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The dual superconductivity of the vacuum in @Ugauge theory is investigated by constructing a disorder
parameter which signals monopole condensation in various Abelian projections and by studying numerically
on the lattice its behavior at finite temperature. We find that the vacuum is a dual superconductor with respect
to each W1) of the residual gauge group after Abelian projection independently of the Abelian projection
chosen. As in the S(@2) case(discussed in the preceding paperfinite size scaling analysis enables us to
extract the indices of the phase transition and our analysis is consistent with independent determinations.

PACS numbgs): 11.15.Ha, 12.38.Aw, 14.80.Hv, 64.60.Cn

[. INTRODUCTION In this paper we shall extend the analysis to(3lyauge
group. The essentials are not changed with respect t&)SU

In the preceding pap¢f], which we will refer to as |, we Some formal complications come from the coexistence of

have presented the basic ideas about confinement and dualo monopole charges for each Abelian projectiSec. I).
superconductivity of the ground state of gauge theories, an#/e have performed a systematic numerical investigation, for

how they can be tested in $2) gauge theory. Monopoles different Abelian projections. Also for SB) we find dual
exist in gauge theories, carrying a conserved magnetisuperconductivity in all the Abelian projections that we have

charge. We have defined a disorder paramg@igrdetecting  considered, again indicating that the guess of Rafthat all

dual superconductivity as spontaneous breaking of ttlf U monopoles are physically equivalent is corrggt) looks,
symmetry related to magnetic charge conservatig)#0  within errors, the same for the two independent monopole
signals that the ground state is a superposition of states wittharges of a given Abelian projection. A finite size scaling
different magnetic charge, a phenomenon which is denotednalysis shows that the transition is first order. Numerical
as condensation and which implies dual superconductivitgletails and results are given in Sec. Ill. Section IV contains

under very general assumptions. some concluding remarks.

In SU(2) a monopole species can be associated to any
operator in the adjoint representation, with a corresponding Il. THE ABELIAN PROJECTION.
magnetic Y1) symmetry. Condensation can be numerically CONSERVED MONOPOLE CHARGES

investigated for different monopole species, in connection _
with confinement, by lattice simulation at finite temperature.  In analogy with the S(2) case we shall denote by
The main results of this investigation for &) were the

following 8

Monopoles defined by different Abelian projections do ‘f’(x):; ¢ ()F! @
condense in the confined phase{@n #0.

At deconfinement x)—0. the generic local operator in the adjoint representatfon.

A finite size scaling analysis allows to determine the criti- — yi/5> \vith \' the Gell-Mann matrices. We shall assudhe
cal indexv of the correlation length, the criticg# and the Hermi'tian or¢' real in any configuration.

index & by which (#)—0. The determination of agrees It will be convenient to use the notation
with the ones done by other methods, and indicates a second
order phase transition. AlsB¢ coincides within errors with H(X)= <Z>(X) E @)

the known values.

All the monopole species considered have a similar be; )
havior, and show dual superconductivity. for Eq. (1) and for any two operatorg; , ¢:

Our conclusion was that confinement is an order-disorder 8
transition. The symmetry which characterizes the dual order 2tr I S G i i 3
is not fully understood, but for certain the differdnt)’s are 91027 b1 92 2’1 P16z ®
good disorder parameters.

Any ¢(x) can be diagonalized by a unitary transformation

U(x):
*Email address: digiaco@mailbox.difi.unipi.it
TEmail address: lucini@cibs.sns.it U(X)p(x)UT(x)= ¢p(X). (4)
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bp=ppFa+ epF®, (5)

whereF? andF" are independent linear combinationsFof
andF&. We shall choose

J3

8
Fb:_F3 F

a_r8 -
Fa=F°, > (6)

for reasons which will be clear below.
We now define
fax)=[U(x)]"F2U(x),
fP(x)=[U()]TFPU(x). (7

U(x) is defined as the matrix which diagonalizééx). To

eliminate ambiguities the eigenvalues can be ordered in de-
creasing orderJ(x) is determined up to an arbitrary matrix

Up(x) on the leftU(x)=Up(x)U(x), with Up=exp(aF®
+iBF3), i.e., up to a residual U(£) From Eqs.(5) and(7),
in the usual representation of Gell-Mann matrices

eb+20D 0 0
1
¢D:% oD~ op 0 , (8
0 0  —2¢3—¢p

with ¢3=0, ¢5=0.

The gauge transforr) (x) is singular at the sites where

either o2 =0, and

L 10 0
¢D=—2J§qs% 0 1 (9)
0 0 -2
or ¢3=0, and
L 2 0 0
bp=—=¢p| 0 -1 O (10)
23 0 -1
In both casespp has two equal eigenvalues.
The two field tensors
Fab—Ly( farg 0.2 1D, 12,0 128)| (11
/.LV_Zr nv 3[ s Wy ]

are the analogous of the 't Hooft's teng@1 in SU(2). As in
SU(2) the bilinear terms i ,A, cancel. In the Abelian pro-
jected gaugef?(x)=F? andfb(x) FP are x independent,

apart from singularities, and therefore in the domain in

which U(x) is regular

ab__ ab_ a,b
For=0d,A%"—a,A%". (12

The cancellation of the bilinear teré, A, between the
two terms of Eq(11) is not automatic in S(B) for arbitrary
choice off?, f®, as it was in S(2), and only works iff2, f°

belong to W1) in the breaking SU(3)>SU(2)xU(1),
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which is the case for the choice of E@). Also the choice
(\/3/2)F3—3F® for 2 or f® would be legitimate.

As in SU2) F22*, the dual tensor td=%7, define two
magnetic currentsS?”Fa b*—J , which are conserved. The
theory has two conserved magnetlc chanyés MP. Mono-
poles exist at the points wheké(x) is singular, wherez,oD
=0 the monopole field is directed af3=diag(1/2,
—1/2,0), wherep] is zero it is directed af33= — (1/2)F3
+(\/312)F®=diag(0,1/2;-1/2). As in SU2) we shall in-
vestigate the invariance of the ground state with respect to
these magnetic (1)’s, in connection with confinement.

On the lattice, we shall define the Abelian projected fields
as follows. In the Abelian projected representation we write
the generic linkU ,(n) in the form

N F i a b
UM(n)=e'VL FLeI(VaF +VpF ), (13)
with F, a superposition of generators belonging to nonzero
eigenvalues of the Cartan algebra.

Equation(13) is easy to prove: it is a trivial consequence
of the Baker-Hausdorff formula. As for SP), the Abelian
part of a product is the sum of the Abelian parts of the
factors, to ordem? (a is the lattice spacing The Abelian
magnetic fluxes through plaquettes, one for each)tan
be defined, and are identically conserved. The disorder pa-
rameter is again

o Z[S+A%PS]
(u® >=—Z[S] , (14)
Aabs—BE Re THILo(n,t)—II/2°(n,t)}, (15

I1/2°(n,t) is obtained from II;o(n,t)=U;(n,t)Uo(n
+1,0[U;(n,t+1)]TUq(n,t)]1" by the change

Ui(A, 1) — e ANE00y (A 1)

XeiATi(ﬁ&)fa*b(ﬁ-ﬁ,t)eiA(ﬁ+?,§)fa'b(ﬁ+?,t) (16)
where

AM(n,y)=Al(n,y)+VA(n,y) (17)
is the vector potential produced by a monopole. The proof
that(u®P) creates a monopoles of the corresponding type is
exactly the same as for $2J.

Also for SU@3) instead of{ u?) it is convenient to deter-
mine

d
p* dB|Og<Ma ) =(S)s—(S+AS)s:ss (18

as a function ofs. We do that on an asymmetric I<';1ttid‘>lﬂs3
X N; (Ng>N,) which provides the static thermal equilibrium
atT=1/a(p).

The deconfining transition is known and has been studied
using the Polyakov loop order paramefiét. We will inves-
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tigate if going from deconfined to confined phase monopoles 0.0
do condense to produce dual superconductiyip? ) will .
be the disorder parameters.

-100.0 -

.
#

IIl. NUMERICAL RESULTS

We determine the temperature dependencg oh a lat-
tice Ng’x N; (Ng>Ny), with N;=4 andNg ranging from 12 e
to 32. For the reason discussed in Héfl, we use periodic _300.0 |
boundary conditions in the spatial directions and M
C*-boundary conditiong5] in the time direction. As in « Polyakov
SU(2) we diagonalize an operatd belonging to the group —4000 I+ Butterfly
O=exp(P*\¥2) and we identifyd? by ordering the imagi- o Plaquette
nary part of eigenvalues in decreasing order.
As for the SU2) case, we study the following projections: 000 e 30 40 50 _ 60 70 80 o0
O is connected to the Polyakov lineL(n,t) B
=Hi\l,:tlUO(ﬁ,t')H:,_Zlouo(ﬁ,t') as FIG. 1. p vs 8 for different Abelian projections. Lattice $2
X 4, Abelian generatoF 3.

"
¢
H
-200.0
H
3

O(n,H) =11, 'Up(n,t")L*(NOII;, *Ug(n,t') (19
of the gauge group is related to color confinement, in the
(Polyakov projection on £€*-periodic latticg; O is an open  thermodynamic limitNg— o the corresponding stays finite
plaquette, i.e., a parallel transport on an elementary square of the strong coupling regiond<3¢) and goes to-« lin-

the lattice early with Ng in the weak coupling regiong> Bc). In the
A A critical region, the abrupt decline dfu) is signaled by a
O(n)=1IL;;(n)=U;(n)U;(n+ |)[Ui(n+J)]*[Uj(n)]T; sharp negative peak @f, the value ofp in this region must

(200  behave as a function dfi as prescribed by the finite size
scaling theory of pseudocritical systems.

O is the “butterfly” F Figure 1 shows the typical behavior of for different

O(n)=F(n) Abelian projections, for a lattice $X 4. As Abelian genera-
N tor we usedrF®. The negative peak occurs at the expected
:UX(n)Uy(n+§<)[Ux(n+§/)]T[Uy(n)]T transition pointB¢ [6]. Below B¢ the different projections

are equal within errors, suggesting that different monopoles
XU (mU(n+2)[U,(n+D]TU(n)]". (21)  behave in the same way.
We have investigated also whether at fixed Abelian pro-

The trace ofF is the density of topological charge. jection the profile ofp depends on the (@) magnetic sub-

The simulation was done on a 128-node APE quadricgroup. Figure 2 shows the profile pfcorresponding té-2,
machine. We use an overrelaxed heat-bath algorithm to conk8, andF32 in the Polyakov projection on a i 4 lattice.
pute the Wilson term of Eq(18), and a mixed algorithm as No appreciable differences can be seen between different
described in our previous papEt] for the monopole term choices. This is an indicatioftonfirmed also by simulations
(S+AS)s,as. Far from the critical region at each we
sampled over 4000 termalized configurations, each of them 0.0
taken after 4 sweeps. The errors have been obtained by using
a Jack-knife method on binned data, as discussed in[ Ref.
In the critical region a higher statistics is required. Typically -100.0 -
the Wilson term is more noisy. Thermalization was checked
by monitoring the action density and the probability distri-
bution of the trace of the Polyakov loop. The number of
measurements was at least 390 where 7 is the correla- e
tion time of the considered set of data. -300.0 |

For A . we use the Wu-Yang’s parametrization; we have

e F

8

also checked numerically that Dirac’s form gives similar re- c g,.
sults, as expected. In terms pf —400.0 v

a
]
|

-200.0 -

o«
- o » wE ¢S

B 1 1 1 1 1 1 1 1
<#a'b>:exp< fo Pa’b(ﬁ')dﬁ')- (22 0000 10 20 30 40 I35.0 60 70 80 90

Equation(22) implies that if the dual 1) symmetry defined FIG. 2. p vs B for different Abelian generators. Lattice %2
by some Abelian projection and by some Abelian generatoix 4, Polyakov projection.
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FIG. 3. p as a function ofg for different spatial sizes at fixed
N,=4. Polyakov projection, Abelian generate?. FIG. 5. p vs Ng (N;=4) at 8= in the Polyakov projection
with Abelian generatoF3. Data are obtained by numerical mini-

on larger latticels that monopoles defined with respect to Mization of(S+AS)s. s
different Abelian generators behave in the same way in the ) ] )
SU(3) vacuum. This is also true for the other Abelian pro- p— [”L'”{S}_”L'”{SJFAS}]: _”L'”{S“LAS}v (23
jections we have investigatddee Fig. L o
Since different Abelian projections and different Abelian since min{S=0.

generators give indistinguishable results, for the sake of sim- | other systems, where the same shifting procedure has
plicity we shall only display the Polyakov projection and the heen applied and studied, this asymptotic value has been
Abelian generator=® in the following figures. Figure 3  anaiytically calculated in perturbation theory with the result
shows the dependence pfon Ns. The qualitative behavior [7 g]
does not change when we enlarge the lattice size.
We now analyze the dependenceNgnin more detail. In p=—CcNg+d, (24)
the strong coupling region at lo's p seems to converge to
a finite value(see Fig. 4. Equation(22) then implies that wherec and d are constants, i.e goes linearly with the
(@) # 0 in the infinite volume limit in the confined phase for spatial dimension. In S@) we are unable to perform the
thesep’s. Hence monopoles do condense in this phase. same calculation and we have evaluated the minimum
In the weak coupling region, we can evaluatperturba-  miny{S+AS} numerically. Details about the followed proce-
tively. The path integral is then dominated by the classicablure have been discussed in Rdf|. Here we note that due
solutions of the equations of motion for the gauge variableso the single precision of the APE quadrics machine, the

and we have estimation of the minimum o8+ A S for the biggest lattice
is more noisy than in the SB) case.
50 : . : The result is shown in Fig. 5 for the Polyakov projection.
It is consistent with the linear dependence of E2f) with
c=2 andd=—12. Thus in the weak coupling region in the
thermodynamic limitp goes to—o linearly with the spatial
0r % * . . 1 lattice size and
* i} .
" (n) ~ ANt DP0, B>pe. (25)
e _s0f * 1 Ns—e°
+ The magnetic (1) symmetry is indeed restored in the de-
eN.—16 confined phase. _ N _ _ _
-100 - DN:=24 1 The behavior ofp in the critical region can be investi-
*Ny=32 gated by using finite size scaling techniques. We know that
the transition is weak first order with a behavior which is
_150 , , , difficult to distinguish from that of a second order transition.
25 3 35 4 45 By dimensional argument
B
: . . . : _ & a N
FIG. 4. p vs B in the strong coupling region for lattice sizes (m)=Ng 5/'/(1)(_,_,_ , (26)
N3x 4. Polyakov projection, Abelian generater. Ns' & Ns
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wherea and ¢ are, respectively, the lattice spacing and the -0.020
correlation length of the system. Near the critical point, for

B<Bc

-0.040

2

§x(Bc—B) " (27)

where v is some effective critical exponent. In the linhk
>N, and fora/¢<1, i.e., sufficiently close to the critical 4 ~0.060
point we obtain

(m)=Ng ""®[N"(Bc—B),0,0] (28) 0080 |

or, equivalently,

_0.1 00 1 1 1 L 1
-100.0 0.0 100.0 200.0 300.0 400.0 500.0

b NV (Be-PB)]. 29 NG )

v
NS

. Uy - . . . . FIG. 6. Quality of scaling in the Polyakov projection B
The ratiop/Ng" is a universal function of the scaling vari- —4  apelian generatoF?.

able

x=N¥(B.—B). (30) Wherecis a c_onstant, as suggested by Fig. 6. o
Our best fit 6=0.54+0.04 for the Polyakov projection
For a pseudocritical behavior, we expect 1/3. Using also  and compatible results for the other projections. Rffeis
Bc(Ny=4)=5.6925[6], we can plotp/N2"” as a function of order 1.
X. This concludes our argument about the thermodynamic
If we perform such a plot, we find that the scaling relation|imit (Ng— ). The deconfining phase transition can be seen
(29) does not hold. Such a scaling violation is due to finitefrom a dual point of view as the transition of the vacuum
size effect. A relationship more appropriate than B9) is  from the dual superconductivity phase to the dual ordinary
phase. That feature seems to be independent of the Abelian

P projection and of the Abelian generator chosen.

1lv
NS

=f[NZ"(Bc—B)1+P(Ny), (31)

where®(Ng) parametrizes finite size effects. If we assume IV. CONCLUDING REMARKS
that these effects are not critidél] then® is given by

As for SU2), we have also found evidence for &Y
D(Ng)= (32) gauge theory that a transition to deconfinement is an order-
disorder transition, the disorder parameter being a conden-
sate of magnetic charges. A finite size scaling analysis of the
where a is a constant. This parametrization is correctsystem gives critical indices compatible with a first order

O(1INY). transition, in agreement with determinations done by other
Figure 6 shows the quality of the scaling f+=190. Our  methodd4].
estimate gives/=0.33+0.07 anda=190*20. In the ther- Of course we have investigated a limited number of Abe-
modynamic limit in some region g8< B¢ we expect lian projections: as in S(2), however, the indication is that

()% (Be—B)°, (33 svk;isl,(ijci;st;ni?‘(\a/zitr;dent .Of that choicg. An interesting .issue

gate if the mechanism is the same in the

which implies N.=0° limit. As a consequence also in the presence of dy-
namical quarks the behavior should be similar, as well as the
) symmetry pattern and the disorder parameter should be the

P== 5% 34 same. Investigation in this direction is on the way.

Using Eq.(34) it should be possible in principle to deter-

mine v, &, and B¢ . Our statistic is not enough accurate to ACKNOWLEDGMENTS
perform such a fit. However, we can determihasing as an
input B¢, », which are known, by parametrizingin a wide This work is partially supported by EC contract FMRX-
range by the form CT97-0122 and by MURST.
o a
p=—3Ct 3, (39
N IFits have been performed by using thewuIT routines.
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