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The contractor renormalization group method is used to establish the equivalence of various Hamiltonian
free fermion theories and a class of generalized frustrated antiferromagnets. In particular, after a detailed
discussion of a simple example, it is argued that a generalized frust&t8) antiferromagnet whose
single-site states have the quantum numbers of mesons and baryons is equivalent to a theory of free massless
quarks. Furthermore, it is argued that for slight modification of the couplings which define the frustrated
antiferromagnet Hamiltonian, the theory becomes a theory of quarks interacting with color gauge fields.

PACS numbsefs): 11.15.Ha, 11.10.Gh, 12.38.Gc

I. INTRODUCTION sons and baryons, establishing the relevance of the chiral-

It may seem surprising that a Hamiltonian lattice theorysymmetry prediction and the approxim&&J(12) results to
whose single-site states only have the quantum numbers dfie continuum, smakty?, limit is problematic. CORE allows
mesons and baryons can be equivalent to a theory of freene to systematically study this question by truncating the
massless quarks, but it is true. | will show that this resultHilbert space to this set of strong-coupling states, obtaining a
follows directly from the application of the contractor renor- renormalized Hamiltonian which is valid for all values @f
malization group(CORE) method[1] to an appropriately The important question which must be answered is whether
chosen free fermion theory. truncation to this set of states biases the computation and

The original motivation for the computation | will present incorrectly forces the strong coupling results of confinement
was the desire to apply CORE to lattice quantum chromodyand chiral symmetry breaking. One way to show that this is
namics (QCD) and show that the picture which emerged not the case is to apply the same truncation scheme to free
from older strong-coupling calculatiori2] also applies to fermion theory and show that it leads toranormalized
the weak coupling regime. The new feature of CORE whichHamiltonianwhich has the same physics as the global color-
allows this question to be dealt with nonperturbatively is thatsinglet sector of the free theory. While the general theorem
CORE, as opposed to earlier Hamiltonian real-space renobn which CORE is based guarantees this result will hold if
malization group approaches, allows one to retain onlythe retained states have a non-trivial overlap with the rel-
gauge-invariant block state@.e., states in which no flux evant low-lying states of the free-field theogypriori noth-
leaves a blockand still define a non-trivial renormalization ing forces this overlap to be nonvanishing; establishing this
group transformation. fact requires a calculation.

Fluxless states are of particular importance to the strong This paper does the requisite calculation for a theory of
coupling limit of a lattice gauge theory because every linkfree massless fermions intll space-time dimensions with a
which carries nonvanishing flux contributes an energy pronearest neighbor fermion derivative. It will be clear that the
portional tog?, so that fluxless states have the lowest energyextension of this calculation to higher dimensions and other
Moreover, if a lattice theory allows for single-site color- derivatives is straightforward. While the nearest-neighbor
singlet statege.g., theories which exhibit explicit fermion theory exhibits species doubling and is anomaly free, a fact
doubling, Wilson fermions, domain-wall fermions, or theo- which makes it useless for studying the physics of theories
ries based upon variants of the SLAC-type of derivatihe  such as the Schwinger model, it is simple to use and is rel-
number of degenerate fluxless states is huge and in the limgvant to the question of whether or not truncating to the
g®— these states will all have zero energy. In the case ohatural strong-coupling states makes it impossible to obtain
lattice QCD, single-site meson statg¢se., color-singlet the correct weak-coupling physics. The explicit calculation
quark anti-quark statgssingle-site baryon states, and single- shows that things work as expected for the nearest-neighbor
site multi-meson and baryon states consistent with the exclitheory and that theenormalized Hamiltonianakes the form
sion principle, are all of this type. The huge degeneracyf a generalizedfrustrated antiferromagnet which, perforce,
among these fluxless states is lifted in ordeg®l4nd, for a  has all the physics of the charge zero sector of the original
nearest-neighbor derivative, perturbing irg4/leads to an free fermion theory.
effective Hamiltonian which has the form of a generalized Since there is no substantive difference between the phys-
Heisenberg antiferromagnéHAF). An immediate conse- ics of free relativistic lattice fermions and the physics of this
guence of this result is that chir8lU(3) X SU(3) is sponta-  unusual frustrated antiferromagnetic syst@vhich does not,
neously broken in the ground state of this theory; anotheat the short distance level, have any relativistic fermjidns
general result is that the theory has an approxin®tél2)  interesting to ask which theory is fundamental? Clearly, at
symmetry which is broken if one adds next-to-nearest neighthis level there is no way to decide the issue. It will be
bor terms to the fermion derivative. apparent from the calculation that the same mapping can be

Although it is attractive to rewrite strong-coupling QCD carried out for different choices of fermion derivative with
in terms of states which have the quantum numbers of mesimilar results. In other words, the couplings will vary in
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strength but the general form of the renormalized Hamil-where each ternh®™j,r), stands for a set afinge-r con-
tonian will be the same. From a renormalization group pointnectedoperators based at siteall of which can be evaluated
of view this says that there is a surface in coupling constanto high accuracy using finite size lattices. The explicit defi-
space of the generalized frustrated antiferromagnetic systemition of the connected rangeeperatorh®™\j,r), depends
where all Hamiltonians flow to the same free massless ferupon the details of the truncation procedure. In what follows
mion fixed point. Furthermore, it will be clear that turning on | will limit discussion to the case of a one-dimensional lat-
gauge fields in the original problem produces the same sotice, since this is what | will need to discuss the free-fermion
of Hamiltonian with different coefficients. Thus, the gaugetheory. A detailed discussion of the general methodology can
theory is also hidden inside this same system or, in othebe found in Ref[1].
words, all of these different theories are different phases of
the same generic Hamiltonian. As a class, frustrated antifer-
romagnets are systems which have recently come to be of . . o
some interest because of their possible connection tohigh-  Three steps define the nonperturbative approximation
superconductorf3], so this identification of a more general Scheme for computingd™" first the truncation procedure;
class of HAF's(for specific couplingsto a theory of free se_cond the subtractlon_plrocedure qsed to convert the evalu-
relativistic fermions, or relativistic fermions interacting ation of Eq. (1) on finite sublattices to the operators
through a gauge field, has interest beyond its application t§°°" (P.r); third the method for evaluating the-c limit in
QCD. Eq. (1), without explicitly computing eithef[ T2(t)]]~ Y2 or
[[T()HT(t)]]. I will heuristically review each of these
steps in turn.
Il. A BRIEF REVIEW OF CORE First some notation. In what follows | deal with one-

The CORE method consists of two parts, a theorem Whiclgiir_nensional spatial lattices whose sites are labeled-by

defines the Hamiltonian analogue of Wilson's exact renor-—1 =% | assume that there amd-states corresponding to

malization group transformation and a set of approximationeefrl1 S'thOf;\hE Iaf[tlcfe WT}'ChfI ITjEIT'?t:e bw’“(% ’ \{\lllhgre
procedures which render nonperturbative calculation of thé*~— = - - '™ asis for the full Hilbert spacet will be
renormalized Hamiltoniamoable. generated by taking tensor products of thRis&tates per site
; : : : Il siteg.

CORE replaces the Lagrangian notion of integrating ouPVera . . .
degrees of freedom by that of throwing away Hilbert spac COREIa”_(I)lv\:_S a wide hf:h0|ce of ;c]r_u[l]canon protcedurelz(s,
states. This is accomplished by defining a projection opera—o""e_’\’er will-limit myself to one which appears 1o wor
tor, P, which acts on the original Hilbert spacd¥,and whose we!l Ina large number of cases. F'.rSt' divide the lattice into
image is defined to be the space mftained statesH,q disjoint blocksB, each havingng sites and keep a small
— PH. The foundation of the CORE approach is a forr?nulanumber states per block. The way to choose which states to
which relates the original Hamiltoniaf, to therenormal- keep_ IS to d|ag(_)nal|ze the blqck-HamHtonla(me., that
ized Hamiltonianwhich has, in a sense which was madeHamlltonlan obtained by restrictingl to only those terms

i . hich are contained within any one of the blodRs) and
Ref[1], tly the same low ener hysics as™ . . . .
Ere-l(flhsg :enqu;tic[m]isexac y W gy phys! throw away all but itdM lowest lying eigenstates, whehd

<N"s, If we let HBp denote the block Hamiltonian and

|¥,(p)) for =1 ...M its eigenstates, then the projection
operatorP is

B. The approximation procedure

H™®=lim [[T(t)2]]" YA[T(OHTO I T1)?]] Y
t—o
(1)
p=II P,

whereT(t)=e " and wherg[O]]=POP for any operator P

O which acts onH. A similar formula can be written to
define therenormalizedversion of any other extensive op- _
erator. The new, renormalized, operator is guaranteed to Pp= Zl W o(P)Y P ©)
have the same matrix elements between eigenstates®df
that the original operator had between eigenstatds. of

M<N"8

Given P it only remains to computéi™".
Generally the lattice on which the renormalized Hamil-
A. The cluster expansion tonian is defined ighinner than the original lattice in that

_each sitep on the new lattice corresponds to a block of sites
Generally one cannot evaluate Ed) exactly, however it B, on the old lattice, however this need not be the case. In

is possible to norgnperturbative_ly approximate the infinité lathe free-fermion case, to be discussed in the next section, we
tice version ofH rento any desired degree of accuracy. This || thin the states associated with a single site of the original
works becauséi™, as defined in Eq(1), is an extensive |atiice and map the original theory into an equivalent theory

operator and has the general form with the same number of sites but with a Hamiltonian which
w has a very different form.
Hren— heontj 2 To define the cluster expansion begin by defining the
21 U0 @ range-1 term irH™", h®™p,1), to be
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restricted to the two adjacent block8,,B,.,}. Note, in
this case the  notation [[O]] stands for P

M
h®"(p,1)=P Hg P=| X EJ¥.(P))(Vu(P)]|P;
a=1 =P,P,;10P,P,. 1. The explicit definition ofh®™(p,2) is

4
con _pl (2) il
WhereHBp|\Ifa(p)>=Ea|\1fa(p)> and where h®™Mp.2) =Py 5+ 1H(Bp,Bpr 1) Pp s
—h®"Mp,1)—h®"p+1,1). (6)
P=P,P. p P
where, in analogy to Eq5) | define
=11 P. 5
p
P Popsi= 11 P Y

I#p,p+1
The range-2 connected operabsP™{p,2) is defined by sub-
tractingh®"(p,1) andh®™(p+1,1) fromH®@(B,,B,. 1),
the operator obtained by evaluating the « of Eq. (1) for H

Similarly, the range three operatbf°™(p,3) would be ob-
tained from the following formula

|
he™Mp,3) =P} ps1p+2HP(Bp.Bpi1,Bpi2) Py pi1ps2— " p,1) —h®™p+1,1)
—h®™Mp+2,1) —h©" p,2) — h®"p+1,2).

®

In this case one must subtract the three different ways of To clarify what is meant by th&" lowest lying eigen-
embedding the connected range-1 computation and the twatates which appear in the expansion of te&ined state$
different ways of embedding the connected range-2 compuwill consider two simple examples. The first example corre-
tation in the three block problem.[As before, sponds to the simplesttruncation procedure one can imagine,
H(3)(Bp ,Bp+1,Bp+2) is the operator which results when one i.e., choosingl =1 and truncating to a single state. In this
restrictsH to the three adjacent blockB,,B,.1,Bp. 2} and  case the theorem is trivial sindd'=1 and so the space of
then evaluates Ed1).] retained states for that multi-block system is one dimen-

Although it is possible to numerically evaluate Efj) for  sional. The fact thaR andR" are orthogonal matrices means
any multi-block sublattice and extract the linbit- by tak-  their single matrix element must be 1 and so, as long as the
ing large values of (see, for example, Refl]) this is not  single retained state has an overlap with the ground state,
necessary. The fact is that each term in the cluster expansidtiyi,q must simply be the ground state energy of the multi-
can be computed from a knowledge of the tensor produdblock Hamiltonian. To prove this assertion it suffices to re-
stategwhich span the space oftained statesfor the multi-  write Eq. (1) as
block problem and the eigenvalues and eigenstates of the
corresponding multi-block Hamiltonian. A general proof of
this assertion appears in REL], however the basic ideas are
summarized in the following theorem.

TheoremLet Hg be a single block Hamiltonian and 1Bt
be the projection operator which corresponds to keeping its
M lowest lying eigenstategl ,); furthermore, letH denote
the Hamiltonian of am-block sublattice and let ths!" ten-
sor product states formed from the statds,) span the
space of retained states. Then thex limit of the equation
which defines the renormalized multi-block Hamiltonian can
always be written as

e—tH|\I,>

YO e

He"= lim (¥ (t)|H| ¥ (1))
t

— 00

(10

and then expanti¥’(t)) in a complete set of eigenstates of

The second exampl®] =2 andr =2, exhibits all essen-
tial features of the general case. Obviously, in this ddse
=4 and so[[T?(t)]]" Y2 and[[T(t)HT(t)]] are 4<4 ma-
trices, each of which becomes singular in the litit oo,
although their product is well defined. To understand why
the product is well defined and has the form shown in(&j.
it is convenient to expand the fotgtained statesn terms of
exact eigenstates of the two-block problem and on the basis
of this expansion, construct an orthogonal transformaion
which renders the evaluation of the limit in E®) straight-

If we denote the four retained states as

H™®™= lim [ T(t)2]] YA [T(OHTO T T(t)2]]~ Y2

t—oe

=RHgaR' 9)

whereRis anM"x M" orthogonal matrixR" its inverse and
Hiag is @ diagonal matrix whose entries are the eigenvalueforward.

of thoseM" lowest lying eigenstates dfi which appear in
the expansion of the retained states.

|¥1), |¥,), |¥3), and|¥,) we can write their expansion
in terms of block eigenstates as
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|V 1) =ap| o) +as| 1) +ag| o)+ - - - T(1)] x1)= o€ " ho) + ase™ U 1) + ape™ 2| )

+age 'Y Pa)t -

| W) =bg| o)+ 1| 1) +bo| o) + - - -
2)=Bol o)+ bu[ #1) + bzl d2) T(t)| x2)=B18 Y p1) + Bre™ 2| h,) + Bze™ 3| p3)

|W3)=Co| o) +C1| 1) +Co )+ - - o
T(t)|x3) =726 "2/ o)+ yze 'Sl pg)+ - -
W) =do| o) + dal br) + | )+ - - - 11
V)= ol )+ ol )+ 0ol ) W setelgye »

where the statehi)n> Correspond to eigenstates of the block from which it is clear that, up to a normalization factor, each
Hamiltonian with energies,. Assume that the states are Of the statesy,) contracts onto a different eigenstate of the
arranged in the order of increasing energy, so thats the — multi-block Hamiltonian. Furthermore, we have

ground state of the block Hamiltoniah,) the first excited

state, etc. H T(t)|x1) = aoeoe™ " o) + 16187 1)
Applying T(t) to each of these states we obtain + a8 12 )+ ageze 19 o) + - -
— —te —te
T(O)| W) =ape 10| o) +ase 1] by )+ aye t€2| o) + - - - HT(t)|x2) =Brere Y 1)+ Brere 2| )

+ Baeze” 8| pgy) + - - -
HT(t)|x3) = y2€26" "2 ) + y3€e™ 'Sl ghg) + - - -

H T(t)| x4) = 3€38™ 3| pg) + - - - (15

T(1)|W,)=bge™"“0| ¢o) +e~"1hy| 1) +bre "2 pp) + - - -

T(1)[W3)=Coe "[¢g) +Cr8 'L p1)+Cre ")+ - - -
Given Eq.(14) and Eq.(15) one can easily analyze the
Cte Cte Cte —oo behavior of Eq.(9). To get a feeling for the way in
T(1)[ ¥ ,)=dge™"“0| o) +die” "t 1) +dpe 2|<f>2>+"1'2) which this works Iect1 us simp?ify the disc%ssion by, fgr the
moment, assuming thaf T%(t)]] and[[T(t)HT(t)]] are 2
X 2 matrices obtained by sandwiching these operators be-
The reason it is convenient to make an orthogonal transfortween the statejy;) and|x,). In this case we have
mation on the statepV;) is that in thet—oo limit those 5 et . oet
states in Eq(12) for which the coefficient of ¢,) is nonva- (0]]= lag e 20+ ol e
nishing will, up to a normalization factor, contract onto the [l - a;Bye % | B,]2e 2t
same statég,), renderind [ T(t)HT(t)]] and[[ T2(t)]] sin-
gular. By multiplying [[T(t)HT(t)]] by the factors of
[[T(t)?]]*2 we correct for this situation, but it is not at all [[T(t)HT(t)]]=(
obvious why or how this works in the original tensor product
basis.

To avoid this problem with the largelimit we change
basis, defining statels¢;) to |x4), which are orthonormal
linear combinations of the stat¢¥,) to |¥,), having the
property that each state contracts onto a distinct eigenstate

|aol?epe™ 0" af ﬂlfleZElt)

a1Bf €672 | By|%e 02!

In general [ T?(t)]] is a matrix of scalar products and its
eigenvalues are guaranteed to be positive, so it is guaranteed
to have an inverse square root. On can explicitly construct
H}e inverse square root by writifgT?(t)]] as

the block Hamiltonian: i.e., [[TAD)]]=U(t)'D(HU(1) (16)
_ whereD (t) is a diagonal matrix whose entries are the eigen-
= + + + +o
[X2)= a0l do) + sl o) + ol o) + sl ba) values of[[T2(t)]] andU(t) is the matrix whose columns
are the normalized eigenvectors corresponding to those ei-
|x2) = B1l 1)+ Ba| b))+ Bal pa) + - - - genvalues. Given this decomposition
[T =um™DO U ). (17)

= 4 4. . o . .
[x3)= val $2)+ 73l 63) Note, sinceD(t) is diagonal,D(t) Y2 is also a diagonal

matrix whose entries are the inverse square roots of the cor-
|Xa)= 8a|pa)+ - - - (13) responding entries iD(t).
Fortunately, since all we really need is the behavior of the
product in Eqg.(9) ast gets large, we do not have to do all
Applying T(t) to these basis states yields this work. It suffices to define edependent rescaling ¢f,)
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and |x,) which guarantees that each state convergeg, as 1 0
—, to the lowest lying eigenstate of the block Hamiltonian o -1/ (21)
which appears in its expansion in terms of multi-block eigen-
S'Eattes. More specifically, multiplyingy,) by the factor As is customary | introduce creation and annihilation op-
e/ ag and|x2) by €;t/B, yields the result eratorsb; ,b/ ,d; ,d] and define the nearest neighbor deriva-
ot . tive, 8'(j), as follows:
! P
XAD)=T(1) —|x2)=|do)+——e (= D[g)+. .. n 0
0 @9 . T
P(j)=b ( >+d ( )
=|¢p)+-- (18 8 (1)=-6(-1)=1
8'(j)=0 if j#1 (22

from which it follows that, in the limit of large,

. Making these substitutions the Hamiltonian takes the form

A1
1+ .- —— g (1€t i i
> _ T i T t
[[T?(t)]]= %o H—; E(ijrlbj_bj bj+1)_§(dj+1dj_dj dj+1).
ﬂe—(fl—fo)t 1+... (23
@o
In terms of these operators the total electric and axial charge
* are defined by
@y C(er—
€t - —e€e (e1—€g)t
o
[([TOHTO1]= ° Q=§j) (b/b;—dfd))
ﬂele (51 EO)t 61—|—...
@p

5= . +dfd, —1).

which establishes the theorem for thix2 case. It should ° ; (bybj+djdy=1) 29
be clear that the same sort of rescaling pf) to |x.) will
establish the result for the reak#4 case. It is importantto %' ¢ re v ol
reiterate that the construction the matrix of eigenvalDes first is the statd0;) which is annihilated byo; andd; . The
and the construction of the orthogonal transformatiois other chargelese e., locally gauge invariantstate 'S|—1>
done directly from a knowledge of the eigenvalues of the=b;d[|0;). The projection operator onto the spaceref
block Hamiltonian and the expansion of the tensor productfa\lﬂ@fj statess defined in terms of these states by the product
states in eigenstates of the block Hamiltonian; at no point is
it necessary to deal witf{ T(t)]] for finite values oft. This P:H P

: : . 1 Fj
means that when dealing with large blocks and many eigen-
states, techniques such as the Lanczos method, which finds

For each sitg, there are two electrically neutral states. The

only the relevant lowest lying eigenstates starting from the Pi=10;)¢0; +[=)(=l. (25
tensor product states, can greatly reduce the computer re- _
sources needed to solve the problem. Fourier transforming

lll. FREE-FIELD PRELIMINARIES bk:; e “p;, blz}j‘, eip],

To set up the computation presented in the next section
requires some notation. The system under discussion is a

(1+ 1)-dimensional Hamiltonian lattice theory. The fermion dk:2 efikjdj , dl=2 eikjdjTa (26)
field is taken to be a two component operatgy(j) with J .
a=1,2. The Hamiltonian has the form the Hamiltonian in Eq(23) becomes
) T 1( - T t
H= JZ 8- i2)¥] oas, (19 H= 5| dksin(k)(bib,—didy). 27)
1 2 -

where 8’ is a general hopping term having the property It follows from Eq.(27) that the ground state of the theory is
the state obtained by filling the negative energy sea: i.e.,

0" (j1=j2)=—68"(J2—]1)- (20
ao=[] b"d{|0 28
and o3 is the 2x 2 matrix vag kl;lo = |0) (28)
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where|0) is the state annihilated by all thg’s andd,’s (or  statesh®™{j,1)=0. As noted earlier, | will retain the locally

equivalently, theb;'s andd;’s). gauge-invariant states
The only additional free-fermion formula which | need _ -
has to do with diagonalizing Eq23) for a finite lattice |Oi>' |ij>:bidi|oj>- (32

wherej=1...N. As with all such quadratic Hamiltonians \yhich form a spin-1/2 doublet with respect to the global
one only has to diagonalize th&XN matrix K; ; SU(2) defined in Eq(31).

=i/26"(j1—]2), which can be done exactly for any value of  The first non-trivial connected operator which contributes
N. If N is even the eigenvalues Kflook like the eigenvalues to H™"is the range-2 operatdr®™\j,2). The four retained
of the infinite volume problem in that states associated with a connected two-site block are

e(k)=sin(k,) (29) [00); [*0); [0x); [£=*) (33)

, which decompose into a spin-1 and spin-0 multiplet under
where k,=mp/2(N+1) for p any odd integer such that he globalSU(2). Since each of the states of definite spin
—N=p=N. For the case of odH, the eigenvalues are once 4.4 third-component of spin must contract onto unique
given by Eq.(29), however in this case the valueskfare  gjgenstates of the two-site problem, changing from the tensor
given bykp=mp/(N+1) where nowp is any integer such  yroqyct states to the spin basis amounts to finding the rota-
that —(N+1)/2<p<(N+1)/2. Note that in both cases the tjon matrix R. The combinations of definite total spin and
range ofk is —7/2<k</2 in distinction to the case of a 3.component of spin are:

periodic or infinite lattice. Although the issue of how dou-

bling works in the finite volume open boundary condition Stzot=2, S;=-1, |00),

case is interesting, time does not permit going into it here.

Suffice it to say that even though the eigenvalues are given 5 1

by Eqg.(29) and undoubled, nevertheless the theory has both Sot=2, S3=0, Eq +0)=[0+)),

left and right movers for each componentfand is not a

chiral theory. The last piece of information needed in order S2=2, S3=1, |*+),
to carry out the full computation is the formula for the eigen-
vectors ofK, which for all values ofN are given by 1
S6=0. S5=0, HF0+10=)). (34)

N 1 —ikpj j ik
ukp(”_ m[e P (= 1)e]. (30 Note the unusual minus sign in the spin8;=0 state,
comes from the alternating minus sign which appears in the
A final fact concerning the nearest-neighbor free-fermiondéfinition of S, andS_ in Egs.(31).
theory is that it possesses a glolsl(2) symmetry whose To complete the computation &°"(j,2) we only need
generators are given by to find the eigenvalues of the full two-site Hamiltonian
which correspond to the lowest lying spin-0 and spin-1
1, _ states. Since the Hamiltonian, E&3), only has terms which
S.=> R4 0h0 05, absorb a particle or antiparticle at sjtand create one gt
' +1 it follows that|00), which is annihilated by the absorp-
tion operators, has zero energy. The same is true of the state
S+=E (_1)ijde?‘ |+ =), which is not annihilated by the absorption operators
] but which has no room to move a particle or antiparticle to a
neighboring site. It follows from th&U(2) symmetry that
s -3 (-1)idb. the state (1¥2)(|=0)—|0+)) also has zero energy. The
- g g only eigenvalue to be determined is that associated with the
lowest spin-0 state in the sector which has one particle and
1 one antiparticle. For the case of two sites the two allowed
Ss= E(b;rbj +d]de —-1). (3)  values for the momenta akte= + 7/6 ande(k) = * sin(/6)
= +1/2; thus the lowest energy charge zero eigenstate of the

. . : two-site problem isb" _.d! ]0,0), having an energyE,
This symmetry is very useful for checking the results of the_ 1. It follows from this that, in the total spin basis

necessary finite volume calculations.

0O 0 0 O
IV. THE COMPUTATION 000 O
: 5Ni,i+1)=R R 35
To compute the connected range-1 terffP™(j,1) one 2 (Li+1) 0 00 O @9

diagonalizes the single-site Hamiltonian and selects a set of 00 0 -1

retained states from among its lowest lying eigenstates. Since

there are no range-1 terms in Eg3) the single-site Hamil- whereR s the rotation matrix which transformed the original
tonian is zero and so, independent of the choice of retainetbnsor products into the total spin basis. Thig 4 matrix
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can always be rewritten in terms of the sixteen matricesvhich, for every odd lattice site mapg(2j+1)— —s1(2]
Myg=0,(i)og(i+1) wherea,=0...3 andog is the  +1) andsy(2j+1)— —s,(2j+1) but leaves;(2j+1) un-
unit matrix andoy, o5, andos are the Pauli spin matrices. changed. In the calculations which follow we will see that,
In particular if we write given the phases | have chosen for the st‘,s(])r]a-)sand|i i)
the terms irH°" will generically have the form shown in Eq.

4 . . . .
39) and will be brought into standard form by application of
HEYLi+1)= D CopMug (36) (o) 9 v app
@ 0

While the computation oh®™1,i) and h®°"™(2,i) are

then it follows from theSU(2) symmetry and Eq35) that,  very simple, the calculation di®"(n,i) for n=3 requires

in the original tensor product basi#{5"(i,i+1) has the more work. Fortunately, it is easy to automate this task using
form MAPLEV and the computation of all terms out to and includ-
ing h®®™5,i) takes less than two minutes on a desktop com-
puter. I will now describe the process for the cas&"(3,i),

since the general computation proceeds along the same lines.
The allowed momenta for a three-site sublattice kare

heM 2,i)=HE\i,i+1)=— %1+§(i)-§(i +1) (37

sinceh®™{1,i)=0. Thus, up to range-2 terms, the full renor- = — /4, 0, =/4; the corresponding particle energies are
malized Hamiltonian is sin(—/4)=—1/\/2, sin(0)=0, sin@@/4)=1/\2; and the
1 antiparticle energies are sin(—m/4)=1//2, —sin(0)=0,
Hren= — Zv+z s(i)-s(i+1). (38  —sin(w/4)=— 1/\/2. As the Hamiltonian contains only hop-
I

ping terms, the number of particles and antiparticles are
separately conserved; thus, of the eight possible tensor prod-

Actually, this form of the .re'normalized Hamilton.ian gives uct stategwhich define the set of retained statéise states
the correct spectrum, but it is not what one obtains dlrectly[000> and |+ + =) are eigenstates of the three-site Hamil-

by taking traces of the forms,(i)s,(i+ 1)H5"(i,i+ 1)) as  topjan of energy zero. Furthermore, of the six-remaining

indicated in Eq.36). The nonvanishing traces are states, the three two-particle states00), |0=0), and
1 1 |00=) and the three four-particle states +0), |=0=x),
—tr(oqy () o (i+1)HF,i+1))=—— and|0+ =) can be treated separately, since when expanded
4 4 in terms of a complete set of eigenstates for the three-site

1 1 problem they have no states in common.
Ztr(oy(i) oo+ D)HE i +1)=— = The nine possible particle-antiparticle eigenstates of the
4 2 4 three site problem are

—higt
a9 |k,1)=b{d[|000) (42)

NP

1
Ztr(a3(i)o3(i +DHFLi+1))=
with eigenenergy(k,l) =sin()—sin(). Expanding the three
and so the form oH" directly obtained from our definitions rétained states in terms of these eigenstates is straightforward
has the form since

HE= HE i +1) bjdj000)= 2, uy()ui()bed[000);  (43)

1 o o thus, the coefficienty, of the stateb/d/ is just
=— Zv+2 (—s1(1)s1(i +1)—s,()So(i + 1)
I

a (k=2 ulj)u(j). 44
o)l +1)). 40 (k=2 udiu(i) (44
Note, however, that this Hamiltonian can be brought into the Given these formulas we can now discuss how to com-
form of a Heisenberg antiferromagnet by the rotation pute the matrice®R,H g,y and R" from the overlap matrix,
which gives the expansion of the retained states in terms of
O:H e ims3(2j+1) (41) the eigenstates of the three-site Hamiltonian. The eigenener-
]

gies of the one particle states ordered by energy are

e(—mlamll)=—\2, e(—ml40)=—1/2, e(0m/4)=—1/2,
e(—ml4,—wl4)=0, €(0,00=0, e(ml/4,ml4)=0,
e(ml4,00=12, €(0,—mld)=—11N2, e(ml4—mld)=2. (45)
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The first overlap matrix giving the expansion of the retained states in terms of these eigenstates is

(£00//0.25 0.35 035 025 025 05 035---
0,=(0+0[| 0.50 0 0 -05 -05 O 0 cee e | (46)
(00£|\0.25 —-0.35 —-0.35 0.25 0.25 0.5-0.35
Focusing on the first column of this matrix it is easy to construckaé83rotation matrix,R; which takes the first column into
a vector with one nonvanishing component; i.e.,
0.61 0 0 —-0.20 —-0.20 041 0
rR,0,=( 0 -039 -039 -037 —-037 —-038 —-039 --- ---|. (47
0 -032 —-0.32 045 0.45 0.45 —0.32
The fact that the first column has one nonvanishing entry means that it is the only state which has an overlap with the three-site
ground state, which is the first objective we wished to achieve. Now, the fact that the last two entries in the second column are
nonvanishing means that we are still in a situation where both the second and third rotated retained states contract onto the first
excited state of the three-site problem. Clearly we can now perform a roRfiarnich is the identity on the first rotated state
and rotates the second two states so that in the new rotated basis only the second element of the secondRgRJ@ isf
nonvanishing; i.e.,
061 0 O —-020 -020 041 O
R,R,0,=[ O 05 05 0 0 0 05 -+ |, (48)
0 0O O —-058 —-058 —-058 0

Now we have finally achieved our original goal, each of theand can be directly rewritten in terms of the eigenstates of
rotated states will contract onto a unique eigenstate of théhe three-site Hamiltonian using the operatbfsandd, as
three-site Hamiltonian; i.e., the first rotated state contracts

onto the stateb,w, 7,,4|000) the second state contracts _ _ ) _ _

onto (b%39,d+bld! ,)|000)/\2, and the third state con- |Jl’12>:k1’k22|1’|2 Ui, (J2) U, (J) Ui, (J2) U (J 2)

tracts onto b,w,4di7,,4+ bidi+b!,dl )]000)/y3. Thus,

in this new rotated basis the diagonal Hamiltonian in the x by, df bl d|000)

three-site one pair sector is

=2 2 LUk, (1)U, (1 2) = U (1) Ui (i 2)]

- \/5 0 0 ky<kp 1<l
Hp(l—-pain=| 0 —1//2 0]. (49
x 2 2 [u(jouie)
0 0 0 ky<kp 11<l,

Given the explicit form of the rotation matrir=R,R; we —u,z(j1)u|1(j2)]|k1,k2,I1,I2> (52)

can compute the Hamiltonian in the original tensor product

basis to be where by |kqi,ko,lq,l,)  we denote the state
bk, d/ bt di |000) for the particular ordering; <k, and |,

HE(1—pair)= RHp(1—pair)R" <l,. With this choice of a complete set of basis vectors it is

easy to read off the overlap matrix; it is not surprising, given
—0.589 -0471 0.118 theSU(2) symmetry of the nearest neighbor problem, that it
=| —0.471 —0.943 —0.471|. (500 isidentical to the overlap matrix of the one-pair sector and so
0.118 —0.471 —0589 ']Egremsame procedure can be applied to bring it to the desired
Note that the no-pair sta{®00) and the three-pair state
++ +) are each exact eigenstates of the three-site problem

A similar calculation can be done for the two-pair sectorﬁ
with eigenvalue zero so

of the three-site problem. Here the three retained states are
|+ +0), |=0=), and|0= =+ ). Obviously, as in the one-pair

case, these states are of the generic form HIY0—pair)(i i + 1 +2)

li1,i2)=b] d] bj d] |000) (51) —H®(3-pair)(i,i+1i+2)=0. (53
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Given these results it is now trivial to expakty™ as HEMG,i+2i+2)=HZNi,i+1,i+2)—HP"i,i+1)

conry ; H
HEY i+ 1i4+2)= > Copyoali)ogli+1)o(i42) He™Mi+1i+2). ®9
py (54 Using the explicit form for H¥"(i,i+1j +2), HE™i,i
+1), andH$*"(i + 1,i +2) and collecting like terms we ob-
by taking traces; thus, for example, the coefficient of thetain

identity operator is 3sit 5 sit
b =Crrp - c1°=0.01429 . . .

COOO: §tr(0'a(l )O-.B(I + 1)0-}/(| + 2)ngn(| ,| + 1,' + 2)). Cg%non: Cg-zscl)tes_ Cg-ZSItES: 0.01429 L.
(55 . _

oSqy=cdsnes c2sie —0.01429 . ..

Proceeding in this way we obtain, for the case of three sites,
conn_ .3-sites  \2-sites_

) ] ) Cconn: C3—sites_ CZ—sites: 0.01429 . ..
To convert this to a connected contribution we have to sub- 022 022 ™22
tract the tWO ways of embe_dqling the two-site problem into coom Cgéssites_ Cgésitesz —0.01429 . ..
the three-site problem, obtaining

Cgbs(i)tes conn_ Cgbs(i)tes_ 2Cgbsites conn Csl:%nln: 0.0582. ..
conn__
=—-0.5308...-2(—1/4)=-0.0303. .. C20,—0.0582 . ..

(57) cO=0.0582 . . . (60)

which shows that the range-3 connected contribution to thell other coefficients vanish.

ground-state energy density is quite small in comparison to Thus, recalling the fore=1,2,3, s,=0c,/2, adding up

the range-2 contribution. Similarly we can compute the cothe range-2 and range-3 connected coefficients and rotating
efficients of the other operators which can appear in(B4). s, and's, to minus themselves on alternate sites, we can

Thus, we have rewrite the range-3 renormalized Hamiltonian as
3-sites_ ~3-sites__ 3-sites__
c =C =—cC =—-0.235D... -
110 220 330 H™"=—0.2803%/+ >, [0.9428&(i)-s(i+1)
c3sitens csies — csie 0,235 . . o
3-sites_ .3-sites_ .3-sites + 0'2357&“ ) ’ S(i * 2)] (61)
Cip1 =C5pp =C3p3 =—.0058%. .. (58)

which has the advertised form of a frustrated Heisenberg
and all other possible,z, vanish. antiferromagnet. The important things to notice about the
As we already noted, for nearest neighbor spin-spin interresult of this calculation is that the range-3 corrections to the
actions, which is what,,9, Cs5q and cszo parametrize, coefficients of operators which appeared at range-2 are small
there should be a difference in sign betwerg, and both  and that the coefficients of the new operators which appear
C110 and c,,o, Which is the case; the same is true forfor the first time at range-3 are typically smaller than the
Co11. Co22 and cgss. Note however, the next to nearest ones which appear at range-2.

neighbor coefficient€,p,, C,0, andcszgs should have the This process can be carried out in the same way to com-
same sign and they do. puteH:""". The result out to and including range-5 contribu-
To obtain the connected coefficients we recall that tions is
H™N=—0.3109%+ 2, Hapoa(i)+ > Haboay(i) (62)
| I

H. oay(i) = 0.8000%(i) - (i + 1) +0.23492(i) - (i +2) — 0.01915(i) - S(i + 3)

H -poay= 0.0355(i) - (i +1)s(i +2) - S(i +3) —0.08033(i ) - (i +2)s(i + 1) - (i +3)
+0.03403(i)-s(i +3)s(i+1)-s(i +2)+0.0259%5(i) - s(i +1)s(i +2) - s(i +4)
+0.00338(i)-s(i+1)s(i +3)-5(i +4)—0.0115%(i) - S(i +2)s(i + 1) - S(i +4)
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+0.0518%(i)-s(i +2)s(i +3)-s(i +4)—0.0328%(i)-s(i +3)s(i + 1) - s(i +4)
—0.0115%(i)-s(i +3)s(i+2)-s(i +4)—0.00733(i) - s(i +4)s(i + 1) - (i + 2)

—0.03255(i)-s(i+4)s(i+1)-s(i +3)—0.00733(i)-s(i +4)s(i +2) - s(i +3).

The important fact to notice about all of these calculationsThis form of (k) is still symmetric abouk= 7/2 and ex-
is that at each stage the tensor product states contract ortibits the same sort of fermion doubling as is exhibited by
the lowest energy states of the corresponding block Hamilthe nearest neighbor term. In this case it is a little more
tonian, thus proving that, if one computes out to infinite difficult to carry out the computations of the previous sec-
range, the renormalized Hamiltonian will describe zero-tion, but they go through in essentially the same way, except
charge sector of the free system. Furthermore, note that that the coefficients of the operatorshtie" are changed. It
one uses the same method to calculate the two-paint fermiofherefore follows that there is more than one generalized

antifermion correlation function CORE will guarantee that fsrated antiferromagnet which is equivalent to a theory of
its renormalized operator has the same matrix elements in thgae fermions. Since all of the various fermion derivatives

frustrated HAF ground state that the original operators had iRgn pe defined so that the slope k) is unity for small

the free-fermion vacuum state. values ofk, it follows that all of these different theories must
flow, under real-space renormalization group transforma-
tions, to a single fixed-point generalized frustrated antiferro-
magnet. This means that there is a nontrivial surface in the
Although, in principle, there are an infinite number of parameter space of these generalized frustrated antiferromag-
terms in H™" Eq. (62) shows that the coefficients of the nets which at low energies describe the same system of free
longer range two-body terms, as well as the coefficients omassless fermions.
the four-body and higher terms drop off quickly; thus, as Having said this, it is important to point out that not all of
advertised in the introduction, we see that the zero-chargthese frustrated antiferromagnets correspond to theories of
sector of the freedoub|ed fermion theory maps into a gen- free fermions. As | pointed out in the introduction the same
eralized frustrated antiferromagnet. Frustrated, in this conmapping can be carried out for the case of an interacting
text, simply means that the coefficient of the range-two and@jauge theory. In fact, the original motivation of this work
range-three one-body terms are both positive and the rang@as to do exactly this for lattice QCD and analyze the weak
four term is negative. To understand what is going on physicoupling regime. Obviously, constructing the mapping which
cally consider a Nel state in which the spins are oriented takes the interacting gauge theory into this class of general-
|...71170...). It is clear, restricting attention to the ized frustrated antiferromagnets is technically more challeng-

nearest—neighboﬁ(i)é(i +1) terms, that the fact that the ing, but it must exist. From this it follows that for some

coefficient of these terms is positive means that this orientahoice of couplings the generalized frustrated antiferromag-

tion of the spins minimize this contribution to the energy. net corre§ponds not to frge fermio.ns, but rat.her.to a theory
This, of course, implies that spins separated by two siteWith fermions and gauge fields, neither of which is apparent

should point in the same direction. However, this maximizesVNen one looks at the theory at the single-site or few-site

instead of minimizes the range-three spin-spin term since it veI._ _ . . .
coefficient is also positive. Note also the range-four term A final issue which needs to be addressed is how things

also works against the range-two term since it wants spin/’©'K for higher dimension and/or non-Abelian gauge theo-

separated by three sites to point in the same direction, whicH®S: Clegrly, fqr the case of doubled free ferr_mon theories in
is opposite to what one obtains from miminizing the range{3+1)-dimensions there are no new technical challenges;
two term. The presence of the four-botgnd higher body however, the number of s!ngle-sne gauge-mvana.nt states
operators further confuses the issue. Since little is knowd/Nich can be constructed is larger since the particles and
about the physics of frustrated antiferromagnets, it is of som@ntiparticles come with two different spins. As in the (1

interest to know that this generalized class of theories ard 1)-dimensional case, these states form an irreducible rep-

related to free fermion theories. In fact, | will now argue that"€Sentation of a symmetry group, in this case a six-
this is true for a non-trivial range of parameters. dimensional representation &U(4) and truncating to this

To begin note that it is easy to modify the free fermion set of states, using CORE to compute the renormalized

derivative by adding hopping terms which jump three sitesHamiltonian, leads to a generalizs:d frustraBdd(4) antifer-
five sites, seven sites, etc., in such a way that the infinittsomagnet[i.e., one where thes-s terms are replaced by

V. DISCUSSION

volume kinetic energy has the general form Q- Q terms, where th@'s are now the representation matri-
ces for the six-dimensional representation of the generators
R of SU(4)]. In this case usingyeneralizedto modify the
e(k)=> asin((2r+1)k). (63) phrasc_afru;trated antiferromagneis even more appropriate
m=1 since in this theory a new kind of interaction term appears in
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the renormalized Hamiltonian. This happens because the sixhat this enormous degeneracy is lifted in ordef’1lsee Ref.
dimensional representation 8fU(4) is not the fundamental [2]. Working to this order in the doubled theory one obtains,
representation and so operators of the fo@n Q)2 can ap- exactly as in the case of the {I1)-dimensional theory, a
pear, and these operators can significantly alter the landscag€neralized antiferromagnet. Thus, we see that for this trun-
of possible phases which the theory can have. A discussiof@tion algorithm the free field theory and the strong coupling
of how such terms can modify the behavior of an antiferro-€0rY can be obtained from one another by varying param-

magnetic theory will be given in a forthcoming paper on the®ters in the general renormalized Hamiltonian. This tells us
Haldane conjecturé4]. Note, generally all terms permitted that the full generalized frustratedU(12) antiferromagnet

by the global symmetries of the problem can and will appeartn€0ry has regions in which the degrees of freedom are no

As to the case of free quarks in 3L )-dimensions, things !onge_r free massless _quarks, but are_instead quarkg interact-
are again different in detail, but the general results are simil"d With color gauge fields. Note, adding the baryonic states
lar. Here we are interested in all the color singlet statedVNich can be made fromqq configurations leads to a fur-
which can be formed from quarks and anti-quarks on a singld€r generalization of the antiferromagnetic system in which
site. If one restricts to just mesons, i.e., all states formedN€re is more than one irreducible representation of the sym-
from color-singlet quark anti-quark states, then the states o'€"Y group for each site in the lattice and correspondingly
a single site fall into an irreducible representatiorsaf(12), ~More complicated interactions. All of these couplings be-

which is a symmetry of the doubled theory. Once again, if€°Me significant as one moves to weak coupling but in the

- - 2 . . .
one truncates to just this set of states the resulting renormalMit of very large g the states with baryons in them split

: : 2
ized Hamiltonian must be a generalized frustragdd(12) ~ @way from the states with only mesons in ordeg”l/ _
antiferromagnet. Once again generalized antiferromagnet Finally, returning to the point raised in the introduction;

must be taken in the broadest possible sense since new tenfi@Mely, although this exercise was originally motivated by
of the form discussed for the case of a single fermion in (3N€ desire to show that CORE provides framework within

which the old strong coupling treatment of QCD can be ex-

+1)-dimensions will appear, but now one will also get new ded h K i ¢ hi it th
many body terms related to the possibility of having Casimirt.en ead to the weak coupling regime, at t |s'p'0|nt the ques-
ion arises as to whether or not one can tell if in fact quarks

operators beyond the simplest quadratic Casimir operatoF.

Thus one should expect that theories which correspond tBnd 9auge fields are really fundamental. More thought has to
guarks in interaction with color-gauge fields to have a ver e given to the question of whether or not one can meaning-
fully distinguish lattice QCD from the frustrated antiferro-

rich structure. Obviously, all remarks concerning the option Clearl h K . be d le h
of choosing different kinetic terms for the lattice fermion Magnet. Clearly much work remains to be done to settle how

theory apply equally to the free massless quark case, and ¥gfous features of the various undoubled theories, such as
there must be a whole surface in the space of couplings fdf1® anomaly, work in practice. Also, it remains to be seen
the generalized frustrated theory which all flow to the samélow all of these undoubled theories differ from one another.
fixed point.

As for real lattice QCD with quarks interacting with glu-
ons, it has been shown that at strong coupling the single-site This work was supported in part by Department of Energy
colorless states are all degenerate to leading ordgf end  contracts DE-AC03-76SF00515 and DE-AC02-76ER030609.
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