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Flux tube dynamics in the dual superconductor
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We study plasma oscillations in a flux tube of the dual superconductor model of 't Hooft and Mandelstam.
A magnetic condensate is coupled to an electromagnetic field by its dual vector potential, and fixed electric
charges set up a flux tube. An electrically charged flaiquark plasmiflows in the tube and screens the fixed
charges via plasma oscillations. We investigate both type | and type Il superconductors, with plasma frequen-
cies both above and below the threshold for radiation into the Higgs vacuum. We find strong radiation of
electric flux into the superconductor in all regimes, and argue that this invalidates the use of the simplest dual
superconductor model for dynamical problems.

PACS numbgs): 12.38.Aw, 12.38.Mh, 14.80.Hv, 74.20.De

[. INTRODUCTION QCD is not a static object. Creation of flux tubes and their

The confinement of color in quantum chromodynamics issubsequent decay through pair creation offer a detailed
explained if color electric fields form flux tubes. These flux model of particle creation i®r*e™, pp, andpA collisions
tubes appear readily in the bag mogl&], but this is a geo- [17,18. In the case of nucleus-nucleus collisions, the flux
metric picture rather than a dynamical one. 't Ho@t and  tube has an appreciable transverse extent, so that it can be
Mandelstam[3] proposed that, just as magnetic flux tubescalled a *“color capacitor” if the color field is coherent
form in a superconductdrd], a condensation of magnetic across it, or a “color rope[19] if it is not. qq pairs and
charge in the QCD vacuum would lead to the formation ofgluons are created through the Schwinger pair creation pro-
electric flux tubes and confinement. This is the dual supereess[20], and they screen the field in the flux tube while
conductor picture of confinement. carrying away the energy in the form of hadrons. If the den-

The analytical study of the confining flux tube dependssity of created particles is large enough, the quarks and glu-
largely on a classical, Abelian model. One can connect thi®ns form a quark-gluon plasma before the final hadronization
model to QCD with 't Hooft's idea of Abelian dominance takes place.
[5]. Starting in QCD, one fixes an Abelian gauge and asserts Field-theoretic analysis of pair creation and back reaction
that the dominant degrees of freedom are Abelian gaugh the flux tube[21] has shown the buildup of particle den-
fields (from a Cartan subalgebraand Abelian magnetic Sity and subsequent plasma oscillations. The methods were
monopoles, with weak coupling to the non-Abelian gauge.apphed flrst _to a field region of infinite spgtlal extent, rather
fields which assume the guise of self-coupled charged fieldghan to a finite flux tube. Eisenbefg2] carried out a calcu-
The assumption that the effective interaction of the monolation in a cylindrical flux tube of fixed radius, as suggested
poles causes their condensation leads immediately to tHY the_bag_ mode’i.l_n our study here, _the flux tu_be is a
dual superconductor picture. The validity of this scenario is dlynamical field configuration, not a static geometric object.

subject of research and debate in the lattice gauge theory Following[15] and[13], we set up the electric flux tube in
community[6]. Classical electrodynamics coupled to an Abelian Higgs field

In superconductivity, one studies the static structure o¥i@ the dual gauge field. Thus the Higgs field represents a
magnetic flux tubes via a Landau-Ginzburg thepfy: The condensate of magnetic monopoles; the dual Meissner effect
simplest Landau-Ginzburg Hamiltonian is that of the Abelianconfineselectric flux to flux tubes. Starting from a static flux -
Higgs model in three dimensions. Classical solutions of thduPe configuration, we release a density of electric charges in
Abelian Higgs theory have been considered as models dhe system and allow them to accelerate and screen the elec-
QCD’s electric flux tube as we8—12). Suganuma, Sasaki, tric field. The weakening (_)f th(_e electric field allows the flux
and Toki and their collaboratof43,14), using the formalism tube to collapse, but the inertia of the charges carries them
proposed by SuzuKi15], have fixed the effective coupling 'NtO plasma oscillations that build up the field strength again
constants of the Abelian Higgs model by comparing its fluxnd force open the tube. The coupling of the plasma oscilla-
tube with phenomenology. There have also been attempts #2nS 1o the Higgs field making up the flux tube is the main
do so by comparison with the flux tube that emerges in lathe€w feature in our work.
tice gauge theory16]. Success in this program will establish __ I Sec. Il we describe the dual superconductor theory.
a Landau-Ginzburg effective Hamiltonian of QCD. The model contains an Abelian gauge field governed by

In this paper we present a study not of the statics of thdlaxwell's equations, with coupling to electric charges and

confining flux tube, but of its dynamics. The flux tube of
This calculation imposed superconducting boundary conditions
*Electronic address: melissa@albert.tau.ac.il at the tube surface, instead of the more appropriate dual supercon-

Electronic address: bgs@julian.tau.ac.il ductor.
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currents on the one hand and to a magnetic Higgs field on the E
other. The electric currents are treated hydrodynamically; the
Higgs field is a classical field that confines electric flux to the QF RQ
tube. The coupling to the Higgs field is accomplished by \ /
means of a dual vector potential, as introduced by Zwanziger
[23] and used subsequently [ii] for the static problem and

in [13,14] for phenomenological modeling. We impose cy- z, -z, z, z,
lindrical symmetry and we assurzéndependence along the

flux tube in the region far from its ends. Nevertheless, we are FIG. 1. Geometry of the flux tube.

forced to pay some attention to what happens near the ends

of the tube in order to define potentials unambiguously. g, Frr=jr (2.1

We present numerical results in Sec. Ill. We set the pa-
rameters of the theory in both the type | and type Il regimes,
and show how plasma oscillations arise. We consider plasma
frequencies both above and below the cutoff for radiation

Fuv_ 1w i ian-
into the Higgs vacuum. The plasma oscillations are accomhereF*’=3ze*"?F,, . Equation(2.2) replaces the Bian

panied by changes in the radius of the flux tube as the ele@ni identity of ordinary electrodynamics. We can solve it
tric pressure from within decreases through screening, onl{¥ith @ vector potential, but there is a new term,
to increase again as the currents overshoot. v v v o

We believe that this paper is the first to address the dy- FEP= AT PR 2706y 23
namics of an electric flux tube within this modelt is amus- _Defining an arbitrary vecton#, one finds that Eq(2.2) is
ing to note that this physical situation has no counterpart iygyed if
superconductivity. While our magnetic Higgs field appears
in the usual Landau-Ginzburg theory as an electrically GHY= —n“(n-a)‘lj;, (2.4
charged condensate, our electric currents cannot appear there
because there are no magnetic monopoles in nature. Amhere fi-J) ! represents an integration from infinity with
Abrikosov flux tube has to run all the way to the boundary ofsuitable boundary conditions. The field equationAgrthen
the sample, where it joins onto the external magnetic fieldfollows from Eg.(2.1). Solving Maxwell's equations in the
Our electric flux tube, on the other hand, has a fifbat  opposite order, the same field strength can be represented
large) length, and the charges at its ends can be screened lajternatively by adual vector potential, according to
the electric currents that flow in it. We review in the Appen- 5
dix the well-known phenomenon of flux quantization and FrY=gHBY— 9"B*+ e M, ., (2.5
why it has no effect on a flux tube of finite length.

g, Frr=jr, (2.2

with
Il. FIELD EQUATIONS IN CYLINDRICAL GEOMETRY
_ _ _ M~Ar=—n¥(n-9) j?, (2.6)

Our classical model for the flux tube is electrodynamics
coupled to a scalar magnetic monopole field. The equationi order to satisfy Eq(2.1). Now the field equation foB,,
of motion are Maxwell's equations with both electric and follows from Eq.(2.2). We will return to the vector poten-
magnetic sources, plus the Klein-Gordon equation for thajals below.
monopoles. The latter is coupled not to the usual vector po- In three-dimensional notation,
tential A, but to the dual potentidl23] B,,, and contains a
self-interaction that puts it into the Higgs phase. V-E=pe (2.79

We make a cylindrically symmetric ansatz for the fields,

and furthermore assunz@ndependence far from the sources VxH— E . 2.7
at the ends of the tube. We put the electrically charged at “le ’
sources on the axis atz=*z,;, and we assume that all

space-charge effects are localized there. The central region is V-H=p4 (2.79

defined by|z|<z,, wherez;<z, is chosen to exclude the
end regiongsee Fig. L

dH .
VXE+ —=—]

=g 2.7d

A. Maxwell’'s equations
Maxwell’'s equations with electric and magnetic currentsin the aforementioned central regi¢n<z;, we make the

are ansatz
E=E(rt)z (2.83
2Loh et al. [24] have simulated breaking of the flux tube in the B - b
Friedberg-Lee moddI25] which posits a confinement mechanism H=H(r, )0 (2.80
unrelated to monopole condensation. See also the work of Wilets o .
and Puff[26]. je=Jelr,t)z (2.80
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Jg=ig(r.1)e. (2.80)
Ampére’s law (2.7b) has only az component,
14 y JE .
T )= —=le 2.9
and Faraday’s lavi2.7d has only af component,
JE . dH -
e 2 (2.10

The two Gauss laws show that the charge densities are zero,

(2.11

Equations(2.9) and(2.10 are the equations of motion f&
andH.

Near the ends of the flux tubfg|>z,, we must allow for
new componentg, andj,,, as well as fop,, and all fields
will be z dependent.

pe=pg=0.

B. Vector potentials

In order to calculate the time evolution of the matter
fields, we need the vector potentials. In fact, we need only
the dual potentiaB , [27], which enters the field equation for

the monopole field. From Eq$2.5 and(2.6),

E=-VXB+2(z-V) p, (2.12

H=—VB°—§—(2~V)‘1(2xj) (2.13
ot e '

where we have chosem*=(0.2). We choose the gaudg,
=0. Inverting Eq.(2.12 gives

B=(z-V) YzXE). (2.14
Our ansatz folE then givesB= B@, with
z
B(r,z)=j E,(r,z’)dZ. (2.15

PHYSICAL REVIEW D61 034011

Q(r) 1 ' ! ! !
B(r)—ﬁ—FJ'OEZ(r )I’ dr (217}
and its inverse
E=E,= Lo B+—1 —(QQ 2.1
SRSy B e @18

Given E and some model for the char@(r) (see below,
we can calculat®.

C. Magnetic monopoles

The magnetic monopoles are represented by a classical
Klein-Gordon equation with a Higgs potential,

DEDHBy+ (| |2~ v?)y=0, (2.19
where

DS=4,—igB,,. (2.20
We make the ansatz=p(r,t)e'X(?), giving

140 )2
rae

# 14d 9
____r__
gtz ror or

=0. (2.21)

We assumeyg=né (for a flux tube withn units of electric
flux), so

pe X+ (p?—v?)pelX

ptN\(p?—Vv?)p=0.
(2.22

This is the equation of motion fgs. It feeds back into Max-
well's equations via the magnetic current,

2
g2 ror or __gB)

# 149 9 (n
it

ngZQPZ(VXg_gB)- (2.23
which contains only @ component,
. 2 n
jg=29p’| - —gB|. (224

This integral only gets contributions from the regions around

the sources, sincgé, =0 far from the charges. This makBs
independent of in the central regiofz| <z, . We can relate

As shown in the Appendix, represents electric flux coming
in from infinity, so that we will seh=0 for simplicity. The

the integral in Eq(2.19 to the charge distribution near the flux generated by at the ends of the flux tube it quan-
sources as follows. We take a cylindrical surface of radius tized.

with ends at—« and —z,. Gauss’ law gives, for this sur-

face,

Z r

lEr(r,z)o|z+27rf E(r',—2zy) ' dr’,
o 0
(2.16

whereQ(r) is the charge inside the cylindécomposed of
the original source plus the space charge aroundNibting

thatE,(r',—z,;) is the zindependenE,(r’), we obtain the
relation

Q(r)=27-rrf

D. Charged matter

We represent the electrically charged matter by classical
two-fluid magnetohydrodynamicéMHD). The positively
and negatively charged fluids both have particle density
ne(r,t) (so thatp,=0) and their velocities are™ . The fluid
motion is determined by Euler's equations

+

av + +
—+ (v -V)v~

m
ot

1
=+eE+xev XH- n—VP (2.25
e
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and the continuity equation

ane +
—+V.(nyv™)=0.

p (2.2

The electric current is given by

(2.27

je=nee(vi—v7).

We assume in the central region that all quantities depend

only onr andt, so thatv=-V=v, d/dr. Recalling thatE
=EzandH=H¥, we have

(9 + + (? + + 1 (9P
mEVF:_mVFEVF+eV;H_EE
07 + + + +
mavz—=—mv;§v;ieEiev;H (2.28
and
Ne LNe Negd
o Vi T at) (229

+ -—
vV, =V, =V,
+
V, =—V, =V,
and we find
J J H 1 0P
m—v,=—mv, —v,—ev,H— — —
gt Vi Vi SV T Ty
J J
mﬁvzz—mervZJreEﬂLev,H
aNe e Ng
— =V, —— — —(rv,). 2.3
at Vitar Ty (9r(V’) (2.30

These equations feed back into Maxwell’'s equations via the
current, which is in the direction and has the magnitude

(2.3)

Je=2NceV,.

We need an equation of state to relBt& n,. Having in

PHYSICAL REVIEW D61 034011

47t T
90¢(3) ar

J J
mﬁvr= — mvrﬁ—rv,—evZH—

d d
mﬁvzz —mv, EVZJF eE+ev,H

aT aT T 4

w T Viar Tarar (2-33

(rvy).

The advantage of a hydrodynamic description of the
charged matter is that the fluid interacts directly with the
field strength€E andH. If we were to consider classical or
quantum field theory instead of hydrodynamics, we would
need the vector potentidl. In our geometry, the simplest
ansatz would require two componen#s, andA,. The po-
tential would necessarily be dependent in the central re-
gion; moreover, the simplified treatment of the ends of the
flux tube (see beloyw would be impossible.

The use of hydrodynamics is based on the assumption that
there exist infinitesimal volumes of the charged matter that
are in local equilibrium, permitting a coarse-grained descrip-
tion. As long as one assumes continuous initial conditions,
and no singularities are produced by the time evolution of
the system, this description is self-consistent—except for the
matter of charge quantization. As shown[#8], the quanti-
zation conditioneg=4mn is necessary for Lorentz invari-
ance of the quantum theory and even of the classical theory
of charges and monopoles. If the condition is not fulfilled,
results will depend on the unit vectar* which we have

chosen to lie along for simplicity. This must be the case for
continuum hydrodynamics, unless one incorporates a short-
distance cutoff beyond which the particle content of the
theory is made manifest. To the best of our knowledge, this
is an open problem that lies beyond the scope of this paper,
though it should be kept in mind when considering the de-
pendence of our results on the choicendf.

E. Ends of the flux tube

For study of the central region, all we need to know about
the complex regions at the ends of the flux tubeQi),
which represents the charge density built up neay by the
currentj.. (The region neae= +z, is, of course, a mirror

mind a quark-gluon plasma, we choose the equation of stafé'age of the region near-z,.) Without dealing in detail
of a relativistic ideal gas with the appropriate number ofWith the motion of charges near the ends of the flux tube, we

massless fermions and bosons. We set the chemical potentfan guess at a few models:

to zero and write all quantities in terms of the temperature,

2

P—377T T4
790

{(3)

Ne= 37—2T3. (2.32
ar

(1) Point charge:Here we just assume that all the current
merely accumulates in a point charge &t —z,. Then
Q(r,t) is independent of, and charge conservation gives

dQ

Hz—wa:je(r)rdr. (2.39

(2) Surface charge densityere we let the charge pile up

Then Eqgs(2.30 can be written in terms of the velocities and on a plate neaz=—z,, giving a surface charge density

temperature as

o(r,t). Then
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Q(r,t)=27rfrcr(r’,t)r’dr’ (2.35
0
and

070'_

i e (2.39

Initial conditions have to be specified forto represent the
original source of the flux tube.

(3) Both: Keeping the initial charge pointlike, we put only
the accumulated charge into Then

Q(r,t)=Q0+2wjra(r’,t)r’dr’ (2.37
0

and o is determined by Eq2.36 as above. The initial con-

dition is 6=0. Note that in this case the space charge will <°

never exactly canceQ, and thus any plasma oscillations
will be asymmetric.

The initial conditions must in any case satisfy Gauss’ law,

ZwJ'wE(r)rder(oc), (2.38
0

if there is no flux coming from infinityi.e., n=0).

F. Initial conditions

PHYSICAL REVIEW D61 034011

TABLE |. Parameters used in numerical simulations: 126
MeV in all cases, and the initial temperatureTig= 150 MeV.

Type | Type | Type Il Type |l
wp<My wp=> My wp<My wp=>My
N 10 10 25 25
g 5.5 5.5 2.3 2.3
e 2.3 2.3 1.0 5.5
my (MeV) 975 975 411 411
my (MeV) 565 565 893 893
A (fm) 0.20 0.20 0.48 0.48
& (fm) 0.35 0.35 0.22 0.22
K 0.58 0.58 2.18 2.18
m (MeV) 250 50 250 50
w, (MeV) 790 1766 343 4192
Tp=2m 0w, (fm) 1.57 0.70 3.60 0.30
2.3 4.6 1.0 4.6
bl
b"— ——2g**b=0, (2.43
with b(0)=1 andb(«)=0, and
_ /r_p_, %E 2+)\( 2_V2) =0 (244)
r 27 r P p==- ’

These equations determineand B, and henceg, for the

We start off the system in the configuration of a static fluxstatic flux tube. Clearly4=0 here.

tube with a stationary fluid in it. We combine the static limit

of Eq. (2.10 with Egs.(2.18 and(2.24) to give
19

_ o2 2
arr or 29°0°B,

(2.39

1
BN~ 5-Q(r)

where we have chosen=0. Equation(2.17) gives the
boundary conditionB(0)=0 unlessQ includes a point
chargeQy; in that case

Qo

B(r)~ 2r

(2.40

as r—0. Equation(2.17) together with Eqg.(2.38 gives
rB(r)—0 at infinity.
The static limit of the Klein-Gordon equatid.22) is

19 4
— = 1 —+g°B?|p+\(p*~Vv?)p=0,

rar ar (249

with the boundary conditions thatbe zero at the origin and
tend top=v at infinity.

Focusing on the case wheteis a point charge, we define
the reduced fieldb(r) via

(2.42)

giving

IIl. PLASMA OSCILLATIONS

We determine the time evolution of the system through
the following system of equations. The Maxwell equations
(2.9 and (2.10 give E andH; the MHD equationg2.33
givev andT, and hencg, via Egs.(2.31) and(2.32. Equa-
tion (2.34) gives the charg& whence Eq(2.17) gives the
vector potentiaB. The scalar fielgh evolves according to the
Klein-Gordon equatiori2.22, and Eq.(2.24) gives the mag-
netic currentjy, the last ingredient for the Maxwell equa-
tions. The initial conditions, as noted, consist of the static
flux tube with an initial value ofQ and of a static fluid
distribution specified byl'(r).

We choose four sets of parameters, listed in Table I. The
magnetic chargey and the vacuum expectation value
=p(r—») determine the vector mass,=+2gv and its
reciprocal, the London penetration depth= m;l. The sca-
lar self-coupling A determines, along withy, the (dua)
Higgs boson mass, = \2\v and the Ginzburg-Landau co-
herence Iengthf=m,]l. The ratio of these lengths is
=\_/&=\/g. If this value is smaller than 1, then the su-
perconductor is of type I; otherwise it is of type Il.

In ordinary superconductors, flux tubes are observed only
in type Il materials, when the applied magnetic field lies
between the critical valued; andH, and penetrates via
creation of an Abrikosov lattice. Type | materials, on the
other hand, expel the field entirely as long as superconduc-
tivity persists. The situation would be different if one were to
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introduce a pair of magnetic monopoles. Then the magnetic E(r=0,t)

field would be forced into a flux tube between the mono- 40 Typel, @, <m,

poles, even in a type | material. The difference between type
I and Il would lie in the stability of the flux tube against
splitting into a lattice(a “rope”) of smaller tubes: type |
tubes would be stable, while type Il tubes would split. This
splitting is presumably inaccessible from our cylindrically
symmetric ansatz.
The values of\ andg fixed phenomenologically if13]
are in the type Il region, and we choose these values for our
type 1l cases. For type |, we increageand decrease to
makex<1. We takev=126 MeV from[13] as well. We fix
the electric charge according to the Dirac quantization con-
dition eg/47w=1, even thoughas discussed aboy¢his is
not meaningful for continuum hydrodynamics. o 4% 20 20 6.0 8.0
The charged fluid presents a conundrum. Our intuition t (fm/c)
about confinement suggests that the superconducting vacuum
should expel this matter, and thus confine it to the flux tube. FIG. 2. Electric field on the axis, for a type | superconductor
(This happens in the Friedberg-Lee mof23].) In this Abe-  with w,<m,.
lian theory, however, the locally neutral fluidnst confined.

If the initial conditions contain a fluid inside the flux tube 5xen at the times of maxima (r=0). These snapshots
only, it will flow outward in a hydrodynamic rarefaction gy radiation emanating from the flux tube in betandp.
wave. Perhaps the fluid outside the flux tube may be interrne piots ofrE show that the oscillating electric flux in the
preted as a hadronic fluid. In any case, we prefer not Q, 140ing wave is as large in amplitude as the initial flux
superimpose radial hydrodynamic flow on the oscillations ofyistrinytion. It is difficult to tell, however, whether the wave
the flux tube. Thus we chooseuaiforminitial fluid density, amplitude decays as 2 as expected for a true propagating
outside the flux tube as well as inside. Having in mind a, e or ag 1 which v(/ould make the wave evanescent.
quark-gluon plasma, we set the initial temperature to be spa- gjnce the frequency of the plasma oscillations is below
tially uniform with To=150 MeV. the vector mass, this cannot be simple linear radiation. The
The initial valueQ, of the charge at the ends of the flux yhirq row of Fig. 3, indeed, shows a strong coupling of the
tube gives the initial amount of electric flux. Ingp colli- — poniineary field to the electromagnetic wave. The origin of
sion, one would hav€,~e, corresponding to th? creation tyis coupling, shown in Fig. 4, is the collapse of the flux tube
of a flux tube in the fundamental representationcol- - der the pressure of the field when the electric field is
lision between heavy nuclei would givé9,28 Qo~A™"e,  \yeak. The figure shows snapshots @ftaken in the first

which reacheQ,~6e for large nuclei. A large value @@y haf-cycle of the evolution. The middle snapshot, taken when
will give a thick flux tube and large-amplitude plasma oscil-

lations, and thus enhance the non-linear effects due to the

Higgs coupling. Unfortunately, very large values @f, are Type |, ®, <m,

outside the range of stability of our numerics; we choose t=0.0 1=3.0 t=7.8

values that are as large as possible given this constraint. —— T ——
The plasma frequency is 20

0.0
2n.e?
wp= e (3.2 -2.0

where the factor of 2 reflects the fact that we have two fluids. 0.5
For givenn, ande, we fix m so as to tunew, to either side 0.0
of the vector massn,,; thus the plasma oscillations will -0.5
occur at frequencies either above or below the threshold for L Lo Lo

radiation. We expea priori thatm will be in the neighbor- 0.8 T T T
hood of the dynamical massT of light particles in a heat 06 17

bath. The parameters used[i8] give a rather small vector 0.4 | .

mass, and witte=4/g the conditionw,<my leads to an 0.2 - p(r) A

unreasonably large value of. Instead we choose in this case 0.0 R R
to lower the value of the electric chargeds-1.

Case 1Figure 2 shows plasma oscillations in the on-axis
electric field for the type | superconductor with,<m,,. FIG. 3. Snapshots of the electric fididand monopole fielgh at
The oscillations are clearly nonlinear, with varying ampli- times of maxima in the on-axis fiel#(r=0): type | supercon-
tude and misshapen waveform. Figure 3 contains snapshotsictor, w,<my .
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p(r.t): Type |, o, <m, E(r=0,)
= - _ Typel, @ > m,
o5 t_lo.o t-|0.4 t—|0.8 2.0 %> T
0.6 | 2 b EI -
0.4 1 r 1 r 1
0.2 - 1 r 1 r 1
0.0 1 1 1

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
r r r

FIG. 4. Snapshots qi(r,t) in the first oscillation: type | super-
conductor,w,<my, .

E(r=0)=0, shows appreciable narrowing of the flux tube
core even ap is driven downward at larger radii in the first

illati i -20 : : :
oscillation of the o_utgm_ng wave. _ 0.0 20 40 6.0 8.0
Case 2.Oscillations in the type | superconductor with a t (fm/c)
larger plasma frequency,>m,,, are shown in Figs. 5 and
6. Here the irregularity of the waveform &f{(r =0) is due to FIG. 5. Electric field on the axis, for a type | superconductor

ordinary radiation in interaction with a more-or-less staticwith w,>my,.
flux tube wall. Again there is appreciable electric flux radi-

ated outward, but there is little effect on thpefield. Thisis iy spreading out the electric flux via nonlinear effects. Thus
because the latter cannot respond when driven by the highne model is not reliable even in this regime. It is possible
frequency electromagnetic oscillations. We note that thgnat the model can be made applicable to low-frequency
larger value 0§ Qo here creates a thicker flux tube and keepsphysics by choosing a monopole Lagrangian more general
more flux in the flux tube despite the radiation. ~  than they? of the simplest Landau-Ginzburg theory. Abso-
Cases 3 and 4The type Il superconductor is similar in |yte confinement, however, will never be realized in this
behavior to the type | systeniSince the essential physics is \yay. (The introduction of a strongly nonlinear dielectric con-
shown clearly in the figures already presented, we refraigtant is what enables the Friedberg-Lee model to confine all
from showing figures for these caseRecall that the param-  co|or fields, but this model has not been derived from QCD.
eter set of case 4 is that used[i8] for phenomenological 't Hooft's Abelian reduction rests on the identification of
fits to static quantitied Here, too, there is appreciable radia- the important degrees of freedom in an Abelian gauge. It is
tion of eleqtric flux from 'th'e f[ux tube in .both frequency sypposed that the magnetic monopoles have a strong self-
regimes, with strong participation of the field whenw, interaction, leading to their condensation; that the Abelian
<my. gluons, belonging to the Cartan subalgebra, turn this conden-
sate into a superconductor; and, most important, that the off-
IV. DISCUSSION

Our numerical results raise difficulties for the dual super- Type |, o, >m,
conductor picture of confinement. As a static model, the dual t=0.0 t=27 t=55
superconductor does indeed form flux tubes that confine T AR A
charges in string-like configurations. Once the dynamics is 1.0 f\ - !\ 1k -
examined, however, the lack of absolute color confinement g¢g¢ [ B j\v_

becomes apparent. While the motion of neutral particle mat- _, 4
ter outside the flux tube may be passed off as the emission of
color-neutral hadrons, the radiation of appreciable electric U T T
flux cannot. The electric field in 't Hooft's Abelian projec- 0.5 /\ . A 1+ .
tion is after all acolor field, representing a coherent, colored ool _/\/V\A'
gluon state. 05 —rEry [ 10 ]
It was predictable that oscillations witta,>m,, would I I B ,
radiate into the Higgs vacuum, since the photon does have a 0.8 ——————— RS T
less-than-infinite mass. One might be tempted to restrict ap- 0.6
plication of the dual superconductor model to situations g4 [
where frequencies are much less thrap. We have seen, 02 |
however, that this is insufficient. Even low-frequency plasma
oscillations, where radiation should be impossible, succeed

FIG. 6. Snapshots of the electric fidikdand monopole fielg at
3There is no electric current ifil3], and hence no plasma fre- times of maxima in the on-axis fiel#(r=0): type | supercon-
quency. ductor, wp>my, .
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diagonal gluons are irrelevant to confinement, except insofafs x?+y2—, we havey— ye'X(¥) and B—>Bf9, and thus
as they screen zero-triality states. These off-diagonal gluonghe integrand approaches
however, retain all the self-couplings of the original non-

Abelian gauge theory. We conjecture that they are essential 3 X' (0) _ 4B 2 (A2)
to understanding time-dependent phenomena related to == 0 r i
confinement. ) o
In order that/“r dr d 6 ¢ be finite, we must have at large
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such a multiple when one goes around the circle. Integrating
Eq. (A3) over the circle at fixed gives
APPENDIX: FLUX QUANTIZATION

Flux quantization, as it turns out, affects only flux coming 277n=gf Brdo=g % B-dl, (A4)
in from infinity and not the flux due to the charggat the
ends of the flux tube. The quantization condition comes fronwheren is an integer. In view of Eq(2.12,
demanding that the total energy be fiHig9]. The energy of

the monopole field contains the term 3£ B.d|:J (VXB).dSZ_J E-dS+Q=—-®+Q
(A5)

— | 43¢ P82
ESta"C_J' d*x|D7y". (A1) where®¢ is the total electric flux. Thus

de=Q—2mn/g. (A6)

“For recent work on deriving the effective action of an Abelian Only the externalflux, the flux that does not end &, is
reduction of QCD, se¢30]. Here the off-diagonal gluons are not quantized in units of Z/g. Choosingb=Q, i.e., no exter-
neglected, but rather integrated out explicitly. nal flux, means setting=0.
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