interactions

of the co.rres.ponding.quantities_ is achieved py §umming “?10,1@. The nonperturbative~*-type quantum excitations
our contribution and instanton-induced contribution into thedo not require the introduction of the vacuum angleat all

tota!, nonperturbative vacuum energy d_en5|ty, 1€, the SUMoreover, it is quite possible that topological charge in this
mation was done purely phenomenologically by simply sum-

ming up the two well-established contributiofedassical in case is not restricted to integer values. Crewtf§s] has
i ) " explicitly shown that fractional(noninteger topological
stanton’s and quantum ZMB'sHow to take into account plcttly ( ger topolog

) o . . . charge configurations are required to resolveldl{é) prob-
t H‘?[OFS mita}ntor;-ln_c:#ced mteractlo[(;z]_ at tl;e fund|a£ | lem (see also review16]). However, thed dependence of
:;ngra;orqugr thsveh W(IeeIna?@rS??ggzaﬁafeﬁennc%scigg%i Wthe QCD nonperturbative vacuum energy remains an impor-
us, though see p . : tant problem. For recent developments of this problem in the
Let us also make a few things perfectly clear. At low

energies QCD is governed b§U, (Ny) X SUg(N;) chiral large N, limit of four-dimensional gauge theories see papers

. . . 36]. In particular, in Refs[37,38 it has been discussed that
symmetry a_nd Its dyn_amlcal breakdawn in t_he vacuum to th he picture of its dependence in QCD for finltg might be
corresponding vectorial subgro{®4]. The chiral limit is not ore complicated than that predicted by the laxgevalues
a physical one but nevertheless remains a very importa :

theoretical limit since to understand the chiral limit physics nd, finally, let us emphasize once more indisputable sim-

means to correctly understand the dvnamical structure qQlicity of our analytical calculation of the topological suscep-
y Y . . tibility (7.1) in comparison with the indisputable complexity
low-energy QCD as well as the topological properties of its

ground state. So a realistic calculation of various physicaPf its calculation by lattice metho?1-24,30,39-4]L
guantities as well as chiral properties of its vacuum becomes One of the author§V.G.) is grateful to the late Professor
important. In particular, any model of the QCD vacuum V.N. Gribov for many interesting discussions and remarks
should pass the chiral limit test in order to be justified foron nonperturbative QCD. He also would like to thank I. Hal-
further extrapolation to the realistionchira) case. In our perin for correspondence and A. Vainshtein for useful re-
previous publicatiof4] ZME quantum model was formu- marks.
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