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Flux tube dynamics in the dual superconductor

Melissa A. Lampert* and Benjamin Svetitsky†

School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 69978 Tel Av
~Received 25 May 1999; published 3 January 2000!

We study plasma oscillations in a flux tube of the dual superconductor model of ’t Hooft and Mandelstam.
A magnetic condensate is coupled to an electromagnetic field by its dual vector potential, and fixed electric
charges set up a flux tube. An electrically charged fluid~a quark plasma! flows in the tube and screens the fixed
charges via plasma oscillations. We investigate both type I and type II superconductors, with plasma frequen-
cies both above and below the threshold for radiation into the Higgs vacuum. We find strong radiation of
electric flux into the superconductor in all regimes, and argue that this invalidates the use of the simplest dual
superconductor model for dynamical problems.

PACS number~s!: 12.38.Aw, 12.38.Mh, 14.80.Hv, 74.20.De
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I. INTRODUCTION

The confinement of color in quantum chromodynamics
explained if color electric fields form flux tubes. These fl
tubes appear readily in the bag model@1#, but this is a geo-
metric picture rather than a dynamical one. ’t Hooft@2# and
Mandelstam@3# proposed that, just as magnetic flux tub
form in a superconductor@4#, a condensation of magneti
charge in the QCD vacuum would lead to the formation
electric flux tubes and confinement. This is the dual sup
conductor picture of confinement.

The analytical study of the confining flux tube depen
largely on a classical, Abelian model. One can connect
model to QCD with ’t Hooft’s idea of Abelian dominanc
@5#. Starting in QCD, one fixes an Abelian gauge and ass
that the dominant degrees of freedom are Abelian ga
fields ~from a Cartan subalgebra! and Abelian magnetic
monopoles, with weak coupling to the non-Abelian gau
fields which assume the guise of self-coupled charged fie
The assumption that the effective interaction of the mo
poles causes their condensation leads immediately to
dual superconductor picture. The validity of this scenario
subject of research and debate in the lattice gauge th
community@6#.

In superconductivity, one studies the static structure
magnetic flux tubes via a Landau-Ginzburg theory@7#. The
simplest Landau-Ginzburg Hamiltonian is that of the Abeli
Higgs model in three dimensions. Classical solutions of
Abelian Higgs theory have been considered as models
QCD’s electric flux tube as well@8–12#. Suganuma, Sasak
and Toki and their collaborators@13,14#, using the formalism
proposed by Suzuki@15#, have fixed the effective coupling
constants of the Abelian Higgs model by comparing its fl
tube with phenomenology. There have also been attemp
do so by comparison with the flux tube that emerges in
tice gauge theory@16#. Success in this program will establis
a Landau-Ginzburg effective Hamiltonian of QCD.

In this paper we present a study not of the statics of
confining flux tube, but of its dynamics. The flux tube
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QCD is not a static object. Creation of flux tubes and th
subsequent decay through pair creation offer a deta
model of particle creation ine1e2, pp, and pA collisions
@17,18#. In the case of nucleus-nucleus collisions, the fl
tube has an appreciable transverse extent, so that it ca
called a ‘‘color capacitor’’ if the color field is coheren
across it, or a ‘‘color rope’’@19# if it is not. qq̄ pairs and
gluons are created through the Schwinger pair creation
cess@20#, and they screen the field in the flux tube whi
carrying away the energy in the form of hadrons. If the de
sity of created particles is large enough, the quarks and
ons form a quark-gluon plasma before the final hadroniza
takes place.

Field-theoretic analysis of pair creation and back react
in the flux tube@21# has shown the buildup of particle den
sity and subsequent plasma oscillations. The methods w
applied first to a field region of infinite spatial extent, rath
than to a finite flux tube. Eisenberg@22# carried out a calcu-
lation in a cylindrical flux tube of fixed radius, as suggest
by the bag model.1 In our study here, the flux tube is
dynamical field configuration, not a static geometric obje

Following @15# and@13#, we set up the electric flux tube in
classical electrodynamics coupled to an Abelian Higgs fi
via the dual gauge field. Thus the Higgs field represent
condensate of magnetic monopoles; the dual Meissner e
confineselectricflux to flux tubes. Starting from a static flu
tube configuration, we release a density of electric charge
the system and allow them to accelerate and screen the
tric field. The weakening of the electric field allows the flu
tube to collapse, but the inertia of the charges carries th
into plasma oscillations that build up the field strength ag
and force open the tube. The coupling of the plasma osc
tions to the Higgs field making up the flux tube is the ma
new feature in our work.

In Sec. II we describe the dual superconductor theo
The model contains an Abelian gauge field governed
Maxwell’s equations, with coupling to electric charges a

1This calculation imposed superconducting boundary conditi
at the tube surface, instead of the more appropriate dual super
ductor.
©2000 The American Physical Society11-1
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MELISSA A. LAMPERT AND BENJAMIN SVETITSKY PHYSICAL REVIEW D61 034011
currents on the one hand and to a magnetic Higgs field on
other. The electric currents are treated hydrodynamically;
Higgs field is a classical field that confines electric flux to t
tube. The coupling to the Higgs field is accomplished
means of a dual vector potential, as introduced by Zwanz
@23# and used subsequently in@8# for the static problem and
in @13,14# for phenomenological modeling. We impose c
lindrical symmetry and we assumez independence along th
flux tube in the region far from its ends. Nevertheless, we
forced to pay some attention to what happens near the
of the tube in order to define potentials unambiguously.

We present numerical results in Sec. III. We set the
rameters of the theory in both the type I and type II regim
and show how plasma oscillations arise. We consider pla
frequencies both above and below the cutoff for radiat
into the Higgs vacuum. The plasma oscillations are acco
panied by changes in the radius of the flux tube as the e
tric pressure from within decreases through screening, o
to increase again as the currents overshoot.

We believe that this paper is the first to address the
namics of an electric flux tube within this model.2 It is amus-
ing to note that this physical situation has no counterpar
superconductivity. While our magnetic Higgs field appe
in the usual Landau-Ginzburg theory as an electrica
charged condensate, our electric currents cannot appear
because there are no magnetic monopoles in nature.
Abrikosov flux tube has to run all the way to the boundary
the sample, where it joins onto the external magnetic fie
Our electric flux tube, on the other hand, has a finite~but
large! length, and the charges at its ends can be screene
the electric currents that flow in it. We review in the Appe
dix the well-known phenomenon of flux quantization a
why it has no effect on a flux tube of finite length.

II. FIELD EQUATIONS IN CYLINDRICAL GEOMETRY

Our classical model for the flux tube is electrodynam
coupled to a scalar magnetic monopole field. The equat
of motion are Maxwell’s equations with both electric an
magnetic sources, plus the Klein-Gordon equation for
monopoles. The latter is coupled not to the usual vector
tential Am but to the dual potential@23# Bm , and contains a
self-interaction that puts it into the Higgs phase.

We make a cylindrically symmetric ansatz for the field
and furthermore assumez independence far from the sourc
at the ends of the tube. We put the electrically charg
sources on thez axis at z56z0, and we assume that a
space-charge effects are localized there. The central regi
defined byuzu,z1, wherez1,z0 is chosen to exclude th
end regions~see Fig. 1!.

A. Maxwell’s equations

Maxwell’s equations with electric and magnetic curren
are

2Loh et al. @24# have simulated breaking of the flux tube in th
Friedberg-Lee model@25# which posits a confinement mechanis
unrelated to monopole condensation. See also the work of W
and Puff@26#.
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]mFmn5 j e
n ~2.1!

]mF̃mn5 j g
n , ~2.2!

where F̃mn5 1
2 emnlsFls . Equation~2.2! replaces the Bian-

chi identity of ordinary electrodynamics. We can solve
with a vector potential, but there is a new term,

Fmn5]mAn2]nAm1emnlsGls . ~2.3!

Defining an arbitrary vectornm, one finds that Eq.~2.2! is
solved if

Gmn52nm~n•]!21 j g
n , ~2.4!

where (n•])21 represents an integration from infinity wit
suitable boundary conditions. The field equation forAm then
follows from Eq. ~2.1!. Solving Maxwell’s equations in the
opposite order, the same field strength can be represe
alternatively by adual vector potential, according to

F̃mn5]mBn2]nBm1emnlsMls , ~2.5!

with

Mmn52nm~n•]!21 j e
n , ~2.6!

in order to satisfy Eq.~2.1!. Now the field equation forBm
follows from Eq. ~2.2!. We will return to the vector poten
tials below.

In three-dimensional notation,

¹•E5re ~2.7a!

¹3H2
]E

]t
5 je ~2.7b!

¹•H5rg ~2.7c!

¹3E1
]H

]t
52 jg . ~2.7d!

In the aforementioned central regionuzu,z1, we make the
ansatz

E5E~r ,t ! ẑ ~2.8a!

H5H~r ,t !û ~2.8b!

je5 j e~r ,t ! ẑ ~2.8c!
ts

FIG. 1. Geometry of the flux tube.
1-2



e

er
n
r

n

e
s
-

sical

g

ical

sity

FLUX TUBE DYNAMICS IN THE DUAL SUPERCONDUCTOR PHYSICAL REVIEW D61 034011
jg5 j g~r ,t !û. ~2.8d!

Ampère’s law ~2.7b! has only aẑ component,

1

r

]

]r
~rH !2

]E

]t
5 j e, ~2.9!

and Faraday’s law~2.7d! has only aû component,

2
]E

]r
1

]H

]t
52 j g. ~2.10!

The two Gauss laws show that the charge densities are z

re5rg50. ~2.11!

Equations~2.9! and~2.10! are the equations of motion forE
andH.

Near the ends of the flux tube,uzu.z1, we must allow for
new componentsEr and j er , as well as forre , and all fields
will be z dependent.

B. Vector potentials

In order to calculate the time evolution of the matt
fields, we need the vector potentials. In fact, we need o
the dual potentialBm @27#, which enters the field equation fo
the monopole field. From Eqs.~2.5! and ~2.6!,

E52¹3B1 ẑ~ ẑ•¹!21re ~2.12!

H52¹B02
]B

]t
2~ ẑ•¹!21~ ẑ3 je!, ~2.13!

where we have chosennm5(0,ẑ). We choose the gaugeB0
50. Inverting Eq.~2.12! gives

B5~ ẑ•¹!21~ ẑ3E!. ~2.14!

Our ansatz forE then givesB5Bû, with

B~r ,z!5E
2`

z

Er~r ,z8! dz8. ~2.15!

This integral only gets contributions from the regions arou
the sources, sinceEr50 far from the charges. This makesB
independent ofz in the central regionuzu,z1 . We can relate
the integral in Eq.~2.15! to the charge distribution near th
sources as follows. We take a cylindrical surface of radiur
with ends at2` and 2z1 . Gauss’ law gives, for this sur
face,

Q~r !52pr E
2`

2z1
Er~r ,z! dz12pE

0

r

Ez~r 8,2z1! r 8 dr8,

~2.16!

whereQ(r ) is the charge inside the cylinder~composed of
the original source plus the space charge around it!. Noting
that Ez(r 8,2z1) is thez-independentEz(r 8), we obtain the
relation
03401
ro,

ly

d

B~r !5
Q~r !

2pr
2

1

r E0

r

Ez~r 8! r 8 dr8 ~2.17!

and its inverse

E[Ez52
1

r

]

]r
~rB !1

1

2pr

]Q

]r
. ~2.18!

Given E and some model for the chargeQ(r ) ~see below!,
we can calculateB.

C. Magnetic monopoles

The magnetic monopoles are represented by a clas
Klein-Gordon equation with a Higgs potential,

Dm
BDmBc1l~ ucu22v2!c50, ~2.19!

where

Dm
B[]m2 igBm . ~2.20!

We make the ansatzc5r(r ,t)eixg(u), giving

F ]2

]t2
2

1

r

]

]r
r

]

]r
2S 1

r

]

]u
2 igBD 2Greix1l~r22v2!reix

50. ~2.21!

We assumexg5nu ~for a flux tube withn units of electric
flux!, so

F ]2

]t2
2

1

r

]

]r
r

]

]r
1S n

r
2gBD 2Gr1l~r22v2!r50.

~2.22!

This is the equation of motion forr. It feeds back into Max-
well’s equations via the magnetic current,

jg52gr2~¹xg2gB!, ~2.23!

which contains only aû component,

j g52gr2S n

r
2gBD . ~2.24!

As shown in the Appendix,n represents electric flux comin
in from infinity, so that we will setn50 for simplicity. The
flux generated byQ at the ends of the flux tube isnot quan-
tized.

D. Charged matter

We represent the electrically charged matter by class
two-fluid magnetohydrodynamics~MHD!. The positively
and negatively charged fluids both have particle den
ne(r ,t) ~so thatre50) and their velocities arev6 . The fluid
motion is determined by Euler’s equations

mF]v6

]t
1~v6

•¹!v6G56eE6ev63H2
1

ne
¹P ~2.25!
1-3
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MELISSA A. LAMPERT AND BENJAMIN SVETITSKY PHYSICAL REVIEW D61 034011
and the continuity equation

]ne

]t
1¹•~nev

6!50. ~2.26!

The electric current is given by

je5nee~v12v2!. ~2.27!

We assume in the central region that all quantities dep
only on r and t, so thatv6

•¹5v r
6 ]/]r . Recalling thatE

5E ẑ andH5H û, we have

m
]

]t
v r

652mv r
6

]

]r
v r

67evz
6H2

1

ne

]P

]r

m
]

]t
vz

652mv r
6

]

]r
vz

66eE6ev r
6H ~2.28!

and

]ne

]t
52v r

6
]ne

]r
2

ne

r

]

]r
~rv r

6!. ~2.29!

Not surprisingly, these equations allow the ansatz

v r
15v r

2[v r

vz
152vz

2[vz,

and we find

m
]

]t
v r52mv r

]

]r
v r2evzH2

1

ne

]P

]r

m
]

]t
vz52mv r

]

]r
vz1eE1ev rH

]ne

]t
52v r

]ne

]r
2

ne

r

]

]r
~rv r !. ~2.30!

These equations feed back into Maxwell’s equations via
current, which is in theẑ direction and has the magnitude

j e52neevz. ~2.31!

We need an equation of state to relateP to ne . Having in
mind a quark-gluon plasma, we choose the equation of s
of a relativistic ideal gas with the appropriate number
massless fermions and bosons. We set the chemical pote
to zero and write all quantities in terms of the temperatu

P537
p2

90
T4

ne537
z~3!

p2
T3. ~2.32!

Then Eqs.~2.30! can be written in terms of the velocities an
temperature as
03401
d

e

te
f
tial
,

m
]

]t
v r52mv r

]

]r
v r2evzH2

4p4

90z~3!

]T

]r

m
]

]t
vz52mv r

]

]r
vz1eE1ev rH

]T

]t
52v r

]T

]r
2

T

3r

]

]r
~rv r !. ~2.33!

The advantage of a hydrodynamic description of t
charged matter is that the fluid interacts directly with t
field strengthsE andH. If we were to consider classical o
quantum field theory instead of hydrodynamics, we wou
need the vector potentialA. In our geometry, the simples
ansatz would require two components,Ar and Az . The po-
tential would necessarily bez dependent in the central re
gion; moreover, the simplified treatment of the ends of
flux tube ~see below! would be impossible.

The use of hydrodynamics is based on the assumption
there exist infinitesimal volumes of the charged matter t
are in local equilibrium, permitting a coarse-grained descr
tion. As long as one assumes continuous initial conditio
and no singularities are produced by the time evolution
the system, this description is self-consistent—except for
matter of charge quantization. As shown in@23#, the quanti-
zation conditioneg54pn is necessary for Lorentz invari
ance of the quantum theory and even of the classical the
of charges and monopoles. If the condition is not fulfille
results will depend on the unit vectornm which we have
chosen to lie alongẑ for simplicity. This must be the case fo
continuum hydrodynamics, unless one incorporates a sh
distance cutoff beyond which the particle content of t
theory is made manifest. To the best of our knowledge,
is an open problem that lies beyond the scope of this pa
though it should be kept in mind when considering the d
pendence of our results on the choice ofnm .

E. Ends of the flux tube

For study of the central region, all we need to know abo
the complex regions at the ends of the flux tube isQ(r ),
which represents the charge density built up near2z0 by the
current je . ~The region nearz51z0 is, of course, a mirror
image of the region near2z0 .! Without dealing in detail
with the motion of charges near the ends of the flux tube,
can guess at a few models:

~1! Point charge:Here we just assume that all the curre
merely accumulates in a point charge atz52z0 . Then
Q(r ,t) is independent ofr, and charge conservation gives

dQ

dt
522pE

0

`

j e~r ! r dr . ~2.34!

~2! Surface charge density:Here we let the charge pile u
on a plate nearz52z0, giving a surface charge densit
s(r ,t). Then
1-4
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Q~r ,t !52pE
0

r

s~r 8,t ! r 8 dr8 ~2.35!

and

]s

]t
52 j e. ~2.36!

Initial conditions have to be specified fors to represent the
original source of the flux tube.

~3! Both: Keeping the initial charge pointlike, we put onl
the accumulated charge intos. Then

Q~r ,t !5Q012pE
0

r

s~r 8,t ! r 8 dr8 ~2.37!

ands is determined by Eq.~2.36! as above. The initial con
dition is s50. Note that in this case the space charge w
never exactly cancelQ0 and thus any plasma oscillation
will be asymmetric.

The initial conditions must in any case satisfy Gauss’ la

2pE
0

`

E~r !r dr 5Q~`!, ~2.38!

if there is no flux coming from infinity~i.e., n50).

F. Initial conditions

We start off the system in the configuration of a static fl
tube with a stationary fluid in it. We combine the static lim
of Eq. ~2.10! with Eqs.~2.18! and ~2.24! to give

]

]r

1

r

]

]r F rB~r !2
1

2p
Q~r !G52g2r2B, ~2.39!

where we have chosenn50. Equation ~2.17! gives the
boundary conditionB(0)50 unless Q includes a point
chargeQ0; in that case

B~r !;
Q0

2pr
~2.40!

as r→0. Equation ~2.17! together with Eq.~2.38! gives
rB(r )→0 at infinity.

The static limit of the Klein-Gordon equation~2.22! is

F2
1

r

]

]r
r

]

]r
1g2B2Gr1l~r22v2!r50, ~2.41!

with the boundary conditions thatr be zero at the origin and
tend tor5v at infinity.

Focusing on the case whereQ is a point charge, we defin
the reduced fieldb(r ) via

B5
Q

2pr
b, ~2.42!

giving
03401
ll

, b92
b8

r
22g2r2b50, ~2.43!

with b(0)51 andb(`)50, and

2r92
r8

r
1F S Qg

2p

b

r D 2

1l~r22v2!Gr50. ~2.44!

These equations determiner and B, and henceE, for the
static flux tube. ClearlyH50 here.

III. PLASMA OSCILLATIONS

We determine the time evolution of the system throu
the following system of equations. The Maxwell equatio
~2.9! and ~2.10! give E and H; the MHD equations~2.33!
give v andT, and henceje via Eqs.~2.31! and~2.32!. Equa-
tion ~2.34! gives the chargeQ whence Eq.~2.17! gives the
vector potentialB. The scalar fieldr evolves according to the
Klein-Gordon equation~2.22!, and Eq.~2.24! gives the mag-
netic currentjg , the last ingredient for the Maxwell equa
tions. The initial conditions, as noted, consist of the sta
flux tube with an initial value ofQ and of a static fluid
distribution specified byT(r ).

We choose four sets of parameters, listed in Table I. T
magnetic chargeg and the vacuum expectation valuev
5r(r→`) determine the vector massmV5A2gv and its
reciprocal, the London penetration depthlL5mV

21 . The sca-
lar self-coupling l determines, along withv, the ~dual!
Higgs boson massmH5A2lv and the Ginzburg-Landau co
herence lengthj5mH

21 . The ratio of these lengths isk
5lL /j5Al/g. If this value is smaller than 1, then the s
perconductor is of type I; otherwise it is of type II.

In ordinary superconductors, flux tubes are observed o
in type II materials, when the applied magnetic field li
between the critical valuesHc1 and Hc2 and penetrates via
creation of an Abrikosov lattice. Type I materials, on t
other hand, expel the field entirely as long as supercond
tivity persists. The situation would be different if one were

TABLE I. Parameters used in numerical simulations.v5126
MeV in all cases, and the initial temperature isT05150 MeV.

Type I Type I Type II Type II
vp,mV vp.mV vp,mV vp.mV

l 10 10 25 25
g 5.5 5.5 2.3 2.3
e 2.3 2.3 1.0 5.5
mV ~MeV! 975 975 411 411
mH ~MeV! 565 565 893 893
lL ~fm! 0.20 0.20 0.48 0.48
j ~fm! 0.35 0.35 0.22 0.22
k 0.58 0.58 2.18 2.18
m ~MeV! 250 50 250 50
vp ~MeV! 790 1766 343 4192
Tp52p/vp ~fm! 1.57 0.70 3.60 0.30
Q0 2.3 4.6 1.0 4.6
1-5
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MELISSA A. LAMPERT AND BENJAMIN SVETITSKY PHYSICAL REVIEW D61 034011
introduce a pair of magnetic monopoles. Then the magn
field would be forced into a flux tube between the mon
poles, even in a type I material. The difference between t
I and II would lie in the stability of the flux tube agains
splitting into a lattice~a ‘‘rope’’ ! of smaller tubes: type I
tubes would be stable, while type II tubes would split. Th
splitting is presumably inaccessible from our cylindrica
symmetric ansatz.

The values ofl and g fixed phenomenologically in@13#
are in the type II region, and we choose these values for
type II cases. For type I, we increaseg and decreasel to
makek,1. We takev5126 MeV from@13# as well. We fix
the electric chargee according to the Dirac quantization con
dition eg/4p51, even though~as discussed above! this is
not meaningful for continuum hydrodynamics.

The charged fluid presents a conundrum. Our intuit
about confinement suggests that the superconducting vac
should expel this matter, and thus confine it to the flux tu
~This happens in the Friedberg-Lee model@25#.! In this Abe-
lian theory, however, the locally neutral fluid isnot confined.
If the initial conditions contain a fluid inside the flux tub
only, it will flow outward in a hydrodynamic rarefactio
wave. Perhaps the fluid outside the flux tube may be in
preted as a hadronic fluid. In any case, we prefer no
superimpose radial hydrodynamic flow on the oscillations
the flux tube. Thus we choose auniform initial fluid density,
outside the flux tube as well as inside. Having in mind
quark-gluon plasma, we set the initial temperature to be s
tially uniform with T05150 MeV.

The initial valueQ0 of the charge at the ends of the flu
tube gives the initial amount of electric flux. In app colli-
sion, one would haveQ0;e, corresponding to the creatio
of a flux tube in the fundamental representation; anAA col-
lision between heavy nuclei would give@19,28# Q0;A1/3e,
which reachesQ0;6e for large nuclei. A large value ofQ0
will give a thick flux tube and large-amplitude plasma osc
lations, and thus enhance the non-linear effects due to
Higgs coupling. Unfortunately, very large values ofQ0 are
outside the range of stability of our numerics; we choo
values that are as large as possible given this constraint

The plasma frequency is

vp5A2nee
2

m
, ~3.1!

where the factor of 2 reflects the fact that we have two flui
For givenne ande, we fix m so as to tunevp to either side
of the vector massmV ; thus the plasma oscillations wi
occur at frequencies either above or below the threshold
radiation. We expecta priori thatm will be in the neighbor-
hood of the dynamical masseT of light particles in a heat
bath. The parameters used in@13# give a rather small vecto
mass, and withe54p/g the conditionvp,mV leads to an
unreasonably large value ofm. Instead we choose in this cas
to lower the value of the electric charge toe51.

Case 1.Figure 2 shows plasma oscillations in the on-a
electric field for the type I superconductor withvp,mV .
The oscillations are clearly nonlinear, with varying amp
tude and misshapen waveform. Figure 3 contains snaps
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taken at the times of maxima inE(r 50). These snapshot
show radiation emanating from the flux tube in bothE andr.
The plots ofrE show that the oscillating electric flux in th
outgoing wave is as large in amplitude as the initial fl
distribution. It is difficult to tell, however, whether the wav
amplitude decays asr 21/2, as expected for a true propagatin
wave, or asr 21, which would make the wave evanescent

Since the frequency of the plasma oscillations is bel
the vector mass, this cannot be simple linear radiation.
third row of Fig. 3, indeed, shows a strong coupling of t
nonlinearr field to the electromagnetic wave. The origin
this coupling, shown in Fig. 4, is the collapse of the flux tu
under the pressure of ther field when the electric field is
weak. The figure shows snapshots ofr taken in the first
half-cycle of the evolution. The middle snapshot, taken wh

FIG. 2. Electric field on thez axis, for a type I superconducto
with vp,mV .

FIG. 3. Snapshots of the electric fieldE and monopole fieldr at
times of maxima in the on-axis fieldE(r 50): type I supercon-
ductor,vp,mV .
1-6
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E(r 50)50, shows appreciable narrowing of the flux tu
core even asr is driven downward at larger radii in the firs
oscillation of the outgoing wave.

Case 2.Oscillations in the type I superconductor with
larger plasma frequency,vp.mV , are shown in Figs. 5 and
6. Here the irregularity of the waveform ofE(r 50) is due to
ordinary radiation in interaction with a more-or-less sta
flux tube wall. Again there is appreciable electric flux rad
ated outward, but there is little effect on ther field. This is
because the latter cannot respond when driven by the h
frequency electromagnetic oscillations. We note that
larger value ofgQ0 here creates a thicker flux tube and kee
more flux in the flux tube despite the radiation.

Cases 3 and 4.The type II superconductor is similar i
behavior to the type I system.~Since the essential physics
shown clearly in the figures already presented, we refr
from showing figures for these cases.! Recall that the param
eter set of case 4 is that used in@13# for phenomenologica
fits to static quantities.3 Here, too, there is appreciable radi
tion of electric flux from the flux tube in both frequenc
regimes, with strong participation of ther field when vp
,mV .

IV. DISCUSSION

Our numerical results raise difficulties for the dual sup
conductor picture of confinement. As a static model, the d
superconductor does indeed form flux tubes that con
charges in string-like configurations. Once the dynamics
examined, however, the lack of absolute color confinem
becomes apparent. While the motion of neutral particle m
ter outside the flux tube may be passed off as the emissio
color-neutral hadrons, the radiation of appreciable elec
flux cannot. The electric field in ’t Hooft’s Abelian projec
tion is after all acolor field, representing a coherent, colore
gluon state.

It was predictable that oscillations withvp.mV would
radiate into the Higgs vacuum, since the photon does ha
less-than-infinite mass. One might be tempted to restrict
plication of the dual superconductor model to situatio
where frequencies are much less thanmV . We have seen
however, that this is insufficient. Even low-frequency plas
oscillations, where radiation should be impossible, succ

3There is no electric current in@13#, and hence no plasma fre
quency.

FIG. 4. Snapshots ofr(r ,t) in the first oscillation: type I super
conductor,vp,mV .
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in spreading out the electric flux via nonlinear effects. Th
the model is not reliable even in this regime. It is possib
that the model can be made applicable to low-freque
physics by choosing a monopole Lagrangian more gen
than thec4 of the simplest Landau-Ginzburg theory. Abs
lute confinement, however, will never be realized in th
way. ~The introduction of a strongly nonlinear dielectric co
stant is what enables the Friedberg-Lee model to confine
color fields, but this model has not been derived from QC!

’t Hooft’s Abelian reduction rests on the identification o
the important degrees of freedom in an Abelian gauge. I
supposed that the magnetic monopoles have a strong
interaction, leading to their condensation; that the Abel
gluons, belonging to the Cartan subalgebra, turn this cond
sate into a superconductor; and, most important, that the

FIG. 5. Electric field on thez axis, for a type I superconducto
with vp.mV .

FIG. 6. Snapshots of the electric fieldE and monopole fieldr at
times of maxima in the on-axis fieldE(r 50): type I supercon-
ductor,vp.mV .
1-7
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MELISSA A. LAMPERT AND BENJAMIN SVETITSKY PHYSICAL REVIEW D61 034011
diagonal gluons are irrelevant to confinement, except ins
as they screen zero-triality states. These off-diagonal glu
however, retain all the self-couplings of the original no
Abelian gauge theory. We conjecture that they are esse
to understanding time-dependent phenomena related
confinement.4
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APPENDIX: FLUX QUANTIZATION

Flux quantization, as it turns out, affects only flux comi
in from infinity and not the flux due to the chargeQ at the
ends of the flux tube. The quantization condition comes fr
demanding that the total energy be finite@29#. The energy of
the monopole field contains the term

Estatic[E d3x uDBcu2. ~A1!

4For recent work on deriving the effective action of an Abeli
reduction of QCD, see@30#. Here the off-diagonal gluons are no
neglected, but rather integrated out explicitly.
F

e
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ar
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As x21y2→`, we havec→c0eix(u) andB→Bû, and thus
the integrand approaches

«`[c0
2
•S x8~u!

r
2gBD 2

. ~A2!

In order that*`r dr du « be finite, we must have at larger
that

dx

du
5gBr. ~A3!

Sincex is only determined up to a multiple of 2p, it can gain
such a multiple when one goes around the circle. Integra
Eq. ~A3! over the circle at fixedr gives

2pn5gE Br du5g R B•dl, ~A4!

wheren is an integer. In view of Eq.~2.12!,

R B•dl5E ~¹3B!•dS52E E•dS1Q52FE1Q

~A5!

whereFE is the total electric flux. Thus

FE5Q22pn/g. ~A6!

Only the external flux, the flux that does not end atQ, is
quantized in units of 2p/g. ChoosingFE5Q, i.e., no exter-
nal flux, means settingn50.
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