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The 7/11 rule: An estimate ofmr /f p
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We derive an estimate for the ratio of the rho mass and the pion decay constant from an analysis of vector
and axial-vector two-point functions using large-Nc , lowest-meson dominance, and operator product expan-
sion, in the chiral limit. We discuss the extension of this analysis to the scalar and pseudoscalar sector.
Furthermore, this leads to a successful parameter-free determination of theLi couplings of the chiral Lagrang-
ian if an improved Nambu–Jona-Lasinio ansatz for Green functions is assumed at low energies.

PACS number~s!: 12.38.2t, 11.15.Pg, 11.55.Hx
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I. INTRODUCTION

Large-Nc expansion@1# offers at present the only nonpe
turbative analytic approximation to QCD. This approxim
tion is powerful enough to allow, for instance, a pro
~within certain assumptions! of the expected pattern of chira
symmetry breaking@2#. In particular, for Green functions o
color-singlet quark bilinears, the lowest order in this expa
sion corresponds to a theory of an infinite number of sta
mesons. At low energies there exists an effective field the
description in terms of what is called chiral perturbati
theory@3,4# which corresponds to a systematic expansion
Green functions involving Goldstone mesons in powers
momenta and light quark masses. The resonance satur
of the O(p4) Gasser-Leutwyler low-energy constantsLi of
Refs.@5,6# can then be viewed as the matching between c
ral perturbation theory and large-Nc QCD in the low-energy
regime@7#.

At high energies, QCD is described more efficiently
weak-coupling perturbation theory@enhanced with the opera
tor product expansion~OPE!#. Unlike the low-energy coun-
terpart, the matching between the high-energy regimes
large-Nc QCD and perturbative QCD has been studied mu
less systematically, even though it has an enormous im
on our understanding of important problems such as w
matrix elements, see, for instance, Ref.@8#.

Following Ref. @7# we will assume that the spectrum o
this infinite tower of mesons can be reasonably approxima
by just one resonance plus a sharp onset of the perturb
continuum at a scales0 ~global duality! @9,10#. Furthermore,
in order to simplify the analysis, we will work in the chira
limit. The scales0 is fixed by the requirement of matching t
the first term in the OPE@11#. Higher terms in the OPE the
become fixed@12# in terms of the resonance parameters.

Concerning the reliability of this description we expec
certain ‘‘hierarchy’’ in this approach. First, at higher orde
in the OPE, our simple description is likely to break dow
but then the relative importance of the corresponding te
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is also suppressed by higher powers of momenta. In prac
how far one can go is an open question, and may depen
the channel one is looking at. Second, one should expect
any linear combination of sum rules that is an order para
eter of chiral symmetry~i.e., which would vanish were chira
symmetry unbroken! would be better approximated by ou
one-resonance-plus-continuum description than somet
that is not, as the former does not depend on our sim
ansatzfor the onset of the perturbative continuum, since
must cancel by definition in such combinations.

In Sec. II, we will consider two-point functions of th
vector and axial-vector~nonsinglet! flavor currents. This will
lead us to a new relation between the rho massmr , its elec-
tromagnetic decay constantf r , and f p . This relation turns
out to work remarkably well when compared to experimen
values of these parameters. In Sec. III, we discuss the ex
sion of this type of analysis to the scalar and pseudosc
sector. While we find a relatively stable value for the sca
mass, this extension also exhibits the limitations of the
proach, notably with respect to the chiral condensate.
make contact with a previous analysis based on a Nam
Jona-Lasinioansatzin Sec. IV, and summarize in Sec. V.

II. VECTORS

Although historically the two Weinberg sum rules@13# for
the r anda1 mesons,

f r
2mr

25 f a1

2 ma1

2 1 f p
2 , ~2.1!

f r
2mr

45 f a1

2 ma1

4 , ~2.2!

came before the large-Nc expansion, they can be derived
our context in the following way@10#. One assumes that th
vector-current two-point functionPV(q2), defined from

Pmn
V ~q!5 i E dx eiqx^T„Vm~x!Vn

†~0!…&

5~qmqn2gmnq2!PV~q2!, ~2.3!
©2000 The American Physical Society18-1
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with Vm(x)5d̄(x)gmu(x), can be described by~up to one
subtraction!

PV~Q2!5E
0

` dt

t1Q2

1

p
Im PV~ t !,

1

p
Im PV~ t !52 f r

2mr
2d~ t2mr

2!

1S 4

3

Nc

~4p!2
1 ••• D u~ t2s0!, ~2.4!

where f r is the electromagnetic decay constant of the r
The ellipsis represents higher-order perturbative correct
above a certain energyAs0.

In the chiral limit, an analogousansatz then holds for
ImPA in terms of corresponding parameters for thea1, de-
fined from the axial currentAm(x)5d̄(x)gmg5u(x), except
that a term representing the pion, 2f p

2 (t)d(t), has to be
added ~we use the convention in which the experimen
value of f p.93 MeV). Since perturbative QCD does n
see chiral symmetry breaking, one takess0 the same in the
vector and axial channels.

One may now calculatePV,A(Q2) for Euclidean momen-
tum Q from Eq.~2.4! and confront it with the OPE result fo
largeQ2. One obtains the following set of relations@9,11,7#:

2 f r
2mr

22
4

3

Nc

~4p!2
s050, ~2.5!

22 f r
2mr

41
2

3

Nc

~4p!2
s0

25
1

12p
^asGmnGmn&,

~2.6!

2 f r
2mr

62
4

9

Nc

~4p!2
s0

352
28

9
pas^c̄c&2, ~2.7!

where the second term on the left-hand side of each of th
equations comes from the leading term in the perturba
contribution to ImPV , and the right-hand side is leadin
order in as and 1/Nc . ~Note that all terms are of the sam
order inNc .) For the axial channel, one obtains

2 f a1

2 ma1

2 12 f p
2 2

4

3

Nc

~4p!2
s050, ~2.8!

22 f a1

2 ma1

4 1
2

3

Nc

~4p!2
s0

25
1

12p
^asGmnGmn&,

~2.9!

2 f a1

2 ma1

6 2
4

9

Nc

~4p!2
s0

35
44

9
pas^c̄c&2. ~2.10!
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Combining Eqs.~2.5!,~2.8! and eliminating the gluon con
densate between Eqs.~2.6!,~2.9! yields the two Weinberg
sum rules in the form Eqs.~2.1!,~2.2!.

One may expect these sum rules to be reasonably
satisfied, if the ‘‘onset’’ of perturbation theory occurs at
scaleAs0 @for which a phenomenological value can be c
culated from Eq.~2.5!# abovema1

, where presumably one
may trust perturbative QCD. In addition, the sum rules
not depend on the gluon condensate. Equation~2.6! then
gives a phenomenological estimate for the gluon conden
as well, but this estimate may be less reliable, becaus
arises as the difference between two large numbers, one
resenting the low-energy, and the other representing
high-energy behavior ofPV .

So far, we only reviewed a derivation of long-known r
sults. However, we may carry this procedure one step
ther, and also eliminate the fermion condensate between
~2.7!,~2.10!. Substituting the value ofs0 from Eq. ~2.5!, the
result is a relation betweenmr , f r , and f p :

12
3

4

~4p!4

Nc
2

f r
4

S 12
f p

2

f r
2mr

2D 21

2
3

4

~4p!4

Nc
2

f r
4

52
7

11
, ~2.11!

oncema1
and f a1

are eliminated using Weinberg’s sum rule
The fact that the right-hand side of Eq.~2.11! is negative

already leads to an interesting lower bound onf r . First, note
that f r

2mr
2. f p

2 , from Eq. ~2.1!. It then follows that the de-
nominator of the left-hand side of Eq.~2.11! is larger than
the numerator, and hence that the numerator has to be n
tive. In fact, we have

4

3

Nc
2

~4p!4
, f r

4,
4

3

Nc
2

~4p!4

1

12
f p

2

f r
2mr

2

, ~2.12!

and from the left inequality it follows thatf r.0.148. Using
f p587 MeV ~as an estimate of what its value would be
the chiral limit @4#!, andmr5770 MeV, the right inequality
leads tof r,0.171. This compares well with the experime
tal value f r50.20 if we take into account that we have us
the large-Nc ~narrow resonance! and chiral approximations.

At this point we bring in yet another ingredient. Withi
our set of assumptions, another relation betweenmr , f r, and
f p was previously obtained in Ref.@5# from the requirement
that the pion electromagnetic form factor and axial form fa
tor in p→eneg satisfy unsubtracted dispersion relations:

f r
2mr

252 f p
2 . ~2.13!

The right inequality now translates intof r,0.176~12% be-
low the experimental value!. In addition, this leads to a com
plete solution for all the parameters in the vector and ax
channels in terms off p ~for Nc53):
8-2
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~4p f r!254~4p f a1
!25

10

A6
, ~2.14!

mr
25ma1

2 /25
A6

5
~4p f p!2, ~2.15!

and

As054p f p , ~2.16!

^asGmnGmn&5
384

5
p3~522A6! f p

4 , ~2.17!

pas^c̄c&25
768

25
p4f p

6 . ~2.18!

Using f p587 MeV, this gives mr5765 MeV, ma1

51082 MeV, f r50.16, andf a1
50.08 which are remark-

ably good (f a1
is only poorly known experimentally!.

The scaleAs051.09 GeV, slightly larger than thea1
mass, is acceptable for the ‘‘onset’’ of perturbation theo
Even the condensates~which, as argued above, might be e
pected to fare less well! are reasonable:̂ asGmnGmn&
50.014 GeV4 and pas^c̄c&25(330 MeV)6.1331024

GeV6. These numbers may, for instance, be compared
^asGmnGmn&.0.04860.030 GeV4 from Ref. @14#, and to
the combination pas^c̄c&2.(962)31024 GeV6 as ob-
tained from the fit to tau decays with the four-quark cond
sate recently performed in Ref.@15#.

Using the two-loop running ofas in the modified minimal
subtraction (MS̄) scheme,

as~m!

p
5

A

logm2/L2 S 12B
log logm2/L2

logm2/L2 D , ~2.19!

with A54/11 andB5102/121 for Nc5` and A54/9, B
564/81 atNc5nf53, one can now try to give an estima
for the value of the chiral condensate at the scales0. Using
L5300–400 MeV and Nc53,̀ , with as(As0)/p
50.097–0.160, one obtains

^c̄c&~As0!52~319613 MeV!3, ~2.20!

where the error comes from the variation ofas .
At this point, we would like to make several commen

about the stability of these results.
First, unlike the Weinberg sum rules, Eq.~2.11! does de-

pend on higher-order corrections inas to the s0
n terms and

the condensate terms in Eqs.~2.5!–~2.10!. To leading order,
as corrections to thes0

n terms can be incorporated by repla
ing Nc /(4p)2→Nc(11as /p)/(4p)2 in Eq. ~2.11! @16#,
which leads to a value off r increased by a factor 1
1as /(2p). With the range of values foras above, this leads
to an increase of at most 8%, or a decrease ofmr by the
same amount. There are also perturbative corrections to
ratio 27/11 in Eq.~2.11!, which are not known to us.~There
03401
.

to

-

he

is no contribution from dimension 6 gluon condensates to
order considered@17#.! However, recent attempts to extra
information on the actual value of this ratio fromt decays
data are consistent with a value not very different fro
27/11 @18#. A change of the ratio27/11 by 10% leads to a
change off r of about 1%. Note also that just the fact that t
right-hand side of Eq.~2.11! is negative already led to a
estimatef r50.16(1), given the experimental value of th
rho mass.

Second, one expects the estimates for the condensat
be less reliable than those for ther and a1 parameters as
they arise from a subtle balance between the low- and h
energy ansätze for the vector and axial-vector two-poin
functions. We also remind the reader that, as a matte
principle, the gluon condensate has a physical meaning o
in conjunction with the perturbative part and not in isolati
@19#. All this, however, does not affect the Weinberg su
rules or the sum rule Eq.~2.11!.

Third, one may expect that chiral corrections to the ra
mr / f p are not large by noticing that the experimental val
8.3 is close tomK* / f K57.9. ~The difference between th
two ratios should be due mainly to chiral corrections fro
the strange quark mass.!

III. SCALARS

In the previous section, we have applied some rat
simple phenomenological assumptions to an analysis of v
tor and axial-vector two-point functions. This led to a com
plete and rather remarkable determination of the vector
axial-vector resonance parametersmr,a1

and f r,a1
. Here we

would like to explore what happens when we attempt to
the same in the~pseudo!scalar sector.

Again, we assume that, in the largeNc and chiral limits,
the scalar and pseudoscalar two-point functions, given b

PS,P~q!5 i E dx eiqx^T@JS,P~x!JS,P
† ~0!#&, ~3.1!

whereJS(x)5d̄(x)u(x) andJP(x)5d̄(x)g5u(x), can be de-
scribed by

PS,P~Q2!5E
0

` dt

t1Q2

1

p
Im PS,P~ t !1subtractions,

~3.2!

with

Im PS~ t !516B2cm
2 d~ t2mS

2!1
Nc

~4p!2
k2tu~ t2 ŝ0!,

Im PP~ t !52B2f p
2 d~ t !116B2dm

2 d~ t2mP
2 !

1
Nc

~4p!2
k2tu~ t2 ŝ0!, ~3.3!

where we use the notation of Ref.@6#. The scaleŝ0 is not
necessarily the same as the scales0 in the vector sector. To
8-3
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first order in perturbation theory, the factork is known to
contain very largeas corrections@20#

k511
as~m!

p S 17

3
22log

t

m2D , ~3.4!

which is the reason why we do not discard it right from t
beginning. Equation~3.4! is only valid atNc53. However,
as we will see in the numerical analysis that follows, the
largeas corrections turn out to have no significant impact
the numerical results.

For large EuclideanQ2, we may again confrontPS,P(Q2)
calculated from Eqs.~3.2!–~3.4! with the OPE result of Ref.

@21#. Taking m5Aŝ0, and equating inverse powers ofQ2,
one finds, withB52^c̄c&/ f p

2 , in the largeNc and chiral
limits

16B2cm
2 2

Nc

16p2
ŝ0

2k1~ ŝ0!5
1

8p
^asGmnGmn&, ~3.5!

216B2cm
2 mS

21
Nc

24p2
ŝ0

3k2~ ŝ0!52
22

3
pas^c̄c&2 ~3.6!

in the scalar sector, and

2B2f p
2 116B2dm

2 2
Nc

16p2
ŝ0

2k1~ ŝ0!5
1

8p
^asGmnGmn&,

~3.7!

216B2dm
2 mP

2 1
Nc

24p2
ŝ0

3k2~ ŝ0!5
14

3
pas^c̄c&2 ~3.8!

in the pseudoscalar sector. The leading perturbative cor
tionsk1 andk2 stem from thek factor in Eq.~3.4!, and read

k1~ ŝ0!511
20

3

as~Aŝ0!

p
, ~3.9!

k2~ ŝ0!511
19

3

as~Aŝ0!

p
. ~3.10!

At this point, let us discuss how we may try to explo
these equations. In order to eliminate the dependence on
gluon condensate and the perturbative terms, we m
choose to first consider combinations that are order par
eters of chiral symmetry, and look at the differences~3.5!–
~3.7! and ~3.6!–~3.8!, i.e. @22,23#,

8cm
2 28dm

2 2 f p
2 50, ~3.11!

B2cm
2 mS

22B2dm
2 mP

2 5
3

4
pas^c̄c&2.

~3.12!

Given the values ofpas^c̄c&2 @for instance, from the vecto
sector, cf. Eq.~2.18!# andmS,P we may solve these equation
03401
e

c-

the
ht

-

for cm , dm , which are then still logarithmically dependen
on the scaleŝ0 ~throughas). The additional equation is pro
vided by Eq.~3.5! @or equivalently Eq.~3.7!#, and we obtain
a solution forcm , dm , andŝ0. It turns out that the solution is
very insensitive to the gluon condensate~see below!. This
leaves us with the question of what values to use formS,P .
We will assume thatmP corresponds to the mass of th
p(1300), which is firmly established by the Particle Da
Group. As is well known, the situation in the scalar sector
much less understood~for a recent discussion, see Ref.@24#!.
Therefore, instead of directly guessing a value for the sc
mass, we will add an extra equation. Within our set of
sumptions, the low-energy constantL8 @4# is determined by
@6#

L85
cm

2

2mS
2

2
dm

2

2mP
2

. ~3.13!

The experimental value isL850.9(3)31023 @25#.
Note that we have not used Eq.~3.6! @or, equivalently, Eq.

~3.8!# separately yet.
Let us now consider solutions. Takingf p587 MeV,

LMS̄5372 MeV @26#, mP51300 MeV, andL850.0009,
and using the results Eqs.~2.17!,~2.18! for the condensates
we obtain

cm541 MeV, dm527 MeV, ~3.14!

mS50.86 GeV, Aŝ052.16 GeV. ~3.15!

Note that thep(1300) ‘‘decouples from’’L8 in that it only
gives a very small contribution to it.

Except for ŝ0, these results are rather stable. In order
demonstrate this, we will vary one input at a time and s
how the values ofcm , dm , mS, and ŝ0 change.

Varying the gluon condensate from 0 to 10 times t
value given in Eq.~2.17! has no significant impact on th
solution. ChangingLMS̄ to 300 MeV changes these numbe
by at most about 5%. Even changing theas corrections in
the k factor by a huge factor such as 10, or omitting theas
correction altogether, does not significantly change th
numbers~except the value ofŝ0).

ChangingmP , and even more soL8, has a bigger effect
@note that these effects are related through Eq.~3.13!#. Tak-
ing mP from 1400 to 1200 MeV~keepingL850.0009) leads
to

38 MeV,cm,46 MeV,

22 MeV,dm,34 MeV,

0.84 GeV,mS,0.90 GeV,

2.08 GeV,Aŝ0,2.32 GeV. ~3.16!

We found no solution formP&1GeV. Similarly, chang-
ing L8 from 0.0012 to 0.0006~keepingmP51300 MeV)
gives
8-4
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36 MeV,cm,81 MeV,

19 MeV,dm,74 MeV,

0.71 GeV,mS,1.20 GeV,

2.02 GeV,Aŝ0,3.25 GeV. ~3.17!

Although all these solutions satisfy the difference~3.6!–
~3.8!, they do not satisfy Eq.~3.6! or Eq. ~3.8! separately.
With the value ofpas^c̄c&2 from the vector sector, ther
does not appear to exist any reasonable solution to the
equations Eqs.~3.5!–~3.8! ~for any reasonable choice o
mP). Perhaps another indication of this problem is the va
of ŝ0, which is substantially larger than the value ofs0 found
in the vector sector. AtLMS̄5372 MeV, one hasas( ŝ0)
'0.09(0.07), to be compared withas(s0)'0.15(0.12) for
Nc5nf53 (Nc5`). This makes a difference of about 20
in the value of̂ c̄c&. If we solve the same set of equation
but with Eq.~3.6! replacing Eq.~3.5!, we obtain, instead o
the result~3.14! and ~3.15!,

cm540 MeV, dm526 MeV, ~3.18!

mS50.86 GeV, Aŝ051.64 GeV. ~3.19!

Resonance parameters stay the same; the only thing
changes is the value ofŝ0. This is an example of a point w
made in the Introduction: our simpleansatzfor the onset of
the perturbative continuum seems to make Eq.~3.6! and Eq.
~3.8! incompatible~but, see below!.

However, since the continuum cancels in the differen
the combination~3.6!–~3.8! does lead to a solution. O
course, the lack of a solution to both Eqs.~3.6! and Eq.~3.8!
may merely mean that our spectrum is too simple to rep
duce the physics of dimension-six operators in the O
However, even in the present case, we may appreciate
stable resonance parameters seem to be by means of th
lowing little exercise. First notice that, up to now, we ha
been using the value ofpas^c̄c&2 obtained in the~axi-
al!vector sector. Just as we studied the effect of the varia
of other inputs earlier, this brings us now to the sensitivity
the solution in the scalar-pseudoscalar sector to the valu
the quark condensate. It is interesting to see what happe
we lower,by fiat, the value of this four-fermion condensat
@The value of̂ c̄c& in Eq. ~2.20! is rather high in compari-
son with other phenomenological estimates.# As it turns out,
we happen to find a solution formS,P , cm , dm , andŝ0 from
the whole set of equations@Eqs. ~3.5!–~3.8!, ~3.13!# if we
lower the value of Eq.~2.18! by a fudge factor 11:

cm551 MeV, dm541 MeV, ~3.20!

mS50.92 GeV, mP51.13 GeV, ~3.21!

Aŝ051.14 GeV.
03401
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~For reduction factors smaller than 11, we findŝ0,mP
2 ,

which is not acceptable: the basic assumption was that t
point functions can be described by a small number of n
row resonances below an energy scales0, and perturbative
QCD above that scale.! What we learn is that even in thi
case the solution~in particular the scalar mass! stays roughly
in the neighborhood of the resonance parameters foun
Eqs.~3.14!,~3.15!.

While it is clear that the scalar sector is less simple th
the vector sector in this approach, one interesting f
emerges from this section: it seems likely that there exis
scalar resonance with mass between 700 and 1200 Me
the large-Nc and chiral limits.

IV. THE L i COUPLINGS

In Ref. @7# it was shown how an extended Nambu–Jon
Lasinio @27# ansatzfor Green’s functions in QCD can b
improved to restrict the parameters of the lowest-me
dominance approximation to the large-Nc limit in a way
which is compatible with several examples of the OPE. T
final outcome of this analysis was a determination of all
Li ’s leading at largeNc in terms of the ratiof p /mr . At Nc
53, they read@7#

6L153L252
8

7
L354L558L85

3

4
L952L105

3

8

f p
2

mr
2

.

~4.1!

Since we can now use Eq.~2.15! to fix this ratio to be

3

8

f p
2

mr
2

5
15

8A6

1

16p2
, ~4.2!

Eqs.~4.1!,~4.2! lead to a parameter-free determination for t
Li couplings.

This is plotted in Fig. 1, where we usem5mr for the
renormalization scale in these couplings to estimate their
perimental values. The error bars represent only the error

FIG. 1. Ratios of the experimental values and those obtai
from Eqs. ~4.1!,~4.2! for the O(p4) constantsLi . The error bars
represent the experimental errors.
8-5
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the experimental values, and one should keep the uncerta
in the choice of renormalization scale in mind while cons
ering Fig. 1. For instance, if we change the scale frommr to
1 GeV, the couplingsL9 and L10 change by26%, respec-
tively, 8%, which is more than the experimental error.
course, a more precise knowledge about the scalem at which
the matching takes place would be required for a more
tailed analysis~which would necessarily go beyond leadin
order in 1/Nc).

V. DISCUSSION

Let us summarize what we have learned from this sim
large-Nc inspired model for vector and scalar two-poi
functions.

First, we showed that the usual ‘‘large-Nc plus lowest-
meson dominance’’ derivation of the two Weinberg su
rules can be extended to give us a third sum rule, Eq.~2.11!,
relating vector masses and couplings. As with the first t
sum rules, this sum rule is nontrivial because of the fact t
chiral symmetry is spontaneously broken, with nonvanish
f p and ^c̄c&.

This new sum rule can be combined with Eq.~2.13! to
expressmr ,ma1

and f r , f a1
in terms of f p . We findmr / f p

58.8, andf r50.16, to be compared with the experimen
valuesmr / f p58.3, andf r50.20. ~The a1 parameters then
follow from the Weinberg sum rules in the usual way.! The
agreement between our values and the experimental on
very good, considering that the 1/Nc and chiral expansions
are ingredients of our analysis. The scale for the onse
perturbation theory comes out slightly higher than thea1
mass.

One also obtains values for the gluon and chiral cond
sates. Note, however, that the three sum rules are derive
eliminating the condensates, and that our results formr and
f r are therefore independent of their values.

Then, we presented a similar analysis for the scalar
pseudoscalar two-point functions. An important qualitat
difference is the fact that, in this case, restricting ourselve
the same set of condensates in the OPE, only four@Eqs.
~3.5!–~3.8!# instead of six@Eqs. ~2.5!–~2.10!# are obtained.
This is related to the fact that in the scalar sector, two s
hy
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tractions are needed in Eq.~3.2!, while only one subtraction
is necessary in the vector sector, because of current con
vation.

As a consequence of this, our analysis for the scalars d
in principle depend on the gluon and chiral condensates.
sensitivity to the value of the gluon condensate turns ou
be very small. This is not true for the chiral condensa
^c̄c&. We find, in particular, that the value of the chir
condensate obtained from the vectors, is too large to sa
all equations in the scalar sector with reasonable values
all parameters. This is consistent with the fact that this va
of the condensate is also on the high side in comparison w
other estimates. Interestingly, we find that the value of
scalar mass is very insensitive to the value of the chiral c
densate. It depends, however, on the value ofL8 ~which we
used as input!. We would like to emphasize that one shou
not try to identify this large-Nc scalar resonance with th
broads @24# appearing inp2p scattering, as the latter i
more likely a p2p bound state@28#, whose dynamics is
subleading at largeNc , and cannot give rise to a leadin
large-Nc coupling such asL8.

To summarize, in all cases we considered, we find a sc
mass between;0.7 and;1.2 GeV @29#, where the spread
is mostly due to the error in the experimental value ofL8.

Finally we use our Eq.~2.15! in combination with the
analysis of Ref.@7# to produce a parameter-free determin
tion of the Gasser-LeutwylerLi couplings in theO(p4) chi-
ral Lagrangian, see Fig. 1. The overall agreement for
sevenLi couplings is remarkable.
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