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Topological structure of a chiral QCD vacuum
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Using the trace anomaly relation, low-energy theorem, and Witten-Veneziano formula, we have developed
an analytical formalism which allows one to calculate the gluon condensate, the topological susceptibility, and
the mass of theh8 meson in the chiral limit as functions of the nonperturbative vacuum energy density. It is
used for numerical evaluation of the chiral QCD topology within the QCD vacuum model consisting mainly of
the quantum component given by the recently proposed zero modes enhancement model and the classical
component given by the random instanton liquid model. We sum up both contributions into the total, nonper-
turbative vacuum energy density. A very good agreement with the phenomenological values of the topological
susceptibility, the mass of theh8 meson in the chiral limit, and the gluon condensate has been obtained. This
puts the above-mentioned QCD vacuum model on a firm phenomenological ground.

PACS number~s!: 11.15.Tk, 12.38.Lg
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I. INTRODUCTION

The nonperturbative QCD vacuum has a very rich d
namical and topological structure@1#. It is a very compli-
cated medium and its dynamical and topological complex
means that its structure can be organized at various le
~quantum, classical! and it can contain many different com
ponents and ingredients which may contribute to the vacu
energy density, one of the main characteristics of the Q
ground state. The quantum part of the vacuum energy d
sity is determined by the effective potential approach
composite operators introduced by Cornwall, Jackiw, a
Tomboulis~CJT! @2# ~see also Ref.@3#!. It allows us to in-
vestigate the nonperturbative QCD vacuum, since in the
sence of external sources the effective potential is noth
but the vacuum energy density. It gives the vacuum ene
density in the form of the loop expansion where the num
of the vacuum loops~consisting of the confining quarks an
nonperturbative gluons properly regularized with the help
ghosts! is equal to the power of the Plank constant,\.

In our previous work@4# we have formulated a new
quantum model of the QCD ground state~its nonperturbative
vacuum!, the so-called zero modes enhancement~ZME!
model. It is based on the existence and importance of s
kind of nonperturbative, topologically nontrivial quantu
excitations of the gluon field configurations~due to the self-
interactions of massles gluons only! which can be effec-
tively, correctly described by theq24-type behavior of the
full gluon propagator in the deep infrared domain. It allow
one to calculate the nonperturbative vacuum energy den
from first principles using the CJT approach for compos
operators@2#. We have also formulated the method of how
determine numerically the finite part of the vacuum ene
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density. We propose to minimize the effective potential a
fixed scale as a function of a parameter which has a c
physical meaning. When it is zero then only the perturbat
phase remains in our model. Equivalently one can minim
the corresponding auxiliary effective potential as a funct
of the ultraviolet~UV! cutoff itself. The nonperturbative chi
ral QCD vacuum is found stable since its ma
characteristic—the vacuum energy density—has no ima
nary part and it is always negative.

Within the ZME quantum model of the QCD ground sta
@4#, the vacuum energy density depends on a scale at w
the nonperturbative effects become important. If QCD its
is a confining theory, such a characteristic scale should
tainly exist. The quark part of the vacuum energy dens
depends in addition on the constant of integration of
corresponding Schwinger-Dyson~SD! equation. The numeri-
cal value of the nonperturbative scale as well as the ab
mentioned constant of integration is obtained from t
bounds

87.2<Fp
o <93.3 ~MeV!, ~1.1!

for the pion decay constant in the chiral limit by implemen
ing a physically well-motivated scale-setting scheme@4#. We
have obtained the following numerical results for the no
perturbative vacuum energy density,e5eg1Nfeq :

e52~0.014252Nf0.00196! GeV4, ~1.2!

e52~0.010872Nf0.00150! GeV4, ~1.3!

where, obviously, the first and second values are due to
per and lower bounds in Eq.~1.1!, respectively. Let us recal
that these numerical values have been obtained by app
mating the full gluon propagator by its nonperturbative te
in the whole range, i.e., it has been assumed that the pe
bative contribution has been already subtracted. Let us re
that here and further on belowNf is the number of light
ia
©2000 The American Physical Society06-1
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flavors and in what follows we will usee5eg[eY M in Eqs.
~1.2!, ~1.3! in the case of pure Yang-Mills~YM ! fields, Nf
50.

On the other hand, many models of the QCD vacu
involve some extra classical color field configurations~such
as randomly oriented domains of constant color magn
fields, background gauge fields, averaged over spin
color, stochastic colored background fields, etc.! and ingre-
dients such as color-magnetic and Abelian-projected mo
poles~see Refs.@1,5# and references therein!. The relevance
of center vortices to QCD by both lattice@6# and analytical
method@7# was recently investigated as well. However, t
most elaborated classical models are the random and i
acting instanton liquid models~RILM and IILM ! of the QCD
vacuum@8#. They are based on the existence of the topolo
cally nontrivial instanton-type fluctuations of gluon field
which are solutions to the classical equations of motion
Euclidean space@8# ~and references therein!.

In this paper we treat the chiral QCD vacuum as cons
ing mainly of the two components, the classical one given
RILM @8# and the quantum one given by ZME@4#, by sum-
ming up their contributions into the total, nonperturbati
vacuum energy density. The main purpose of this paper i
show that this model of the nonperturbative QCD vacuum
in fair agreement with phenomenology. For example, it
actly reproduces the phenomenological value of the topol
cal susceptibility. In Secs. II, III, and IV using the trac
anomaly relation @9#, low-energy theorem@10,11# and
Witten-Veneziano~WV! formula@12# we develop an analyti-
cal formalism which allows us to calculate the gluon cond
sate, the topological susceptibility and the mass of theh8
meson in the chiral limit as functions of the total, no
perturbative vacuum energy density~the bag constant, apa
from the sign, by definition!. In Sec. V we present our est
mate of the nonperturbative vacuum energy density in
chiral limit due to instantons. Section VI is devoted to d
cussion and our conclusions are given in Sec. VII. The
merical results are shown in Tables I–IX.

II. THE GLUON CONDENSATE IN THE STRONG
COUPLING LIMIT

The vacuum energy density is important in its own rig
as the main characteristic of the nonperturbative vacuum
QCD. Furthermore it assists in estimating such an impor
phenomenological parameter as the gluon condensate, i
duced in the QCD sum rules approach to resonance phy
@13#. The famous trace anomaly relation@9# in the general
case~nonzero current quark massesmf

0) is

Qmm5
b~as!

4as
Gmn

a Gmn
a 1(

f
mf

0q̄fqf , ~2.1!

TABLE I. The gluon condensate in the strong coupling limit

Fp
0 (MeV) Ḡ2 (GeV4) Nf50 Nf51 Nf52 Nf53

87.2 0.043 0.037 0.031 0.025
93.3 0.057 0.049 0.041 0.033
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whereQmm is the trace of the energy-momentum tensor a
Gmn

a being the gluon field strength tensor whileas5g2/4p.
Sandwiching Eq.~2.1! between vacuum states and on a
count of the obvious relation̂0uQmmu0&54e t , one obtains

e t5
1

4
^0u

b~as!

4as
Gmn

a Gmn
a u0&1

1

4 (
f

mf
0^0uq̄fqf u0&,

~2.2!

wheree t is the sum of all possible independent, nonpert
bative contributions to the vacuum energy density~the total
vacuum energy density! and^0uq̄fqf u0& is the quark conden-
sate. From this equation in the chiral limit (mf

050), one
obtains

^Ḡ2&[2 K b~as!

4as
G2L [2^0u

b~as!

4as
Gmn

a Gmn
a u0&524e t ,

~2.3!

where we need to introduce a new quantity, namely
gluon condensate in the strong coupling limit, i.e., not us
in general the weak coupling limit solution to theb function
~see Sec. V below!. If confinement happens then theb func-
tion is always in the domain of attraction~i.e., always nega-
tive! without IR stable fixed point@14#. Thus the non-
perturbative gluon condensate^Ḡ2&, defined in Eq.~2.3!, is
always positive as it should be. Saturatinge t by our values
~1.2!, ~1.3! which are relevant in the strong coupling limi
one obtains

Ḡ2[^Ḡ2&524~eg1Nfeq!, ~2.4!

which gives the gluon condensate in the strong coupl
limit as a function ofNf . The numerical results are shown
Table I.

III. THE TOPOLOGICAL SUSCEPTIBILITY

One of the main characteristics of the QCD nonpertur
tive vacuum is the topological density operator~topological
susceptibility! in gluodynamics (Nf50)

x t52 lim
q→0

i E d4x eiqx^0uT$q~x!q~0!%u0&, ~3.1!

where q(x) is the topological charge density, defined
q(x)5(as /8p)G(x)G̃(x)5(as /8p)Gmn

a (x)G̃mn
a (x) and

G̃mn
a (x)5(1/2)emnrsGrs

a (x) is the dual gluon field strength
tensor. In the definition of the topological susceptibility~3.1!
it is assumed that the corresponding regularization and s
traction of the perturbative contribution have been alrea
done in order~3.1! to stand for the renormalized, finite an
the nonperturbative topological susceptibility~see Refs.@10–
12,15#!. Precisely this quantity measures the fluctuation
the topological charge in the nonperturbative vacuum.

As it was shown in Refs.@10,11#, the topological suscep
tibility can be related to the nonperturbative gluon conde
sate via the low energy theorem in gluodynamics as follo
6-2
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lim
q→0

i E d4x eiqx^0uTH as

8p
GG̃~x!

as

8p
GG̃~0!J u0&

5j2K b~as!

4as
G2L . ~3.2!

There exist two proposals to fix the numerical value of
coefficientj. The valuej52/b, b511 was suggested a lon
time ago by Novikov, Schifman, Vanshtein, and Zakhar
~NSVZ!, who used the dominance of self-dual fields hypo
esis in the YM vacuum@10#. A second one,j54/3b, was
advocated very recently by Halperin and Zhitnitsky~HZ!,
using a one-loop connection between the conformal
axial anomalies in the theory with auxiliary heavy fermio
@11# ~and references therein!. However, in our numerical cal
culations we will use both values for thej parameter. Using
the trace anomaly relation~2.3! and saturating the tota
vacuum energy density by its part atNf50, eY M , the topo-
logical susceptibility~3.1!, on account of~3.2!, can be easily
expressed as follows:

x t52~2j!2eY M . ~3.3!

The significance of this formula is that it gives the topolo
cal susceptibility as a function of the nonperturbati
vacuum energy density for pure gluodynamics,eY M . For
numerical calculations, however, it is much more conveni
~see below, next section! to use the topological susceptibilit
in the WV form @12#, which is related to Eq.~3.3! as

x t
WV5S 2

Nc
D 2

x t52S 4j

Nc
D 2

eY M , ~3.4!

whereNc is the number of different colors. In what follow
all our numerical results for this quantity stand forx t

WV and
not for x t , shown in Eq.~3.3!, however the superscrip
‘‘WV’’ will be omitted for simplicity. It is easy to show that
one obtains the same expression for the topological sus
tibility ~3.3! or ~3.4! as a function of the nonperturbative YM
vacuum energy density if one would use the weak coup
limit solution to theb function from the very beginning~see
Sec. V below!. The numerical results due to ZME model a
shown in Table II.

In conclusion, let us note that there exists an interes
relation between the HZ and NSVZ values for thej param-
eter, namelyjHZ5(2/Nc)jNSVZ, Nc53, which in principle
may be traced back to the different definitions of anom
equations.

TABLE II. ZME model values forx t
1/4 andmh8 in MeV units.

Fp
0 x t

1/4 ~NSVZ! ~HZ! mh8
0 ~NSVZ! ~HZ!

87.2 159.6 129.8 710 473.3
93.3 170 139 759.7 506.5
03600
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IV. THE U„1… PROBLEM

The topological susceptibility~3.1! assists in the resolu
tion of theU(1) problem1 @16# via the WV formula for the
mass of theh8 meson@12#. Within our notations it is ex-
pressed asf h8

2 mh8
2

5(16Nf /Nc
2)x t , wheref h8 is theh8 resi-

due defined as ^0u(q5u,d,sq̄gmg5quh8&5 iANf f h8pm

and ^0uNf(as /4p)GG̃uh8&5(NcANf /2) f h8mh8
2 . So, fol-

lowing Witten @12#, the anomaly equation is]mJ5
m

52Nf(2/Nc)(as /8p)GG̃. Using also the normalization re
lation f h85A2Fp

0 , one finally obtains

Fp
2 mh8

2
5

8Nf

Nc
2 x t52Nfx t

WV , ~4.1!

where the topological susceptibility is introduced in a use
WV form for numerical calculations, as it was mentione
above in Eq.~3.4!. In previous expression we omit for sim
plicity the superscript ‘‘0’’ in the pion decay constant as we
as in mh8

2 . In the numerical evaluation of the expressio
~4.1!, we will put, of course,Nf5Nc53, while the topologi-
cal susceptibility will be evaluated atNf50 as it should be
by definition. Using then Eq.~3.4!, one obtains

mh8
2

522Nf S 4j

FpNc
D 2

eY M , ~4.2!

which expresses the mass of theh8 meson as a function o
the nonperturbative vacuum energy density. This allows
to easily calculate it in the chiral limit within our formalism
~see again Table II!.

It is instructive to reproduce the WV formula~4.1! in the
nonchiral case as well, namely

mh8
2

5
2Nf

Fp
2

x t
WV1D, ~4.3!

whereD52mK
2 2mh

2 . The precise validity of the WV for-
mula ~4.3! is, of course, not completely clear, neverthele
let us regard it~for simplicity! as exact. Using now experi
mental values of all physical quantities entering this formu
one obtains that the phenomenological~‘‘experimental’’!
value of the topological susceptibility is

x t
phen50.001058 GeV45~180.36 MeV!4. ~4.4!

In the chiral limit D50 since K6 and h particles are
Nambu-Goldstone~NG! bosons. Omitting formally this con
tribution from the right hand side of Eq.~4.3! and on account
of ~1.1!, one is able to derive an upper and absolute low
bounds for the mass of theh8 meson in the chiral limit

854<mh8
0 <913.77 ~MeV!, ~4.5!

1We are going to consider here only one aspect of this probl
namely the large mass of theh8 meson.
6-3
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which should be compared with its experimental va
mh8

expt
5957.77 MeV. One can conclude that the mass ofh8

meson remains large even in the chiral limit. It is wor
noting that neither the numerical value of the topologi
susceptibility nor the mass of theh8 meson in the chiral limit
cannot exceed their phenomenological and experimental
ues. So the WV formula~4.3! in the chiral limit provides an
absolute lower bound for the pion decay constant in t
case, namelyFp

0 >83.2 MeV.
In order to directly apply this formalism to RILM we nee

the realistic estimate of the corresponding chiral vacuum
ergy density in this model.

V. THE VACUUM ENERGY DENSITY
DUE TO INSTANTONS

The instanton-type topological fluctuations, being a cl
sical phenomena, nevertheless also contributed to
vacuum energy density through a tunneling effect which w
known to lower the energy of the ground state@8#. It can
be estimated as follows. Let us consider again the tr
anomaly relation ~2.2! in the chiral limit, i.e., e t

5(1/4)^0u„b(as)/4as…Gmn
a Gmn

a u0&. Using the weak cou-
pling limit solution to theb function now

b~as!52b
as

2

2p
1O~as

3!, b5112
2

3
Nf , ~5.1!

one obtains

e t52
b

4
3

1

8
^0u

as

p
Gmn

a Gmn
a u0&. ~5.2!

The phenomenological analysis of QCD sum rules@13# for
the gluon condensate implies

G2[^G2&[ K as

p
G2L [^0u

as

p
Gmn

a Gmn
a u0&.0.012 GeV4,

~5.3!

which can be changed within a factor of two@13#. From the
phenomenological estimate~5.3!, one easily can calcu
late(1/8)^0u(as /p)Gmn

a Gmn
a u0&.0.0015 GeV4.1.0 fm24.

Having in mind this and assuming that the gluon condens
in the weak coupling limit is determined by the instanto
type fluctuations only, Shuryak@8# ~see also reference
therein! has concluded that the ‘‘average separation’’ b
tween instantons wasR.1.0 fm, so the corresponding den
sity of the instanton-type fluctuations should ben
.1.0 fm24. Let us note that the second parameter of
instanton liquid model of the QCD vacuum, the instant
size r0.1/3, was chosen to reproduce standard~also as
gluon condensate! phenomenologically estimated from QC
sum rules@13#! value of the quark condensate. This cont
bution to the vacuum energy density via the trace anom
relations~2.1!, ~2.2! vanishes in the chiral limit. However
due to all reasonable estimates of light quark masses,
03600
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merically its contribution is at 20% and thus comparab
with the systematic error in the determination of the glu
condensate itself@13,17#.

Saturating the total vacuum energy in the weak coupl
limit by instanton componente I and using the above men
tioned estimate, from Eq.~5.2! for dilute ensemble, one fi-
nally obtains

e I52
b

4
n52

b

4
31.0 fm24

52~0.004172Nf0.00025! GeV4. ~5.4!

Thus instanton contribution to the vacuum energy den
was not calculated independently but was postulated via
trace anomaly relation using the phenomenological value
the gluon condensate~5.3! as well as weak coupling limit
solution to theb function ~5.1!. It is well known that density
of instanton-type fluctuations is suppressed in the chiral li
and is again restored because of dynamical breakdow
chiral symmetry@8# ~and references therein!. In any case it
cannot be large in the chiral limit, so the functional depe
dence of the vacuum energy density on the instanton den
established in Eq.~5.4! due to dilute gas approximation
seems to be justified in this case. The only problem is
numerical value of the instanton density itself, which can
taken either from phenomenology or from lattice simu
tions.

In Ref. @10# it was argued that the gluon condensate in
chiral limit is approximately two times less than the abo
mentioned phenomenological~empirical! value ~5.3!, i.e.,
^G2&ch.0.5̂ G2&phen. This means that in this case instanto
densityn.0.5 fm24 and the vacuum energy density due
instantons approximately two times less than Eq.~5.4!. How-
ever, it has been already pointed out@18# that QCD sum
rules substantially underestimate the value of the gluon c
densate. The most recent phenomenological calculation
the gluon condensate is given by Narison in Ref.@19#, where
a brief review of many previous calculations is also p
sented. His analysis leads to the update average value a

^0u
as

p
Gmn

a Gmn
a u0&5~0.022660.0029! GeV4. ~5.5!

This means that instanton density is approximately two tim
bigger than it was estimated by Shuryak for instanton liq
model @8#, but in the chiral limit we are again left with Eq
~5.4!.

In lattice QCD situation with instanton density and the
sizes is also ambigious. In quenched (Nf50) lattice QCD by
using the so-called ‘‘cooling’’ method the role of th
instanton-type fluctuations in the QCD vacuum was inve
gated@20#. In particular, it was found that the instanton de
sity should ben5(11d) fm24, whered.0.3–0.6 depend-
ing on cooling steps. Moreover, by studying the topologi
content of the vacuum ofSU(2) pure gauge theory using
method of RG mapping@21#, it is concluded that the averag
radius of an instanton is about 0.2 fm, at a density of abou
fm24. However, in Ref.@22# the topological content of the
6-4
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SU(3) vacuum was studied using the same method as
SU(2) gauge theory earlier and was obtained a fair agr
ment with Shuryak’s phenomenologically estimated numb
for the instanton liquid model. At the same time, in Re
@23,24# considerably larger values were reported. Thus at
stage it is rather difficult to choose some well-justified n
merical value of the instanton-type contribution to the no
perturbative vacuum energy density. In any case, in w
follows we will consider Eq.~5.4! as a realistic upper boun
for the instanton contribution to the vacuum energy den
in the chiral limit. If the instanton number density is abo
n.2 fm24, then in the chiral limit we again are left with
Eq. ~5.4!, but if it is aboutn.1 fm24, we will be left with
half of Eq. ~5.4!. Then the instanton contributions to th
topological susceptibility and the mass of theh8 meson in
the chiral limit are to be calculated via Eqs.~3.4! and ~4.2!,
respectively, on account of the substitutioneY M→e I(Nf
50), wheree I is given in Eq.~5.4! with the two different
values for instanton number densities in the chiral limit,n
50.5 fm24, 1.0 fm24. The numerical results are shown
Table III. In conclusion, we note that for densitiesn
.2 fm24 ~which meansn.1 fm24 in the chiral limit! the
applicability of the dilute gas approximation becomes, app
ently, doubtful.

VI. DISCUSSION

A. The gluon condensate

It becomes almost obvious that we must distinguish
two types of gluon condensates, both of which are the n
perturbative quantities. The first one is determined by
~2.3! and is the one which is relevant in the strong coupl
limit. In this case the total vacuum energy is mainly satura
by the ZME component as it is precisely shown in Eq.~2.4!.
In the weak coupling limit, saturatinge t by e I , from Eqs.
~5.2!–~5.4! one obtains

K as

p
G2L 52

32

b
e t.2

32

b
e I58n; ~6.1!

TABLE III. Chiral topology due to instantons.

n (fm24) 0.5 1.0

e I (GeV4) 20.002085 20.00417
G2 (GeV4) 0.006 0.012
x t

1/4 (MeV)
~NSVZ! 104 125
~HZ! 86 102

mh8
0 (MeV)

Fp
0 587.2 MeV

~NSVZ! 311 439.7
~HZ! 207.3 293

mh8
0 (MeV)

Fp
0 593.3 MeV

~NSVZ! 290.6 411
~HZ! 193.7 274
03600
or
e-
rs
.
is
-
-
at

y
t

r-

e
n-
.

d

i.e., the gluon condensate in the weak coupling limit does
explicitly depend onNf . As was mentioned above, precise
this gluon condensate was introduced long ago@13#. This
unphysical situation takes place because in instanton calc
@8# there is no other way to calculate the vacuum ene
density than the trace anomaly relations~2.1!, ~2.2! which
becomes finally Eq.~6.1! as it was described above. In th
case it is preferable to have theNf dependent vacuum energ
density than the gluon condensate since the former is
main characteristic of the nonperturbative vacuum. Cont
to this, we have calculated the vacuum energy density c
pletely independently from the trace anomaly relation. W
use it only to calculate the gluon condensate in the str
coupling limit. That is why in our case both quantities areNf
dependent functions.

Our bounds for full QCD (Nf53) gluon condensate in
the strong coupling limit

0.025<2^0u
b~as!

4as
Gmn

a Gmn
a u0&<0.033 ~GeV4!,

~6.2!

are comparable with recent phenomenological determina
of the standard gluon condensate by Narison~5.5!. The pa-
rametrization~the left hand side! of the two types of the
gluon condensate may be, of course, the same but their
merical values~the right hand sides! are not to be the same
This difference is not only due to different physical obse
ables as was noticed in Ref.@8#. Though both quantities are
the nonperturbative phenomena, nevertheless this differe
reflects different underlying physics. Our gluon condens
~2.3! is the strong coupling limit result and reflects the no
trivial topology of the true QCD vacuum where quantu
excitations of gluon fields play an important role. As w

TABLE IV. Chiral QCD topology (Fp
0 587.2 MeV).

eZME1e I(0.5 fm24) eZME1e I(1.0 fm24)

e t (GeV4) 20.013 20.015
x t

1/4 (MeV)
~NSVZ! 166.2 172.3
~HZ! 135.7 140.7

mh8
0 (MeV)

~NSVZ! 776.4 834
~HZ! 517.6 556

TABLE V. Chiral QCD topology (Fp
0 593.3 MeV!.

eZME1e I(0.5 fm24) eZME1e I(1.0 fm24)

e t (GeV4) 20.016 20.018
x t

1/4 (MeV)
~NSVZ! 175 180.3
~HZ! 1423 147.2

mh8
0 (MeV)

~NSVZ! 805 854
~HZ! 536.6 569.2
6-5
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shown in our preceding papers@4,25# precisely these type o
gluon field configurations are mainly responsible for qua
confinement and DCSB. At the same time, the stand
gluon condensate~5.3! is the weak coupling phenomeno
due to classical instanton-type fluctuations in the true Q
vacuum which by themselves do not confine quarks@21,26–
28#.

Concluding let us note that in the lattice simulations th
already exist calculations of the gluon condensate which
one order of magnitude bigger than the standard va
namelyG2.0.1046 GeV4 for SU(3) in Ref. @29# and G2
.0.1556 GeV4 for SU(2) in Ref.@30# ~see also review@8#!.
In phenomenology also there exist large values, namely

0.04<^0u
as

p
Gmn

a Gmn
a u0&<0.105 ~GeV4!, ~6.3!

which were recently derived from the families ofJ/C andY
mesons in Ref.@31#.

B. Topology of chiral QCD vacuum

Our numerical results for the quantum part of the nonp
turbative vacuum energy density and for the topological s
ceptibility with the mass of theh8 meson in the chiral limit
are presented in Eqs.~1.2!, ~1.3! and in Table II, respec-
tively. In general our values for the vacuum energy dens
are an order of magnitude bigger than RILM can provide
all in various modifications~see Table III!. That is why the
quantum part of the nonperturbative vacuum energy den
saturates the phenomenological value of the topological
ceptibility and the mass of theh8 meson in the chiral limit
much better than the classical part given by instantons~com-
pare Tables II and III!. Especially this is obvious for the
NSVZ value of thej parameter, introduced in the low
energy theorem, Eq.~3.2!. The instanton contribution sub
stantially underestimates the phenomenological value of
topological susceptibility and therefore cannot account
the large mass of theh8 meson in the chiral limit alone~see
Table III!.

TABLE VI. The bag constant (Fp
0 587.2 MeV, n

50.5 fm24).

B52e t Nf50 Nf51 Nf52 Nf53

GeV4 0.013 0.01133 0.097 0.008
MeV4 (337.7)4 (326.25)4 (313.8)4 (300)4

GeV/fm3 1.7 1.47 1.26 1.04

TABLE VII. The bag constant (Fp
0 593.3 MeV, n

50.5 fm24).

B52e t Nf50 Nf51 Nf52 Nf53

GeV4 0.016 0.01426 0.01216 0.01
MeV4 (355.65)4 (345.56)4 (332)4 (316)4

GeV/fm3 2.0 1.8 1.58 1.30
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However, the total vacuum energy density,e t , is, in prin-
ciple, the sum of all possible independent, the nonpertur
tive contributions. Thus, at least it is the sum of the tw
well-established contributions, quantume[eZME and classi-
cal e I , i.e., e t5eZME1e I1•••, where the dots denote othe
possible independent contributions. In this case an exce
agreement with phenomenology is achieved indeed~see
Tables IV and V!. The numerical values of the bag consta
B, defined as the difference between the perturbative
nonperturbative vacua are given now by the relationB5
2e t and can be explicitly evaluated using Eqs.~1.2!, ~1.3!
for eZME and Eq.~5.4! for e I on account of the above men
tioned two different instanton number densities~see Tables
VI–IX !. For the readers convenience the bag constant~and
consequently the total, nonperturbative vacuum energy d
sity! is given in often used different physical units.

VII. CONCLUSIONS

In summary, using the trace anomaly relation, NSVZ a
HZ low-energy theorem and Witten-Veneziano formula, w
have developed an analytical formalism which allows one
calculate the gluon condensate, the topological susceptib
and the mass of theh8 meson in the chiral limit as function
of the nonperturbative vacuum energy density. It was imm
diately used for numerical investigation of the chiral QC
nonperturbative vacuum topology within the recently pr
posed ZME quantum model. We have explicitly shown th
precisely our values for the nonperturbative vacuum ene
density~1.2!, ~1.3! are of the necessary order of magnitude
order to saturate the large mass of theh8 meson in the chiral
limit. We have obtained good approximation to the pheno
enological value of the topological susceptibility as well. T
NSVZ value of thej parameter, introduced in the low
energy theorem~3.2!, especially nicely saturates them~for all
results mentioned above; see Table II!. At the same time, it is
clear that instanton-induced contribution should be adde
our values in order to achive an excellent agreement w
phenomenology. Indeed, from Table V it follows that

x t~NSVZ!5~180.3 MeV!4 ~7.1!

TABLE VIII. The bag constant (Fp
0 587.2 MeV, n

51 fm24).

B52e t Nf50 Nf51 Nf52 Nf53

GeV4 0.015 0.0133 0.01154 0.0098
MeV4 (350)4 (339.6)4 (327.75)4 (314.6)4

GeV/fm3 1.95 1.73 1.5 1.27

TABLE IX. The bag constant (Fp
0 593.3 MeV, n51 fm24).

B52e t Nf50 Nf51 Nf52 Nf53

GeV4 0.01842 0.0162 0.014 0.0118
MeV4 (368.4)4 (356.76)4 (344)4 (330)4

GeV/fm3 2.4 2.1 1.82 1.53
6-6
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and consequently~as it should be!

mh8
0

~NSVZ!5854 MeV, ~7.2!

which are in fair agreement with Eq.~4.4! and the lower
bound in Eq.~4.5!, respectively. Let us recall that these num
bers have been obtained when the pion decay constant
precisely approximated by its experimental value. The ab
displayed excellent agreement with phenomenological va
of the corresponding quantities is achieved by summing
our contribution and instanton-induced contribution into t
total, nonperturbative vacuum energy density, i.e., the s
mation was done purely phenomenologically by simply su
ming up the two well-established contributions~classical in-
stanton’s and quantum ZME’s!. How to take into accoun
’t Hooft’s instanton-induced interaction@32# at the funda-
mental quark level within our approach is not complete
clear for us, though see paper@33# ~and references therein!.

Let us also make a few things perfectly clear. At lo
energies QCD is governed bySUL(Nf)3SUR(Nf) chiral
symmetry and its dynamical breakdown in the vacuum to
corresponding vectorial subgroup@34#. The chiral limit is not
a physical one but nevertheless remains a very impor
theoretical limit since to understand the chiral limit phys
means to correctly understand the dynamical structure
low-energy QCD as well as the topological properties of
ground state. So a realistic calculation of various phys
quantities as well as chiral properties of its vacuum becom
important. In particular, any model of the QCD vacuu
should pass the chiral limit test in order to be justified
further extrapolation to the realistic~nonchiral! case. In our
previous publication@4# ZME quantum model was formu
D
s

D

B
.

03600
as
e

es
p

-
-

e

nt

of
s
l
s

r

lated. Here we have explicitly shown its important and no
feature, namely it itself passes the chiral limit test justifi
thereby for use in the nonchiral case as well. Complemen
by instanton-induced contribution it is in a fair agreeme
with phenomenology.

In conclusion a few remarks are in order. It is well know
that instanton-type fluctuations require the topologi
charge to be integer (61) and the vacuum angle,u, nonzero,
which violatesP and CP invariance of strong interaction
@10,16#. The nonperturbativeq24-type quantum excitations
do not require the introduction of the vacuum angle,u, at all.
Moreover, it is quite possible that topological charge in th
case is not restricted to integer values. Crewther@35# has
explicitly shown that fractional~noninteger! topological
charge configurations are required to resolve theU(1) prob-
lem ~see also review@16#!. However, theu dependence of
the QCD nonperturbative vacuum energy remains an imp
tant problem. For recent developments of this problem in
largeNc limit of four-dimensional gauge theories see pap
@36#. In particular, in Refs.@37,38# it has been discussed tha
the picture of its dependence in QCD for finiteNc might be
more complicated than that predicted by the largeNc values.
And, finally, let us emphasize once more indisputable s
plicity of our analytical calculation of the topological susce
tibility ~7.1! in comparison with the indisputable complexi
of its calculation by lattice method@21–24,30,39–41#.

One of the authors~V.G.! is grateful to the late Professo
V.N. Gribov for many interesting discussions and rema
on nonperturbative QCD. He also would like to thank I. Ha
perin for correspondence and A. Vainshtein for useful
marks.
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