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Phase diagram and quasiparticles of a lattice SU„2… scalar-fermion model in 211 dimensions
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The phase diagram at zero temperature of a lattice SU~2! scalar-fermion model in 211 dimensions is studied
numerically and with mean-field methods. Special attention is devoted to the strong coupling regime. We have
developed a new method to adapt the hybrid Monte Carlo algorithm to the O~3! non-linears model constraint.
The charged excitations in the various phases are studied at the mean-field level. Bound states of two charged
fermions are found in a strongly coupledparamagneticphase. On the other hand, in the strongly coupled
antiferromagnetic phase fermionic excitations around momenta (6p/2,6p/2,6p/2) emerge.

PACS number~s!: 11.15.Ha, 02.70.Lq, 11.15.Ex, 11.30.Rd
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I. INTRODUCTION

The model we are going to study was proposed in R
@1# and @2# as a natural extension of the lattice O~3! non-
linears model in 211 dimensions to include charge carrier
It is a lattice model of interacting spins and Dirac fermions
211 dimensions, with only two free parameters in additi
to the temperature: a nearest-neighbor spin coupling an
spin-fermion coupling. The model describes quantitativ
some of the features of the doped copper oxide compou
@1,2#.

In the present article we want to present a careful, deta
discussion of the model, its symmetries, and its propert
and give full technical details and results of the mean-fi
~MF! and Monte Carlo~MC! calculations, some of which
were reported in Ref.@1#. In this paper, our mean-field an
numerical studies will be limited to the zero-temperatu
case, corresponding to infinite Euclidean time direction.

The remainder is laid out as follows. In Sec. II we pres
our model, discuss the choice of lattice fermions, comm
on the symmetries of the model, give its phase diagram
prove the reality of the fermion determinant, even in t
presence of a chemical potential. In Sec. III we examine
phase diagram of the model in the MF approximation. O
MF calculations are based on small- and large-y expansions
combined with saddle point methods. The method allows
to handle~products of! fermionic variables occurring in the
expansion of the fermion determinant in a well defined w
In Sec. IV we use MC simulations to complete the study
the phase diagram. For this purpose we have develop
new method that exactly solves the technical problem rela
to the length-1 constraint on the spin variables@3#. Section V
is devoted to a study of the relevant excitations in the diff
ent phases of the system, at the MF level. A crucial resu
the dynamical generation of spin singlet bosonic bou
states of charged fermions in the so-called paramagn
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strong ~PMS! phase. At the MF level we have not foun
evidence forfermionicexcitations atzerotemperature in this
PMS phase. Another interesting result is the emergenc
fermionic excitations around momenta (6p/2,6p/2,
6p/2) in the strongly coupled antiferromagnetic~AFM!
phase@4#. Finally, Sec. VI is devoted to our conclusions an
projects.

II. THE MODEL: FORMULATION, SYMMETRIES, PHASE
DIAGRAM

The model is defined by the following~211!-dimensional
lattice Euclidean~imaginary time! path integral,

Z5E DfDc̄Dc exp~2S! ~1!

with the action

S52(
x,m

kfx•fx1m̂1(
x,m

r

2
c̄xg

m~cx1m̂2cx2m̂!

1(
x

lc̄xfx•tcx. ~2!

We use this expression as our starting point, but it should
noted that the modeldepends only on the ratio y5l/r,
through a change in the normalization of the fermion field. In
terms of the effective spin-fermion couplingy, we get

S52(
x,m

kfx•fx1m̂1(
x,m

1

2
c̄xg

m~cx1m̂2cx2m̂!

1(
x

yc̄xfx•tcx . ~3!

Here x runs over a~211!-dimensional cubic Euclidean
space-time lattice. Eachcx is a fermionic four-spinor as a
shorthand for two flavors of two-component Dirac spino
Both flavors are taken in the same irreducible spinor rep
©1999 The American Physical Society01-1



a

st-

u
tte
th
th

ou

th
e

s,

-
c

is

t

tio

wo

a-

on

tic

e,
ads
to
dy

r of
we

nt is

e is
se
c-
ns

the
ere
e at

M

dia-
n
e

ALONSO, BOUCAUD, MARTÍN-MAYOR, AND VAN DER SIJS PHYSICAL REVIEW D61 034501
sentation, with 232 gamma matrices taken as the Pauli m
tricessm. The 434 matricesgm in Eq. ~3! have the form

gm5S sm 0

0 smD m51,2,3. ~4!

The kinetic term for the fermions is of the neare
neighbor ~hopping! form. Lattice fermions defined in this
way undergo species doubling in the perturbative continu
limit @5#. For two reasons we are going to leave this ma
aside in this work. First, we are particularly interested in
strong coupling non-perturbative regime where more of
interesting physics occurs@1,2#. In this strong coupling re-
gime all the fermions, the physical one as well as the d
blers, decouple in the continuum limit@6#. Second, this
model described qualitatively some of the features of
doped copper oxide compounds@1,2#, where the lattice spac
is given by the material.

The three-componentf are real scalar bosonic variable
subject to the constraintf251, as in the O~3! non-linears
model. The last term in Eq.~3! describes the interaction be
tweenf and the Dirac fermions, which is diagonal in Dira
space. The Pauli matricesta act in flavor space.

Let us now consider the symmetries of Eq.~3!. First of
all, we have the usual cubic symmetry. Next, there is a d
crete parity symmetry, which in 211 dimensions is defined
as the reflection of one of the spatial axes, say thex axis.
Under this parity symmetry, the fermions can be seen
transform as

c→s1c, c̄→2c̄s1 , ~5!

so f is a pseudoscalar in this sense. In addition, the ac
~3! is invariant under an SU~2! flavor symmetry in whichc
transforms as the fundamental representation andf trans-
forms as the adjoint one. Note that by requiring the t
fermion flavors to have the same Lorentz structure@that is,
by choosing theg ’s as in Eq.~4!# no fermion mass term is
allowed which preserves the above symmetries@7#.

There are two more discrete symmetries of our model~3!,
which will be useful in the MF calculation of the phase di
gram. The first one is

Z~k,y!5Z~k,2y!, ~6!

which becomes clear if we make the change of variables

cx→expS i
p

2
exDcx , c̄x→expS i

p

2
exD c̄x , ~7!

where

en5~21!(mxm. ~8!

This implies thatZ(k,y) is a function ofy2 only and we can
restrict ourselves toy.0.

In addition, there is a symmetry

Z~k,y!5Z~2k,2 iy !, ~9!

as can be seen by making the substitutions
03450
-

m
r

e
e

-

e

-

o

n

cx→expS i
p

4
exDcx , c̄x→expS i

p

4
exD c̄x , fx→exfx.

~10!

The latter symmetry implies that the lattice regularizati
of the non-linears model,y50 ~or y5`, see Secs. III, IV!,
is equally valid in a ferromagnetic or an antiferromagne
phase.

In order to perform computations in models of this typ
one has to integrate out the fermions. This integration le
to a f-dependent fermion determinant. It is important
know whether this determinant is a real number. To stu
this, let us write down the original fermion matrix~Latin
lettersx,y, . . . will refer to lattice points,i , j , . . . , will rep-
resent flavor indices, while Greek lettersa,b, . . . are used
for Dirac indices!:

M̂ xa i ;yb j5Kxa i ;yb j1Yxa i ;yb j , ~11!

Kxa i ;yb j5
1

2 (
m

~dx1m,y2dx2m,y!sab
m d i j , ~12!

Yxa i ;yb j5ydxy~f•t! i j dab . ~13!

Keeping in mind that for Pauli matricess2s is252s i* ,
where* means complex conjugation, and that@g,t#50, one
easily proves that, for realy,

s2t2~K1Y!s2t252~K* 1Y* !. ~14!

Therefore,

det~K1Y!5det~2K* 2Y* !5@det~K1Y!#* , ~15!

i.e. the determinant is real. Thus, by doubling the numbe
fermion families, we obtain a positive determinant. Had
introduced a chemical potential,m, the only change would
be the introduction ofe6m on the temporal links of the ki-
netic matrix @8#. The essential requirement for Eq.~14! to
hold ~that the only non-real numbers are ing,t) is thus not
endangered by the chemical potential and the determina
still real.

The phase diagram of the model at zero temperatur
shown in Fig. 1. Notice that it is very similar to the pha
diagram of~chiral! Yukawa models for the electroweak se
tor of the standard model of elementary particle interactio
@9#. At y5` and aty50 we recover the non-linears model
~see Secs. III and IV! with its well known paramagnetic
~PM!, ferromagnetic~FM! and antiferromagnetic~AFM!
phases. At finitey, we expect these phases to extend into
(k,y) plane. One of its most important features is that th
are two mutually disconnected paramagnetic phases, on
weak coupling~called PMW! and one at strong coupling
~PMS!. One sees that the PMW-FM and the PMW-AF
transition lines meet in a pointA, where this disordered
phase ends. In the strong coupling sector of the phase
gram, a similar behavior is found, with the two transitio
lines meeting at pointB. This observation means that on
1-2
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PHASE DIAGRAM AND QUASIPARTICLES OF A . . . PHYSICAL REVIEW D61 034501
may expect totally different behavior in each of the two pa
magnetic phases. This is indeed the case, as we shal
later.

As there is no evidence for a phase transition between
strong- and weak-coupling regions of the FM and AF
phases, we name them FM~W! and FM~S!, AFM~W! and
AFM~S! ~note the parentheses!. There may be crossover
between these regions, though.

Between the pointsA andB, we find a phase where bot
the magnetization and the staggered magnetization are
ferent from zero. We name this phaseferrimagnetic~FI!. An
appealing possibility is that it corresponds to a helicoi
phase. We expect the FI phase to disappear for large en
2k, but we have not explored this numerically.

III. MEAN FIELD CALCULATIONS OF THE PHASE
DIAGRAM

Our aim in this section is to determine the zer
temperature phase diagram of the model in they-k plane~cf.
Fig. 1!, using mean-field techniques. These calculations
ready provide a lot of insight, especially for the strong co
pling region. They will be contrasted with numerical sim
lations for the phase diagram in Sec. IV, and they will
extended to a study of the relevant charged~quasi-particle!
excitations in Sec. V.

Our mean-field calculations are based on small- and la
y expansions combined with the saddle point methods
scribed in Ref.@10#. This approach guarantees a systema
expansion in 1/d, which is particularly important for opera
tors which are zero to lowest-order. Our particular meth
furthermore allows us to handle~products of! fermionic vari-
ables occurring in the expansion of the fermion determin
in a well defined way. These techniques have been de
oped and applied in the context of similar lattice mod
@11,12# of the electroweak sector of the standard model
elementary particle interactions, and in the study of the a
ferromagneticf4 model @13#.

FIG. 1. Phase diagram of the action~3!, for two fermion fami-
lies. Dashed lines are from the MF calculation, solid lines from
MC calculation on an 83 lattice.
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We shall first concentrate on the small-y region, and in-
corporate the fermion determinant up toO(y2).

In order to apply the saddle-point method, the integrat
over the fields must be unrestricted. We therefore need
replace the integration over the spin vectorsf, constrained
by the conditionufu51, with an integration over uncon
strained variablesj. This is done by multiplying the func-
tional integrand in Eq.~1! by

15E Djd~f2j![)
n

)
a51

3 E
2`

`

djx
ad~fx

a2jx
a!

5)
x

)
a51

3 E
2`

`

djx
aE

2`

` dAx
a

2p
exp@ iAx

a~fx
a2jx

a!#,

and replacing a conveniently chosen subset of thef vari-
ables in the actionS with j fields. We obtain

Z5E DjDA

~2p!3
expFk(

x,m
jx•jx1m2 i(

x
Ax•jxG

3E Dc̄Dc expF2(
x,m

1

2
c̄xg

m~cx1m̂2cx2m̂!G
3)

x
H E dfx

4p
exp@ iAx•fx2yc̄xfx•tWcx#J . ~16!

Note that both thej fields and the auxiliary fieldsA are
unconstrained.

Now we have to integrate out the constrained variablesfn
a

~as well as the fermions!, before the mean fields can be in
troduced. Let us concentrate on a singlefn integration in Eq.
~16!, dropping the subscriptsn for simplicity. First, we per-
form an expansion in powers ofy. We can write

E df

4p
exp@ iA•f2yc̄f•tWc#

5exp@u~ iA!#expF2yQa
•^fa& iA1

1

2
y2QaQbTab

1O~y3!G , ~17!

where we have defined

Qa5c̄tac, u~ iA!5 ln E df

4p
exp@ iA•f#,

Tab5^fafb& iA2^fa& iA^fb& iA ,

and we have introduced the notation

^O& iA5E df

4p
O exp@ iA•f#Y E df

4p
exp@ iA•f#.

In addition, we introduce a Hubbard-Stratonovich vector p
rameterl to deal with the quartic fermion term in Eq.~17!,

a

1-3



f

.

t

as

-
es.
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expF1

2
y2(

a,b
QaQbTabG

5E dl

~2p!3/2
expF2

1

2 (
a

lalaG
3expFy(

ab
~AT!abQalbG . ~18!

~Note that the matrixT is self-adjoint, and positive definite i
A is imaginary, so the square root is well defined!. Thus, up
to this order iny2, the action is bilinear in the fermion fields

Carrying out the fermion integration in Eq.~16! now
gives detM, where

Mx,a,i ;y,b, j5Kx,a,i ;y,b, j1ydxydab(
a

F ^fx
a& iAx

2(
b

~ATx!
ablbGt i j

a . ~19!

The matrixK has been defined in Eq.~12!.
The mean fields are the field values at the saddle poin

the free energy
n

in

al

03450
of

2F5(
x

u~ iAx!1k(
x,m

jx•jx1m2 i(
x

Ax•jx2
1

2 (
x

lx
2

1Tr logM . ~20!

A choice of the mean fields should be done at this point,
we cannot calculate logM for general$Ax ,lx%. An appropri-
ate choice for the study of a PM-FM phase transition is

Ax5~0,0,2 ia!, ~21!

jx5~0,0,v !,

lx5~0,0,l!,

in terms of which (N is the lattice volume!

F/N52u~a!2kdv21av1
1

2
l22

1

N
Tr logM , ~22!

with a, v andl satisfying the saddle point equations

¹Fu(a,v,l)50. ~23!

The fermion matrix,M (a,v,l), can be calculated in mo
mentum space, where it is diagonal in its momentum indic
One easily finds
detM5expF 2(
p

log
(
m51

3

sin2pm1y2
„u8~a!2lAu9~a!…2

(
m51

3

sin2pm
G , ~24!
l

the

the
-
ing
where we have divided out the determinant for free fermio
We need only the leadingO(y2) contribution to the expo-
nent, hence the mean field free energy becomes, in the
nite volume limit:

F/N52u~a!2kdv21av1
1

2
l222y2

„u8~a!

2lAu9~a!…2C0, ~25!

where

C05E
2p

p d3p

~2p!3

1

(
m51

3

sin2pm

51.010924 . . . . ~26!

Incidentally, the above integral can be explicitly solved~see
Ref. @14#!.

Next, we shall discuss the actual solutions to Eqs.~23!.
From u(a)5 ln(sinha/a), one easily finds thata5v5l
50 always fulfill them. For smallk, y, it is a true minimum
of the free energy. This characterizes a paramagnetic~PM!
phase, since none of the fields develops an expectation v
s.

fi-

ue.

For larger values ofk andy, there is another, non-trivia
solution, corresponding to a ferromagnetic~FM! phase. It
emerges when a negative mode inF/N starts to develop, as a
function of the mean fields, and the transition between
two regions is given by the condition (F9 is the Hessian
matrix!

detF9u(a50,v50,l50)50. ~27!

This condition is satisfied forF/N of Eq. ~25! if

k5
3

2d
2

2C0

d
y2. ~28!

This curve defines the phase transition line between
PM and FM phases in the small-y region. Using the symme
try ~9!, we deduce that there is a similar transition separat
the PM and AFM phases,

k52
3

2d
2

2C0

d
y2. ~29!
1-4
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Let us finally remark that in the presence ofNf such fermion
fields we would haveNf factors of detM , leading to a mul-
tiplication of C0 by Nf in Eqs.~28! and ~29!.

The large-y region is easier to deal with. Here it is con
venient to integrate out the fermions directly in Eq.~16!,
leading to~summation over repeated index is carried!

detMx,a,i ;y,b, j

5detS Kx,a,i ;y,b, j1ydabdxy(
a

fx
at i j

a D ~30!

5detS ydagdxz(
a

fx
at ik

a D
3detS dzydgbdk j1

1

y (
b

fz
btkl

b Kz,g,l ;y,b, j D . ~31!

Here we have used that ((afata)251 ~recall thef’s are
unit vectors!. Now we can expand log(detM ) in powers of
1/y. TheO(1/y) term vanishes by virtue ofKxx50. To sec-
ond order one obtains

log detM5 logy4N1Tr S 2
1

2y2 (
a

fx
atki

a Kxa i ;tg l

3(
b

f t
bt l j

b Ktg j ;ybpD ~32!

5 logy4N1
1

y2 (
x,m

fx•fx1m̂ . ~33!

Here, logy4N is an irrelevant constant that can be dropp
Notice also that this expression will acquire a prefactorNf if
there areNf identical fermion flavors. One sees that, up
O(1/y2), the only effect of the fermion determinant is
renormalization of the scalar hopping parameter of the O~3!
model,

k→k1Nf

1

y2
. ~34!

Note that we did not introduce any mean fields to der
this result. The usual MF treatment of the O~3! model with
this renormalized coupling now immediately gives us t
required phase transition lines in the large-y region of our
model:

k56
3

2d
2Nf

1

y2
. ~35!

It is interesting to compare the small- and large-y results,
to leading order in 1/d. As is well known, the first order in
this expansion is equivalent to any MF approximation, up
higher-order terms. For this purpose, we need the 1/d expan-
sion of the constantC0 in Eq. ~26!, which can be calculated
as follows:
03450
.

e

o

C0~d!5E
2p

p ddp

~2p!d

1

(
m51

d

sin2pm

52E
0

`

ds„e2sI 0~s!…d

~36!

5
2

d S 11
1

2d
1OS 1

d2D D , ~37!

where I 0(s)5*2p
p (du/2p)exp(scosu) is the modified

Bessel function. In fact, the second equality in Eq.~36! was
used to obtain the numerical result~26! for C0.

Keeping only the leading-order term 2/d for C0 we find
that the phase transition lines would meet aty252/d.

Now we are ready to map out the phase diagram of
model, as predicted by the MF method for the weak a
strong coupling regions. This is done in Fig. 1. The vertic
axes aty50 andy5` correspond to the O~3! model, with
its disordered~PM! and ordered~FM and AFM! phases.
These phases extend into they direction, both fory.0 and
y,`. Note that all the phase transition lines bend dow
ward. This can be understood intuitively by assuming a M
value for the fermion condensate, which would act as
external field tending to align the spinsf in parallel.

IV. MONTE CARLO ALGORITHM: METHOD
AND RESULTS

A well established method for dynamical fermion simul
tions is hybrid Monte Carlo~HMC! algorithm @15#. How-
ever, the implementation of this algorithm in a model wi
constrained variables is not straightforward. This has b
satisfactorily achieved for models with variables belongi
to a Lie group@16#, such as SU(N) gauge theories or som
spin models, such as the O(N52,4) non-linears models.
However, for other spin variables~not in a Lie group!, as in
the O~3! non-linears model, this had not been satisfactori
solved yet, although the problem arose already in the fi
simulations using the Langevin algorithm@3#. Our solution is
a generalization of the strategy in@16#.

We shall first discuss our solution in the quenched
proximation, where comparison with other algorithms is po
sible ~Sec. IV A!, and then deal with the full theory in Sec
IV B. Finally our Monte Carlo results for the phase diagra
of the full theory will be presented in Sec. IV C.

A. The HMC method for the quenched approximation

For the purpose of discussion it will prove convenient
briefly describe the HMC method for unconstrained boso
variablesf(x) with actionSB(f) ~see Ref.@17# for a peda-
gogical presentation!:

~1! Introduce uncorrelated Gaussian variablesp(x) of
unit variance~the conjugate momentafor the fieldsf) and
define a Hamiltonian

H5(
x

1

2
p2~x!1SB~f!. ~38!
1-5
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One can then use the Hamiltonian equations of motion

ḟ~x,t!5p~x,t!,

ṗ~x,t!52
dSB

df~x,t!
, ~39!

to perform a microcanonical molecular dynamics evolut
in ‘‘Monte Carlo time,’’ t. After a certain period of MC time
~called ‘‘trajectory’’!, new random momentap(x) are cho-
sen ~‘‘refreshing’’ the momenta!. The crucial properties o
Eqs. ~39! are their time reversibility, and the invariance
the Liouville measure,Df Dp, under time evolution.

~2! In practice, the molecular dynamics equations of m
tion for a trajectory are discretized intoN stepsDt. This is
done using a leap-frog algorithm which isexactly time re-
versible, but does introduce a systematic error which sh
up as a non-zeroDH5O(Dt2). Thedetailed-balanceis not
endangered by this error, because a Metropolis accept
step is performed. For fixed trajectory length,N can then be
tuned to optimize the overall efficiency.

To generalize the method to constrained variables,
needs to appropriately define the conjugate momenta and
equations of motion in order to preserve the constraint a
most importantly, not to spoil the time reversibility. Eac
spin variable,f, lives on the surface of a two-sphere, a
correspondingly one could imagine an algorithm with tw
independent conjugate momenta, maybe living in the perp
dicular plane (f•p50). However, changing the constrai
from the fieldf to the momenta is not very appealing~and,
from the practical side, one would need to worry abouttwo
constraints in the numerical integration!. A different ap-
proach, the use of spherical coordinates, has the drawba
a non-planar integration measure. Our very simple algorit
avoids constraints and non-planar measures, by introdu
threeconjugate momenta per spin.

We shall start from an analogy with the dynamics of
particle living in the sphere, a potential~V! acting on it. The
Hamiltonian is

Hsphere5
L2

2
1V~f!. ~40!

Here L is the angular momentum,f3ḟ. The equations of
motion can now be obtained from the Poisson Bracket@18#
with the Hamiltonian~40!:

ḟ5L3f, L̇52f3
dV

df
. ~41!

In this expression dV/df stands for
(dV/df1 ,dV/df2 ,dV/df3).

This formalism is still inconvenient for us, because t
constraint f•L50 complicates the generation of rando
momenta according to a Gaussian distribution. However,
following simple facts can be straightforwardly establish
from Eq. ~41!:
03450
-

s
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e
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~I! Both f2 andf•L are conserved through the time ev
lution. If the initial condition verifies the constraintsf2

51,f•L50, this will not be spoiled by the dynamics.
~II ! The dynamics is time-reversible.
~III ! Although theLi cannot be all canonical variable

@18#, the ‘‘Liouville’’ measure, DfDL
(5df1df2df3dL1dL2dL3), is left invariant by the time
evolution.

~IV ! The Hamiltonian is a constant of the motion.
Now let us forget about the constraintf•L50, i.e., we

introduce a new fieldP which can have a ‘‘radial compo
nent’’ ~it is no longer an angular momentum!, but we keep
the equations of motion~41!. Obviously, statements I–IV
will still hold. Whether a symplectic structure is hidden u
der this new dynamical system is unclear, but also irrelev
~properties II and III are the essential ones for HMC to be
correct algorithm@17#!.

So, we introduce three momenta per spin,P
5(P1 ,P2 ,P3), and write down the Hamiltonian

H5(
x

P2

2
1SB~f!. ~42!

Equations of motion respecting properties I–IV are eas
generalized:

ḟ(x,t)5P(x,t)3f(x,t) , Ṗ(x,t)52f(x,t)3
dSB

df(x,t)
. ~43!

As expected, the evolution equations for theS2 fieldsf take
the form of~infinitesimal! rotations, while the conjugate mo
menta can be considered as living in the Lie algebra
SO~3!. The discretized leap-frog form of these equations
therefore naturally formulated in terms of finite SO~3! rota-
tions,

fx~nDt1Dt!5expFDtPxS S n1
1

2DDt D •JGfx~nDt!,

~44!

PxS S n1
1

2DDt D5PxS S n2
1

2DDt D2f(x,nDt)

3
dSB

df(x,nDt)
Dt, ~45!

whereJ are the 333 generators of SO~3!, satisfying

~exp@un•J# ! i j 5d i j cosu1ninj~12cosu!2e i jknksinu
~46!

for unit vectors n. Again, the length constraint on thef fields
is preserved by construction.

This final result is reminiscent of the elegant solution f
models with variables belonging to a Lie group and con
gate momenta in the group algebra~or vice versa! @16#.

In our case,SB quenched52k(n,mfn•fn1m̂ , so the HMC
algorithm can now be implemented in a straightforwa
manner. To test the algorithm, we have simulated the O~3!
model on an 83 lattice atk50.693'kc @20# with our HMC
1-6
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TABLE I. Values for several observables in the quenched model~3! on an 83 lattice atk50.693'kc ,
obtained with our implementation of HMC and with Wolff’s single cluster algorithm@19#.

Algorithm ^E& ]k^E& x/V j B

HMC 0.3505~5! 1.51~2! 0.1426~9! 4.47~2! 0.800~6!

Wolff 0.35061~13! 1.501~10! 0.1432~2! 4.486~9! 0.8031~18!
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algorithm and with Wolff’s single-cluster embedding alg
rithm @19#. Let us first define the measured observables,
then compare them.

In this work we have only measured bosonic observab
as our sole objective was the numerical determination of
phase diagram. We have constructed our observable
terms of the Fourier transform of the spin field:

m̂~p!5
1

V (
x

exp~2 ip•x!fx , ~47!

whereV5L3 is the lattice volume.
We define the non-connected finite-volume susceptib

ties as

x5V^m̂2~0,0,0!&, xs5V^m̂2~p,p,p!&. ~48!

The subscript ‘‘s’’ onxs stands for ‘‘staggered,’’ and this
term is used to label quantities which are taken with a wei
21 for the odd lattice sites, corresponding to moment
(p,p,p). Notice that x/V is a pseudo order paramete
which should be of order one in a ferromagnetically brok
phase, and of order 1/V in a paramagnetic or antiferromag
netic phase~and similarly forxs/V).

Another quantity of interest is the Binder cumulant

B5
5

2
2

3

2

^~m̂2~0,0,0!!2&

^m̂2~0,0,0!&2
, ~49!

with an analogous definition for the staggered variantBs.
One expectsB51 in the FM phase, wherex/V is non-

vanishing in the thermodynamic limit, while it should be
order 1/V in the PM phase, far from the phase transition.

For the correlation length, we use a definition which
easy to measure and gives accurate results:

j5S x/F21

4 sin2~p/L !
D 1/2

, ~50!

where F is the squared Fourier transform at minimal no
zero momentum,

F5
V

3
~^um̂~2p/L,0,0!u2&1permutations!. ~51!

Again, the generalization to staggered quantities is strai
forward. Another kind of observable, needed for the stand
extrapolation method@21#, is the normalized neares
neighbor energy
03450
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E5
1

3V (
x,m

^fx•fx1m̂&5
]

]k
ln Z. ~52!

We also measure its fluctuation, given by

3V~^E2&2^E&2!5
]

]k
^E&. ~53!

In Table I we compare the values obtained for these
servables, using our HMC algorithm and the single-clus
algorithm. We find excellent agreement. Of course the e
ciency of our implementation of HMC is not competitiv
with a cluster method in the O~3! non-linears model. But it
could be useful in other models where cluster methods
not effective in reducing the dynamical critical exponenz
~for instance, when some kind of frustration is present@22#!,
while HMC is expected to yieldz51 for any bosonic model.

B. The HMC algorithm for the full theory

The only restriction imposed on HMC is that the fermio
bilinear in the action should be given in terms of a positi
definite matrix. This will be the case if we consider tw
identical fermion families (Nf52) as is usually done in lat
tice gauge theories. After integrating them out we obt
(detM̂ )25det(M̂†M̂ ), whereM̂ is the fermion matrix for a
single fermion family. As we are mainly interested in th
strong spin-fermion coupling region, it makes sense to p
form the following manipulation:

detM̂5det~Y1K !5y4Vdet~11Y21K ! ~54!

@cf. Eqs.~30!,~31!#. The constant factory4V can be dropped,
and we defineM511Y21K.

Next, one re-exponentiates the~inverse! fermion matrix
by introducing the so-calledpseudo-fermions zx , which are
complex four-component c-number fields. The partiti
function is then

Z5E Df Dz̄ Dz exp„2SB2 z̄~M†M !21z…. ~55!

For further details we refer to Ref.@17#.
Now the HMC Hamiltonian becomes

H5(
x

1

2
Px

22k(
x,m

fx•fx1m1z†~M†M !21z, ~56!

and the time reversible, constraint and energy preserv
equations of motion are
1-7
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TABLE II. Comparison of observables in the full theory~3! at (k50.693,y510.0) and in the quenched
model both at the corresponding value ofkeff and atkc50.693. We have 140 000 unquenched trajector
(N510,Dt50.3) on a 43 lattice. The Metropolis acceptance rate was 65–70 %, with an autocorrelation
of 3–4 trajectories.

Couplings ^E& ]k^E& x/V j

k50.693 ,y510.0 0.4164~6! 1.134~6! 0.3111~7! 2.378~4!

k50.713 ,y50 0.41584~14! 1.130~4! 0.3108~2! 2.3779~18!

k50.693 ,y50 0.3928~3! 1.174~4! 0.2836~4! 2.214~2!
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,

ḟ(x,t)5P(x,t)3f(x,t) , ~57!

Ṗ(x,t)52k(
m

„f(x1m,t)1f(x2m,t)…f(x,t)

2z†~M†M !21F S dM†

df(x,t)
3f(x,t)D M1H.c.G

3~M†M !21z.

For the inversion of the fermionic matrix, we have em
ployed the conjugate gradient algorithm. To formulate
stopping criterium, let us defineh5(M†M )21z, hn being
the nth trial solution. We continued the conjugate gradie
iteration until

u~M†M !hn2zu2

uhnu2
<R. ~58!

In the simulation, we need the inverse matrix both for t
leap-frog and for the Metropolis accept-reject step. It is cl
that R does not need to be the same in both cases. For
Metropolis step, lack of accuracy in the inversion will bi
the simulation. To control this, we have checked that
Creutz parameter̂exp(2DH)& equals 1 within errors. In
some regions of parameter spaceR values as small as 10225

were needed. The essential requirement on the leap-fro
full reversibility in the numerical integration of the equatio
of motion ~up to the numerical precision reachable with 6
bit floating point arithmetic!. As first noticed in Ref.@23#,
this has no relation withR if the seed for the conjugate
gradient algorithm is chosen to depend on theactual con-
figuration only (h05z, for instance!. However, if R is too
large, the numerical integration will produce large change
the Hamiltonian, and the Metropolis acceptance will be po
We have found thatR51027 during the leap-frog steps a
lows for a 50% acceptance.

In a first implementation of a new MC algorithm, som
consistency checks are extremely useful. In addition, th
are three parameters to be adjusted for optimal performa
N, t andR. We have carried out the following tests:

~1! We have explicitly checked reversibility of the lea
frog algorithm.

~2! We have checked that^exp(2DH)&51 within errors.
~3! The gaussian expectation values,^z†(M†M )21z&54

and ^P2&53 have been checked.
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~4! We have checked thatDH}(Dt)2 in the leap-frog
integration, for constant trajectory lengthNDt.

In addition, we compared simulation results for the fu
theory at (k,y), with the output of a quenched simulation
the corresponding effective coupling value obtained in
large-y expansion,

keff5k1
2

y2
1OS 1

y4D ~59!

@cf. Eq. ~34!#. In Table II, we give the mean value of sever
operators as obtained on a 43 lattice at k50.693, y510.0
and in the quenched theory. The agreement is excellent.
tice that even if the shift in the effective coupling is only 3%
the effects of the dynamical fermions can be clearly m
sured as the observables change quite significantly at
critical point kc50.693.

C. Phase diagram

The phase diagram in Fig. 1 was obtained on an 83 lattice.
As there is no true phase transition on a finite lattice, a
terium is needed to locate the phase boundaries. We loo
for the point where the relevant Binder cumulant equals
valueB50.8 it has at (k560.693'kc ,y50). SinceB51
deep in the broken phase andB}1/L3 in the symmetric one,
this provides a clean quantitative criterium which yields
point definitely inside the critical region. The width of th
critical region decreases asL21/n, therefore the systemati
error in the critical coupling will be at most of order 1021.
However, since the Binder parameter is a universal quan
which should stay constant along much of the critical lin
the error rather goes asL2(v11/n) @i.e. O(1022)]. Thus, this
systematic error is under control in the full theory as we
We used the standard reweighting method@21# to determine
the precise location of the points whereB50.8.

The total simulation time was 16 days of the 32 Pentiu
Pro processor parallel computer RTNN based in Zarago
To allow for a correct thermalization, we discarded 100
tegrated autocorrelation times of the relevant susceptibi
This may look utterly conservative, and the MC history i
deed seems to stabilize long before that. However, not m
is known about theexponentialautocorrelation time of fer-
mionic algorithms and one should be cautious.

As Eq. ~54! shows, both aty5` and aty50 we recover
the non-linears model with its well known paramagnetic
ferromagnetic and antiferromagnetic phases. At finitey, we
expect these phases to extend into the (k,y) plane. In fact
1-8
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FIG. 2. Binder cumulant~49! and non-
connected susceptibility~48! as a function ofk,
around the two critical points aty52.0. For each
critical point, only one simulation has been ca
ried out. The other points are obtained with th
standard reweighting method.
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one can quite precisely anticipate the critical coupling fro
the strong coupling formula~59! and the quenched critica
points kc

(y5`)560.693. Using the reweighting method, th
phase transition lines can be determined down toy'2.0. In
Fig. 2 the variation of the Binder cumulant and the susc
tibility around the two critical couplings is shown fory
52.0.

In the small-y region, the effective action up toO(y2)
does not only renormalizek, but also introduces additiona
couplings, due to the non-locality of the matrixK21 occur-
ring in the weak-coupling expansion. Therefore, we do
have an estimate forkeff as reliable as in the large-y region
~59!, but we can nevertheless obtain an estimate forkc(y)
from the MF approximation. We have simulated at seve
values of the couplingk, for fixed y, until the corresponding
Binder parameter crossed its critical value. A more accu
result for the critical point was later on obtained with t
reweighting method. In Fig. 3, we have plotted the relev
Binder parameter and susceptibility fork values near the two
critical couplings withy50.5.

In Fig. 4 we show the variation of both order paramet
and Binder cumulants when crossing the FM~S!-FI transition
03450
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s

line at y51.15. We find a strong change in the stagge
quantities, while the non-staggered ones show a smoo
evolution. However, the non-staggered order paramete
much smaller than its staggered counterpart. This may in
cate that, although the non-staggered sector is non-cri
(B;1), it will eventually undergo a phase transition
lower k. A similar behavior is found when traversing th
AFM~W!-FI line at k521.6 ~see Fig. 5!, but now the non-
staggered quantities show a more pronounced signal.
detailed study of these transition lines~order of the phase
transitions, critical exponents, etc.! requires a finite-size scal
ing analysis, which is left for future work. This study will b
much easier if the transition line is crossed varyingk, as we
lack an analogue of the reweighting method fory.

V. QUASIPARTICLE EXCITATIONS AT THE MF LEVEL

In this section we explore the relevant excitations invo
ing fermions, with emphasis on the strong-coupling region
our model.

The small-y regime has been studied in relation with th
mechanism by which leptons and quarks acquire their m
FIG. 3. Binder cumulant~49! and non-
connected susceptibility~48! as a function ofk,
around the two critical points aty50.5. The data
points are from different simulations.
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FIG. 4. Binder cumulants and susceptibilitie
when crossing the FM~S!-FI transition line aty
51.15.
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through symmetry breaking in the electroweak sector of
standard model. Due to the weak coupling there are no
prises. This situation will change dramatically when we co
sider the strong-coupling region, though.

A. Fermionic excitations in the FM„S… and PMS phases

At very largey, it is natural to attempt a large-y expan-
sion. This can be achieved after carrying out the followi
change of variables:

c̄85c̄, ~60!

c85~f•t!c. ~61!

Because of the constraintf251 and the identity (f•t)2

5f21, this transformation has unit Jacobian and its inve
satisfies

c5~f•t!c8. ~62!
03450
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In terms of the new variables~dropping the primes! the ac-
tion takes the form

S52k(
x,m

fx•fx1m1(
x,y

c̄x„Kxy~fy•t!1ydxy…cy ,

~63!

where the fermion kinetic term is the usual lattice kine
Dirac operator, defined in Eq.~12!. After a further rescaling
of the c fields, the couplingy can be moved to the kinetic
term, where it appears as 1/y.

Note that this change of variables~60!,~61! was implicitly
present in the MF calculations of the phase diagram in
strong-coupling region as well@cf. Eqs. ~30!,~31!#. This
transformation is the reason that explains that the mode
~partly! analytically tractable. The interest of finding reliab
analytical approaches to strongly coupled fermion syste
need not to be stressed.

The fermion propagator̂cxc̄y& is given by the expecta
tion value of the inverse fermion matrix, which in a largey
expansion becomes
s
FIG. 5. Binder cumulants and susceptibilitie
when crossing the AFM~W!-FI transition line at
k521.6.
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^cxc̄y&5^Mxy
21&5K 1

y S 12
1

y
K~f•t!1

1

y2
K~f•t!K~f•t!2 . . . D

xy
L . ~64!
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This can be viewed as a sum over paths of increasing le
connectingx and y ~recall thatK is a nearest-neighbor ma
trix!.

In the FM~S! phase, there is a non-zero magnetizationv
5u^f&u. Expectation values of products off fields on dif-
ferent sites are replaced by the appropriate powers ov.
Corrections to this approximation as well as contributio
from paths visiting a given site more than once are of hig
order in 1/d and are ignored at the MF level. The series~64!
can thus be resummed and one finds a propagator

^cc̄&FM (S)5
1/v

K1y/v
~65!

which is that of a fermion with a massy/v. Note that, since
v,1, this is a huge mass ify is large. The propagator for th
original fermion, before the change of variables~60!,~61!,
corresponds to the same physical particle; the only differe
is in the wave function renormalization.

In the PM~S! phase,v50, so at the MF level the fermion
would be infinitely massive, or in other words, no
propagating. Beyond this naive MF level, however, a la
but finite mass will be found. This is due to the next-t
leading contributions to the series~64!. The dominant terms
are now those involving the expectation value for t
nearest-neighbor energyz2[^fx•fx1m̂&, which is of order
1/2d and therefore absent at the MF level. The resumma
of contributions in Eq.~64! now leads to a fermion propaga
tor with a massy/z, which is even larger than the mass
the fermion in the FM~S! phase. However, one should kee
in mind that the above arguments only hold deep in the P
phase, far from the phase transition lines which, for largey,
are second order.

The conclusion of this analysis, which is similar to that
~chiral! Yukawa models in the Electroweak theory@24#, is
that the elementary fermion excitations in the large-y region
are very heavy~hence essentially non-propagating!, and
therefore play no role in the spectrum of light excitation
This holds even more strongly in the PMS phase than in
FM~S! phase.

B. Fermionic excitations in the AFM„S… phase

Here our point of departure is again the form of the act
~63!, which is tailored for studying the large-y behavior. In
the AFM~S! phase, we have a staggered expectation va
for the f field at the MF level, which can be taken in th
3-direction,

fx5exvS 0

0

1
D ~66!
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@with ex5(21)x11x21x3]. Hence

~fx•t!cx5S vexcx
(1)

2vexcx
(2)D , ~67!

wherecx
( i ) , i 51,2 labels the twoflavors in cx . So after the

change of variables~60!,~61! the kinetic operator in Eq.~63!
is still diagonal in flavor. The only effect of the new var
ables is to change the lattice Dirac operator from Eq.~12! to

veyt3Kxy .

Due to this diagonal structure in flavor space, we can c
centrate on one flavor, sayc (1); the other flavor is obtained
by taking2v instead ofv. In Fourier space, the kinetic term
for c (1) is given by

2 ivsi”npdp,q6p , ~68!

where

si”np5(
m

smsinpm , ~69!

dp,q6p5)
m

dpm ,qm1pmod 2p . ~70!

So we obtain for the inverse of the MF propagator in t
AFM~S! phase,

M p,q52 ivsi”npdp,q6p1ydp,q , ~71!

or, in matrix notation for the subspace of the modes coup
in Eq. ~71!, p andp6(p,p,p),

M p,p6(p,p,p)5S y 2 ivsi”np

ivsi”np y D . ~72!

To find the quasiparticle excitations in the AFM~S! phase
we diagonalize the fermionic part of the action~72!. One
obtains

S5E
p
c̄~p!~y2v;si”np!c~p!, ~73!

where

c~p!5
1

A2
@c (1)~p!1 ic (1)~p1p!#,

or, in positionspace,
1-11
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cx5
1

A2
@cx

(1)1 i excx
(1)#.

The momentum space propagator corresponding to
~73! is thus

S~p!5
1

y2vsi”np
5

y1vsi”np

y22v2(
l

sin2pl

. ~74!

Since we are working in imaginary time, one would expe
quasiparticle poles inS(p) to appear at negative values
p2. The unusual relative minus sign in the denominator~74!
therefore does not seem to allow for a quasiparticle interp
tation, at first sight.

However, Eq.~74! suggests the possibility of light exc
tations with a relativistic dispersion relation around mome
(6p/2,6p/2,6p/2). To see this, consider the denomina
in Eq. ~74! for small km5pm6p/2:

y22v2(
l

sin2pl5~y22v2d!1v2(
l

kl
21O~k4!, ~75!

whered53 is the space-time dimension. As long as we
at large enoughy, such thaty2.dv2 ~recall v2,1), this
dispersion relation corresponds to a relativistic excitat
with m25(y22dv2)/v2, in this naive MF calculation. Sev
eral comments are in order:

~1! For v50, we recover the MF result for the PM
phase: the kinetic term in Eq.~75! is suppressed.

~2! At the MF level, only for (y22dv2) small enough
compared tov2 these fermionic excitations, (t•f)c, can
propagate easily. Sincev2,1, this can only happen fory2

not too large.
~3! These would-be excitations are characteristic of

AFM~S! phase. Let us recall that in the PMS phase nolight
fermionic excitations have been identified at the MF leve

C. Light bound states in the PMS phase

We have seen above that the fermionic excitations in
PMS phase are very heavy. We will now show that there
bound states of elementary fermions, however, which
light. This is done by means of a MF calculation of th
double-chain type@25#.

Consider the propagator for a fermion paircxcx ,

^cx,i
a cx, j

b c̄y,k
l c̄y,l

r &5^Mx,b, j ;y,l,k
21 Mx,a,i ;y,r,l

21 &

2^Mx,a,i ;y,l,k
21 Mx,b, j ;y,r,l

21 &. ~76!

Here M 21 is the single-fermion propagator,a,b,l,r are
Dirac indices, andi , j ,k,l are flavor indices. Thus, this propa
gator is really a 16316 matrix. For the moment we keep a
these indices as they are; later on we will discuss how p
of them decompose into quantum numbers for the compo
state.
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Let us concentrate on the first^M 21M 21& term in Eq.
~76!. Using the 1/y expansion ofM 21 as before, we find the
series

^Mx,b, j ;y,l,k
21 Mx,a,i ;y,r,l

21 &

5 (
N,N850

` K Ffy S K
f

y D NG
x,b, j ;y,l,k

Ff

y S K
f

y D N8G
x,a,i ;y,r,l

L ,

~77!

where we have writtenf as a shorthand for (f•t). It is
clear that only terms withN1N8 even survive in a paramag
netic phase, due to thef→2f symmetry, thus a factor
(21)N1N8 has been dropped. Since the matrixK connects
nearest-neighbor sites only, each term in this series can
seen to represent a product of two paths~chains! of lengthsN
andN8 respectively, connecting sitex with site y @so, if the
‘‘distance’’ betweenx andy is even~odd!, bothN andN8 will
be even~odd!#.

We will attempt to sum the complete series, to leadi
order in 1/d, whered511253 is the Euclidean space-tim
dimension. For this, we need the spin-spin propagator, wh
in this approximation is extremely short ranged

^fx
afx

b&5
1

3
dab. ~78!

Expectation values of the typêfx•fx1m̂& are of order 1/d,
and others are suppressed even more strongly. Thus, as
ing Eq. ~78!, we observe that any term in the series whi
containsfx for a given sitex only once or an odd number o
times will vanish due tô f&50. When the site is visited
twice, it follows from f251 that the contribution from the
f fields is proportional to1

3 dab. Thus each site along th
chains connectingx andy must be visited an even number o
times. One class of diagrams fulfilling this requirement co
sists of the so-called ‘‘double-chain’’ diagrams, where t
propagation of both fermions betweenx and y follows the
same path in position space~see Fig. 6!. As was convinc-
ingly argued in Ref.@25#, this class saturates the domina
diagrams in the 1/d expansion. Indeed, one can easily che
by concrete examples, how deviations from double-chain
havior induce additional powers of 1/d. We shall also as-
sume that these double chains are self-avoiding~this is al-
lowed at first order in 1/d).

FIG. 6. A typical double-chain diagram, connecting sitesx and
y. The chains are parallel in position space.
1-12
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Our task is thus to sum up all double chain diagra
connectingx andy. Let us first consider the flavor structur
Using Eq.~78! one finds that

^~fx•t! jk~fx•t! i l &5
1

3 (
a

t jk
a t i l

a 5
1

3
~2d jkd i l 12d j l d ik!.

~79!

From this and from the ultra-local correlations we are co
sidering @cf. Eq. ~78!#, it follows that the product of 2(N
11) factors of (f•t) along a double chain of lengthN
visiting the pointsx5x0 ,x1 , . . . ,y5xN @cf. Eq. ~77!# is

K F )
n50

N

~fxn
•t!G

x, j ;y,k
F )

n850

N

~fxn8
•t!G

x,i ;y,l
L

5Pd jkd i l 1Qd j l d ik . ~80!

To calculateP andQ, it is convenient to represent the ge
eral term contributing to the above matrix product as in F
7. A graph contributing tod jkd i l will have an even numbe
of crossings, while diagrams contributing tod j l d ik jump an
odd number of times. Each crossing contributes a facto2

3 ,
while non-crossings yield factors2 1

3 @cf. Eq. ~79!#. Now, P
andQ can be easily obtained using binomial summation:

K F )
n50

N

~fxn
•t!G

x, j ;y,k
F )

n850

N

~fxn8
•t!G

x,i ;y,l
L

5S 1

3D N1

2
~d jkd i l 1d j l d ik!1~21!N

1

2
~d jkd i l 2d j l d ik!,

~81!

where we have separated in a term symmetric un
( j i )↔( i j ) and an antisymmetric one~this will be needed for
separating the contribution to different quantum numbers!. It
is remarkable that the flavor contribution only depends
the double-chain length, but not on its shape. This allows
a total factorization between flavor and Dirac indices.

Next, consider the Dirac structure. Let us denotemn the
lattice unit vector given byxn112xn . At each step of the
double chain the first line of it contributes a matrixsbnln

mn ,

while from the second line we havesanrn

mn . The Dirac indices

verify b050, a050 andlN215l,rN215r, in addition to
the matrix product conditions:ln5bn11 ,rn5an11. So, we
have factors

Kxnxn11

mn Kxnxn11

mn sbnln

mn sanrn

mn , ~82!

along the double chain, where

FIG. 7. A matrix-product term contributing to the flavor stru
ture.
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Kxy
m 5

1

2
~dy,x1m̂2dy,x2m̂!. ~83!

One readily finds that

Axy
m [4Kxy

m Kxy
m 5~dy,x1m̂1dy,x2m̂!. ~84!

Thus, we need to calculate

(
$mn%

F)
n

1

4
Amnsmn^ smnG

x,b,a;y,l,r

, ~85!

where the sum is extended to all the lattice paths~denoted by
$mn%) of lengthN connectingx andy. Now, we can extend
the sum toall length-N lattice paths starting atx, because
paths not connectingx to y will contribute a zeroxy entry.
This can be also understood by realizing that once the ch
has arrived atxi , there are 2d possible directions to continu
the chain. These are added up by summing Eq.~82! overm.
At the next site, we do the same for the next step along
chain. The contributions of all double chains are theref
added up when we take the product of thesem sums along
the chain. Corrections due to backtracking (2d→2d21) are
down by 1/d.

So we need to calculate powers of the matrix

1

4 (
m

Amsm
^ sm. ~86!

One way to do that is to write it out explicitly as a 434
matrix in the space spanned by the vectors (b,l)5(1,1),
~2,2!, ~1,2! and ~2,1!, in that order. One finds that it equals

1

4 S A3 A12A2 0 0

A12A2 A3 0 0

0 0 2A3 A11A2

0 0 A11A2 2A3

D . ~87!

It can be diagonalized in this 434 space. The eigenvalue
up to the factor 1/4, are found to be

lm5A22Am ~m51,2,3!, ~88!

l452A, ~89!

where

A5 (
m51

3

Am5h12d, ~90!

and h is the lattice discretization of the d’Alembertia
(m]m]m . TheNth power@see Eq.~85!# of the matrix~86! is
now easy to calculate.

In order to collect the factors and sum up the contrib
tions, let us go back to Eq.~76!. We see that we need t
antisymmetrize each term in̂M 21M 21& with respect to the
simultaneous interchange ofa,i with b, j . This gives a sum
of two terms, one symmetric ina↔b and antisymmetric in
i↔ j ~corresponding to a composite state which is a Di
1-13
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vector and a flavor singlet!, and one vice versa~singlet in
Dirac space, vector in flavor space!. Note that Eq.~81! has
already been written as a sum of symmetric and antisymm
ric terms. The symmetric and antisymmetric parts of
Dirac structure correspond to Eqs.~88! and ~89!, respec-
tively.

Collecting the various factors, we can carry out the g
metric sum overN in Eq. ~76! and we find the following
propagators for the composite states:

a Dirac vector–flavor singlet with propagator

8dmn

2h12Am24y222d
~91!

wherea,b are the Dirac vector indices
a Dirac singlet—flavor vector with propagator

28d IJ

2h212y222d
~92!

whereI ,J are the flavor vector indices.
These have the form of massive bosonic propagators

to the following caveat~of course, higher order corrections
1/d may induce shifts in the precise location of the poles,
well as their residues!.

The propagators in Eq.~91! contain the matrix 2Am in the
denominator. However, this term must be ignored since
sub-dominant in 1/d, compared with the ~lattice!
d’Alembertianh.

The numerator of the propagator~91! carries a delta func-
tion only, instead of the usual tensor structuredmn

2]m]n /m2. This is also an artifact of the 1/d approximation.
Notice also that the terms which would play the role o

mass squared in the denominators have an apparently w
sign. However, it is easy to check that the composite fi
excxcx @whereex5(21)(mxm as usual# does lead to a mas
sive Dirac singlet—flavor vector propagator with ma
squaredm(0,1)

2 512y222d512y226. Similarly, one obtains
a massive Dirac vector–flavor singlet with a mass squa
m(1,0)

2 54y222d54y226. We thus conclude that the righ
interpolating field isexcxcx @25#.

The conclusion is that we find massive bound states
fermions in the PMS phase. They are bound by the str
K.

03450
t-
e

-

up

s

is

ng
d

d

f
g

interactions with the spin waves. These composites
lighter than the elementary fermions in this phase, whey
moves away from the valuè.

VI. CONCLUSIONS

In this work we have concerned ourselves with the g
eral features and the analytical and numerical study of
lattice model given by expression~2!.

From the numerical side, we have developed a n
method that exactly solves the technical problem related
the length-1 constraint on the spin variable.

The model describes qualitatively some of the proper
of the doped copper oxide compounds@1,2# and has interest-
ing properties in the strong coupling regime. In fact, at t
mean-field level, no light fermion excitations have be
identified in the FM~S! and PMS phases. However, in th
AFM~S! phase, see Sec. V B, light excitations around m
menta (6p/2,6p/2,6p/2) have been found. Its possibl
relevance for the doped copper oxide compounds has b
noticed in@1,2,4#.

Concerning the PMS phase~see Fig. 1!, the situation is
also interesting. While the fermionic excitations in this pha
are very heavy~see Sec. V A! we have found light bound
states of fermions~see Sec. V C!. They are spin singlet
bosonic states of charged fermions bound by the strong
teractions with the spin waves. A similar result has be
found in the model of Ref.@25#.

The next step is to study the model in the presence
chemical potential and at finite temperature~after going to
311 dimensions!. In fact, as we have proved in Sec. II, th
fermion determinant is still real after the introduction of th
chemical potential.
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