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The 7/11 rule: An estimate ofm,/f
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We derive an estimate for the ratio of the rho mass and the pion decay constant from an analysis of vector
and axial-vector two-point functions using larbje- lowest-meson dominance, and operator product expan-
sion, in the chiral limit. We discuss the extension of this analysis to the scalar and pseudoscalar sector.
Furthermore, this leads to a successful parameter-free determinationlgfebeplings of the chiral Lagrang-
ian if an improved Nambu—Jona-Lasinio ansatz for Green functions is assumed at low energies.

PACS numbgs): 12.38-t, 11.15.Pg, 11.55.Hx

[. INTRODUCTION is also suppressed by higher powers of momenta. In practice,
how far one can go is an open question, and may depend on
LargeN, expansiori1] offers at present the only nonper- the channel one is looking at. Second, one should expect that
turbative analytic approximation to QCD. This approxima-any linear combination of sum rules that is an order param-
tion is powerful enough to allow, for instance, a proof eter of chiral symmetryi.e., which would vanish were chiral
(within certain assumption®f the expected pattern of chiral Symmetry unbrokenwould be better approximated by our
symmetry breaking2]. In particular, for Green functions of one-resonance-plus-continuum description than something
color-singlet quark bilinears, the lowest order in this expanthat is not, as the former does not depend on our simple
sion corresponds to a theory of an infinite number of stabl@nsatzfor the onset of the perturbative continuum, since it
mesons. At low energies there exists an effective field theorynust cancel by definition in such combinations.
description in terms of what is called chiral perturbation In Sec. I, we will consider two-point functions of the
theory[3,4] which corresponds to a systematic expansion oivector and axial-vectanonsinglet flavor currents. This will
Green functions involving Goldstone mesons in powers ofead us to a new relation between the rho mags its elec-
momenta and light quark masses. The resonance saturatitlomagnetic decay constahf, andf .. This relation turns
of the O(p*) Gasser-Leutwyler low-energy constahtsof ~ out to work remarkably well when compared to experimental
Refs.[5,6] can then be viewed as the matching between chivalues of these parameters. In Sec. Ill, we discuss the exten-
ral perturbation theory and lardés QCD in the low-energy sion of this type of analysis to the scalar and pseudoscalar
regime[7]. sector. While we find a relatively stable value for the scalar
At high energies, QCD is described more efficiently by mass, this extension also exhibits the limitations of the ap-
weak-coupling perturbation theofgnhanced with the opera- proach, notably with respect to the chiral condensate. We
tor product expansiofOPB)]. Unlike the low-energy coun- make contact with a previous analysis based on a Nambu—
terpart, the matching between the high-energy regimes olona-Lasinicansatzin Sec. IV, and summarize in Sec. V.
largeN. QCD and perturbative QCD has been studied much

less systematically: even _though it has an enormous impact Il. VECTORS
on our understanding of important problems such as weak
matrix elements, see, for instance, R&i. Although historically the two Weinberg sum rulgk3] for

Following Ref.[7] we will assume that the spectrum of the p anda; mesons,
this infinite tower of mesons can be reasonably approximated
by just one resonance plus a sharp onset of the perturbative f2mi=1f5 m3 +f2, (2.2
. . 1 1
continuum at a scals, (global duality [9,10]. Furthermore,
in order to simplify the analysis, we will work in the chiral
limit. The scales, is fixed by the requirement of matching to
the first term in the OPIELL]. Higher terms in the OPE then
become fixed12] in terms of the resonance parameters. came before the largd; expansion, they can be derived in
Concerning the reliability of this description we expect aour context in the following way10]. One assumes that the

certain “hierarchy” in this approach. First, at higher orders vector-current two-point functiofil,(g?), defined from
in the OPE, our simple description is likely to break down,
but then the relative importance of the corresponding terms

fomp=F2m; (2.2

HXV(Q):if dx €(T(V,,(x)V1(0)))
*Permanent address. =(9,9,~ 9., y(g), 2.3
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with VM(X)ZE(X) y,U(x), can be described bgup to one Combining Egs.(2.5),(2.8) and eliminating the gluon con-
subtraction densate between Eq€2.6),(2.9 yields the two Weinberg

sum rules in the form Eq$2.1),(2.2).

One may expect these sum rules to be reasonably well
satisfied, if the “onset” of perturbation theory occurs at a
scale/s, [for which a phenomenological value can be cal-
culated from Eq.(2.5] abovemal, where presumably one

may trust perturbative QCD. In addition, the sum rules do
not depend on the gluon condensate. Equat®6) then
gives a phenomenological estimate for the gluon condensate
c as well, but this estimate may be less reliable, because it
+ 3 (4m)2 +oe [ O(t=5), 2.4 arises as the difference between two large numbers, one rep-
resenting the low-energy, and the other representing the
high-energy behavior dfl, .

So far, we only reviewed a derivation of long-known re-
Sults. However, we may carry this procedure one step fur-
ther, and also eliminate the fermion condensate between Egs.
(2.7),(2.10. Substituting the value o, from Eq. (2.5, the
result is a relation betweem,, f,, andf;

1
— 2.-2 2
;Im Iy (t)=2f m o(t—m?)

wheref, is the electromagnetic decay constant of the rho.
The ellipsis represents higher-order perturbative correctiong
above a certain energys,.

In the chiral limit, an analogouansatzthen holds for
ImII, in terms of corresponding parameters for the de-

fined from the axial curren ,(x) = d(x) Yu¥sU(X), except

that a term representing the plonfﬂ:{t)é(t) has to be 3 (4m)*
added (we use the convention in which the experimental 1_Z > fp
value of f ,=93 MeV). Since perturbative QCD does not NG _1 2.19)
see chiral symmetry breaking, one talggsthe same in the ffT -1 3 (477)4 11’ '
vector and axial channels. “ 23 T1 e p

One may now calculatHV,A(Qz) for Euclidean momen- fomy, NG

tum Q from Eg.(2.4) and confront it with the OPE result for
large Q2. One obtains the following set of relatiof®,11,7: ~ oncem, andf, are eliminated using Weinberg's sum rules.
The fact that the right-hand side of EQ.11) is negative
4 N, already Ieads to an interesting lower boundfgn First, note
2f2m2— 3 5S0=0, (25 thatf2m2>f2, from Eq.(2.1. It then follows that the de-
(4) nomlnator of the left-hand side of EQ.11) is larger than
the numerator, and hence that the numerator has to be nega-
tive. In fact, we have

2.4 2__
—2fpmp+§(477)230 (asG,,G*") ) )
4 N 4 N 1
(2.6 ——° < P ¢ —. (2.12
3 (4m)* 3 (4m)* f2
4 N 28 — T2 2
2.6_ " "¢ 3 “° 2 fem
2fpmp 9 (477)250— 9 mag( i), (2.7 p'lp

and from the left inequality it follows thaft,>0.148. Using
where the second term on the left-hand side of each of these,=87 MeV (as an estimate of what its value would be in
equations comes from the leading term in the perturbativeéhe chiral limit[4]), andm,=770 MeV, the right inequality
contribution to Inily, and the right-hand side is leading leads tof ,<0.171. This compares well with the experimen-
order inag and 1N.. (Note that all terms are of the same tal valuef,=0.20 if we take into account that we have used
order inN;.) For the axial channel, one obtains the largeN, (narrow resonangeand chiral approximations.
At this point we bring in yet another ingredient. Within

4 N, our set of assumptions, another relation betwegn f ,, and
2f3 m; +2f2— 3 5S0=0, (2.8, was previously obtained in Ref5] from the requirement
(4) that the pion electromagnetic form factor and axial form fac-
tor in m—ev,y satisfy unsubtracted dispersion relations:
o mi 42 e szzime G*") 2= 2f2
a al 3 (4m)2 07 1o\ s my ' fom,=2f7. (2.13
(2.9
The right inequality now translates infg<0.176(12% be-
4 N 44 low the experimental valyeln addition,_ this leads to a com-
2f2 md — CSi=—mag P2 (2.10  Plete solution for all the parameters in the vector and axial
19 (44)? 9 channels in terms of . (for N.=3):

034018-2



THE 7/11 RULE: AN ESTIMATE OFm,,/f . PHYSICAL REVIEW D 61 034018

10 is no contribution from dimension 6 gluon condensates to the
(477fp)2=4(477fal)2=—, (2.14  order consideredl17].) However, recent attempts to extract
NG information on the actual value of this ratio fromdecays
data are consistent with a value not very different from
—7/11[18]. A change of the ratic-7/11 by 10% leads to a
change off , of about 1%. Note also that just the fact that the
right-hand side of Eq(2.11) is negative already led to an
and estimatef ,=0.161), given the experimental value of the
rho mass.
Vso=4mf (2.16 Second, one expects the estimates for the condensates to
be less reliable than those for tipeand a; parameters as
N 4 they arise from a subtle balance between the low- and high-
(@G, G"") = ?773(5—2\/_)1‘7, (.17 energy ansdze for the vector and axial-vector two-point
functions. We also remind the reader that, as a matter of
principle, the gluon condensate has a physical meaning only
Waswl@z_ LAt (2.18  in conjunction with the perturbative part and not in isolation
[19]. All this, however, does not affect the Weinberg sum
Using f,=87 MeV, this gives m,=765 MeV, m,  rules orthe sumrule Eq2.1D. _ _
~1082 MeV, f,=0.16, andf, =0.08 which are remark- Third, one may expect thgt chiral correctlorts to the ratio
. 1 ) m,/f . are not large by noticing that the experimental value
ably good €, is only poorly known experimentally 8.3 is close tomys /fc=7.9. (The difference between the
The scale\sy,=1.09 GeV, slightly larger than the, two ratios should be due mainly to chiral corrections from
mass, is acceptable for the “onset” of perturbation theory.the strange quark mass.
Even the condensatéahich, as argued above, might be ex-
pected to fare less wellare reasonablez(aSGMG”“> IIl. SCALARS
=0.014 GeV and magy¥)?=(330 MeV)°=13x10"*
Ge\P. These numbers may, for instance, be compared to
(asG,,G*")=0.048-0.030 GeV} from Ref.[14], and to
the combination magp)?=(9+2)x10"* Ge\P as ob-
tained from the fit to tau decays with the four-quark conden-,
sate recently performed in Rgfl5].
Using the two-loop running af in the modified minimal
subtraction (M$ scheme,

J6

m§=m§1/2= ?(4771*,7)2, (2.15

In the previous section, we have applied some rather
simple phenomenological assumptions to an analysis of vec-
tor and axial-vector two-point functions. This led to a com-
plete and rather remarkable determination of the vector and
‘axial-vector resonance parametens . andf, , . Here we

would like to explore what happens when we attempt to do
the same in thépseudgscalar sector.

Again, we assume that, in the large and chiral limits,
the scalar and pseudoscalar two-point functions, given by

as(pm) _ A
7T log w2/ A?

log logu?/ A2
B glogu

, (219
log u?/A? 219

HS,P(Q):iJ dx éqx<T[‘JS,P(X)J;P(0)]>1 (3.2

with A=4/11 andB=102/121 forN.=% and A=4/9, B o .
=64/81 atN.=n;=3, one can now try to give an estimate whereJg(x)=d(x)u(x) andJp(x)=d(x)ysu(x), can be de-
for the value of the chiral condensate at the segleUsing  scribed by

A=300-400 MeV and N.=3w, with ag( S/
=0.097-0.160, one obtains

IMsp(Q )—f P iIm ITg p(t)+ subtractions,
(ph)(Vs0)= — (319+ 13 MeV)?, (2.20 orQn T 3.2

where the error comes from the variation «f. with

At this point, we would like to make several comments
about the stability of these results. N .

First, unlike the Weinberg sum rules, E&.11) does de- Im TI4(t)=16B%c%8(t—m3) + —°2K2t0(t—so),
pend on higher-order corrections in, to the sj terms and (4m)
the condensate terms in Eq2.5—(2.10. To leading order,
a corrections to theg terms can be incorporated by replac-
ing N./(47)%2—=Nc(1+ as/m)/(47)? in Eq. (2.11) [16],
which leads to a value off, increased by a factor 1 + Ne 2t0(t— S

_ b , 5 K2t0(t—Sg), (3.3

+ a4/(27). With the range of values fatg above, this leads (4m)
to an increase of at most 8%, or a decreasengfby the
same amount. There are also perturbative corrections to thehere we use the notation of RéB]. The scales, is not
ratio —7/11 in Eq.(2.11), which are not known to ugsThere  necessarily the same as the scgjen the vector sector. To

Im I1p(t)=2B2f25(t) + 16B%d2 8(t—m3)
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first order in perturbation theory, the facteris known to  for ¢, d,,, which are then still logarithmically dependent

contain very largexs corrections 20} on the scales, (throughay). The additional equation is pro-
vided by Eq.(3.5) [or equivalently Eq(3.7)], and we obtain

k=1+ as(p) 1_7_2|0 tz ' (3.4) asoll_Jtion fqr_cm, dm ., and%o. It turns out that the solution is
3 very insensitive to the gluon condensdsee below This

leaves us with the question of what values to usenfigfs .
which is the reason why we do not discard it right from thewe will assume thamp corresponds to the mass of the
beginning. Equatiort3.4) is only valid atN.=3. However,  7(1300), which is firmly established by the Particle Data
as we will see in the numerical analysis that follows, theseGroup. As is well known, the situation in the scalar sector is
large s corrections turn out to have no significant impact onmuch less understodébr a recent discussion, see Rif4]).
the numerical results. Therefore, instead of directly guessing a value for the scalar

For large Euclidea®?, we may again confroffis p(Q%)  mass, we will add an extra equation. Within our set of as-
calculated from Eq9.3.2)—(3.4) with the OPE result of Ref. sumptions, the low-energy constdry [4] is determined by
[21]. Taking =3, and equating inverse powers g,  [6]
one finds, witth—(z,m,/;)/f2 in the largeN, and chiral

T 2 2
limits Cm  dy
Lg=—0 — (3.13
®om2 2md
16820~ % 2161 (80) = o (G, G 3 i i
m 1677250"1(50)_§<as WG, 39  The experimental value isg=0.9(3)x 103 [25].

Note that we have not used E®.6) [or, equivalently, Eq.
N 99 B (3.89)] separately yet. _ _ _
—16820r2nm§+ CZSng(So):—ngas(‘/’@z (3.6 Let us now consider solutions. Takinf,=87 MeV,
A Aws=372 MeV [26], mp=1300 MeV, andLg=0.0009,
and using the results Eq&.17),(2.18 for the condensates,

in the scalar sector, and we obtain
Ne ., -~ 1 c,=41 MeV, d,=27 MeV, (3.14
2B2f2 + 16B2d2 — ——52k4(So) = =—( @G ,,G**), " "
i ™ 16m2 ° 8w a
3.7 ms=0.86 GeV, \$,=2.16 GeV. (3.19

N 14 o Note that therr(1300) “decouples from”Lg in that it only
— 16B2d2m3+ _°2§ng(§0) =§7ms<¢¢,>2 (3.9  gives avery §mal| contribution to it.
24 Except forsy, these results are rather stable. In order to

in the pseudoscalar sector. The leading perturbative Correg_emonstrate this, we will vary one input at a time and see

tions «, and «, stem from the factor in Eq.(3.4), and read "W the values oty,, dp,, ms, ands, change. _
Varying the gluon condensate from 0 to 10 times the

o (\/g—) value given in Eq.(2.17 has no significant impact on the
st Y20 , (3.9 solution. Changing\y,sto 300 MeV changes these numbers
by at most about 5%. Even changing thg corrections in

- 20
Kl(SO)z 1+ ?

v

— the « factor by a huge factor such as 10, or omitting the
- 19 ag(Vsp) correction altogether, does not significantly change these
K2(So) =1+ — : (3.10 P
3 ™ numbers(except the value of).

) . . Changingmp, and even more shg, has a bigger effect
At this point, let us discuss how we may try to explore [note that these effects are related through BdL3]. Tak-

these equations. In order to eliminate the dependence on thgy m,, from 1400 to 1200 Me\(keepingLg=0.0009) leads
gluon condensate and the perturbative terms, we might

choose to first consider combinations that are order param-
eters of chiral symmetry, and look at the differen¢a@$)— 38 MeV<c,<46 MeV,
(3.7 and(3.6)—(3.8), i.e.[22,23,
22 MeV<d,,<34 MeV,
8c2—8d2—f2=0, (3.12)
0.84 Ge\Kmg<<0.90 GeV,
2~2 A2 242 A2 3 TI\2
B Cmms— B dnmp = Zmars(yy)”. o1 2.08 Gek\/5,<2.32 GeV. (3.16
3.1
o We found no solution fomp=1GeV. Similarly, chang-
Given the values ofrag(yy)? [for instance, from the vector ing Lg from 0.0012 to 0.0008keepingmp=1300 MeV)
sector, cf. Eq(2.18] andmg p we may solve these equations gives
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36 MeV<c,<81 MeV, L$*P/Lth
19 Mev<d, <74 MeV, 2
0.71 Ge\xmg<1.20 GeV, s
2.02 GeK \s,<3.25 GeV. (3.17) ) S } ______________________ R 2
Although all these solutions satisfy the differen&6)— T
(3.9), they do not satisfy Eq(3.6) or Eq. (3.8) separately. 0.5
With the value ofmag(¥y)? from the vector sector, there

does not appear to exist any reasonable solution to the four
equations Egs(3.5—(3.8) (for any reasonable choice of
mp). Perhaps another indication of this problem is the value

of So, which is substantially larger than the valuesgffound FIG. 1. Ratios of the experimental values and those obtained

in the vector sector. AtXys=372 MeV, one hasrs(So)  from Eqs. (4.1),(4.2) for the O(p*) constantsL;. The error bars
~0.09(0.07), to be compared witfg(sp) ~0.15(0.12) for  represent the experimental errors.

N.=n;=3 (N.=). This makes a difference of about 20%

in the value of( ). If we solve the same set of equations, (For reduction factors smaller than 11, we fisg<m3,
but with Eq.(3.6) replacing Eq.(3.5), we obtain, instead of which is not acceptable: the basic assumption was that two-

Ly Lo Ls Ls Lg Lg Lig

the result(3.14 and(3.19, point functions can be described by a small number of nar-
row resonances below an energy scgjeand perturbative
Cnm=40 MeV, d,=26 MeV, (3.18  QCD above that scaleWhat we learn is that even in this
case the solutiofin particular the scalar masstays roughly
ms=0.86 GeV, Vs,=1.64 GeV. (3.19  in the neighborhood of the resonance parameters found in

Egs.(3.14),(3.15.
Resonance parameters Stay the same; the Only th|ng that While it is clear that the scalar sector is less Simp|e than

changes is the value &f. This is an example of a point we the vector sector in Fhis _approach_, one interesting_ fact
made in the Introduction: our simpknsatzfor the onset of emerges from this section: it seems likely that there exists a

the perturbative continuum seems to make B¢f) and Eq. scalar resonance with mass between 700 and 1200 MeV in

(3.8 incompatible(but, see below the largeN, and chiral limits.
However, since the continuum cancels in the difference,
the combination(3.6)—(3.8) does lead to a solution. Of IV. THE L; COUPLINGS

course, the lack of a solution to both E¢3.6) and Eq.(3.9 In Ref.[7] it was shown how an extended Nambu—Jona-

may merely mean that our spectrum is too simple 10 reproy aqjniq [27] ansatzfor Green's functions in QCD can be

duce the phy5|c_s ?\f dimension-six operators in th? OI;E'rmproved to restrict the parameters of the lowest-meson
However, even in the present case, we may appreciate hoy, inance approximation to the larg- limit in a way

staple resonance parameters seem to be by means of the fgin;qy jg compatible with several examples of the OPE. The
lowing little exercise. First notice that, up to now, we havegn,| otcome of this analysis was a determination of all the

been using the value O‘fTas(Z@z obtained in the(axi- | s leading at largeN, in terms of the ratid ,/m,. At N,
al)vector sector. Just as we studied the effect of the variation- 3 they read?7]

of other inputs earlier, this brings us now to the sensitivity of
the solution in the scalar-pseudoscalar sector to the value of 38 3 3 f2
the quark condensate. It is interesting to see what happens if 6L;=3L,=— 7L3=4L5=8L8=ZL9= - L10:§ —-

. . _ . m
we lower, by fiat the value of this four-fermion condensate. p4 1
[The value of( ) in Eq. (2.20 is rather high in compari- .0
son with other phenomenological estima}éss it turns out,  Since we can now use E(R.15 to fix this ratio to be
we happen to find a solution fongp, Cpy, dp, ands, from

the whole set of equationd€gs. (3.5—(3.8), (3.13] if we 3 ffr 15 1 42
lower the value of Eq(2.18 by a fudge factor 11: 8 2T o Rana 2’ :
8m2 86 167
Cm=51 MeV, dn=41 MeV, (3.20 Eqgs.(4.1),(4.2) lead to a parameter-free determination for the
L; couplings.
ms=0.92 GeV, mp=1.13 GeV, (321 This is plotted in Fig. 1, where we use=m, for the
renormalization scale in these couplings to estimate their ex-
V8o=1.14 GeV. perimental values. The error bars represent only the errors in
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the experimental values, and one should keep the uncertaintyactions are needed in E.2), while only one subtraction

in the choice of renormalization scale in mind while consid-is necessary in the vector sector, because of current conser-
ering Fig. 1. For instance, if we change the scale fropto  vation.

1 GeV, the couplingd.¢ andL,, change by—6%, respec- As a consequence of this, our analysis for the scalars does
tively, 8%, which is more than the experimental error. Ofin principle depend on the gluon and chiral condensates. The
course, a more precise knowledge about the seaéwhich ~ Sensitivity to the value of the gluon condensate turns out to
the matching takes place would be required for a more deP€ Vvery small. This is not true for the chiral condensate

tailed analysigwhich would necessarily go beyond leading (##). We find, in particular, that the value of the chiral
order in 1N,). condensate obtained from the vectors, is too large to satisfy

all equations in the scalar sector with reasonable values for
all parameters. This is consistent with the fact that this value
of the condensate is also on the high side in comparison with
Let us summarize what we have learned from this simpledther estimates. Interestingly, we find that the value of the

largeN, inspired model for vector and scalar two-point Scalar mass is very insensitive to the value of the chiral con-
functions. densate. It depends, however, on the valué pfwhich we

First, we showed that the usual “largé: plus lowest- used as input We would like to emphasize that one should
meson dominance” derivation of the two Weinberg sumnot try to identify this largeN. scalar resonance with the
rules can be extended to give us a third sum rule,(Eq.), ~ Proado [24] appearing inm—m scattering, as the latter is
relating vector masses and couplings. As with the first twd"ore likely a7 —m bound state[28], whose dynamics is

sum rules, this sum rule is nontrivial because of the fact thfubleadmg at largél;, and cannot give rise to a leading

chiral symmetry is spontaneously broken, with nonvanishin argeN, coupl[ng S.UCh ass. . .
To summarize, in all cases we considered, we find a scalar

V. DISCUSSION

fr an.d<’/’w>' . , mass between-0.7 and~1.2 GeV[29], where the spread
This new sum rule can be combined with B8.13 t0 5 mostly due to the error in the experimental value_gf
expressm,,m, andf,.f, interms off . We findm,/f Finally we use our Eq(2.15 in combination with the

=8.8, andf,=0.16, to be compared with the experimental analysis of Ref[7] to produce a parameter-free determina-
valuesm, /f,=8.3, andf ,=0.20. (The a; parameters then tion of the Gasser-Leutwyldr; couplings in theO(p?) chi-
follow from the Weinberg sum rules in the usual wayhe ral Lagrangian, see Fig. 1. The overall agreement for the
agreement between our values and the experimental onesSgvenL; couplings is remarkable.
very good, considering that theN/ and chiral expansions
are ingredients of our analysis. The scale for the onset of
perturbation theory comes out slightly higher than the We thank M. Knecht, A. Pich, E. de Rafael, A. Gonzalez-
mass. Arroyo, and F. Yndurain for discussions and comments and
One also obtains values for the gluon and chiral condenA.A. Andrianov and D. Espriu for pointing out a numerical
sates. Note, however, that the three sum rules are derived layror in a previous version of the manuscript. M.G. thanks
eliminating the condensates, and that our resultsxipand  the Physics Department of the University of Washington,
f, are therefore independent of their values. where part of this work was carried out, for hospitality. M.G.
Then, we presented a similar analysis for the scalar andias supported in part by the Spanish Government through
pseudoscalar two-point functions. An important qualitativeGrant No. SAB1998-0171 and as by the U.S. Department of
difference is the fact that, in this case, restricting ourselves t&nergy Outstanding Junior Investigator program. S.P. was
the same set of condensates in the OPE, only féigs. supported by the research project CICYT-AEN98-1093 of
(3.5—(3.8)] instead of sixEqgs.(2.5—(2.10] are obtained. the Spanish Government and by TMR, EC-Contract No.
This is related to the fact that in the scalar sector, two SUbERBFMRX-CT980169QEURODA®NE).
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