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Color confinement and dual superconductivity of the vacuum. I
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We study the dual superconductivity of the ground state of SU~2! gauge theory in connection with confine-
ment. We do this measuring on the lattice a disorder parameter describing condensation of monopoles. Con-
finement appears as a transition to the dual superconductor, independent of the Abelian projection defining
monopoles. Some speculation is made on the existence of a more appropriate disorder parameter. A similar
study for SU~3! is presented in a companion paper.

PACS number~s!: 11.15.Ha, 12.38.Aw, 14.80.Hv, 64.60.Cn
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I. INTRODUCTION

Order-disorder duality@1,2# plays an increasingly impor
tant role in our understanding of the dynamics of gauge th
ries, specifically of QCD@3,4# and of its supersymmetric
generalizations@5#. Duality is typical of systems which ca
have configurations with a nontrivial spatial topology, car
ing a conserved topological charge. The prototype exam
is the 2D Ising model. If viewed as a discretized version o
~111!-dimensional field theory, it presents one-dimensio
configurations, kinks, whose topology is determined by
boundary conditions (61) at x156`.

In the usual description in terms of the local variab
s(x)561, at low temperature~weak coupling! the system is
in an ordered phase with nonzero magnetization^s&Þ0. At
the critical point ^s&→0 and the system becomes diso
dered.^s& is called an order parameter. However one c
describe the system in terms of a dual variables!, on a dual
lattice. A dual 1D configuration with ones! up is a kink,
which is a highly nonlocal object in terms ofs. In Ref. @2# it
was shown that the partition function in terms ofs! has the
same form as in terms ofs, i.e., that the system with dua
description looks again as an Ising model, except that
new Boltzmann factorb! is related to the old oneb by the
relation

sinh~2b!!5
1

sinh~2b!
. ~1!

The disordered phase is an ordered phase for the dual
vice versa. In the disordered phase^s!&Þ0: kinks condense
in the ground state.̂s!& is called a disorder parameter.s! is
a dual variable tos. In this specific case the system is se
dual, and duality transformation maps the strong coupl
regime in the weak coupling regime and vice versa.

Other systems showing duality properties are the 3DXY
model, whose dual is a Coulomb gas in 3D, and the comp
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U~1! gauge theory. In the 3DXY model topological excita-
tions are the vortices of the 2DXY model. These vortices
condense in the disordered phase@6#.

For U~1! theory topological excitations are monopole
There the duality transformation can be performed for s
cial choices of the action~e.g., the Villain action@7#, dual to
a Z gauge theory, and the Wilson action@8#!. For other
choices it is not known how to explicitly perform the tran
formation to the dual.

An alternative approach consists in identifying the sy
metry which is spontaneously broken in the disorde
phase, i.e., the topological configurations which are suppo
to condense, and in writing a disorder parameter in term
the original local fields@9#. The disorder parameter is the
the vacuum expectation value~VEV! of a nonlocal operator.

This approach has been translated on the lattice@10,11#,
tested by numerical simulations in the compact U~1! gauge
theory@12#, in the 3DXY model@6# and in theO(3) sigma
model@13#, and first used to investigate color confinement
QCD in Ref.@14#.

In the early literature on the subject condensation w
demonstrated as the sudden increase of the density of t
logical excitations. This is incorrect, since disorder can o
be described by the VEV of an operator which violates
dual symmetry and the number of excitations does not.

Looking at symmetry is specially important in QCD. Fo
QCD there exists some general idea about the dual@3,15#.
The dual description should also be a gauge theory, poss
with interchange of the role of electric and magnetic quan
ties.

This idea could fit the mechanism for confinement
color proposed in Refs.@16,17# as dual superconductivity o
the ground state, if confinement were due to disorder
monopoles were the topological excitations which conden
However, a dual superconductor is a typically Abelian s
tem, while the disorder parameter is expected to break a n
Abelian symmetry. An Abelian conserved monopole cha
can be associated to each operator in the adjoint repres
tion by a procedure which is known as Abelian projecti
@18#. We will recall that procedure in Sec. II. There exists
functional infinity of choices for the operator, and corr
spondingly an infinity of monopole species. A possibility
that the true disorder symmetry implies the condensation
©2000 The American Physical Society03-1
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all these species of monopoles@18#. Some people believe
instead that some Abelian projection~specifically the maxi-
mal Abelian one! identifies monopoles that are more releva
than others for confinement. Both attitudes reflect our ig
rance of the dual description of the system.

In this paper we shall systematically explore condensa
of monopoles defined by different Abelian projections,
connection with confinement of color. We will do that fo
SU~2! gauge theory. The treatment of SU~3! will be given in
a companion paper. Some of the results have been obta
during the last years and have been reported to confere
and workshops@10,19,20#. This paper contains conclusiv
results, and is an organic report of the methods and of
results obtained after Ref.@14#.

Our strategy consists in constructing an operator with n
zero magnetic charge, for each Abelian projection~Sec. III!.
Its VEV is a candidate disorder parameter for dual superc
ductivity of the ground state. We shall determine numerica
that VEV at finite temperature below and above the dec
fining phase transition. If condensation of these monopole
related to confinement, we expect the disorder paramete
be zero in the deconfined phase, and different from zer
the confined phase.

This is strictly speaking true only in the thermodynam
~infinite volume! limit. A finite size scaling analysis allows
to go to that limit and, as a by-product, gives a determinat
of the transition temperature and of the critical indices if t
transition is higher order than first. This analysis is presen
in Sec. IV. A special treatment for the maximal Abelian pr
jection is presented in Sec. V. We find that gauge the
vacuum is indeed a dual superconductor in the confi
phase, and becomes normal in the deconfined phase
number of Abelian projections, actually for all projection
that we have analyzed, in agreement with the guess of
@18#.

The idea that confinement is produced by dual superc
ductivity is thus definitely confirmed. The guess that all t
Abelian projections are physically equivalent is also su
ported, and this is an important piece of information on
way to understand the true dual symmetry.

We find evidence that SU~2! deconfining transition is sec
ond order. In next paper we will show that for SU~3! this
transition is first order.

An analysis of full QCD, including quarks, is on the wa
if the mechanism proved to be the same, the idea that qu
are a kind of perturbation, and that the dynamics is de
mined by gluons would be tested. This would also be a
of the ansatz that the theory already contains its esse
dynamics atNc5`, and that the presence of fermions a
the extrapolation toNc53 can be viewed as perturbation
The results are summarized in Sec. VI.

II. THE ABELIAN PROJECTION

What follows will refer to the case of gauge group SU~2!.
Adaptation to SU~3! will be described in the companion pa
per.

Let F̂(x) be the direction in color space of any loc

operatorFW (x), belonging to the adjoint representation
03450
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SU~2!. A gauge transformationg(x) which rotatesF̂(x) to

(0,0,1), or which diagonalizesF̂(x)•sW is called the Abelian

projection onFW (x). g(x) can be singular in a configuratio

at the points whereFW (x) has zeros, andF̂(x) is not defined.
The field strengthFmn , defined as@21#

Fmn5F̂~x!•GW mn2
1

g
~DmF̂~x!`DnF̂~x!!•F̂~x! ~2!

is a color singlet, and is invariant under non singular gau
transformations. In general Eq.~2! can be written as@22#

Fmn5]mÃn2]nÃm2
1

g
@]mF̂~x!`]nF̂~x!#•F̂~x!, ~3!

with

Ãm5F̂aAm
a . ~4!

In the Abelian projected gaugeF̂(x) is constant, the secon
term in the right-hand side of Eq.~3! vanishes and the field
Fmn becomes an Abelian field.

Denoting byFmn
! the usual dual tensor

Fmn
! 5

1

2
emnrsFrs ~5!

and defining the magnetic current as

j m5]nFmn
! , ~6!

it follows from Eqs.~3!, ~5!, ~6! that

]m j m50. ~7!

The magnetic charge is conserved, and defines a mag
U~1! symmetry.

The Abelian projectiong(x) can have singularities and a
a consequence an additional field strength adds to the u
covariant gauge transform ofGmn @21#. After Abelian pro-
jection

Gmn5gGmng211Gmn
sing, ~8!

with GW mn
sing5F̂(x)(]mÃn

sing2]nÃm
sing) parallel to the color di-

rection F̂(x), and consisting of Dirac strings starting at th

zeros ofFW (x). The field configurations contain monopoles

the zeros ofFW (x), as sinks or sources of the regular fiel
and the strings carry away the corresponding magnetic fl

On a lattice~or in any other compact regularized descri
tion in terms of parallel transport! the Dirac string reduces to
an additional flux of 2p across a sequence of plaquette
which is invisible@23#. The mechanism relating confineme
of color to dual superconductivity of the vacuum advocate
spontaneous breaking through theHiggs mechanism of the
magnetic U~1! symmetry described by~7!, which constrains
3-2
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COLOR CONFINEMENT AND DUAL . . . I PHYSICAL REVIEW D 61 034503
the electric component of the field Eq.~3! into flux tubes.
All particles which have non zero electric charge w

respect to the residual U~1! ~3! will then be confined. There

exist colored states, e.g. the gluon oriented parallel toF̂(x)
which are not confined. This is a strong argument that
dual superconductivity is a mechanism of confinement at
it must exist in many different Abelian projections, as
manifestation of non-Abelian disorder.

On the lattice the Abelian gauge field corresponding

any given projection, orF̂(x), is extracted as follows@24#.
Let Ūm(n)5g(n)Um(n)g†(n) be the generic link after the
Abelian projection. We adopt the usual notationUm(n)
[Um(nW ,t)[exp@iAm(n)#, with Am(n)5AW m(n)•sW .

The representation in terms of Euler angles has the fo

Ūm5eiams3eigms2eibms3

5eiams3eigms2e2 iams3ei (bm1am)s3

5eigW m
T
•sW eiums3, um5am1bm , ~9!

andgW T is a vector perpendicular to the three axis. We assu
the usual representation in whichs3 is diagonal.

For a plaquette, a similar decomposition can be p
formed,

Pmn5eigW mn
T

•sW eiumns3, ~10!

umn5Dmun2Dnum up to termsO(a2). umn is the lattice
analogue ofFmn . The Abelian magnetic flux is conserved b
construction. A monopole appears whenever the flux en
ing five faces of a spatial cube adds to more than 2p: then
the flux through the sixth face is larger than 2p, but mul-
tiples of 2p are invisible in the exponent. Formally@23#

umn5 ūmn12pnmn , ~11!

with 2p, ūmn,p. A string through the sixth face take
care of the flux which has disappeared.

We shall construct a disorder parameter for monop
condensation as the VEV of an operator carrying nonz
magnetic charge,m. ^m&Þ0 will signal dual superconduc
tivity.

III. THE DISORDER PARAMETER

The disorder parameter will be constructed on the sa
lines as in Refs.@6,12#.

An improvement exists with respect to Ref.@14#, which
consists in properly taking the compactness into accoun
Ref. @14# the approximation was that field was treated
noncompact. The same improvement was done in Ref.@12#
with respect to Ref.@11#. All the results presented in Re
@20# already contain such improvement.

We first analyze the case in whichFW (x) is determined by
the Wilson Polyakov line, i.e., the closed parallel transpor
1` along the time axis and back from2` to the initial
point via the periodic boundary conditions. For this choi
after Abelian projection all the linksU0(n) along the tem-
03450
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poral axis are diagonal, of the formŪ0(n)[exp@iA0
3(n)s3#.

Assuming for sake of definiteness the Wilson action
construct the operatorm(yW ,t) which creates a monopole a
site yW and timet with the following recipe~a similar con-
struction can be made for other action!. Let AW M(xW ,yW ) be the
vector potential describing the field value at sitexW of a static
monopole sitting atyW . We shall write it as

AW M~xW ,yW !5AW'
M~xW ,yW !1¹W L~xW ,yW !, ~12!

with ¹W •AW'
M(xW ,yW )50. The first term describes the physic

part of AW M, the second term the classical gauge freedom
Let P i0 be the electric field plaquette at timet. Then we

define

m5exp@2bDS#, ~13!

DS5
1

2 (
nW

Tr$P i0~nW ,t !2P i08 ~nW ,t !%. ~14!

Here

P i0~nW ,t !5Ui~nW ,t !U0~nW 1 ı̂ ,t !@Ui~nW ,t11!#†@U0~nW ,t !#†

~15!

is the electric field term of the action, andP i08 is a modifi-
cation of it, defined as

P i0~nW ,t !85Ui~nW ,t !U0~nW 1 ı̂ ,t !@Ui8~nW ,t11!#†

3@U0~nW ,t !#†, ~16!

Ui8~nW ,t11!5eiL(nW ,yW )F̂(nW ,t)•sW Ui~nW ,t !e2 iA' i
M (nW ,yW )F̂(nW 1 ı̂ ,t)•sW

3e2 iL(nW 1 ı̂ ,yW )F̂(nW 1 ı̂ ,t)•sW . ~17!

The disorder parameter is defined as^m&, or

^m&5

E ~DU !e2b(S1DS)

E ~DU !e2bS

. ~18!

It follows from the definition~14! that addingDS to the
action amounts to replace the termP i0 at time t with P i08 .

The P i0(nW ,t) are the only terms in the action where th
U0(nW ,t) appear. In the path integral~18! a change of vari-

ablesU0(nW ,t)→U08(nW ,t)5U0(nW ,t)eiL(nW ,yW )F̂(nW ,t)•sW leaves the
Haar measure invariant and reabsorbs the unphysical g
factor of Eq.~17!, so that̂ m& is independent, as it must be
of the choice of the classical gauge for the field produced
the monopole.

Also a change of variables can be made
3-3
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Ui~nW ,t11!→Ui~nW ,t11!eiA' i
M (nW ,yW )F̂(nW 1 ı̂ ,t)•sW . ~19!

Again, this leaves the measure invariant, and bringsP i0(nW ,t)
to its original form. However, in the plaquetteP i j (nW ,t11) it
produces the change Ui(nW ,t11)→Ui(nW ,t

11)eiA' i
M (nW ,yW )F̂(nW 1 ı̂ ,t)•sW . By the construction of Sec. II this

amounts to change, in the Abelian projected gauge

u i j ~nW ,t11!→u i j ~nW ,t11!1n iA' j
M ~nW ,yW !2n jA' i

M ~nW ,yW !
~20!

or to add the magnetic field of a monopole.
The same redefinition of variables reflects in the chan

P i0~nW ,t11!→P i08 ~nW ,t11!, ~21!

analogous to Eq. ~16!. Again the gauge factors

e2 iL(nW ,yW )F̂(nW ,t)•sW , eiL(nW 1 ı̂ ,yW )F̂(nW 1 ı̂ ,t)•sW are irrelevant, since
they can be reabsorbed in a redefinition ofU0(nW ,t11).

eiA' i
M (nW ,yW )F̂(nW 1 ı̂ ,t)•sW commutes withU0(nW 1 ı̂ ,t11), which is

diagonal with it by definition of the Polyakov line Abelia
projection.

In detail

P i08 ~nW ,t11!5Ui~nW ,t11!eiA' i
M (nW ,yW )F̂(nW 1 ı̂ ,t)•sW U0~nW 1 ı̂ ,t11!

3@Ui~nW ,t12!#†@U0~nW ,t11!#†

5Ui~nW ,t11!U0~nW 1 ı̂ ,t11!

3eiA' i
M (nW ,yW )F̂(nW 1 ı̂ ,t)•sW @Ui~nW ,t12!#†

3@U0~nW ,t11!#†. ~22!

A new change of variable can be done analogous to Eq.~19!,
exposing now a monopole att12 and producing a chang
P i0(nW ,t12)→P i08 (nW ,t12). The procedure can be iterate
If an antimonopole is created att1T, by an operator analo
gous to that of Eq.~13!, but with AW'

M→2AW'
M , then at time

t1T the change cancels and the procedure stops.
This shows that the correlation function

D~T!5^m̄~yW ,t1T!m~yW ,t !& ~23!

indeed describes the creation of a monopole atyW at timet and
its propagation fromt to t1T. This argument in this gauge i
perfectly analogous to the argument for compact U~1! gauge
theory @12#. The construction is the compact version of th
of Ref. @14#.

At large T, by cluster property

D~T!.A exp~2MT!1^m&2, ~24!

where the equalitŷm&5^m̄& has been used stemming fro
charge conjugation invariance.^m&Þ0 indicates spontane
ous breaking of the U~1! magnetic symmetry defined in Se
II Eq. ~7!, and hence dual superconductivity@20#. ^m& is the
corresponding disorder parameter. In the thermodyna
03450
t

ic

limit we expect ^m&Þ0 below the deconfining transition
^m&50 above it. At finite volumê m& cannot vanish forb
.bC without vanishing identically, since it is an entire fun
tion of b. Only in the limit Ns→` singularities develop
@25#, and^m& can vanish.

M is the lowest mass with quantum numbers of a mo
pole. In the Landau-Ginzburg model of superconductivity
corresponds to the Higgs boson mass. When compared to
inverse penetration depth of the field, it can give informati
on the type of superconductor. We will discuss the deter
nation of ^m& in the next section.

For numerical reasons it will prove convenient to det
mine

r5
d

db
log ^m&, ~25!

which, by use of Eq.~18!, amounts to the difference of th
two actions

r5^S&S2^S1DS&S1DS . ~26!

r contains all the information we need. At finite temperatu
the lattice is asymmetric (Ns

33Nt with Nt!Ns), the quanti-
ties which can be computed are static and the VEV o
single operatorm, ^m& must be directly computed. Indee
there is no way of putting a monopole and an antimonop
at large distance along thet axis as we do atT50, since at
T;Tc , NTa is comparable to the correlation lengt
C!-periodic boundary conditions in time@Um(nW ,Nt)
5Um

! (nW ,0), whereU! is the complex conjugate ofU @26##
are needed. The magnetic charge is conserved. If we cre
monopole say att51, and we propagate it tot5NT by the
changes of variables described above, the magnetic char
t5NT will be different by one unit from that att50, and this
is inconsistent with periodic boundary conditions. Wi
C!-periodic boundary conditions the magnetic field atNT is
opposite to the one att50, since under complex conjugatio
the term proportional tos3 in Eq. ~9! changes sign. By the
change of variables Eq.~19! a magnetic field in then adde
with opposite sign atNT . This produces a dislocation with
magnetic charge21 at the boundary which plays the role o
the antimonopole in Eq.~23!.

With a generic choice of the Abelian projection differe
from the Polyakov line, we can define the operatorm in a
similar way, by sending

P i0~nW ,t !→P i08 ~nW ,t !, ~27!

according to Eq.~16!. Again to demonstrate that a monopo
is created att11 we can perform the change of variable
Eq. ~19!, and expose a change of the Abelian magnetic fi
at t11 given by Eq.~20!.
3-4
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However now the resulting change ofP i0(nW ,t11) is

P i08 ~nW ,t11!5Ui~nW ,t11!eiA' i
M (nW ,yW )F̂(nW 1 ı̂ ,t)•sW

3U0~nW 1 ı̂ ,t11!

3@Ui~nW ,t12!#†@U0~nW ,t11!#†

5Ui~nW ,t11!U0~nW 1 ı̂ ,t11!

3$@U0~nW 1 ı̂ ,t11!#%†eiA' i
M (nW ,yW )F̂(nW 1 ı̂ ,t)•sW

3U0~nW 1 ı̂ ,t11!

3@Ui~nW ,t12!#†@U0~nW ,t11!#†. ~28!

The change ofUi(nW ,t12) is by a factor on the right

@U0~nW 1 ı̂ ,t11!#†eiA' i
M (nW ,yW )F̂(nW 1 ı̂ ,t)•sW U0~nW 1 ı̂ ,t11!.

~29!

U0 does not commute witheiA' i
M (nW ,yW )F̂(nW 1 ı̂ ,t)•sW , as it was in

the case ofF̂(nW ,t) in the direction of the Polyakov line.
This looks at first sight as a complication, but it is no

Indeed the Abelian projected phase of a product of links
the sum of the Abelian projected phases of the factors
O(a2). From Eq.~10! it follows, at O(a2), that

eigW T1
•sW eigz

1s3eigW T2
•sW eigz

2s35eiGW T
•sW ei (gz

1
1gz

2)s3. ~30!

Hence the Abelian phases ofU0 ,U0
† in Eq. ~29! cancel

O(a2) and the Abelian projected field of the modifie
plaquette at timet12 is again changed according to E
~20!.

IV. NUMERICAL RESULTS FOR r

We will determine the temperature dependence ofr on an
asymmetric latticeNs

33Nt (Ns@Nt). For reasons which will
be clear in what follows we will distinguish between Abelia

projections in which the operatorF̂(nW ,t) which defines the
monopoles is explicitly known, and projections~such as the
so called maximal Abelian! in which the projection is fixed

by a maximizing procedure, andF̂(nW ,t) is not explicitly
known.

In the first category we studied the following projection

We will define the operatorFW (x)5F̂(x)/uF̂(x)u starting
from an operatorO which is an element of the group, by th
formula

O5O01 i F̂~x!•sW .

O is connected to the Polyakov lineL(nW ,t)
5P

t85t

Nt21
U0(nW ,t8)P t850

t21 U0(nW ,t8) as follows:1

1By ! we indicate the complex conjugation operation.
03450
s
to

.

O~nW ,t !5P
t85t

Nt21
U0~nW ,t8!L!~nW ,0!P t850

t21 U0~nW ,t8!, ~31!

O is an open plaquette, i.e., a parallel transport on an
ementary square of the lattice

O~n!5P i j ~n!

5Ui~n!U j~n1 ı̂ !@Ui~n1 ̂ !#†@U j~n!#†. ~32!

‘‘Butterfly’’ projection, where the projecting operator is

O~n!5F~n!

5Ux~n!Uy~n1 x̂!@Ux~n1 ŷ!#†

3@Uy~n!#†Uz~n!Ut~n1 ẑ!

3@Uz~n1 t̂ !#†@Ut~n!#†. ~33!

The trace ofF is the density of topological charge. The pr
jection defined in Eq.~31! is the Polyakov projection on a
C!-periodic lattice. From Eq.~25! and the condition̂ m(b
50)&51 we obtain

^m~b!&5expS E
0

b

r~b8!db8D . ~34!

If ^m& ~defined in any Abelian projection! is a disorder
parameter for the deconfining phase transition, we exp
that in the thermodynamic limit (Ns→`, Nt constant! r
goes to a finite bounded value in the strong coupling regi
i.e., in the region below the deconfining transition. In t
weak coupling region̂ m& should go to zero in the sam
limit, i.e., r must go to2`. In the critical region we expec
an abrupt decrease of^m&, and hence a negative sharp pe
in r.

A few details about numerical computation. According
Eq. ~26!, r is the difference between two actions: the sta
dard SU~2! Wilson action and the ‘‘monopole’’ actionS
1DS.

For the Wilson term simulation can be performed by u
ing an heat-bath algorithm. This is not possible in the case
the ‘‘monopole’’ action. Consider for example the Polyako
projection and a single monopole operatorm(yW ,0). In the
updating procedure, we can distinguish the following fo
cases.

~1! Update of a spatial link attÞ0,1. The plaquettes in
volved have Wilson’s form and the variation of the ‘‘mono
pole’’ action is linear with respect to the link we are upda
ing.

~2! Update of a spatial link att50,1. Although some
plaquettes are modified by the monopole term, the varia
of the modified actionS1DS is again linear with respect to
the link, because the fieldF does not depend on the link w
are changing.

~3! Update of a temporal link attÞ0. The local variation
of the action is linear, but the change also induces a cha
of the Polyakov loop, i.e. ofF, according to Eq.~31!, so that
3-5
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there is an effect on the action which is nonlinear.
~4! Update of a temporal link att50. We cannot define a

force, because due to the change of the corresponding P
kov loop the change of the modified action is nonlinear.

In order to perform numerical simulations in the case
the system described by the ‘‘monopole’’ action, an app
priate algorithm could be the Metropolis algorithm; howev
this method can have long correlation times. In view of i
proving decorrelation, we have performed simulations by
ing an heat-bath algorithm for the update of the spatial lin
and a Metropolis algorithm for the update of the tempo
links.

Similar techniques can be used for the other projecti
we have investigated: in all cases, we have chosen to us
heat-bath updating when the contribution to the action
linear with respect to the link we are changing and the M
tropolis algorithm when it is not. As a test we verified th
the mixed update correctly works for the Wilson action.

The simulation was done on a 128-node APE quad
machine. We used an overrelaxed heat-bath algorithm
compute the Wilson term of Eq.~26!, and a mixed algorithm
as described above for the other term. Far from the crit
region at eachb typically 4000 termalized configuration
were produced, each of them taken after 4 sweeps. The e
are computed with a jack-knife analysis to the data binne
bunches of different length. As error we took the maximu
of the standard deviation as a function of the bin length
plateau. In the critical region a higher statistic is requir
Typically the Wilson term is more noisy. Thermalization w
checked by monitoring the action density and the probab
distribution of the trace of the Polyakov loop.

The discussion of Sec. III implies that different choic
for AW'

M are equivalent: Eq.~20! shows that only the magneti
field of the monopole determines the value of^m&. In our
simulation we used the Wu-Yang form ofAW'

M . We checked
that the Dirac form~with different position of the string!
gives compatible results.

In simulations ofS1DS we found that correlation time
are small and under control forNt54. For Nt56 in the
critical region thermalization problems arise and modes w
long correlation time appear. For this reason, we have u
mainly lattices withNt54.

Figure 1 shows the typical behavior ofr for different
Abelian projections, for a lattice 12334. The negative peak
occurs at the expected transition point,bC @27#. Below bC
the different projections are indistinguishable within erro
suggesting that different monopoles behave in the same w

Figure 2 shows the comparison with a 18336 lattice. The
peak is displaced at the correctbC , showing that it is not an
artifact but it is related to deconfinement of color@14#.

Since different projections give indistinguishable resu
for sake of simplicity we shall only display the plaquet
projection in the following figures. Figure 3 shows the d
pendence ofr on Ns at fixedNt54. The qualitative behavio
does not change when we increase the lattice size. We
try to understand the thermodynamic limit@6,12#.

In the strong coupling region~see Fig. 4! r seems to
converge to a finite value, which is consistent with 0 at lo
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b ’s. Equation~34! then implies that̂ m&Þ0 in the infinite
volume limit in the confined phase.

The weak coupling region is perturbative. An estimate
r is the minimum on the ensemble of the configurationsU
and is given by the action of classical solutions of the syst
described byS1DS:

r →
b→`

@min
U

$S%2min
U

$S1DS%#52min
U

$S1DS%, ~35!

since minU$S%50.
In other systems, where the same shifting procedure

been applied and studied, this asymptotic value has b
analytically calculated in perturbation theory with the res
@6,12#

r52cNs1d, ~36!

where c and d are constants, i.e.,r goes linearly with the
spatial dimension. In SU~2! we are unable to perform th
same calculation and we have evaluated the minim
minU$S1DS% numerically. Some technical remarks on th

FIG. 1. r vs b for different Abelian projections. Lattice
12334.

FIG. 2. r vs b for different lattice extensions~lattices Ns
3

3Nt). Polyakov projection.
3-6
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numerical procedure. An oversimplified strategy would be
start from a random configuration and then decrease the
tion by Metropolis-like steps in which the new configuratio
is accepted only if its action is lower. However, this proc
dure will not work, because of the presence of local mini
where often the procedure stops. A way to overcome
difficulty is to perform an usual Monte-Carlo simulatio
where b is increased indefinitively during the simulatio
@28,29#. This is equivalent to freeze the system.

We found useful to integrate the two strategies. Firstly
freeze the system increasingb in the following way:~1! we
thermalize the system at a reasonableb ~e.g.,b510); ~2! we
increaseb by a fraction 1/200 and at the new value ofb we
perform a number of sweeps~typically 200!, looking for the
corresponding minimum of the action;~3! we iterate the step
2 until the minimum of the action looks stable along a larg
number of sweeps~typically 5000!. When this procedure be
comes inefficient ~typically for b'106), we go to a
Metropolis-like minimization, which is stopped when the a
tion stays constant within errors.

FIG. 3. r as a function ofb for different spatial sizes at fixed
Nt54. Plaquette projection.

FIG. 4. r vs b in the strong coupling region for lattice size
Ns

334. Plaquette projection.
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The result is shown in Fig. 5 for the plaquette projectio
It is consistent with the linear dependence of Eq.~36! with
c.0.6 andd.212. Thus in the weak coupling region in th
thermodynamic limitr goes to2` linearly with the spatial
lattice size and

^m& '
Ns→`

Ae(2cNs1d)b→0, b.bC . ~37!

The magnetic U~1! symmetry is restored in the deconfine
phase.

To sum up,̂ m& is different from zero at least in a wid
range ofb belowbC and goes to zero exponentially with th
lattice size forb.bC . The strong coupling region and th
weak coupling one must be connected by a decrease of^m&;
the sharp peak ofr signals that this decline is abrupt an
takes place in the critical region.

To understand the behavior ofr near the critical point we
shall use finite size analysis. By dimensional argument

^m&5Ns
2d/nFS j

Ns
,
a

j
,
Nt

Ns
D , ~38!

wherea and j are, respectively, the lattice spacing and t
correlation length of the system.

Near the critical point, forb,bC

j}~bC2b!2n, ~39!

wheren is the corresponding critical exponent. In the lim
Ns@Nt and fora/j!1, i.e., sufficiently close to the critica
point we obtain

^m&5Ns
2d/nF@Ns

1/n~bC2b!,0,0# ~40!

or, equivalently,

r

Ns
1/n

5 f @Ns
1/n~bC2b!#. ~41!

FIG. 5. r vs Ns (Nt54) at b5` in the plaquette projection
Data are obtained by numerical minimization ofS1DS.
3-7
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The ratior/Ns
1/n is a universal function of the scaling var

able

x5Ns
1/n~bC2b!. ~42!

Since critical values ofb and critical indices of SU~2! pure
gauge theory are well known@27#, we can check how wel
scaling is obeyed by plottingr/Ns

1/n as a function ofx.
Figure 6 shows the quality of the scaling in the plaque

projection forbC52.2986 andn50.63. Similar qualitative
results have been obtained for the Polyakov projection.

As a further check, we can varyn and try to estimate ‘‘by
eye’’ sensitivity of our data to this exponent. We obtain th
in both projections the scaling relation is satisfied with
errors for 0.57<n<0.67.

In the thermodynamic limit in some region ofb below the
critical point we expect

^m&}~bC2b!d, ~43!

which implies

r52
d

x
. ~44!

Using Eq.~44! it should be possible in principle to determin
n, d, andbC . Our statistic is not enough accurate to perfo
such a fit. However, we can determined using as an input
bC , n, which are known, by parametrizingr in a wide range
by the form

r52
d

x
2c, ~45!

wherec is a constant, as suggested by Fig. 6.
Our best fit2 gives d50.2460.07 in the plaquette gaug

andd50.1260.04 in the Polyakov gauge. The reducedx2 is
order 1.

2Fits have been performed by using theMINUIT routines.

FIG. 6. Quality of scaling in the plaquette projection atNt54.
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e

t

This concludes our argument about the thermodyna
limit ( Ns→`). The deconfining phase transition can be se
from a dual point of view as the transition of the vacuu
from the dual superconductivity phase to the dual ordin
phase. That feature seems to be independent of the Abe
projection chosen.

V. THE MAXIMAL ABELIAN PROJECTION

There are Abelian projections which are not explicitly d
fined by an operatorF, but by some extremization proce
dure. The prototype is the maximal Abelian projectio
which is defined by maximizing numerically the quantity

SU~$F%!5(
n,m

tr@Um~n!s3Um
† ~n!s3# ~46!

with respect to gauge transformations@18,30#.
The maximal Abelian projection is very popular since,

the projected gauge all links are oriented in the Abelian
rection within 15%, and therefore all observables are do
nated by the Abelian part within 85%. This fact is known
Abelian dominance@31#, and could indicate that the Abelia
degrees of freedom in this projection are the relevant
namical variables at large distances. Moreover, out of
Abelian projected configurations, monopoles seem to do
nate observable quantities~monopole dominance@32#!.

With our approach we have a technical difficulty to dete
mine r via S1DS @Eq. ~26!#. At each updating the operato
F andS1DS are only known after maximization. Acceptin
or rejecting an updating therefore requires a maximizati
and the procedure takes an extremely long computer tim

Therefore in order to study this Abelian projection w
have to explore the possibility of measuring^m& directly,
and to confront with the huge fluctuations coming from t
fact thatm is the exponential of a sum on a space volume a

typically fluctuates as;eNs
3/2

. We adopt the following strat-
egy @12#.

~1! We study the probability distribution of the quantity

logm52b~DS!. ~47!

~2! We reconstruct̂ m& from the logm distribution by
means of cumulant expansion formula truncated at some
der.
This procedure should be compared with that of Ref.@33#.

If we have a stochastic variableX distributed with prob-
ability p(X) we have

E dXeb(X2^X&)p~X!5e (n>2(bn/n!)Cn. ~48!

^X& is the mean value andCn is thenth cluster. For example
if we call D5X2^X&

C150,

C25^D2&,

C35^D3&,
3-8
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C45^D4&23^D2&^D2&,

C55^D5&210̂ D3&^D2&. ~49!

If log m were gaussianly distributed with mean valuem and
standard deviations, we would have

^m&5expS m1
s2

2 D . ~50!

In order to check the method we have explored the clu
expansion for the logm distribution in the projection we hav
already studied by means of the quantityr. Figure 7 shows a
comparison between log^m&, taken from the integration ofr
data, and cluster expansions truncated at different ord
The first and the second cluster are insufficient to accoun
the right behavior of loĝm&, whereas with the third cluste
added the two determinations are consistent. Moreover
fourth cluster is zero within statistical errors. It seems t
one can estimatêm& with a cluster expansion truncated
the third order. As a rule, the higher clusters are quite no
and error bars grow with increasing order. Therefore t
kind of estimation requires a very high statistics. For t
reason numerical determination of log^m& in the maximal
Abelian projection is possible, but very time consuming. O
data are displayed in Fig. 8, showing that monopoles in
maximal Abelian projection behave in the same way
monopoles in other projections.

For this kind of simulations, we have used a stand
overrelaxed heat-bath algorithm. For each value ofb we
performed about 50 000 measurements, each of them t
after 8 sweeps. In order to improve the statistics, we h
considered eight symmetric different position of the mon
pole ~namely, we have inserted the monopole at the cente
each optant of a Cartesian coordinate system with the or
at the center of the lattice!; data corresponding to each pos
tion are analyzed separately with the method exposed in
previous section and our best value is the weighted ave
of the eight measurements. Putting more monopoles wo
not improve the statistics, since strong correlations app

FIG. 7. loĝm& reconstruction by cluster expansion. Plaque
projection, lattice 16334.
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whenever the distance is shorter than the correlation len
Also these simulations have been performed on a 128-n
APE QUADRICS machine.

VI. CONCLUSIONS

We have constructed a disorder parameter^m& detecting
condensation of monopoles of non-Abelian gauge theo
defined by different Abelian projections. The parameter
the VEV of an operator which creates a magnetic char
^m&Þ0 signals dual superconductivity. The same constr
tion has been tested in many known systems@6,12,13#. We
measure by numerical simulationŝm&, or better r
5(d/db)log ^m&, which contains all the relevant informatio
and less severe fluctuations.

An extrapolation to thermodynamic limit~infinite spatial
volume! is possible. The system behaves as a dual super
ductor in the confined phase, and has a transition to nor
at the deconfining phase transition, where^m&→0.

The deconfiningbC and the critical indexn as well as the
critical index d describing the way in whicĥm&→0 when
T→TC can be determined. The first two quantities a
known independently and our determination is consist
with others. As ford, defined by

^m& .
T→TC

S 12
T

TC
D d

, ~51!

it is 0.2060.08. Different Abelian projections~plaquette,
Polyakov, ‘‘butterfly’’! give results which agree with eac
other. Our technique proves difficult for the maximal Ab
lian projection, but a direct determination of^m& looks con-
sistent with other projections.

In conclusion,~1! dual superconductivity is at work in th
confined phase, and disappears at the deconfinement p
transition, and~2! this statement is independent of the Ab
lian projection defining the monopoles. Further theoreti
effort is needed to understand the real symmetry breakin

FIG. 8. loĝm& in various Abelian projections on a 16334 lat-
tice.
3-9
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the deconfined phase, or in the dual description of QC
Similar results for SU~3! will be presented in the companio
paper.

Finally we stress that, whatever topological excitatio
are responsible for color confinement, counting them is n
right criterion to detect disorder. Only the VEV of a
,

B

s.

e

03450
.

s
a

opera-tor carrying the appropriate topological charge can
a legitimate disorder parameter.
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