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Color confinement and dual superconductivity of the vacuum. II
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The dual superconductivity of the vacuum in SU~3! gauge theory is investigated by constructing a disorder
parameter which signals monopole condensation in various Abelian projections and by studying numerically
on the lattice its behavior at finite temperature. We find that the vacuum is a dual superconductor with respect
to each U~1! of the residual gauge group after Abelian projection independently of the Abelian projection
chosen. As in the SU~2! case~discussed in the preceding paper! a finite size scaling analysis enables us to
extract the indices of the phase transition and our analysis is consistent with independent determinations.

PACS number~s!: 11.15.Ha, 12.38.Aw, 14.80.Hv, 64.60.Cn
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I. INTRODUCTION

In the preceding paper@1#, which we will refer to as I, we
have presented the basic ideas about confinement and
superconductivity of the ground state of gauge theories,
how they can be tested in SU~2! gauge theory. Monopole
exist in gauge theories, carrying a conserved magn
charge. We have defined a disorder parameter^m& detecting
dual superconductivity as spontaneous breaking of the U~1!
symmetry related to magnetic charge conservation.^m&Þ0
signals that the ground state is a superposition of states
different magnetic charge, a phenomenon which is deno
as condensation and which implies dual superconducti
under very general assumptions.

In SU~2! a monopole species can be associated to
operator in the adjoint representation, with a correspond
magnetic U~1! symmetry. Condensation can be numerica
investigated for different monopole species, in connect
with confinement, by lattice simulation at finite temperatu
The main results of this investigation for SU~2! were the
following.

Monopoles defined by different Abelian projections
condense in the confined phase, or^m&Þ0.

At deconfinement̂m&→0.
A finite size scaling analysis allows to determine the cr

cal indexn of the correlation length, the criticalb and the
index d by which ^m&→0. The determination ofn agrees
with the ones done by other methods, and indicates a se
order phase transition. AlsobC coincides within errors with
the known values.

All the monopole species considered have a similar
havior, and show dual superconductivity.

Our conclusion was that confinement is an order-disor
transition. The symmetry which characterizes the dual or
is not fully understood, but for certain the different^m& ’s are
good disorder parameters.
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In this paper we shall extend the analysis to SU~3! gauge
group. The essentials are not changed with respect to SU~2!.
Some formal complications come from the coexistence
two monopole charges for each Abelian projection~Sec. II!.
We have performed a systematic numerical investigation,
different Abelian projections. Also for SU~3! we find dual
superconductivity in all the Abelian projections that we ha
considered, again indicating that the guess of Ref.@2# that all
monopoles are physically equivalent is correct.^m& looks,
within errors, the same for the two independent monop
charges of a given Abelian projection. A finite size scali
analysis shows that the transition is first order. Numeri
details and results are given in Sec. III. Section IV conta
some concluding remarks.

II. THE ABELIAN PROJECTION.
CONSERVED MONOPOLE CHARGES

In analogy with the SU~2! case we shall denote by

f~x!5(
i 51

8

f i~x!Fi ~1!

the generic local operator in the adjoint representation.Fi

5l i /2, with l i the Gell-Mann matrices. We shall assumef
Hermitian, orf i real in any configuration.

It will be convenient to use the notation

f~x!5fW ~x!•FW ~2!

for Eq. ~1! and for any two operatorsf1 , f2:

2 trf1f25fW 1•fW 2[(
i 51

8

f1
i f2

i . ~3!

Any f(x) can be diagonalized by a unitary transformati
U(x):

U~x!f~x!U†~x!5fD~x!. ~4!

In the usual representation of thel matrices
©2000 The American Physical Society04-1
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fD5wD
a Fa1wD

b Fb, ~5!

whereFa andFb are independent linear combinations ofF3

andF8. We shall choose

Fa5F8, Fb5
A3

2
F31

F8

2
~6!

for reasons which will be clear below.
We now define

f a~x!5@U~x!#†FaU~x!,

f b~x!5@U~x!#†FbU~x!. ~7!

U(x) is defined as the matrix which diagonalizesf(x). To
eliminate ambiguities the eigenvalues can be ordered in
creasing order.U(x) is determined up to an arbitrary matr
UD(x) on the leftU(x).UD(x)U(x), with UD5exp(iaF8

1ibF3), i.e., up to a residual U(1)2. From Eqs.~5! and ~7!,
in the usual representation of Gell-Mann matrices

fD5
1

2A3 S wD
a 12wD

b 0 0

0 wD
a 2wD

b 0

0 0 22wD
a 2wD

b
D , ~8!

with wD
a >0, wD

b >0.
The gauge transformU(x) is singular at the sites wher

eitherwD
b 50, and

fD5
1

2A3
wD

a S 1 0 0

0 1 0

0 0 22
D ~9!

or wD
a 50, and

fD5
1

2A3
wD

b S 2 0 0

0 21 0

0 0 21
D . ~10!

In both casesfD has two equal eigenvalues.
The two field tensors

Fmn
a,b5

1

2
trS f a,bGmn2

i

g
f a,b

•

4

3
@Dm f a,b,Dn f a,b# D ~11!

are the analogous of the ’t Hooft’s tensor@3# in SU~2!. As in
SU~2! the bilinear terms inAmAn cancel. In the Abelian pro-
jected gaugef a(x)5Fa and f b(x)5Fb are x independent,
apart from singularities, and therefore in the domain
which U(x) is regular

Fmn
a,b5]mAn

a,b2]nAm
a,b . ~12!

The cancellation of the bilinear termAmAn between the
two terms of Eq.~11! is not automatic in SU~3! for arbitrary
choice off a, f b, as it was in SU~2!, and only works iff a, f b

belong to U~1! in the breaking SU(3)→SU(2)3U(1),
03450
e-

which is the case for the choice of Eq.~6!. Also the choice
(A3/2)F32 1

2 F8 for f a or f b would be legitimate.
As in SU~2! Fmn

a,b! , the dual tensor toFmn
a,b , define two

magnetic currents]nFmn
a,b!5 j m

a,b , which are conserved. Th
theory has two conserved magnetic chargesMa, Mb. Mono-
poles exist at the points whereU(x) is singular, wherewD

b

50 the monopole field is directed asF35diag(1/2,
21/2,0), wherewD

a is zero it is directed asF3a52(1/2)F3

1(A3/2)F85diag(0,1/2,21/2). As in SU~2! we shall in-
vestigate the invariance of the ground state with respec
these magnetic U~1!’s, in connection with confinement.

On the lattice, we shall define the Abelian projected fie
as follows. In the Abelian projected representation we wr
the generic linkUm(n) in the form

Um~n!5eiVW'•FW'ei (VaFa1VbFb), ~13!

with FW' a superposition of generators belonging to nonz
eigenvalues of the Cartan algebra.

Equation~13! is easy to prove: it is a trivial consequenc
of the Baker-Hausdorff formula. As for SU~2!, the Abelian
part of a product is the sum of the Abelian parts of t
factors, to ordera2 (a is the lattice spacing!. The Abelian
magnetic fluxes through plaquettes, one for each U~1!, can
be defined, and are identically conserved. The disorder
rameter is again

^ma,b&5
Z@S1Da,bS#

Z@S#
, ~14!

Da,bS5
b

3 (
nW

Re Tr$P i0~nW ,t !2P i08
a,b~nW ,t !%, ~15!

P i08
a,b(nW ,t) is obtained from P i0(nW ,t)5Ui(nW ,t)U0(nW

1 ı̂ ,t)@Ui(nW ,t11)#†@U0(nW ,t)#† by the change

Ui~nW ,t !→e2 iL(nW ,yW ) f a,b(nW ,t)Ui~nW ,t !

3eiA' i
M (nW ,yW ) f a,b(nW 1 ı̂ ,t)eiL(nW 1 ı̂ ,yW ) f a,b(nW 1 ı̂ ,t) ~16!

where

AW M~nW ,yW !5AW'
M~nW ,yW !1¹W L~nW ,yW ! ~17!

is the vector potential produced by a monopole. The pr
that ^ma,b& creates a monopoles of the corresponding type
exactly the same as for SU~2!.

Also for SU~3! instead of̂ ma,b& it is convenient to deter-
mine

ra,b5
d

db
log^ma,b&5^S&S2^S1DS&S1DS ~18!

as a function ofb. We do that on an asymmetric latticeNs
3

3Nt (Ns@Nt) which provides the static thermal equilibrium
at T51/a(b).

The deconfining transition is known and has been stud
using the Polyakov loop order parameter@4#. We will inves-
4-2
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tigate if going from deconfined to confined phase monopo
do condense to produce dual superconductivity.^ma,b& will
be the disorder parameters.

III. NUMERICAL RESULTS

We determine the temperature dependence ofr on a lat-
tice Ns

33Nt (Ns@Nt), with Nt54 andNs ranging from 12
to 32. For the reason discussed in Ref.@1#, we use periodic
boundary conditions in the spatial directions a
C!-boundary conditions@5# in the time direction. As in
SU~2! we diagonalize an operatorO belonging to the group
O5exp(iFala/2) and we identifyFa by ordering the imagi-
nary part of eigenvalues in decreasing order.

As for the SU~2! case, we study the following projection
O is connected to the Polyakov lineL(nW ,t)
5P

t85t

Nt21
U0(nW ,t8)P t850

t21 U0(nW ,t8) as

O~nW ,t !5P
t85t

Nt21
U0~nW ,t8!L!~nW ,0!P t850

t21 U0~nW ,t8! ~19!

~Polyakov projection on aC!-periodic lattice!; O is an open
plaquette, i.e., a parallel transport on an elementary squa
the lattice

O~n!5P i j ~n!5Ui~n!U j~n1 ı̂ !@Ui~n1 ̂ !#†@U j~n!#†;
~20!

O is the ‘‘butterfly’’ F

O~n!5F~n!

5Ux~n!Uy~n1 x̂!@Ux~n1 ŷ!#†@Uy~n!#†

3Uz~n!Ut~n1 ẑ!@Uz~n1 t̂ !#†@Ut~n!#†. ~21!

The trace ofF is the density of topological charge.
The simulation was done on a 128-node APE quad

machine. We use an overrelaxed heat-bath algorithm to c
pute the Wilson term of Eq.~18!, and a mixed algorithm as
described in our previous paper@1# for the monopole term
^S1DS&S1DS . Far from the critical region at eachb we
sampled over 4000 termalized configurations, each of th
taken after 4 sweeps. The errors have been obtained by u
a Jack-knife method on binned data, as discussed in Ref.@1#.
In the critical region a higher statistics is required. Typica
the Wilson term is more noisy. Thermalization was check
by monitoring the action density and the probability dist
bution of the trace of the Polyakov loop. The number
measurements was at least 300tC , wheretC is the correla-
tion time of the considered set of data.

For AW' we use the Wu-Yang’s parametrization; we ha
also checked numerically that Dirac’s form gives similar
sults, as expected. In terms ofr

^ma,b&5expS E
0

b

ra,b~b8!db8D . ~22!

Equation~22! implies that if the dual U~1! symmetry defined
by some Abelian projection and by some Abelian genera
03450
s

of

s
-

m
ing

d

f

-

r

of the gauge group is related to color confinement, in
thermodynamic limitNs→` the correspondingr stays finite
in the strong coupling region (b,bC) and goes to2` lin-
early with Ns in the weak coupling region (b.bC). In the
critical region, the abrupt decline of^m& is signaled by a
sharp negative peak ofr; the value ofr in this region must
behave as a function ofNs as prescribed by the finite siz
scaling theory of pseudocritical systems.

Figure 1 shows the typical behavior ofr for different
Abelian projections, for a lattice 12334. As Abelian genera-
tor we usedF3. The negative peak occurs at the expec
transition pointbC @6#. Below bC the different projections
are equal within errors, suggesting that different monopo
behave in the same way.

We have investigated also whether at fixed Abelian p
jection the profile ofr depends on the U~1! magnetic sub-
group. Figure 2 shows the profile ofr corresponding toF3,
F8, andF3a in the Polyakov projection on a 12334 lattice.
No appreciable differences can be seen between diffe
choices. This is an indication~confirmed also by simulations

FIG. 1. r vs b for different Abelian projections. Lattice 123

34, Abelian generatorF3.

FIG. 2. r vs b for different Abelian generators. Lattice 123

34, Polyakov projection.
4-3
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on larger lattices! that monopoles defined with respect
different Abelian generators behave in the same way in
SU~3! vacuum. This is also true for the other Abelian pr
jections we have investigated~see Fig. 1!.

Since different Abelian projections and different Abelia
generators give indistinguishable results, for the sake of s
plicity we shall only display the Polyakov projection and t
Abelian generatorF3 in the following figures. Figure 3
shows the dependence ofr on Ns . The qualitative behavior
does not change when we enlarge the lattice size.

We now analyze the dependence onNs in more detail. In
the strong coupling region at lowb ’s r seems to converge t
a finite value~see Fig. 4!. Equation~22! then implies that
^m&Þ0 in the infinite volume limit in the confined phase fo
theseb ’s. Hence monopoles do condense in this phase.

In the weak coupling region, we can evaluater perturba-
tively. The path integral is then dominated by the classi
solutions of the equations of motion for the gauge variab
and we have

FIG. 3. r as a function ofb for different spatial sizes at fixed
Nt54. Polyakov projection, Abelian generatorF3.

FIG. 4. r vs b in the strong coupling region for lattice size
Ns

334. Polyakov projection, Abelian generatorF3.
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r →
b→`

@min
U

$S%2min
U

$S1DS%#52min
U

$S1DS%, ~23!

since minU$S%50.
In other systems, where the same shifting procedure

been applied and studied, this asymptotic value has b
analytically calculated in perturbation theory with the res
@7,8#

r52cNs1d, ~24!

where c and d are constants, i.er goes linearly with the
spatial dimension. In SU~3! we are unable to perform th
same calculation and we have evaluated the minim
minU$S1DS% numerically. Details about the followed proce
dure have been discussed in Ref.@1#. Here we note that due
to the single precision of the APE quadrics machine,
estimation of the minimum ofS1DS for the biggest lattice
is more noisy than in the SU~2! case.

The result is shown in Fig. 5 for the Polyakov projectio
It is consistent with the linear dependence of Eq.~24! with
c.2 andd.212. Thus in the weak coupling region in th
thermodynamic limitr goes to2` linearly with the spatial
lattice size and

^m& '
Ns→`

Ae(2cNs1d)b→0, b.bC . ~25!

The magnetic U~1! symmetry is indeed restored in the d
confined phase.

The behavior ofr in the critical region can be investi
gated by using finite size scaling techniques. We know t
the transition is weak first order with a behavior which
difficult to distinguish from that of a second order transitio

By dimensional argument

^m&5Ns
2d/nFS j

Ns
,
a

j
,
Nt

Ns
D , ~26!

FIG. 5. r vs Ns (Nt54) at b5` in the Polyakov projection
with Abelian generatorF3. Data are obtained by numerical min
mization of ^S1DS&S1DS .
4-4
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wherea and j are, respectively, the lattice spacing and t
correlation length of the system. Near the critical point,
b,bC

j}~bC2b!2n, ~27!

wheren is some effective critical exponent. In the limitNs
@Nt and for a/j!1, i.e., sufficiently close to the critica
point we obtain

^m&5Ns
2d/nF@Ns

1/n~bC2b!,0,0# ~28!

or, equivalently,

r

Ns
1/n

5 f @Ns
1/n~bC2b!#. ~29!

The ratior/Ns
1/n is a universal function of the scaling var

able

x5Ns
1/n~bC2b!. ~30!

For a pseudocritical behavior, we expectn51/3. Using also
bC(Nt54)55.6925@6#, we can plotr/Ns

1/n as a function of
x.

If we perform such a plot, we find that the scaling relati
~29! does not hold. Such a scaling violation is due to fin
size effect. A relationship more appropriate than Eq.~29! is

r

Ns
1/n

5 f @Ns
1/n~bC2b!#1F~Ns!, ~31!

whereF(Ns) parametrizes finite size effects. If we assum
that these effects are not critical@9# thenF is given by

F~Ns!5
a

Ns
3

, ~32!

where a is a constant. This parametrization is corre
O(1/Ns

6).
Figure 6 shows the quality of the scaling fora5190. Our

estimate givesn50.3360.07 anda5190620. In the ther-
modynamic limit in some region ofb,bC we expect

^m&}~bC2b!d, ~33!

which implies

r52
d

x
. ~34!

Using Eq.~34! it should be possible in principle to dete
mine n, d, andbC . Our statistic is not enough accurate
perform such a fit. However, we can determined using as an
input bC , n, which are known, by parametrizingr in a wide
range by the form

r52
d

x
2c1

a

Ns
3

, ~35!
03450
r

t

wherec is a constant, as suggested by Fig. 6.
Our best fit1 d50.5460.04 for the Polyakov projection

and compatible results for the other projections. Thex2 is
order 1.

This concludes our argument about the thermodyna
limit ( Ns→`). The deconfining phase transition can be se
from a dual point of view as the transition of the vacuu
from the dual superconductivity phase to the dual ordin
phase. That feature seems to be independent of the Abe
projection and of the Abelian generator chosen.

IV. CONCLUDING REMARKS

As for SU~2!, we have also found evidence for SU~3!
gauge theory that a transition to deconfinement is an or
disorder transition, the disorder parameter being a cond
sate of magnetic charges. A finite size scaling analysis of
system gives critical indices compatible with a first ord
transition, in agreement with determinations done by ot
methods@4#.

Of course we have investigated a limited number of Ab
lian projections: as in SU~2!, however, the indication is tha
physics is independent of that choice. An interesting is
would be to investigate if the mechanism is the same in
Nc5` limit. As a consequence also in the presence of
namical quarks the behavior should be similar, as well as
symmetry pattern and the disorder parameter should be
same. Investigation in this direction is on the way.
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FIG. 6. Quality of scaling in the Polyakov projection atNt

54. Abelian generatorF3.
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