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We study the dual superconductivity of the ground state of28gauge theory in connection with confine-
ment. We do this measuring on the lattice a disorder parameter describing condensation of monopoles. Con-
finement appears as a transition to the dual superconductor, independent of the Abelian projection defining
monopoles. Some speculation is made on the existence of a more appropriate disorder parameter. A similar
study for SU3) is presented in a companion paper.

PACS numbgs): 11.15.Ha, 12.38.Aw, 14.80.Hv, 64.60.Cn

[. INTRODUCTION U(1) gauge theory. In the 3IXY model topological excita-
tions are the vortices of the 2BY model. These vortices
Order-disorder duality1,2] plays an increasingly impor- condense in the disordered ph§6¢
tant role in our understanding of the dynamics of gauge theo- For U(1) theory topological excitations are monopoles.
ries, specifically of QCD[3,4] and of its supersymmetric There the duality transformation can be performed for spe-
generalization$5]. Duality is typical of systems which can cial choices of the actiofe.g., the Villain actior7], dual to
have configurations with a nontrivial spatial topology, carry-a 7 gauge theory, and the Wilson acti¢8]). For other
ing a conserved topological charge. The prototype examplghoices it is not known how to explicitly perform the trans-
is the 2D Ising model. If viewed as a discretized version of aformation to the dual.
(1+1)-dimensional field theory, it presents one-dimensional An alternative approach consists in identifying the sym-
configurations, kinks, whose topology is determined by themetry which is spontaneously broken in the disordered
boundary conditions£ 1) atx;=*oe. phase, i.e., the topological configurations which are supposed
In the usual description in terms of the local variableto condense, and in writing a disorder parameter in terms of
o(x)=*1, at low temperaturéveak couplingthe systemis  the original local fieldd9]. The disorder parameter is then
in an ordered phase with nonzero magnetizatioh+0. At the vacuum expectation val(¢EV) of a nonlocal operator.
the critical point(o)—0 and the system becomes disor- This approach has been translated on the lafti®g11],
dered.(o) is called an order parameter. However one carntested by numerical simulations in the compac¢ti)Uyauge
describe the system in terms of a dual variabte on a dual  theory[12], in the 3DXY model[6] and in theO(3) sigma
lattice. A dual 1D configuration with one™ up is a kink, model[13], and first used to investigate color confinement in
which is a highly nonlocal object in terms of In Ref.[2] it QCD in Ref.[14].
was shown that the partition function in termsdaf has the In the early literature on the subject condensation was
same form as in terms af, i.e., that the system with dual demonstrated as the sudden increase of the density of topo-
description looks again as an Ising model, except that théogical excitations. This is incorrect, since disorder can only
new Boltzmann factoB™ is related to the old on@ by the  be described by the VEV of an operator which violates the
relation dual symmetry and the number of excitations does not.
Looking at symmetry is specially important in QCD. For
sinh(2B8*)= ———— 1) QCD there exi_sts_ some general idea about the f®idh]. _
sinh(2B)’ The dual description should also be a gauge theory, possibly
with interchange of the role of electric and magnetic quanti-
The disordered phase is an ordered phase for the dual aniés,
vice versa. In the disordered phgse”) #0: kinks condense This idea could fit the mechanism for confinement of
in the ground statd.o™) is called a disorder parameter’ is  color proposed in Ref§16,17 as dual superconductivity of
a dual variable tar. In this specific case the system is self- the ground state, if confinement were due to disorder and
dual, and duality transformation maps the strong couplingnonopoles were the topological excitations which condense.
regime in the weak coupling regime and vice versa. However, a dual superconductor is a typically Abelian sys-
Other systems showing duality properties are theX3D  tem, while the disorder parameter is expected to break a non-
model, whose dual is a Coulomb gas in 3D, and the compadbelian symmetry. An Abelian conserved monopole charge
can be associated to each operator in the adjoint representa-
tion by a procedure which is known as Abelian projection
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all these species of monopol€s8]. Some people believe gy2). A gauge transformatiog(x) which rotatesd(x) to
instead that some Abelian projecti¢specifically the maxi- 00.1 hich di lize - lled the Abeli
mal Abelian ongidentifies monopoles that are more relevant( 0.1), orw lich diagonaliz (x)- o is called the Abelian

than others for confinement. Both attitudes reflect our ignoProjection on®(x). g(x) can be singular in a configuration
rance of the dual description of the system. at the points wheré(x) has zeros, an@®(x) is not defined.
In this paper we shall systematically explore condensation The field strengthF defined ag21]
of monopoles defined by different Abelian projections, in
connection with confinement of color. We will do that for - . 1 - A -
SU(2) gauge theory. The treatment of @Ywill be given in Fu=0(x)-G,,— a(DM‘I’(X)/\DV‘I’(X))'@(X) 2
a companion paper. Some of the results have been obtained
during the last years and have been reported to conferencgsa color singlet, and is invariant under non singular gauge

results, and is an organic report of the methods and of the

results obtained after Ref14]. _ ~ 1 . N .

Our strategy consists in constructing an operator with non ~ F,,=d,A,—d,A,— [, P(X)\d,P(x)]-D(x), (3)
zero magnetic charge, for each Abelian projecti8ac. IlI). 9
Its VEV is a candidate disorder parameter for dual SUperconz i
ductivity of the ground state. We shall determine numerically
that VEV at finite temperature below and above the decon- ~ 2.
fining phase transition. If condensation of these monopoles is A =DoA, . )
related to confinement, we expect the disorder parameter to .
be zero in the deconfined phase, and different from zero it the Abelian projected gaugk(x) is constant, the second
the confined phase. term in the right-hand side of E¢3) vanishes and the field

This is strictly speaking true only in the thermodynamic F ., becomes an Abelian field.

(infinite volume limit. A finite size scaling analysis allows Denoting byFl*w the usual dual tensor

to go to that limit and, as a by-product, gives a determination

of the transition temperature and of the critical indices if the 1
transition is higher order than first. This analysis is presented F;w_ifuvpo
in Sec. IV. A special treatment for the maximal Abelian pro-

jection is presented in Sec. V. We find that gauge theorand defining the magnetic current as

vacuum is indeed a dual superconductor in the confined

phase, and becomes normal in the deconfined phase for a ju=0"F},, (6)
number of Abelian projections, actually for all projections

that we have analyzed, in agreement with the guess of Reft follows from Egs.(3), (5), (6) that

[18].

The idea that confinement is produced by dual supercon- 9*j,=0. (7)
ductivity is thus definitely confirmed. The guess that all the
Abelian projections are physically equivalent is also sup-The magnetic charge is conserved, and defines a magnetic
ported, and this is an important piece of information on they(1) symmetry.
way to understand the true dual symmetry. The Abelian projectiom(x) can have singularities and as

We find evidence that SU) deconfining transition is sec- a consequence an additional field strength adds to the usual
ond order. In next paper we will show that for @) this  covariant gauge transform @&,,, [21]. After Abelian pro-

uvo

Fro ®)

transition is first order. jection
An analysis of full QCD, including quarks, is on the way;
if the mechanism proved to be the same, the idea that quarks GW:gGWg*H- ijﬂg, 8

are a kind of perturbation, and that the dynamics is deter-
mined by gluons would be tested. This would also be a test ... Zsing_ 3 Rsing_ 5 Rsin .
of the ansatz that the theory already contains its essentia Ith_ G“l’ PO(,A, ) _&”A" 9)_para||e_| to the c_olor di
dynamics atN.=<, and that the presence of fermions and rectiond(x), and consisting of Dirac strings starting at the

the extrapolation toN.=3 can be viewed as perturbations. zeros of<f>(x). The field configurations contain monopoles at

The results are summarized in Sec. VI. the zeros ofd(x), as sinks or sources of the regular field,
and the strings carry away the corresponding magnetic flux.
Il. THE ABELIAN PROJECTION On a lattice(or in any other compact regularized descrip-

tion in terms of parallel transporthe Dirac string reduces to
an additional flux of 2r across a sequence of plaquettes,
which is invisible[23]. The mechanism relating confinement
- o of color to dual superconductivity of the vacuum advocates a
Let @(x) be the direction in color space of any local spontaneous breaking through thiggs mechanism of the
operator®(x), belonging to the adjoint representation of magnetic U1) symmetry described bg7), which constrains

What follows will refer to the case of gauge group @V
Adaptation to S3) will be described in the companion pa-
per.
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the electric component of the field E) into flux tubes.
All particles which have non zero electric charge with

respect to the residual(l) (3) will then be confined. There - .
) . A construct the operato(y,t) which creates a monopole at
exist colored states, e.g. the gluon oriented paralleb (®)

which are not confined. This is a strong argument that, fsne y and timet with the following recipe(a similar con-
M

dual superconductivity is a mechanism of confinement at aliStruction can be made for other actiohet A (X y) be the

it must exist in many different Abelian projections, as avector potential descnblng the field value at sitef a static

poral axis are diagonal, of the forﬁo(n)zexp[iAg(n)(rg].
Assuming for sake of definiteness the Wilson action we

manifestation of non-Abelian disorder. monopole sitting ay, We shall write it as
On the lattice the Abelian gauge field corresponding to
any given projection, ofb(x), is extracted as followg24]. AM(§,§)=AY(§,§)+ﬁA(§,§), (12)

Let Uﬂ(n)=g(n)UM(n)gT(n) be the generic link after the
Abelian projection. We adopt the usual notatith,(n)  with V.A(x,y)=0. The first term describes the physical

=U,(nt)=exdiA,(n)], with A,(n)=A,(n) o part of AM, the second term the classical gauge freedom.
The representatlon in terms of Euler angles has the form | o I1;, be the electric field plaquette at timeThen we

U,u: ei 0‘/.;‘73ei yMUZei,Bﬂog define

:el a,uo-3ei y,uo—Zeiia,uo—Bei(Bp,*»a,u)oé ,LL:eX[{—,BAS], (13)

=ei;/T4";ei0u"3, 0,=a,+B,, 9 1 _ _

N _ . AS=3 > Trillip(n.t)— jp(n,1)}. (14)
andy' is a vector perpendicular to the three axis. We assume n
the usual representation in whieky is diagonal.

For a plaquette, a similar decomposition can be perHere
formed,
T - ITio(n,t) =U;(n,t)Uo(n+1,0)[U;(n,t+ 1)1 [Ug(n,1)]"
HMV:eI yMV-zre|0#”o3' (10) (15)

_ _ 2 . .
0 VI_AM‘Q” FA”af_i_hUpAtg lt_erms(’)(a ). g/” is the Iattltaeb is the electric field term of the action, adtl, is a modifi-
analogue o e Abelian magnetic flux is conserved by o1 of it defined as

construction. A monopole appears whenever the flux enter-
ing five faces of a spatial cube adds to more than then .., - .o - .
the flux through the sixth face is larger thamr2but mul- Hip(n,t)" =Ui(n,t)Uo(n+1,H)[Ui (n,t+1)]
tiples of 27 are invisible in the exponent. Formall23 -
ples ot P %3 X[Uo(R0)]", (16

0= 0,,+27N,,, (11 o o
. . . . Uil(ﬁ,t'f‘ 1):eiA(n,y)<I>(n,t)~oUi(ﬁ,t)efiALMi(n,y)tIJ(n+|,t)-zr
with —7<#6,,<m. A string through the sixth face takes o
care of the flux which has disappeared. x @ IAMNF1LY)@(n+1,1)- 0 (17)

We shall construct a disorder parameter for monopole
condensation as the VEV of an operator carrying nonzero
magnetic chargep. (u)#0 will signal dual superconduc-
tivity.

The disorder parameter is defined(as), or

f (Du)e—B(S+ AS)

Ill. THE DISORDER PARAMETER (u)y= (18

The disorder parameter will be constructed on the same j (DU)e™#S
lines as in Refs[6,12].

An improvement exists with respect to R¢L4], which
consists in properly taking the compactness into account: in
Ref. [14] the approximation was that field was treated as?

It follows from the definition(14) that addingAS to the
action amounts to replace the teilily, at timet with TI{,

noncompact. The same improvement was done in Réi. The ITjo(n,t) are the only terms in the action where the
with respect to Ref[11]. All the results presented in Ref. Uy(n,t) appear. In the path integrél8) a change of vari-
[20] already contain such improvement. ablesUo(n,t)—U(n,t)=Uy(n, t)eirn. N(MY 7 |eaves the

We first analyze the case in wh@l(x) is determined by Haar measure invariant and reabsorbs the unphysical gauge
the Wilson Polyakov line, i.e., the closed parallel transport tofactor of Eq.(17), so that(u) is independent, as it must be,
+o0 along the time axis and back from to the initial  of the choice of the classical gauge for the field produced by
point via the periodic boundary conditions. For this choice,the monopole.
after Abelian projection all the link&Jy(n) along the tem- Also a change of variables can be made
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o o A (ny)ydmn+iy-o limit we expect(u)#0 below the deconfining transition,
Uiln.t+)=Ui(n,t+1)et - 19 (u)=0 above it.< Ai finite volume w) cannot vanish foB
> B¢ without vanishing identically, since it is an entire func-
tion of B. Only in the limit Ng—co singularities develop
[25], and(x) can vanish.

Again, this leaves the measure invariant, and brlﬂgg{ﬁ,t)
to its original form. However, in the pIaquetﬂqj(ﬁ,tJrl) it

produces the — change  Ui(nt+1)—Ui(nt M is the lowest mass with quantum numbers of a mono-
+1)eALimy®t)-o By the construction of Sec. Il this pole. In the Landau-Ginzburg model of superconductivity it
amounts to change, in the Abelian projected gauge corresponds to the Higgs boson mass. When compared to the
R R . . inverse penetration depth of the field, it can give information
6;j(n,t+1)— 6;;(n,t+ 1)+AiAf'j(n,y)—AjAﬂ"i(n,y) on the type of superconductor. We will discuss the determi-

(200 nation of(u) in the next section.

o For numerical reasons it will prove convenient to deter-
or to add the magnetic field of a monopole. mine

The same redefinition of variables reflects in the change

Mig(n,t+1)—I/y(n,t+1), (21) d
I I p= @'09001 (25
analogous to Eg. (16). Again the gauge factors

e MNP0 GAMHINEOHIY T are rrelevant, since
they can be reabsorbed in a redefinition W§(n,t+1).  which, by use of Eq(18), amounts to the difference of the

A NPO10-0 commutes withUo(n+1,t+1), which is WO actions
diagonal with it by definition of the Polyakov line Abelian
projection. p=(S)s—(S+AS)sss. (26)

In detail

, - AM NS - A ) _ ) L
Io(n,t+1)=U(n,t+1)eAu*0T Y oyo(n+1,t+1) ) contains all the information we need. At finite temperature
the lattice is asymmetricNZx N, with N,<N,), the quanti-

- t - t
X[Ui(n,t+2)][Ug(n,t+1)] ties which can be computed are static and the VEV of a

=Ui(ﬁ,t+1)U0(ﬁ+?,t+l) smgle_ operatonu, (u) must be directly computed_. Indeed
there is no way of putting a monopole and an antimonopole
XeiATi(ﬁ,Q)nb(ﬁ+I,t).&[U_(ﬁ t+2)]" at large distance along theaxis as we do al =0, since at
e T~T., Nta is comparable to the correlation length.
X[Up(n,t+1)]1" (220 C*-periodic boundary conditions in time[U ,(n,N,)

. =U*(n,0), whereU* is the complex conjugate df [26]]
an%gﬁhanngvs gf r\:]irrl%blaga;ﬁbze ggge ?ngc;?:usatcégﬁ e are /ﬁeeded. The magnetic charge is conserved. If we create a
posing - P P 9 ) 9 monopole say at=1, and we propagate it to= Nt by the
ip(n,t+2)—IIjp(n,t+2). The procedure can be iterated. changes of variables described above, the magnetic charge at
If an antimonopole is created &t T, by an operator analo- t=N; will be different by one unit from that at=0, and this
gous to that of Eq(13), but with 5{"—>—Aﬁ", then at time is inconsistent with periodic boundary conditions. With

t+T the change cancels and the procedure stops. C*-periodic boundary conditions the magnetic field\gtis
This shows that the correlation function opposite to the one &t 0, since under complex conjugation
. R the term proportional ter; in Eq. (9) changes sign. By the
D(T)=(u(y, t+T)u(y,t)) (23)  change of variables Eq19) a magnetic field in then added

R with opposite sign alN;. This produces a dislocation with
indeed describes the creation of a monopolg attimet and  magnetic charge-1 at the boundary which plays the role of
its propagation fron to t+ T. This argument in this gauge is the antimonopole in Eq23).

perfectly analogous to the argument for compactt)ldauge With a generic choice of the Abelian projection different
theory[12]. The construction is the compact version of thatfrom the Polyakov line, we can define the operatoin a
of Ref.[14]. similar way, by sending
At large T, by cluster property
D(T)=Aexp(—MT)+(u)?, (24) ILo(n,t) —TI/o(N,t), 27)

where the equality u)=(u) has been used stemming from

charge conjugation invariancéu)+#0 indicates spontane- according to Eq(16). Again to demonstrate that a monopole

ous breaking of the (1) magnetic symmetry defined in Sec. is created at+1 we can perform the change of variables,

Il Eqg. (7), and hence dual superconductivi0]. () is the  Eg.(19), and expose a change of the Abelian magnetic field
corresponding disorder parameter. In the thermodynamieatt+1 given by Eq.(20).
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However now the resulting change Hfio(ﬁ,t+ 1) is

T/ t+1) = U, (R, t+ 1)eAlonea+io-o
XUg(n+1,t+1)
X[U;(n,t+2)]Ug(n,t+1)]"

=U;(nt+1)Ug(n+1,t+1)

x{[uo(ﬁ_m,H1)]}TeiATi(ﬁ,§)<b(ﬁ+I,t)-&
XUg(n+1,t+1)
X[U;(n,t+2)]Uq(n,t+1)]". (29

The change oUi(ﬁ,t+2) is by a factor on the right

[Uo(R+1,t+1) T Al mn@+i0-0y (547 t+1).
(29
U, does not commute witeAli(MNP(+1.0-0  as it was in
the case ofb(n,t) in the direction of the Polyakov line.
This looks at first sight as a complication, but it is not.

Indeed the Abelian projected phase of a product of links is
the sum of the Abelian projected phases of the factors, to

O(a?). From Eq.(10) it follows, at O(a?), that

ei ';/Tl.(;ei y:ZL(r?,ei ';/TZ. (;ei y§4r3: eifT- (}ei('y;Jr yg)rr3. (30)
Hence the Abelian phases MO,UB in Eq. (29 cancel
O(a?) and the Abelian projected field of the modified
plaquette at time+2 is again changed according to Eq.
(20).

IV. NUMERICAL RESULTS FOR p

We will determine the temperature dependencg ofi an
asymmetric Iatticedgx N; (Ng>N,). For reasons which will
be clear in what follows we will distinguish between Abelian
projections in which the operatab(n,t) which defines the
monopoles is explicitly known, and projectiofsuch as the
so called maximal Abelignin which the projection is fixed
by a maximizing procedure, an@(ﬁ,t) is not explicitly
known.

In the first category we studied the following projections.
We will define the operatod (x)=®(x)/|®(x)| starting
from an operato© which is an element of the group, by the
formula

O=0p+id(x)- 0.

O is connected to the Polyakov lineL(n,t)

- H?‘,‘:U0(ﬁ,t’)1‘[:,_:10U0(ﬁ,t’) as follows?

By » we indicate the complex conjugation operation.

PHYSICAL REVIEW D 61 034503

t—1

v oUo(nt), (3D

O(n,H)=I1""Ug(n,t")L*(n,011
O is an open plaquette, i.e., a parallel transport on an el-
ementary square of the lattice

O(n)=11;;(n)

=Ui(mU;(n+D[Ui(n+)]ITU;(mIT. (32

“Butterfly” projection, where the projecting operator is
O(n)=F(n)
=U (MU, (n+3)[Ux(n+y)]"
X[Uy(m]'U(mU(n+2)

X[Un+D]TU(m]". (33
The trace of- is the density of topological charge. The pro-
jection defined in Eq(32) is the Polyakov projection on a
C*-periodic lattice. From Eq(25) and the condition{ (8
=0))=1 we obtain

B
<M(B)>=9XP( fo P(B')dﬁ’)- (34)

If (x) (defined in any Abelian projectioris a disorder
parameter for the deconfining phase transition, we expect
that in the thermodynamic limitNg—-c, N; constank p
goes to a finite bounded value in the strong coupling region,
i.e., in the region below the deconfining transition. In the
weak coupling regionx) should go to zero in the same
limit, i.e., p must go to—<. In the critical region we expect
an abrupt decrease ¢f.), and hence a negative sharp peak
in p.

A few details about numerical computation. According to
Eq. (26), p is the difference between two actions: the stan-
dard SU2) Wilson action and the “monopole” actiors
+AS.

For the Wilson term simulation can be performed by us-
ing an heat-bath algorithm. This is not possible in the case of
the “monopole” action. Consider for example the Polyakov

projection and a single monopole opera]m@,O). In the
updating procedure, we can distinguish the following four
cases.

(1) Update of a spatial link at#0,1. The plaquettes in-
volved have Wilson’s form and the variation of the “mono-
pole” action is linear with respect to the link we are updat-
ing.

(2) Update of a spatial link at=0,1. Although some
plaguettes are modified by the monopole term, the variation
of the modified actiorB8+ AS is again linear with respect to
the link, because the field does not depend on the link we
are changing.

(3) Update of a temporal link at*0. The local variation
of the action is linear, but the change also induces a change
of the Polyakov loop, i.e. oP, according to Eq(31), so that
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there is an effect on the action which is nonlinear. 0.0 ' ' ' '
(4) Update of a temporal link &t=0. We cannot define a *
force, because due to the change of the corresponding Polya-  -40.0 - .
kov loop the change of the modified action is nonlinear. % *
In order to perform numerical simulations in the case of _80.0 | % * \ i
the system described by the “monopole” action, an appro- * '
priate algorithm could be the Metropolis algorithm; however, o _j500 | * |
this method can have long correlation times. In view of im- ;
proving decorrelation, we have performed simulations by us- if
. . . ) -160.0 1
ing an heat-bath algorithm for the update of the spatial links
and a Metropolis algorithm for the update of the temporal * plaquette
links -200.0 | = butterfly 1
o . . . * Polyakov
Similar techniques can be used for the other projections
we have investigated: in all cases, we have chosen to use the  ~2400, 5 10 50 30 20 5.0
heat-bath updating when the contribution to the action is B

linear with respect to the link we are changing and the Me-
tropolis algorithm when it is not. As a test we verified that
the mixed update correctly works for the Wilson action.
The simulation was done on a 128-node APE quadric
machine. We used an overrelaxed heat-bath algorithm %olume limit in the confined phase
compute_the Wilson term of E26), and a mixed algorlthr_n_ The weak coupling region is perturbative. An estimate of
as Qescnbed above 'for the other term. Far fro"‘? the 9r|t|ca}) is the minimum on the ensemble of the configuratidhs
region at eachs typically 4000 termalized configurations and is given by the action of classical solutions of the system
were produced, each of them taken after 4 sweeps. The errofS. < ribed b5+ AS:
are computed with a jack-knife analysis to the data binned in '
bunches of different length. As error we took the maximum p — [Min{S}—min{S+AS}]=—min{S+AS}, (35
of the standard deviation as a function of the bin length at B—w U u u
plateau. In the critical region a higher statistic is required.
Typically the Wilson term is more noisy. Thermalization was Since min{S=0.
checked by monitoring the action density and the probability In other systems, where the same shifting procedure has
distribution of the trace of the Polyakov loop. been applied and studied, this asymptotic value has been

The discussion of Sec. Il implies that different choicesanalytically calculated in perturbation theory with the result

for ,&LM are equivalent: Eq20) shows that only the magnetic (6,12
field of the monopole determines the value(gf). In our p=—cNg+d, (36)

simulation we used the Wu-Yang form &f*. We checked
that the Dirac form(with different position of the string wherec andd are constants, i.eg goes linearly with the
gives compatible results. spatial dimension. In S@@) we are unable to perform the
In simulations ofS+AS we found that correlation times same calculation and we have evaluated the minimum
are small and under control fdd;=4. For N;=6 in the = miny{S+AS} numerically. Some technical remarks on the
critical region thermalization problems arise and modes with
long correlation time appear. For this reason, we have used e ' - '
mainly lattices withN,=4.
Figure 1 shows the typical behavior ef for different b o
Abelian projections, for a lattice X 4. The negative peak .
occurs at the expected transition poigi; [27]. Below B¢ ~100.0 ¢ +¢ ¢
the different projections are indistinguishable within errors, B
suggesting that different monopoles behave in the same way. 1
Figure 2 shows the comparison with a&®¥& lattice. The
peak is displaced at the correggt, showing that it is not an
artifact but it is related to deconfinement of co[a#]. 2000
Since different projections give indistinguishable results, %rh oN.<12,N.=4
for sake of simplicity we shall only display the plaquette X ON,=I8,N. = 6
projection in the following figures. Figure 3 shows the de- e
pendence op on Ny at fixedN,=4. The qualitative behavior _300.0 s s s
does not change when we increase the lattice size. We now 10 20 8.0 4.0 5.0
try to understand the thermodynamic lirp&,12].
In the strong coupling regiorisee Fig. 4 p seems to FIG. 2. p vs B for different lattice extensionglattices N2
converge to a finite value, which is consistent with 0 at lowxN,). Polyakov projection.

FIG. 1. p vs B for different Abelian projections. Lattice
128x 4.

's. Equation(34) then implies that x)# 0 in the infinite
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FIG. 5. p vs Ng (N;=4) at 8=« in the plaquette projection.

FIG. 3. p as a function ofg for different spatial sizes at fixed Data are obtained by numerical minimization®f AS.

N;=4. Plaquette projection.

numerical procedure. An oversimplified strategy would be to 1 he resultis shown in Fig. 5 for the plaquette projection.

start from a random configuration and then decrease the al1S consistent with the linear dependence of E2f) with

tion by Metropolis-like steps in which the new configuration ¢=0.6 andd=—12. Thus in the weak coupling region in the

is accepted only if its action is lower. However, this proce-thermodynamic limitp goes to—< linearly with the spatial

dure will not work, because of the presence of local minimaattice size and

where often the procedure stops. A way to overcome this _

difficulty is to perform an usual Monte-Carlo simulation (n) ~ Ae"NTDE0, B>, (37

where B is increased indefinitively during the simulation Nem

[28,29. This is equivalent to freeze the system. The magnetic (1) symmetry is restored in the deconfined
We found useful to integrate the two strategies. Firstly Wephase.

freeze the system increasifyin the following way:(1) we

thermalize the system at a reasongble.g.,8=10); (2) we

increasel by a fraction 1/200 and at the new value®fve

To sum upu) is different from zero at least in a wide
range off3 below B¢ and goes to zero exponentially with the
lattice size forB>Bc. The strong coupling region and the

perform a qumbgr .Of sweepﬁtypicallly 200, Ipoking for the weak coupling one must be connected by a decreaég of
corresponding minimum of the actio(8) we iterate the step the sharp peak op signals that this decline is abrupt and
2 until the minimum of the action looks stable along a Iargertakes place in the critical region

number .Of sﬁv'vgept&)t/piqalll)ll SOfOO' WNhtlagsthis procedutre be- To understand the behavior pfnear the critical point we
comes  Ineticien ('yp|ca' y for p= ), we go to a shall use finite size analysis. By dimensional argument
Metropolis-like minimization, which is stopped when the ac-

tion stays constant within errors. ¢ aN
Nl S St
(u)=Ng""® : (38)

100

Ns" &' Ns

wherea and ¢ are, respectively, the lattice spacing and the
correlation length of the system.
Near the critical point, fol3<<f¢

50 -

Ex(Bc—B) ", (39)

where v is the corresponding critical exponent. In the limit
Ns>N, and fora/¢<1, i.e., sufficiently close to the critical

-100 | N 1 point we obtain
HN=32

1m0 (1) =Ng ""®[N"(Bc—),0,0] (40
or, equivalently,

-200 ; ;

0 05 1 15
FIG. 4. p vs B in the strong coupling region for lattice sizes qh} :f[N_i/V(,BC—,B)]. (41
N3x 4. Plaquette projection. N3
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-30 *Ng= .
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FIG. 6. Quality of scaling in the plaquette projectionNgt=4.

The ratiop/N2" is a universal function of the scaling vari-
able

x=N"(Bc—B). (42
Since critical values of3 and critical indices of S(2) pure
gauge theory are well knowf27], we can check how well
scaling is obeyed by pIotting/Né’” as a function ok.

PHYSICAL REVIEW D61 034503

This concludes our argument about the thermodynamic
limit (Ng— ). The deconfining phase transition can be seen
from a dual point of view as the transition of the vacuum
from the dual superconductivity phase to the dual ordinary
phase. That feature seems to be independent of the Abelian
projection chosen.

V. THE MAXIMAL ABELIAN PROJECTION

There are Abelian projections which are not explicitly de-
fined by an operato, but by some extremization proce-
dure. The prototype is the maximal Abelian projection,
which is defined by maximizing numerically the quantity

Sy({@h =2 t[U,(n)o3Ul(n)os] (46)
n, p

with respect to gauge transformatidris,30.

The maximal Abelian projection is very popular since, in
the projected gauge all links are oriented in the Abelian di-
rection within 15%, and therefore all observables are domi-
nated by the Abelian part within 85%. This fact is known as
Abelian dominanc¢31], and could indicate that the Abelian
degrees of freedom in this projection are the relevant dy-
namical variables at large distances. Moreover, out of the
Abelian projected configurations, monopoles seem to domi-
nate observable quantiti€ésionopole dominancks2]).

Figure 6 shows the quality of the scaling in the plaquette \jth our approach we have a technical difficulty to deter-

projection for Bc=2.2986 andv=0.63. Similar qualitative
results have been obtained for the Polyakov projection.
As a further check, we can vasyand try to estimate “by

mine p via S+AS [Eqg. (26)]. At each updating the operator
® andS+ AS are only known after maximization. Accepting
or rejecting an updating therefore requires a maximization,

eye” sensitivity of our data to this exponent. We obtain that,q the procedure takes an extremely long computer time.

in both projections the scaling relation is satisfied within

errors for 0.5% v=<0.67.
In the thermodynamic limit in some region Bfbelow the
critical point we expect

(wy=(Bc=B)° (43

which implies

pP==5 (44

Therefore in order to study this Abelian projection we
have to explore the possibility of measurigg) directly,
and to confront with the huge fluctuations coming from the
fact thatu is the exponential of a sum on a space volume and

typically fluctuates as- eNglz. We adopt the following strat-
egy[12].
(1) We study the probability distribution of the quantity
logu=—B(AS). (47)

(2) We reconstruct u) from the logu distribution by

Using Eq.(44) it should be possible in principle to determine Meéans of cumulant expansion formula truncated at some or-
v, 8, andBc . Our statistic is not enough accurate to performder-

such a fit. However, we can determideusing as an input
B¢, v, which are known, by parametrizingin a wide range
by the form

p=———c, (45)

X

wherec is a constant, as suggested by Fig. 6.

Our best fit gives §=0.24+0.07 in the plaquette gauge

and5=0.12+0.04 in the Polyakov gauge. The reduggdis
order 1.

°Fits have been performed by using thewIT routines.

This procedure should be compared with that of R&8].
If we have a stochastic variabl distributed with prob-
ability p(X) we have

J dXeB(X*<X>)p(x):eﬁnzz(B”/n!)Cn_ (48)

(X} is the mean value an@, is thenth cluster. For example,
if we call A=X—(X)

Cl: 0,
C2=<A2),

C3:<A3>:
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FIG. 7. log) reconstruction by cluster expansion. Plaquette  FIG. 8. logu) in various Abelian projections on a 184 lat-
projection, lattice 18x 4. tice.
C,=(A%—3(A?)(A?), whenever the distance is shorter than the correlation length.
Also these simulations have been performed on a 128-node
Cs=(A%) —10(A3)(A?), (49  APE QUADRICS machine.

If log u were gaussianly distributed with mean valuweand
standard deviatiow, we would have VI. CONCLUSIONS

We have constructed a disorder paraméjey detecting
. (500  condensation of monopoles of non-Abelian gauge theories
defined by different Abelian projections. The parameter is

In order to check the method we have explored the clusteé‘he VEV.Of an operator which Cf?"’!‘es 4 magnetic charge.
expansion for the log distribution in the projection we have .'“>¢O signals dual s'uperconducnvny. The same construc-
already studied by means of the quanjityFigure 7 shows a tion has been tested n many knqwn systdBi42,13. We
comparison between Idg), taken from the integration qgf measure by numencal S|.mulat|on$,u), or petter P
data, and cluster expansions truncated at different orders:.(d/dﬁ)log<“>' which contains all the relevant information
The first and the second cluster are insufficient to account fo?nd less severe fluctuations.

the right behavior of lofu), whereas with the third cluster An extrapolgtion to thermodynamic limitnfinite spatial
added the two determinations are consistent. Moreover tht2!UMe is possible. The system behaves as a dual supercon-

fourth cluster is zero within statistical errors. It seems tha uctor in the confined phase, and has a transition to normal

one can estimatéu) with a cluster expansion truncated at at the deco”f'F"T‘g phase transition, \{Vhé[ﬁ)HO.

the third order. As a rule, the higher clusters are quite noisy _'_I'he _deconflnlnga’c_ a_nd the C”t'cal mde_x/ as well as the

and error bars grow with increasing order. Therefore '[hisCrltlcal index & descrlbm_g the way in whick ) —0 \_/\{hen

kind of estimation requires a very high statistics. For thisT ~Tc can be determined. The f|rst'twc') ql,!antltles' are

reason numerical determination of (@g in the maximal known independently apd our determination is consistent

Abelian projection is possible, but very time consuming. OurVith others. As fors, defined by

data are displayed in Fig. 8, showing that monopoles in the

maximal Abelian projection behave in the same way as

monopoles in other projections. (m) = (
For this kind of simulations, we have used a standard T=Te

overrelaxed heat-bath algorithm. For each valueBofve

performed about 50 000 measurements, each of them takénis 0.20+0.08. Different Abelian projectiongplaquette,

after 8 sweeps. In order to improve the statistics, we havé&olyakov, “butterfly”) give results which agree with each

considered eight symmetric different position of the mono-other. Our technique proves difficult for the maximal Abe-

pole (namely, we have inserted the monopole at the center dfan projection, but a direct determination Q&) looks con-

each optant of a Cartesian coordinate system with the origisistent with other projections.

at the center of the lattigedata corresponding to each posi-  In conclusion(1) dual superconductivity is at work in the

tion are analyzed separately with the method exposed in theonfined phase, and disappears at the deconfinement phase

previous section and our best value is the weighted averageansition, and2) this statement is independent of the Abe-

of the eight measurements. Putting more monopoles woultlan projection defining the monopoles. Further theoretical

not improve the statistics, since strong correlations appeagffort is needed to understand the real symmetry breaking in

(,u}zex;{er%z

T 5
1—T—C) , (52
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the deconfined phase, or in the dual description of QCDopera-tor carrying the appropriate topological charge can be
Similar results for SIB) will be presented in the companion a legitimate disorder parameter.
paper.

Finally we stress that, whatever topological excitations
are responsible for color confinement, counting them is nota This work is partially supported by EC Contract No.
right criterion to detect disorder. Only the VEV of an FMRX-CT97-0122 and by MURST.
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