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Quarks, gluons, and frustrated antiferromagnets

Marvin Weinstein
Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309

~Received 1 October 1999; published 11 January 2000!

The contractor renormalization group method is used to establish the equivalence of various Hamiltonian
free fermion theories and a class of generalized frustrated antiferromagnets. In particular, after a detailed
discussion of a simple example, it is argued that a generalized frustratedSU(3) antiferromagnet whose
single-site states have the quantum numbers of mesons and baryons is equivalent to a theory of free massless
quarks. Furthermore, it is argued that for slight modification of the couplings which define the frustrated
antiferromagnet Hamiltonian, the theory becomes a theory of quarks interacting with color gauge fields.

PACS number~s!: 11.15.Ha, 11.10.Gh, 12.38.Gc
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I. INTRODUCTION

It may seem surprising that a Hamiltonian lattice theo
whose single-site states only have the quantum number
mesons and baryons can be equivalent to a theory of
massless quarks, but it is true. I will show that this res
follows directly from the application of the contractor reno
malization group~CORE! method @1# to an appropriately
chosen free fermion theory.

The original motivation for the computation I will prese
was the desire to apply CORE to lattice quantum chromo
namics ~QCD! and show that the picture which emerg
from older strong-coupling calculations@2# also applies to
the weak coupling regime. The new feature of CORE wh
allows this question to be dealt with nonperturbatively is t
CORE, as opposed to earlier Hamiltonian real-space re
malization group approaches, allows one to retain o
gauge-invariant block states~i.e., states in which no flux
leaves a block! and still define a non-trivial renormalizatio
group transformation.

Fluxless states are of particular importance to the str
coupling limit of a lattice gauge theory because every l
which carries nonvanishing flux contributes an energy p
portional tog2, so that fluxless states have the lowest ener
Moreover, if a lattice theory allows for single-site colo
singlet states~e.g., theories which exhibit explicit fermio
doubling, Wilson fermions, domain-wall fermions, or the
ries based upon variants of the SLAC-type of derivative! the
number of degenerate fluxless states is huge and in the
g2→` these states will all have zero energy. In the case
lattice QCD, single-site meson states~i.e., color-singlet
quark anti-quark states!, single-site baryon states, and sing
site multi-meson and baryon states consistent with the ex
sion principle, are all of this type. The huge degenera
among these fluxless states is lifted in order 1/g2 and, for a
nearest-neighbor derivative, perturbing in 1/g2 leads to an
effective Hamiltonian which has the form of a generaliz
Heisenberg antiferromagnet~HAF!. An immediate conse-
quence of this result is that chiralSU(3)3SU(3) is sponta-
neously broken in the ground state of this theory; anot
general result is that the theory has an approximateSU(12)
symmetry which is broken if one adds next-to-nearest ne
bor terms to the fermion derivative.

Although it is attractive to rewrite strong-coupling QC
in terms of states which have the quantum numbers of
0556-2821/2000/61~3!/034505~11!/$15.00 61 0345
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sons and baryons, establishing the relevance of the ch
symmetry prediction and the approximateSU(12) results to
the continuum, smallg2, limit is problematic. CORE allows
one to systematically study this question by truncating
Hilbert space to this set of strong-coupling states, obtainin
renormalized Hamiltonian which is valid for all values ofg.
The important question which must be answered is whe
truncation to this set of states biases the computation
incorrectly forces the strong coupling results of confinem
and chiral symmetry breaking. One way to show that this
not the case is to apply the same truncation scheme to
fermion theory and show that it leads to arenormalized
Hamiltonianwhich has the same physics as the global col
singlet sector of the free theory. While the general theor
on which CORE is based guarantees this result will hold
the retained states have a non-trivial overlap with the
evant low-lying states of the free-field theory,a priori noth-
ing forces this overlap to be nonvanishing; establishing t
fact requires a calculation.

This paper does the requisite calculation for a theory
free massless fermions in 111 space-time dimensions with
nearest neighbor fermion derivative. It will be clear that t
extension of this calculation to higher dimensions and ot
derivatives is straightforward. While the nearest-neighb
theory exhibits species doubling and is anomaly free, a
which makes it useless for studying the physics of theo
such as the Schwinger model, it is simple to use and is
evant to the question of whether or not truncating to
natural strong-coupling states makes it impossible to ob
the correct weak-coupling physics. The explicit calculati
shows that things work as expected for the nearest-neigh
theory and that therenormalized Hamiltoniantakes the form
of a generalizedfrustrated antiferromagnet which, perforc
has all the physics of the charge zero sector of the orig
free fermion theory.

Since there is no substantive difference between the p
ics of free relativistic lattice fermions and the physics of th
unusual frustrated antiferromagnetic system~which does not,
at the short distance level, have any relativistic fermions! it is
interesting to ask which theory is fundamental? Clearly,
this level there is no way to decide the issue. It will b
apparent from the calculation that the same mapping can
carried out for different choices of fermion derivative wi
similar results. In other words, the couplings will vary
©2000 The American Physical Society05-1
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MARVIN WEINSTEIN PHYSICAL REVIEW D 61 034505
strength but the general form of the renormalized Ham
tonian will be the same. From a renormalization group po
of view this says that there is a surface in coupling cons
space of the generalized frustrated antiferromagnetic sys
where all Hamiltonians flow to the same free massless
mion fixed point. Furthermore, it will be clear that turning o
gauge fields in the original problem produces the same
of Hamiltonian with different coefficients. Thus, the gau
theory is also hidden inside this same system or, in ot
words, all of these different theories are different phases
the same generic Hamiltonian. As a class, frustrated ant
romagnets are systems which have recently come to b
some interest because of their possible connection to higTc
superconductors@3#, so this identification of a more gener
class of HAF’s~for specific couplings! to a theory of free
relativistic fermions, or relativistic fermions interactin
through a gauge field, has interest beyond its applicatio
QCD.

II. A BRIEF REVIEW OF CORE

The CORE method consists of two parts, a theorem wh
defines the Hamiltonian analogue of Wilson’s exact ren
malization group transformation and a set of approximat
procedures which render nonperturbative calculation of
renormalized Hamiltoniandoable.

CORE replaces the Lagrangian notion of integrating
degrees of freedom by that of throwing away Hilbert spa
states. This is accomplished by defining a projection ope
tor, P, which acts on the original Hilbert space,H and whose
image is defined to be the space ofretained statesHret
5PH. The foundation of the CORE approach is a formu
which relates the original Hamiltonian,H, to the renormal-
ized Hamiltonianwhich has, in a sense which was ma
precise in Ref.@1#, exactly the same low energy physics
H. This equation is

H ren5 lim
t→`

@@T~ t !2##21/2@@T~ t !HT~ t !##@@T~ t !2##21/2,

~1!

whereT(t)5e2tH and where@@O##5POP for any operator
O which acts onH. A similar formula can be written to
define therenormalizedversion of any other extensive op
erator. The new, renormalized, operator is guaranteed
have the same matrix elements between eigenstates ofH ren

that the original operator had between eigenstates ofH.

A. The cluster expansion

Generally one cannot evaluate Eq.~1! exactly, however it
is possible to nonperturbatively approximate the infinite l
tice version ofH ren to any desired degree of accuracy. Th
works becauseH ren, as defined in Eq.~1!, is an extensive
operator and has the general form

H ren5(
r 51

`

hconn~ j ,r ! ~2!
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where each term,hconn( j ,r ), stands for a set ofrange-r con-
nectedoperators based at sitej, all of which can be evaluated
to high accuracy using finite size lattices. The explicit de
nition of the connected range-r operator,hconn( j ,r ), depends
upon the details of the truncation procedure. In what follo
I will limit discussion to the case of a one-dimensional la
tice, since this is what I will need to discuss the free-fermi
theory. A detailed discussion of the general methodology
be found in Ref.@1#.

B. The approximation procedure

Three steps define the nonperturbative approxima
scheme for computingH ren: first the truncation procedure
second the subtraction procedure used to convert the ev
ation of Eq. ~1! on finite sublattices to the operato
hconn(p,r ); third the method for evaluating thet→` limit in
Eq. ~1!, without explicitly computing either@@T2(t)##21/2 or
@@T(t)HT(t)##. I will heuristically review each of these
steps in turn.

First some notation. In what follows I deal with one
dimensional spatial lattices whose sites are labeled by2`
< j <`. I assume that there areN-states corresponding t
each sitej of the lattice which I denote byufa( j )& j , where
a51 . . .N. A basis for the full Hilbert spaceH will be
generated by taking tensor products of theseN states per site
over all sitesj.

CORE allows a wide choice of truncation procedure
however I will limit myself to one which appears to wor
well in a large number of cases. First, divide the lattice in
disjoint blocksBp each havingnB sites and keep a sma
number states per block. The way to choose which state
keep is to diagonalize the block-Hamiltonian~i.e., that
Hamiltonian obtained by restrictingH to only those terms
which are contained within any one of the blocksBp) and
throw away all but itsM lowest lying eigenstates, whereM
,NnB. If we let HBp

denote the block Hamiltonian an

uCa(p)& for a51 . . .M its eigenstates, then the projectio
operatorP is

P5)
p

Pp

Pp5 (
a51

M,NnB

uCa~p!&^Ca~p!u. ~3!

Given P it only remains to computeH ren.
Generally the lattice on which the renormalized Ham

tonian is defined isthinner than the original lattice in tha
each sitep on the new lattice corresponds to a block of sit
Bp on the old lattice, however this need not be the case
the free-fermion case, to be discussed in the next section
will thin the states associated with a single site of the origi
lattice and map the original theory into an equivalent the
with the same number of sites but with a Hamiltonian whi
has a very different form.

To define the cluster expansion begin by defining
range-1 term inH ren, hconn(p,1), to be
5-2
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hconn~p,1!5P HBp
P5S (

a51

M

EauCa(p)&^Ca(p)u D Pp
'

~4!

whereHBp
uCa(p)&5EauCa(p)& and where

P5PpPp
'

Pp
'5)

lÞp
Pl . ~5!

The range-2 connected operatorhconn(p,2) is defined by sub-
tracting hconn(p,1) andhconn(p11,1) from H (2)(Bp ,Bp11),
the operator obtained by evaluating thet→` of Eq. ~1! for H
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03450
restricted to the two adjacent blocks$Bp ,Bp11%. Note, in
this case the notation @@O## stands for P
5PpPp11OPpPp11. The explicit definition ofhconn(p,2) is

hconn~p,2!5Pp,p11
' H (2)~Bp ,Bp11!Pp,p11

'

2hconn~p,1!2hconn~p11,1!. ~6!

where, in analogy to Eq.~5! I define

Pp,p11
' 5 )

lÞp,p11
Pl . ~7!

Similarly, the range three operatorhconn(p,3) would be ob-
tained from the following formula
hconn~p,3!5Pp,p11,p12
' H (3)~Bp ,Bp11 ,Bp12!Pp,p11,p12

' 2hconn~p,1!2hconn~p11,1!

2hconn~p12,1!2hconn~p,2!2hconn~p11,2!. ~8!
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In this case one must subtract the three different ways
embedding the connected range-1 computation and the
different ways of embedding the connected range-2 com
tation in the three block problem. @As before,
H (3)(Bp ,Bp11 ,Bp12) is the operator which results when on
restrictsH to the three adjacent blocks$Bp ,Bp11 ,Bp12% and
then evaluates Eq.~1!.#

Although it is possible to numerically evaluate Eq.~1! for
any multi-block sublattice and extract the limitt→` by tak-
ing large values oft ~see, for example, Ref.@1#! this is not
necessary. The fact is that each term in the cluster expan
can be computed from a knowledge of the tensor prod
states~which span the space ofretained states! for the multi-
block problem and the eigenvalues and eigenstates of
corresponding multi-block Hamiltonian. A general proof
this assertion appears in Ref.@1#, however the basic ideas ar
summarized in the following theorem.

Theorem. Let HB be a single block Hamiltonian and letP
be the projection operator which corresponds to keeping
M lowest lying eigenstatesuCa&; furthermore, letH denote
the Hamiltonian of anr-block sublattice and let theMr ten-
sor product states formed from the statesuCa& span the
space of retained states. Then thet→` limit of the equation
which defines the renormalized multi-block Hamiltonian c
always be written as

H ren5 lim
t→`

@@T~ t !2##21/2@@T~ t !HT~ t !##@@T~ t !2##21/2

5RHdiagR
† ~9!

whereR is anMr3Mr orthogonal matrix,R† its inverse and
Hdiag is a diagonal matrix whose entries are the eigenval
of thoseMr lowest lying eigenstates ofH which appear in
the expansion of the retained states.
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To clarify what is meant by theMr lowest lying eigen-
states which appear in the expansion of theretained statesI
will consider two simple examples. The first example cor
sponds to the simplest truncation procedure one can imag
i.e., choosingM51 and truncating to a single state. In th
case the theorem is trivial sinceMr51 and so the space o
retained states for that multi-block system is one dim
sional. The fact thatR andR† are orthogonal matrices mean
their single matrix element must be 1 and so, as long as
single retained state has an overlap with the ground st
Hdiag must simply be the ground state energy of the mu
block Hamiltonian. To prove this assertion it suffices to r
write Eq. ~1! as

uC~ t !&5
e2tHuC&

A^Cue22tHuC&

H ren5 lim
t→`

^C~ t !uHuC~ t !& ~10!

and then expanduC(t)& in a complete set of eigenstates
H.

The second example,M52 andr 52, exhibits all essen-
tial features of the general case. Obviously, in this caseMr

54 and so@@T2(t)##21/2 and @@T(t)HT(t)## are 434 ma-
trices, each of which becomes singular in the limitt→`,
although their product is well defined. To understand w
the product is well defined and has the form shown in Eq.~9!
it is convenient to expand the fourretained statesin terms of
exact eigenstates of the two-block problem and on the b
of this expansion, construct an orthogonal transformatioR
which renders the evaluation of the limit in Eq.~9! straight-
forward. If we denote the four retained states
uC1&, uC2&, uC3&, and uC4& we can write their expansion
in terms of block eigenstates as
5-3
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uC1&5a0uf0&1a1uf1&1a2uf2&1•••

uC2&5b0uf0&1b1uf1&1b2uf2&1•••

uC3&5c0uf0&1c1uf1&1c2uf2&1•••

uC4&5d0uf0&1d1uf1&1d2uf2&1••• ~11!

where the statesufn& correspond to eigenstates of the blo
Hamiltonian with energiesen . Assume that the states a
arranged in the order of increasing energy, so thatf0 is the
ground state of the block Hamiltonian,uf1& the first excited
state, etc.

Applying T(t) to each of these states we obtain

T~ t !uC1&5a0e2te0uf0&1a1e2te1uf1&1a2e2te2uf2&1•••

T~ t !uC2&5b0e2te0uf0&1e2te1b1uf1&1b2e2te2uf2&1•••

T~ t !uC3&5c0e2te0uf0&1c1e2te1uf1&1c2e2te2uf2&1•••

T~ t !uC4&5d0e2te0uf0&1d1e2te1uf1&1d2e2te2uf2&1•••

~12!

The reason it is convenient to make an orthogonal trans
mation on the statesuC i& is that in thet→` limit those
states in Eq.~12! for which the coefficient ofuf0& is nonva-
nishing will, up to a normalization factor, contract onto t
same stateuf0&, rendering@@T(t)HT(t)## and@@T2(t)## sin-
gular. By multiplying @@T(t)HT(t)## by the factors of
@@T(t)2##21/2 we correct for this situation, but it is not at a
obvious why or how this works in the original tensor produ
basis.

To avoid this problem with the larget limit we change
basis, defining statesux1& to ux4&, which are orthonorma
linear combinations of the statesuC1& to uC4&, having the
property that each state contracts onto a distinct eigensta
the block Hamiltonian: i.e.,

ux1&5a0uf0&1a1uf1&1a2uf2&1a3uf3&1•••

ux2&5b1uf1&1b2uf2&1b3uf3&1•••

ux3&5g2uf2&1g3uf3&1•••

ux4&5d3uf3&1•••. ~13!

Applying T(t) to these basis states yields
03450
r-

t

of

T~ t !ux1&5a0e2te0uf0&1a1e2te1uf1&1a2e2te2uf2&

1a3e2te3uf3&1•••

T~ t !ux2&5b1e2te1uf1&1b2e2te2uf2&1b3e2te3uf3&

1•••

T~ t !ux3&5g2e2te2uf2&1g3e2te3uf3&1•••

T~ t !ux4&5d3e2te3uf3&1••• ~14!

from which it is clear that, up to a normalization factor, ea
of the statesuxa& contracts onto a different eigenstate of t
multi-block Hamiltonian. Furthermore, we have

H T~ t !ux1&5a0e0e2te0uf0&1a1e1e2te1uf1&

1a2e2e2te2uf2&1a3e3e2te3uf3&1•••

H T~ t !ux2&5b1e1e2te1uf1&1b2e2e2te2uf2&

1b3e3e2te3uf3&1•••

H T~ t !ux3&5g2e2e2te2uf2&1g3e3e2te3uf3&1•••

H T~ t !ux4&5d3e3e2te3uf3&1••• ~15!

Given Eq. ~14! and Eq.~15! one can easily analyze thet
→` behavior of Eq.~9!. To get a feeling for the way in
which this works let us simplify the discussion by, for th
moment, assuming that@@T2(t)## and @@T(t)HT(t)## are 2
32 matrices obtained by sandwiching these operators
tween the statesux1& and ux2&. In this case we have

@@T2~ t !##5S ua0u2e22e0t1••• a1* b1e22e1t

a1b1* e22e1t ub1u2e22e1t D
@@T~ t !HT~ t !##5S ua0u2e0e22e0t a1* b1e1e22e1t

a1b1* e1e22e1t ub1u2e1e22e1t D .

In general@@T2(t)## is a matrix of scalar products and it
eigenvalues are guaranteed to be positive, so it is guaran
to have an inverse square root. On can explicitly constr
the inverse square root by writing@@T2(t)## as

@@T2~ t !##5U~ t !†D~ t !U~ t ! ~16!

whereD(t) is a diagonal matrix whose entries are the eige
values of@@T2(t)## and U(t) is the matrix whose columns
are the normalized eigenvectors corresponding to those
genvalues. Given this decomposition

@@T2~ t !##21/25U~ t !†D~ t !21/2U~ t !. ~17!

Note, sinceD(t) is diagonal,D(t)21/2 is also a diagonal
matrix whose entries are the inverse square roots of the
responding entries inD(t).

Fortunately, since all we really need is the behavior of
product in Eq.~9! as t gets large, we do not have to do a
this work. It suffices to define at-dependent rescaling ofux1&
5-4
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and ux2& which guarantees that each state converges,t
→`, to the lowest lying eigenstate of the block Hamiltoni
which appears in its expansion in terms of multi-block eige
states. More specifically, multiplyingux1& by the factor
ee0t/a0 and ux2& by e1t/b1 yields the result

ux18~ t !&5T~ t !
ee0t

a0
ux1&5uf0&1

a1

a0
e2(e12e0)tuf1&1•••

ux28~ t !&5T~ t !
ee1t

b1
ux2&5uf1&1••• ~18!

from which it follows that, in the limit of larget,

@@T2~ t !##5S 11•••

a1*

a0*
e2(e12e0)t

a1

a0
e2(e12e0)t 11•••

D
@@T~ t !HT~ t !##5S e01•••

a1*

a0*
e1e2(e12e0)t

a1

a0
e1e2(e12e0)t e11•••

D
which establishes the theorem for this 232 case. It should
be clear that the same sort of rescaling ofux1& to ux4& will
establish the result for the real 434 case. It is important to
reiterate that the construction the matrix of eigenvaluesD
and the construction of the orthogonal transformationR is
done directly from a knowledge of the eigenvalues of
block Hamiltonian and the expansion of the tensor prod
states in eigenstates of the block Hamiltonian; at no poin
it necessary to deal with@@T(t)## for finite values oft. This
means that when dealing with large blocks and many eig
states, techniques such as the Lanczos method, which
only the relevant lowest lying eigenstates starting from
tensor product states, can greatly reduce the compute
sources needed to solve the problem.

III. FREE-FIELD PRELIMINARIES

To set up the computation presented in the next sec
requires some notation. The system under discussion
(111)-dimensional Hamiltonian lattice theory. The fermio
field is taken to be a two component operatorca( j ) with
a51,2. The Hamiltonian has the form

H5 (
j 1 , j 2

i

2
d8~ j 12 j 2!c j 1

† s3c j 2
~19!

whered8 is a general hopping term having the property

d8~ j 12 j 2!52d8~ j 22 j 1!. ~20!

ands3 is the 232 matrix
03450
-

e
t

is

n-
ds
e
re-

n
a

S 1 0

0 21D . ~21!

As is customary I introduce creation and annihilation o
eratorsbj ,bj

† ,dj ,dj
† and define the nearest neighbor deriv

tive, d8( j ), as follows:

c~ j !5bj S 1
0D1dj

†S 0
1D

d8~1!52d8~21!51

d8~ j !50 if j Þ1. ~22!

Making these substitutions the Hamiltonian takes the for

H5(
j

i

2
~bj 11

† bj2bj
†bj 11!2

i

2
~dj 11

† dj2dj
†dj 11!.

~23!

In terms of these operators the total electric and axial cha
are defined by

Q5(
j

~bj
†bj2dj

†dj !

Q55(
j

~bj
†bj1dj

†dj21!. ~24!

For each sitej, there are two electrically neutral states. T
first is the stateu0 j& which is annihilated bybj anddj . The
other chargeless~i.e., locally gauge invariant! state isu6 j&
5bj

†dj
†u0 j&. The projection operator onto the space ofre-

tained statesis defined in terms of these states by the prod

P5)
j

Pj

Pj5u0 j&^0 j u1u6 j&^6 j u. ~25!

Fourier transforming

bk5(
j

e2 ik jbj , bk
†5(

j
eik jbj

† ,

dk5(
j

e2 ik jdj , dk
†5(

j
eik jdj

† , ~26!

the Hamiltonian in Eq.~23! becomes

H5
1

2pE2p

p

dk sin~k!~bk
†bk2dk

†dk!. ~27!

It follows from Eq.~27! that the ground state of the theory
the state obtained by filling the negative energy sea: i.e.

uvac&5)
k>0

b2k
† dk

†u0& ~28!
5-5
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MARVIN WEINSTEIN PHYSICAL REVIEW D 61 034505
whereu0& is the state annihilated by all thebk’s anddk’s ~or
equivalently, thebj ’s anddj ’s!.

The only additional free-fermion formula which I nee
has to do with diagonalizing Eq.~23! for a finite lattice
where j 51 . . .N. As with all such quadratic Hamiltonian
one only has to diagonalize theN3N matrix K j 1 , j 2

5 i /2d8( j 12 j 2), which can be done exactly for any value
N. If N is even the eigenvalues ofK look like the eigenvalues
of the infinite volume problem in that

e~k!5sin~kp! ~29!

where kp5pp/2(N11) for p any odd integer such that
2N<p<N. For the case of oddN, the eigenvalues are onc
given by Eq.~29!, however in this case the values ofkp are
given by kp5pp/(N11) where nowp is any integer such
that 2(N11)/2,p,(N11)/2. Note that in both cases th
range ofk is 2p/2,k,p/2 in distinction to the case of a
periodic or infinite lattice. Although the issue of how do
bling works in the finite volume open boundary conditio
case is interesting, time does not permit going into it he
Suffice it to say that even though the eigenvalues are g
by Eq. ~29! and undoubled, nevertheless the theory has b
left and right movers for each component ofc and is not a
chiral theory. The last piece of information needed in ord
to carry out the full computation is the formula for the eige
vectors ofK, which for all values ofN are given by

ukp
~ j !5

1

A2~N12!
@e2 ikpj2~21! jeikpj #. ~30!

A final fact concerning the nearest-neighbor free-ferm
theory is that it possesses a globalSU(2) symmetry whose
generators are given by

Sa5(
j

1

2
c j

†s3
j sas3

j c j

S15(
j

~21! jbj
†dj

†

S25(
j

~21! jdjbj

S35
1

2
~bj

†bj1dj
†dj21!. ~31!

This symmetry is very useful for checking the results of t
necessary finite volume calculations.

IV. THE COMPUTATION

To compute the connected range-1 termHconn( j ,1) one
diagonalizes the single-site Hamiltonian and selects a se
retained states from among its lowest lying eigenstates. S
there are no range-1 terms in Eq.~23! the single-site Hamil-
tonian is zero and so, independent of the choice of retai
03450
.
n

th

r
-

n

of
ce

d

stateshconn( j ,1)50. As noted earlier, I will retain the locally
gauge-invariant states

u0 j&; u6 j&5bj
†dj

†u0 j&. ~32!

which form a spin-1/2 doublet with respect to the glob
SU(2) defined in Eq.~31!.

The first non-trivial connected operator which contribut
to H ren is the range-2 operatorhconn( j ,2). The four retained
states associated with a connected two-site block are

u00&; u60&; u0,6&; u66& ~33!

which decompose into a spin-1 and spin-0 multiplet un
the globalSU(2). Since each of the states of definite sp
and third-component of spin must contract onto uniq
eigenstates of the two-site problem, changing from the ten
product states to the spin basis amounts to finding the r
tion matrix R. The combinations of definite total spin an
3-component of spin are:

Stot
2 52, S3521, u00&,

Stot
2 52, S350,

1

A2
~ u60&2u06&),

Stot
2 52, S351, u66&,

Stot
2 50, S350,

1

A2
~ u60&1u06&). ~34!

Note the unusual minus sign in the spin-1,S350 state,
comes from the alternating minus sign which appears in
definition of S1 andS2 in Eqs.~31!.

To complete the computation ofhconn( j ,2) we only need
to find the eigenvalues of the full two-site Hamiltonia
which correspond to the lowest lying spin-0 and spin
states. Since the Hamiltonian, Eq.~23!, only has terms which
absorb a particle or antiparticle at sitej and create one atj
61 it follows that u00&, which is annihilated by the absorp
tion operators, has zero energy. The same is true of the
u66&, which is not annihilated by the absorption operato
but which has no room to move a particle or antiparticle t
neighboring site. It follows from theSU(2) symmetry that
the state (1/A2)(u60&2u06&) also has zero energy. Th
only eigenvalue to be determined is that associated with
lowest spin-0 state in the sector which has one particle
one antiparticle. For the case of two sites the two allow
values for the momenta arek56p/6 ande(k)56sin(p/6)
561/2; thus the lowest energy charge zero eigenstate of
two-site problem isb2p/6

† dp/6
† u0,0&, having an energyE2

521. It follows from this that, in the total spin basis

H2
ren~ i ,i 11!5RS 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 21

D R† ~35!

whereR is the rotation matrix which transformed the origin
tensor products into the total spin basis. This 434 matrix
5-6
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can always be rewritten in terms of the sixteen matri
Mab5sa( i )sb( i 11) where a,b50 . . . 3 ands0 is the
unit matrix ands1 , s2, ands3 are the Pauli spin matrices
In particular if we write

H2
ren~ i ,i 11!5 (

a,b50

4

cabMab ~36!

then it follows from theSU(2) symmetry and Eq.~35! that,
in the original tensor product basis,H2

ren( i ,i 11) has the
form

hconn~2,i !5H2
ren~ i ,i 11!52

1

4
11sW~ i !•sW~ i 11! ~37!

sincehconn(1,i )50. Thus, up to range-2 terms, the full reno
malized Hamiltonian is

H ren52
1

4
V1(

i
sW~ i !•sW~ i 11!. ~38!

Actually, this form of the renormalized Hamiltonian give
the correct spectrum, but it is not what one obtains direc
by taking traces of the form tr„sx( i )sx( i 11)H2

ren( i ,i 11)… as
indicated in Eq.~36!. The nonvanishing traces are

1

4
tr„s1~ i !s1~ i 11!H2

ren~ i ,i 11!…52
1

4

1

4
tr„s2~ i !s2~ i 11!H2

ren~ i ,i 11!…52
1

4

1

4
tr„s3~ i !s3~ i 11!H2

ren~ i ,i 11!…5
1

4
~39!

and so the form ofH2
ren directly obtained from our definitions

has the form

H2
ren5(

i
H2

ren~ i ,i 11!

52
1

4
V1(

i
„2s1~ i !s1~ i 11!2s2~ i !s2~ i 11!

1s3~ i !s3~ i 11!…. ~40!

Note, however, that this Hamiltonian can be brought into
form of a Heisenberg antiferromagnet by the rotation

O5)
j

e2 ips3(2 j 11) ~41!
03450
s

y

e

which, for every odd lattice site mapss1(2 j 11)→2s1(2 j
11) ands2(2 j 11)→2s2(2 j 11) but leavess3(2 j 11) un-
changed. In the calculations which follow we will see th
given the phases I have chosen for the statesu0 j& and u6 j&,
the terms inHr

ren will generically have the form shown in Eq
~39! and will be brought into standard form by application
O.

While the computation ofhconn(1,i ) and hconn(2,i ) are
very simple, the calculation ofhconn(n,i ) for n>3 requires
more work. Fortunately, it is easy to automate this task us
MAPLEV and the computation of all terms out to and inclu
ing hconn(5,i ) takes less than two minutes on a desktop co
puter. I will now describe the process for the casehconn(3,i ),
since the general computation proceeds along the same l

The allowed momenta for a three-site sublattice arek
52p/4, 0, p/4; the corresponding particle energies a
sin(2p/4)521/A2, sin(0)50, sin(p/4)51/A2; and the
antiparticle energies are2sin(2p/4)51/A2, 2sin(0)50,
2sin(p/4)521/A2. As the Hamiltonian contains only hop
ping terms, the number of particles and antiparticles
separately conserved; thus, of the eight possible tensor p
uct states~which define the set of retained states! the states
u000& and u666& are eigenstates of the three-site Ham
tonian of energy zero. Furthermore, of the six-remain
states, the three two-particle statesu600&, u060&, and
u006& and the three four-particle statesu660&, u606&,
and u066& can be treated separately, since when expan
in terms of a complete set of eigenstates for the three-
problem they have no states in common.

The nine possible particle-antiparticle eigenstates of
three site problem are

uk,l &5bk
†dl

†u000& ~42!

with eigenenergye(k,l )5sin(k)2sin(l). Expanding the three
retained states in terms of these eigenstates is straightfor
since

bj
†dj

†u000&5(
k,l

uk~ j !ul~ j !bk
†dl

†u000&; ~43!

thus, the coefficientakl of the statebk
†dl

† is just

a j~k,l !5(
k,l

uk~ j !ul~ j !. ~44!

Given these formulas we can now discuss how to co
pute the matricesR,Hdiag and R† from the overlap matrix,
which gives the expansion of the retained states in term
the eigenstates of the three-site Hamiltonian. The eigene
gies of the one particle states ordered by energy are
e~2p/4,p/4!52A2, e~2p/4,0!521/A2, e~0,p/4!521/A2,

e~2p/4,2p/4!50, e~0,0!50, e~p/4,p/4!50,

e~p/4,0!51/A2, e~0,2p/4!521/A2, e~p/4,2p/4!5A2. ~45!
5-7
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The first overlap matrix giving the expansion of the retained states in terms of these eigenstates is

Ov5

^600u

^060u

^006u
S 0.25 0.35 0.35 0.25 0.25 0.5 0.35 ••• •••

0.50 0 0 20.5 20.5 0 0 ••• •••

0.25 20.35 20.35 0.25 0.25 0.5 20.35 ••• •••

D . ~46!

Focusing on the first column of this matrix it is easy to construct a 333-rotation matrix,R1 which takes the first column into
a vector with one nonvanishing component; i.e.,

R1Ov5S 0.61 0 0 20.20 20.20 0.41 0 ••• •••

0 20.39 20.39 20.37 20.37 20.38 20.39 ••• •••

0 20.32 20.32 0.45 0.45 0.45 20.32 ••• •••

D . ~47!

The fact that the first column has one nonvanishing entry means that it is the only state which has an overlap with the t
ground state, which is the first objective we wished to achieve. Now, the fact that the last two entries in the second co
nonvanishing means that we are still in a situation where both the second and third rotated retained states contract on
excited state of the three-site problem. Clearly we can now perform a rotationR2 which is the identity on the first rotated sta
and rotates the second two states so that in the new rotated basis only the second element of the second column ofR2R2Ov is
nonvanishing; i.e.,

R2R1Ov5S 0.61 0 0 20.20 20.20 0.41 0 ••• •••

0 0.5 0.5 0 0 0 0.5 ••• •••

0 0 0 20.58 20.58 20.58 0 ••• •••

D . ~48!
he
th
c

ts
-

th

uc

to
a

r

of

is
en
t it
so
ired

e
lem
Now we have finally achieved our original goal, each of t
rotated states will contract onto a unique eigenstate of
three-site Hamiltonian; i.e., the first rotated state contra
onto the stateb2p/4

† dp/4
† u000&, the second state contrac

onto (b2p/4
dag d0

†1b0
†dp/4

† )u000&/A2, and the third state con
tracts onto (b2p/4

† d2p/4
† 1b0

†d0
†1bp/4

† dp/4
† )u000&/A3. Thus,

in this new rotated basis the diagonal Hamiltonian in
three-site one pair sector is

HD(12pair)5S 2A2 0 0

0 21/A2 0

0 0 0
D . ~49!

Given the explicit form of the rotation matrixR5R2R1 we
can compute the Hamiltonian in the original tensor prod
basis to be

H3
ren(12pair)5RHD(12pair)R†

5S 20.589 20.471 0.118

20.471 20.943 20.471

0.118 20.471 20.589
D . ~50!

A similar calculation can be done for the two-pair sec
of the three-site problem. Here the three retained states
u660&, u606&, andu066&. Obviously, as in the one-pai
case, these states are of the generic form

u j 1 , j 2&5bj 1

† dj 1

† bj 2

† dj 2

† u000& ~51!
03450
e
ts

e
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and can be directly rewritten in terms of the eigenstates
the three-site Hamiltonian using the operatorsbk

† anddl
† as

u j 1 , j 2&5 (
k1 ,k2 ,l 1 ,l 2

uk1
~ j 1!ul 1

~ j 1!uk2
~ j 2!ul 2

~ j 2!

3bk1

† dl 1
† bk2

† dl 2
† u000&

5 (
k1,k2

(
l 1, l 2

@uk1
~ j 1!uk2

~ j 2!2uk2
~ j 1!uk1

~ j 2!#

3 (
k1,k2

(
l 1, l 2

@ul 1
~ j 1!ul 2

~ j 2!

2ul 2
~ j 1!ul 1

~ j 2!#uk1 ,k2 ,l 1 ,l 2& ~52!

where by uk1 ,k2 ,l 1 ,l 2& we denote the state
bk1

† dl 1
† bk2

† dl 2
† u000& for the particular orderingk1,k2 and l 1

, l 2. With this choice of a complete set of basis vectors it
easy to read off the overlap matrix; it is not surprising, giv
theSU(2) symmetry of the nearest neighbor problem, tha
is identical to the overlap matrix of the one-pair sector and
the same procedure can be applied to bring it to the des
form.

Note that the no-pair stateu000& and the three-pair stat
u666& are each exact eigenstates of the three-site prob
with eigenvalue zero so

H3
ren(02pair)~ i ,i 11,i 12!

5H3
ren(32pair)~ i ,i 11,i 12!50. ~53!
5-8
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Given these results it is now trivial to expandH3
ren as

H3
ren~ i ,i 11,i 12!5 (

abg
cabgsa~ i !sb~ i 11!sg~ i 12!

~54!

by taking traces; thus, for example, the coefficient of
identity operator is

c0005
1

8
tr„sa~ i !sb~ i 11!sg~ i 12!H3

ren~ i ,i 11,i 12!….

~55!

Proceeding in this way we obtain, for the case of three si

c000
3-sites520.53033 . . . . ~56!

To convert this to a connected contribution we have to s
tract the two ways of embedding the two-site problem in
the three-site problem, obtaining

c000
3-sites conn5c000

3-sites22c00
2-sites conn

520.53033 . . .22~21/4!520.03033 . . .

~57!

which shows that the range-3 connected contribution to
ground-state energy density is quite small in comparison
the range-2 contribution. Similarly we can compute the
efficients of the other operators which can appear in Eq.~54!.
Thus, we have

c110
3-sites5c220

3-sites52c330
3-sites520.23570 . . .

c011
3-sites5c022

3-sites52c033
3-sites520.23570 . . .

c101
3-sites5c202

3-sites5c303
3-sites52.005893 . . . ~58!

and all other possiblecabg vanish.
As we already noted, for nearest neighbor spin-spin in

actions, which is whatc110, c220, and c330 parametrize,
there should be a difference in sign betweenc330 and both
c110 and c220, which is the case; the same is true f
c011, c022, and c033. Note however, the next to neare
neighbor coefficientsc101, c202, andc303 should have the
same sign and they do.

To obtain the connected coefficients we recall that
03450
e

s,

-

e
to
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r-

H3
conn~ i ,i 11,i 12!5H3

ren~ i ,i 11,i 12!2H2
conn~ i ,i 11!

2H2
conn~ i 11,i 12!. ~59!

Using the explicit form for H3
ren( i ,i 11,i 12), H2

conn( i ,i
11), andH2

conn( i 11,i 12) and collecting like terms we ob
tain

c110
conn5c110

3-sites2c11
2-sites50.014297 . . .

c220
conn5c220

3-sites2c22
2-sites50.014297 . . .

c330
conn5c330

3-sites2c33
2-sites520.014297 . . .

c011
conn5c011

3-sites2c11
2-sites50.014297 . . .

c022
conn5c022

3-sites2c22
2-sites50.014297 . . .

c033
conn5c033

3-sites2c33
2-sites520.014297 . . .

c101
conn50.05892 . . .

c202
conn50.05892 . . .

c303
conn50.05892 . . . ~60!

all other coefficients vanish.
Thus, recalling the fora51,2,3, sa5sa/2, adding up

the range-2 and range-3 connected coefficients and rota
s1 and s2 to minus themselves on alternate sites, we c
rewrite the range-3 renormalized Hamiltonian as

H ren520.28033V1(
i

@0.9428sW~ i !•sW~ i 11!

10.23570sW~ i !•sW~ i 12!# ~61!

which has the advertised form of a frustrated Heisenb
antiferromagnet. The important things to notice about
result of this calculation is that the range-3 corrections to
coefficients of operators which appeared at range-2 are s
and that the coefficients of the new operators which app
for the first time at range-3 are typically smaller than t
ones which appear at range-2.

This process can be carried out in the same way to c
puteHn

conn. The result out to and including range-5 contrib
tions is
H ren520.31099V1(
i

H2-body~ i !1(
i

H4-body~ i ! ~62!

H2-body~ i !50.80001sW~ i !•sW~ i 11!10.23492sW~ i !•sW~ i 12!20.01915sW~ i !•sW~ i 13!

H4-body50.03559sW~ i !•sW~ i 11!sW~ i 12!•sW~ i 13!20.08033sW~ i !•sW~ i 12!sW~ i 11!•sW~ i 13!

10.03403sW~ i !•sW~ i 13!sW~ i 11!•sW~ i 12!10.02595sW~ i !•sW~ i 11!sW~ i 12!•sW~ i 14!

10.00339sW~ i !•sW~ i 11!sW~ i 13!•sW~ i 14!20.01159sW~ i !•sW~ i 12!sW~ i 11!•sW~ i 14!
5-9
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10.05189sW~ i !•sW~ i 12!sW~ i 13!•sW~ i 14!20.03289sW~ i !•sW~ i 13!sW~ i 11!•sW~ i 14!

20.01159sW~ i !•sW~ i 13!sW~ i 12!•sW~ i 14!20.00732sW~ i !•sW~ i 14!sW~ i 11!•sW~ i 12!

20.03251sW~ i !•sW~ i 14!sW~ i 11!•sW~ i 13!20.00732sW~ i !•sW~ i 14!sW~ i 12!•sW~ i 13!.
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The important fact to notice about all of these calculatio
is that at each stage the tensor product states contract
the lowest energy states of the corresponding block Ha
tonian, thus proving that, if one computes out to infin
range, the renormalized Hamiltonian will describe ze
charge sector of the free system. Furthermore, note th
one uses the same method to calculate the two-point ferm
antifermion correlation function CORE will guarantee th
its renormalized operator has the same matrix elements in
frustrated HAF ground state that the original operators ha
the free-fermion vacuum state.

V. DISCUSSION

Although, in principle, there are an infinite number
terms in H ren Eq. ~62! shows that the coefficients of th
longer range two-body terms, as well as the coefficients
the four-body and higher terms drop off quickly; thus,
advertised in the introduction, we see that the zero-cha
sector of the free~doubled! fermion theory maps into a gen
eralized frustrated antiferromagnet. Frustrated, in this c
text, simply means that the coefficient of the range-two a
range-three one-body terms are both positive and the ra
four term is negative. To understand what is going on phy
cally consider a Ne´el state in which the spins are oriente
u . . . ↑↓↑↓ . . . &. It is clear, restricting attention to th
nearest-neighborsW( i )•sW( i 11) terms, that the fact that th
coefficient of these terms is positive means that this orie
tion of the spins minimize this contribution to the energ
This, of course, implies that spins separated by two s
should point in the same direction. However, this maximiz
instead of minimizes the range-three spin-spin term since
coefficient is also positive. Note also the range-four te
also works against the range-two term since it wants sp
separated by three sites to point in the same direction, w
is opposite to what one obtains from miminizing the rang
two term. The presence of the four-body~and higher body!
operators further confuses the issue. Since little is kno
about the physics of frustrated antiferromagnets, it is of so
interest to know that this generalized class of theories
related to free fermion theories. In fact, I will now argue th
this is true for a non-trivial range of parameters.

To begin note that it is easy to modify the free fermi
derivative by adding hopping terms which jump three sit
five sites, seven sites, etc., in such a way that the infi
volume kinetic energy has the general form

e~k!5 (
m51

R

arsin„~2r 11!k…. ~63!
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This form of e(k) is still symmetric aboutk5p/2 and ex-
hibits the same sort of fermion doubling as is exhibited
the nearest neighbor term. In this case it is a little mo
difficult to carry out the computations of the previous se
tion, but they go through in essentially the same way, exc
that the coefficients of the operators inH ren are changed. It
therefore follows that there is more than one generali
frustrated antiferromagnet which is equivalent to a theory
free fermions. Since all of the various fermion derivativ
can be defined so that the slope ofe(k) is unity for small
values ofk, it follows that all of these different theories mu
flow, under real-space renormalization group transform
tions, to a single fixed-point generalized frustrated antifer
magnet. This means that there is a nontrivial surface in
parameter space of these generalized frustrated antiferrom
nets which at low energies describe the same system of
massless fermions.

Having said this, it is important to point out that not all o
these frustrated antiferromagnets correspond to theorie
free fermions. As I pointed out in the introduction the sam
mapping can be carried out for the case of an interac
gauge theory. In fact, the original motivation of this wo
was to do exactly this for lattice QCD and analyze the we
coupling regime. Obviously, constructing the mapping wh
takes the interacting gauge theory into this class of gene
ized frustrated antiferromagnets is technically more challe
ing, but it must exist. From this it follows that for som
choice of couplings the generalized frustrated antiferrom
net corresponds not to free fermions, but rather to a the
with fermions and gauge fields, neither of which is appar
when one looks at the theory at the single-site or few-s
level.

A final issue which needs to be addressed is how thi
work for higher dimension and/or non-Abelian gauge the
ries. Clearly, for the case of doubled free fermion theories
(311)-dimensions there are no new technical challeng
however, the number of single-site gauge-invariant sta
which can be constructed is larger since the particles
antiparticles come with two different spins. As in the (
11)-dimensional case, these states form an irreducible
resentation of a symmetry group, in this case a s
dimensional representation ofSU(4) and truncating to this
set of states, using CORE to compute the renormali
Hamiltonian, leads to a generalized frustratedSU(4) antifer-
romagnet@i.e., one where thesW•sW terms are replaced by
QW •QW terms, where theQW ’s are now the representation matr
ces for the six-dimensional representation of the genera
of SU(4)]. In this case usinggeneralizedto modify the
phrasefrustrated antiferromagnetis even more appropriate
since in this theory a new kind of interaction term appears
5-10
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the renormalized Hamiltonian. This happens because the
dimensional representation ofSU(4) is not the fundamenta
representation and so operators of the form (QW •QW )2 can ap-
pear, and these operators can significantly alter the lands
of possible phases which the theory can have. A discus
of how such terms can modify the behavior of an antifer
magnetic theory will be given in a forthcoming paper on t
Haldane conjecture@4#. Note, generally all terms permitte
by the global symmetries of the problem can and will appe

As to the case of free quarks in (311)-dimensions, things
are again different in detail, but the general results are s
lar. Here we are interested in all the color singlet sta
which can be formed from quarks and anti-quarks on a sin
site. If one restricts to just mesons, i.e., all states form
from color-singlet quark anti-quark states, then the states
a single site fall into an irreducible representation ofSU(12),
which is a symmetry of the doubled theory. Once again
one truncates to just this set of states the resulting renor
ized Hamiltonian must be a generalized frustratedSU(12)
antiferromagnet. Once again generalized antiferromag
must be taken in the broadest possible sense since new t
of the form discussed for the case of a single fermion in
11)-dimensions will appear, but now one will also get ne
many body terms related to the possibility of having Casim
operators beyond the simplest quadratic Casimir opera
Thus one should expect that theories which correspon
quarks in interaction with color-gauge fields to have a v
rich structure. Obviously, all remarks concerning the opt
of choosing different kinetic terms for the lattice fermio
theory apply equally to the free massless quark case, an
there must be a whole surface in the space of couplings
the generalized frustrated theory which all flow to the sa
fixed point.

As for real lattice QCD with quarks interacting with glu
ons, it has been shown that at strong coupling the single
colorless states are all degenerate to leading order ing2 and
y,
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that this enormous degeneracy is lifted in order 1/g2, see Ref.
@2#. Working to this order in the doubled theory one obtain
exactly as in the case of the (111)-dimensional theory, a
generalized antiferromagnet. Thus, we see that for this tr
cation algorithm the free field theory and the strong coupl
theory can be obtained from one another by varying para
eters in the general renormalized Hamiltonian. This tells
that the full generalized frustratedSU(12) antiferromagnet
theory has regions in which the degrees of freedom are
longer free massless quarks, but are instead quarks inte
ing with color gauge fields. Note, adding the baryonic sta
which can be made fromqqq configurations leads to a fur
ther generalization of the antiferromagnetic system in wh
there is more than one irreducible representation of the s
metry group for each site in the lattice and correspondin
more complicated interactions. All of these couplings b
come significant as one moves to weak coupling but in
limit of very large g2 the states with baryons in them sp
away from the states with only mesons in order 1/g2.

Finally, returning to the point raised in the introductio
namely, although this exercise was originally motivated
the desire to show that CORE provides framework with
which the old strong coupling treatment of QCD can be e
tended to the weak coupling regime, at this point the qu
tion arises as to whether or not one can tell if in fact qua
and gauge fields are really fundamental. More thought ha
be given to the question of whether or not one can mean
fully distinguish lattice QCD from the frustrated antiferro
magnet. Clearly much work remains to be done to settle h
various features of the various undoubled theories, such
the anomaly, work in practice. Also, it remains to be se
how all of these undoubled theories differ from one anoth
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