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Possible space-time fractality of the emitting source
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Using a simple space-time implementation of the random cascade model we investigate numerically a
conjecture made some time ago which was to join the intermittent behavior of spectra of emitted particles with
the possible fractal structure of the emitting source. We demonstrate that such details are seen, as expected, in
the Bose-Einstein correlations between identical particles.

PACS numbgs): 13.87.Fh, 12.40.Ee, 24.10.Lx, 25.75.Gz

[. INTRODUCTION of cascadegor multiplicative processggproceeding in vari-
ablds) not directly measurable but nevertheless of great dy-
The multiparticle spectra of secondaries produced in higlhamical importanceas, for example, masses of some inter-
energy collision processes are the most abundant sources ®ediate objects occurring during the production pro¢éhs
our knowledge of the dynamics of such processes. Amond the purely mathematical case, where cascade process pro-
OtherS, two features emerging from the ana]ysis of theséeedad infinitum one eventually arrives at some Space-time
spectra are of particular interest) the so called intermittent  fractal picture of the production process. However, both the
behavior observed in many experiments in the analysis ofinite masses of produced secondaries and limited erfergy
factorial moments of spectra of produced secondariegiand MassM) stored in the emitting source prevent the full and
the Bose-Einstein correlationéBEC) observed between distinct development of such a fractal struct[8¢ One must
identical particles. Whereas the former seems to indicate théerefore be satisfied with only some limited and mostly in-
existence of somémulti)fractal structure of the production direct presence or signals of such structure. If established it
process[1] the latter are established as, by now, the mostvould, however, be important for our knowledge of the dy-
important source of our knowledge on the space-time aspecti@mics of the multiparticle production process.
of the multiparticle production processi. Such a fractal structure in phase space can generate a
Some time ago it was argu¢d,4] that, in order to make similar structure in the space-time picture of the hadroniza-
both effects compatible with each other, the emitting sourcdion process. Our aim here is to demonstrate to what extent
should fluctuate in size in a scale-invarighe., powerlike they influence BEC. In the next two sections we shall then
way. This can be achieved in two way($) either the shape Provide, respectively, the phase space and space-time char-
of the interaction region is regular but its size fluctuates fromacteristics of a simple cascade model used for that purpose.
event to event according to some power-like scaling law oSection IV contains our main results showing the BEC fea-
(i) the interaction region itself is a self-similar fractal ex- tures emerging from our model. Section V contains a sum-

tending over a very large volunig,5]. mary of our results and conclusions.

In this work we would like to investigate in more detail to
what extent the BEC is sensitive to the possible space-time Il. PHASE-SPACE CHARACTERISTIC
fractality of the emission source. To this end we shall use a OF THE CASCADE MODEL USED

simple self-similar cascade procelg in which the final

particles are produced in the sequential two-body decays of We shall model the emitting source of malskby the

some original maskl. For our purpose we shall extend it by usual (}-2) random cascade process employed already in

introducing the simpléclassical space-time development of [6], M—M;+M,, in which the initial massM “decays”

the cascade and by adding the kind of BEC “afterburner’into two massedvl; ,=k; ,-M in such a way thak;+k,

along the lines advocated recently[in. <1, i.e., a part oM equal to (:-k;—k,)M is transformed

It is widely expected that every cascade model has autdo kinetic energies of the decay produdds ,. The process

matically built in the intermittent behavior of spectra of ob- repeats itsel{see Fig. 1 until M, ,=u (u being the mass

served particle$8]. Although this statement is true and ob- of the produced particlgsvith successive branchings occur-

vious for the models based on random multiplicativering sequentially and independently from each other, and

processes in some chosen observed varialiiles energy, with different values ofk,; , at each branching, but with

rapidity or azimuthal ang)et is highly non trivial in the case energy-momentum conservation imposed at each step. For
different choices of dimensionalify of our cascade process
(provided by the restrictions for the possible directions of

*Email address: utyuzh@fuw.edu.pl flights of the decay products in each ventdoe it D=1 or
"Email address: wilk@fuw.edu.pl D = 3 dimensionalisotropig and for different choices of the
*Email address: wlod@pu.kielce.pl decay parametels, , at each vertex, we are essentially cov-
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M=M , ideal gas equation of state with velocity of sounyd=1/\/3
[11]. The same behaviofon averaggis obtained fork; ,
chosen randomly from a triangle distributioR(k)=(1
—k)& with a=1 which will be therefore used in all our nu-
merical calculations. The fact thak e (2,M/u) means that
decay parameters are limited ke (u/M,1).

For maximally asymmetric cascadés=u/M and k,
=k, i.e., at each step one has always a single final particle of
transverse masg produced against some recoil mads
=kM: M— u+M;,. The amount of kinetic energy allocated
to the produced secondaries is how maximal. The corre-
: sponding rapiditiesy; and Y, are now given by Eqs(1)

with, respectivelyk;= /M andk,=Kk. Also here the result-

Mo=m, o pmi<pi> ant multiplicity N, is given by the length . of the cas-
cade, which is limited by the conditioM,=k' M=p. It
means therefore thdt,,,,=In(M/w)/In(1/k) and the corre-
sponding multiplicity is

FIG. 1. The scheme of our cascade process.

ering an enormously vast variety of different possible pro-

duction schemes ranging from the essentially one- 1 M
dimensional strings to thermal-like fireballs. N,=1+Lpa=1+ —1In—. 3
Of special interest is the case of a one-dimensional cas- |nE m

cade for which one can provide analytic formulas for the

rapidities Y, , of the decay product at each vertex given in

the rest frame of the parent mass in this vertex. They depen-EIhe energy dependence Nj, is now Iogarithmio(ir) ‘her”?a'
solely on the decay parameters at this verte: models it would correspond to a one-dimensional fireball

with co— 1 [12]) but the same kind of scaling as in EE) is

1 by o 1 present also here.

2—k1(1+ kl_k2)+2_kl Al Our simple model therefore covers all possible energy
dependencies of the multiplicities of produced particles

le iln

1 1 which depend solely on decay parameters of the cascade
Y,=%*In i(l—kfﬁL k§)+ W\/K} (D) and scale in the ratid/w. This remains true for both one
2 2 and three dimensional cascades.
whereA=(1—kf+k§)2—4k§. In Fig. 2 one can see examples of rapidity distributions

Two limiti be distinquished hefié:totall (1/N)(dN/dy) calculated for symmetric and asymmetfc
wo limiting cases can be distinguished hefi:totally =1 cascades discussed above. They are compared there with

symmetric and(ii) maximally asymmetric cascades. In the oo X ) . .
case of a totally symmetric cascade decay parameters apaost probable distributions in one dimension obtained by

equal and the same for all verticds,,=k. In this case the means of information theory argumerifi3]

finally produced particles occur only at the very end of the 1

cascadg process a_nd the amount of energy allocated to the fir(y)= Zexr[—ﬁ-,ucoshy], (4

production is maximal. Because the number of possible

branchings characterizing the length of the cascade is equalherefd f(y)=1 (what define) and 8= B(M N) is the

t0 Lmax=IN(M/w)/IN(1K) (where p=m2+(pp)?), the W yRy)=-~ W Nes —PANVLIV)

muItigI?éity o(f pgduéed)secondarié is gi\c;en“t;;?t%e follow- corresponding lagrange multiplier ensuring proper conserva-
tion of energy momentum in the case wheiparticles, each

ing formula:
of transverse masg, are produced from the source of mass
M\ dr In?2 M. Contrary to the case of production via the cascade pro-
Ng=2lmax= (—) , dF=—1- 2 cess, nothing is now said about the production mechanism. It
s |nE is just tacitly assumed that all produced particles occur, in a

sense, instantaneously in the whole allowed phase space with
. . . the weights provided by Ed4), which was obtained by the
According t0[6,10) the exponentlr is formally nothing but maximalization of the suitably defined information entropy

a generalizedfracta) dimension of the fractal structure of corresponding to the production process under consideration

phase space formed by our cascade. The utility of such n 13]. It occurs that for a wide range & andN the quantity
tion is, however, greatly reduced because of the necessary - . .
limited length of our cascadé8]. Notice a kind of scaling in  #=/B(M/N) is (almos} constant as a function of energy per

Eq. (2) where, for a fixed rati/u the observed multiplic-  particle m=M/N, i.e., also here one encounters a kind of
ity Ng depends solely on the decay paramétefhe charac- scaling, namely that () (dN/dy) ~ F(z= u coshy/m).

teristic powerlike behavior oNg(M) in Eq. (2) is normally The shape of the multiplicity distributior®(N), in our
attributed to thermal models. For example, ket ; one has case of a source with fixed rathd/ 4 is given by distribution
Ns~MY2 which in thermal models would correspond to the P(k, o) of decay parametets, ,. We shall use a simple tri-
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FIG. 2. Example of rapidity distributions of secondaries for to- 2 4 6 8 10 12
tally symmetric(a) and totally asymmetric one-dimensional cas- n

cades with asymmetrith) and symmetridc) emission of particles
calculated forM =40 GeV andu = 0.3. Histograms are for fixek
P(k)= 8(k—0.25). Open symbols display results for cascades withﬁ
ki » distributed randomly according tB(k)=(1—-k)? with a=1
(in both cases multiplicities are the sam¥(,=11.5 andN, ¢
=4.5). Full lines present the most probaklene-dimensional
thermal-like distributions given by Ed4) with 8=0.028 for (a)
and 8= —0.133 for(b) and(c), respectively(calculated as if13]
for N(a):115 andN(b’C):4.5).

FIG. 3. Multiplicity distributions P(N) for (one-dimensional
ascades of massé4=10, 40, 100 GeMfor ©=0.3 GeV and
1,2 0iven by the same triangle distributiof€k) as in Fig. Z: (a)
symmetric case with respective mean val(id$=7.39,14.67,22.76
and dispersiongr=2.37,5.12,8.47(b) asymmetric case witkN)
=3.97,4.88,5.48 and=1.07,1.27,1.41.

are shown in Fig. 3P(N) for D=3 cascades are the sajne
They exemplify three different choices of the ratio
angle form for it(as already mentioned abgve(k)=(1 M/w (10/0.3=33.3, 40/0.3=133.3 and 100/0.3 333.3,
—k)?2, which fora=1 provides the commonly accepted en- respectively.

ergy behavior of the mean multiplicitie$(M) ~M%4-05as In Fig. 4, we show the behavior of scaléthorizontal”
discussed above. The example ®RfN) for D=1 cascades [14]) factorial momentd-, (for | =2,3) calculated for a one-
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15 be very largek=0.45, leading tgdN(M))=M?8-2%nstead
=, of expected N(M))=M%4-05as discussed aboyé1].
S 144
L3
= Ill. SPACE-TIME CHARACTERISTIC
ErE OF THE CASCADE MODEL USED
@ 1.1 We shall now endow our cascade in phase space with
w space-time elemeni®ot addressed if6]). To this aim we
£ 107 introduce some fictitious finite “lifetimet for each vertex
0.9 4 massM,, which is allowed to fluctuate according to some
0 8_' prescribed distribution law'(t). This procedure is a purely

i S classical one, i.e., we are not treatiMy as resonances, as
0.7 4 was done, for example, ir16] on another occasion. Instead,

0.6.] they are regarded to be real particles with masses given by

| the corresponding values of decay paramekgrsand with
054 the respective velocities equal =P, ,/E; , [(E1 ;P12
oad i oo are the energy momenta of the corresponding decay product
{1 7 7 . given in the rest frame of the parent mass in each vértex
0'3'_ ' F, P(kj=1k ¢ =0027 The energy momentum and charges are strictly conserved in

Pk =14 & =0.069 each vertex separatelfhis is another difference with the
- F, P(k)=0.25 ¢ =0.132 information theory approacfl3] where such conservation
F, P(k) = 0.25, ¢ =0.276 laws are imposed on the whole process instedd for a
decay or branching law we shall choose it in the simplest
00 05 10 15 20 25 30 a5 Possibleexponential form:

In(Y/8y) t
F(t)=—exp{—— . (6)
FIG. 4. Example of second and third scaled “horizontal” mo- 7 7
mentsF, as functions of the number of bims;,=Y/ 8y (whereY is
the rapidity range considered anéy the bin siz¢ for one- It is straightforward to get our cascade model in the form

dimensional cascade df1=40 GeV andu=0.3 GeV with k; of a Monte Carlo code. The main features of a one-
=k,=0.25 andk, , chosen randomly in the same way as in Fig. 3. dimensional case has already been demonstrated above. The
The results foM =100 GeV are essentially identical. only difference between one and three-dimensional cascades
is in the fact that, whereas in the former decay products can
dimensional cascade in rapidity space as a function of numflow only along one, chosen direction, in the latter in each
ber of binsn,;,=Y/d8y (whereY is taken as the correspond- vertex the flow direction is chosen randomly from the isotro-
ing rapidity range for the corresponding madslks and 8y pic angular distribution. To allow for some nonzero trans-

denotes the bin size consideyed verse momentum in the one-dimensional case we are using
the transverse mags= 0.3 GeV. For the three-dimensional
"in . (n—1)---(n—1+1) cascadeu is instead set simply to the pion mags=0.14
Fi=np > : . (50  GeV. In every case all decays are described in the rest frame
=1 (N) of the corresponding parent mass in a given vertex. To get

the final distributions, one has to perform a number of Lor-
The N produced particles are distributed amomg, bins  entz transformations to the rest frame of the initial source
with n; particles in theth bin, i.e.,2®"n;=N. The average MassM. As output we are getting in each rusveni a
is over all events. It is interesting to note that our resultsnumber N; of secondaries of masa with both defined
although obtained for essentially the same type of cascade asergy-momentd E;= 2+ P Pilj=1 N; and space-
discqssed ir[(_S], apparently demonstrate much stronger in-g,o coordinatest; ;Fj]j:1 n. Of the last branchingi.e.,
termittency signal than the experimental one shown there ) . I .
However, no fit to the data was attempted in our case as v\/@e (_:oordmates of birth _O_f each part_li:le .
are concerned with the properties of a single elementary F19ure 5 shows densitigg(r) of points of production for
source onlyfleaving the problem of their distribution in mass all cases investigated here: for=1 and 3 dimensional cas-
P(M/w) asidd. On the other hand, momerfs in [6] were cades with both constant anq mass dependent evolution pa-
in reality not calculated but deduced from experimental datd@meter ~ and for three choices of the source mass,
by means of some simple formula obtained from general” 10, 40 and 10_0 GeV. A.S one can see the widely expected
(mathematical fractal analysis of symmetric cascade pro- (Cf- [3,5]) powerlike behavior of cascading source
cesses. The aim was to deduce from them the fractal dimen-
sionsdg=1In2/In(1k) of cascade process considered. As a
result the corresponding decay paramete6ihturns out to

L
. I>rg, (7)

1

p(r)~ T
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FIG. 5. Density distribution of the production poinggr) for
one-dimensional cascade@(\/x—z, n=0.3 GeV, left panels, and
for three-dimensional cascades=(\x*+y?+2%, ©=0.14 GeV,
right panels. Two different choices of the evolution parametare
consideredr=0.2 fm, upper panels, and=0.2M (in fm, the mass
M is the parent mass in a given vertelower panels. Each panel
shows results for three different masskk of the source:M
=10, 40, and 100 GeV. In all casdsis chosen from the same
triangle distribution as in Fig. 2.

is seen only(if at all) for r>rg, i.e., for radii larger then
some(not sharply definedradiusr o, value of which depends
on all parameters present here: misef the source, dimen-
sionality D and evolution parameterof the cascade. Below

PHYSICAL REVIEW D 61 034007

are indeed met in the usual hadronic processes. This point is,
however, outside of the scope of the present work.

IV. CASCADES AND BEC

Let us proceed now to our main point, namely to the
question of whether one can see in BEC some special fea-
tures which could be attributed solely to the branchings and
to their space-time and momentum space structure. At first
glance, the answer seems to be plainly negative as it is easy
to check that the function

dN(p; ,p;)

~dN(p,)dN(p)) ®

Co(Q=|pi—pj|)

does not show any structure of BEC type. It is also true if we
endow our cascade process with the production of charges of
the type: {0} —={+}+{-}, {+}—={+}+{0} and {-}
—{0}+{—1}. In this caseC, calculated for like charge pairs
also does not show any correlations. That is, however, to be
expected, because the only way to have E). showing
“primordial” BEC is to introduce them from the very begin-
ning, for example in the way done recently{itb]. Using the
same information theory approach as[i8] but adding a
new piece of information, namely that the produced particles
are mostly bosons and as such they should be grouped to-
gether as much as possible in the phase space cells, the au-
thors of [15] indeed obtained a substantial BEC signal,
namelyC,>1 for pj—p; in Eq. (8). No space-time structure
was discussed ifil5], however.

We cannot follow this prescription here without invoking
a kind of extremely difficult to formulatéor calculate spe-
cial final state interactions between produced secondaries.
Our cascade is supposed to mimic the production process in
its development, whereas the information theory procedure
of [15] makes no statements whatsoever about the develop-
ment of the process as such. It only provides the least biased
and at the same time most probable distributions, limited
only by imposed constraints of the energy-momentum and
(mean number of particles conservatigreflection of which
are the two Lagrange multipliergg(M,N) and w(M,N),
representing in terminology of the usual thermal models the
“inverse temperature” and ‘“chemical potential,” respec-

ro the p(r) is considerably bended, remaining even almostively]. We could, in principle, use the pseudopotential
flat for D=1 cascades. Only for rapidly developing cascadesnethod as, for example, advocated long agplifi, but this

(i.e., for 7~1/M) in D=3 dimensions, the expected scaling causes changes in the particle distributions and/or destroys
sets in almost from the very beginning and it practically doeghe energy-momentum balance which has to be later restored
not depend on the mass of the source. For the limiting casig a more or lessid hocway and it does not use the infor-

of M=100 GeV the corresponding values of parameter
vary fromL=1.89 andL=1.86 for7=0.2 and 1M for one
dimensional cascades t0=2.78 andL=2.8 for three di-
mensional cascades.

The shapes ob(r) scale in the ratio/w) in the same
way as the multiplicity distribution®(N) discussed before.
As shown powerlike behavidB-5] sets in(at least approxi-
mately) only for long cascadeglarge values of M/u)]
and/or for fast onegsmall values ofr), it remains therefore
to be checked whethdand to what extentsuch conditions

mation on the space-time structure of our results.

An open question is the possible existence of phase fac-
tors in every branch point, which would endow each particu-
lar branch and through it also the finally produced secondar-
ies with some specific, possibly path dependent phases. This
question is, however, left open here and it is understood that
they are all set equal to unity. They would be important to
BEC correlations influencing especially values 65(Q
=0), i.e., the so called degree of coherence or chaoticity
We shall return to this problem elsewhere.
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20 20 The results obtained fromg,.,=50000 events are pre-

Pl c.(Q) :"' ;A==°1-20f('3"v Cas? %0, ;:z"ﬁ)fgv sented in Fig. 6. They are displayed fo_r the' same sequence of
1'8'%"& 2 Mooy 1,8-;%%"'_ . Met0cay parameterdVl (mass of the sourgeD (its dimensionality,

® b + M=100GeV - + M=100Gev and 7 (the evolution parametgas in Fig. 5. The character-

istic feature to be noted is a substantial difference between
D=1 andD=3 dimensional cascades both in the widths of
the C,(Q) and their shapes. Whereas the former are more
exponential-like the latter are more Gaussian-like with a no-
ticeable tendency to flattening out at very small value®of
Also values of interceptsC,(Q=0), are noticeable lower
for D=3 cascades. There is also a difference between
“slow” (constantr) and “fast” (7~1/M) cascades, espe-
cially for D=1 ones. The former lead to substantially differ-
ent shapes in this case. =3 this effect is not so visible,

Q [GeV] Q [GeV] although it is also present. The length of the cascade the
20 0 radius of the production region, cf. discussion of dengpity
e L@ | e ey before dictates the width ofC,(Q). However, the ¥1/u)
81 c o m=socev | "*]%m, o M=40Gev scaling observed before in multiplicity distributions and in
4Q) + M=100Gev o + M=100Gev shapes of source functions is lost here. This is bec&jse

81 depends on the differences of the momepta u coshy,

which do not scale itM/u. The flattening mentioned above
together withC,(0)<2 for D=3 cascades are the most dis-
tinctive signature of the fractal structure combined with
=3 dimensionality of the cascade. The correlations of the
position-momentum type existing here as in all flow phe-
nomena are, in the case Bf=3 cascades, not necessarily
(c) vanishing for very small differences in positions or momenta
O o2 04 08 08 10 00 o1 02 03 04 05 between particles under consideration. The reason is that our
a [eev] Q eV space-time structure of the process can hav@ #n3 a kind
of “holes,” i.e., regions in which the number of produced
FIG. 6. TheC,(Q=|p;—p;]) for the sources presented in Fig. particles is very small. This is perhaps the most characteristic
5. left panels, one-dimensional cascades; right panels, thre€bservation for fractali.e., cascadeprocesses of the type
dimensional cascades; upper panels, time evolution parameter is $g@nsidered here.
constant and equal=0.2 fm; lower panels, time evolution param-

1,44

1,2

1,0

eter is chosen as=0.2M (in fm, the masdM is the parent mass in V. SUMMARY AND CONCLUSIONS

a given vertex Each panel shows results for three different masses

M of the sourceM =10, 40, and 100 GeV. In all caskss chosen In this work we have addressed the problem of the pos-
from the same triangle distribution as in Fig. 2. sible space-time fractal structure of the hadronic production

process. It is complementary to the possifstauilti)fractality

Because our aim is not data fitting but checking if, and toleading to fluctuations in the multiparticle distributions and
what extent, the BEC via it€, observable is sensitive to 1O the possible fractality claimed to exist already on the level

different choices of the cascade processes provided by dhgf Esgrrr?iﬂlc tSr:II’UCtUI'@_]l;S]. Allt_hfoughlyhe_r e is a vast literature
(g g the possiblenulti)fractality in momentum space

ferent sets of parameters, we have decided to use the |deas[g ] its space-time aspects are not yet fully recognized with

the BEC afterbutr ners adhvc'Jctated tredcgntly ﬁ?]' '?nd bf' Jég—S] remaining so far the only representative investigations
cause we are not so much Interested in particular Values @l g field. Our aim was to extent this investigation a bit

tEe “radius” and “coherence” parametedrR and)"hbllljt IN " further by essentially repeating ideas proposefBias] in a
the systematics emerging from our study, we shall use fof, merical form that allowed us to check in more detail the

this exploratory research the most primitive, clas_sical VerSio%onjectures made there, showing the limits of their applica-
of such “afterburner.” The procedure we use is therefore

. ; : _ bility.
very simple. After generating a set bt 1,. .. N particles Our simple model possesses all features called for in
for the lth event we chopse all pairs of the same sign anc{3_5]: it shows both intermittency in the phase spéagem-
endow them with the weight factors of the form onstrated in the limiting case of one-dimensional cascade

explicitly in Fig. 4 and (approximatg power law distribu-
tion of the production points in the space tife. Fig. 5. As
C=1+cod(ri—r(pi—pyl, (9 we have more constraints on the phase space behavior im-
posed by the, for example, expected energy dependence of
R ) the multiplicity (N), we have not much freedom in choosing
wherer;=(t;,r;) andp;=(E;,p;) for a given particle. decay parametets Our distributionP (k) is surely not the
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only possible one. However, whatever shape we choose faran fit data to different parameters characterizing the
P(k) it should reproduce the expected energy dependence gpace-time structure of the source.

multiplicity, (N(M))~M%4=92 Therefore the only really ~ One should realize at this point that there were already
free parameters in our study were the time evolution paramattempts to study the BEC with powerliKeorenzian typg
eter - and dimensionality of the cascade, Here only two  shape of source function: p(&)=(347*RY[1/(1
extreme values oD=1 andD=3 were studied and two + £2/R?)%2] which leads toC,=1+exp(—2RQ) [with &2
also, in a sense, extreme behaviors ©f const andr = (x2+y2+2%) +(ct)2 and Q defined as in our ca}é20].
~1/M were used. All threeM, D, and r were found 10 gych a form is nearest to op(r) and, as it turns out, gives
influence theC,(Q) observable characterizing BEC; cf. Fig. the pest fit(in terms of they? values to data considered in

6. . . [20]. However, differences between this fit and other more
We therefore conclude that BEC are, 'ndeed’S”bStam'a”%nventional onegi.e., based on Gaussian or exponential

influenced by the fact that our process is of the cascade typ . . .
as was anticipated if3—5], although probably not to the ﬁwapes of the sourtvere not dramatic. This means that in

. . reality it will be very difficult to establish by means of BEC
extent expected ther@vhich, however, has not been quanti- th ibl ist f fractal struct fth it
fied therg. However, in practical applications, i.e., in the € possible existence of lractal structure of the emiting

eventual fitting of experimental data, there are many point§°urce' Perhaps the eve_nt.-t_)y-event_ .an.aIyS|s of data with
which need further clarification. The most important is theSOMe Preselection of the initial conditiofis terms of en-
fact that data are usually collected for a range of mabses ©rgy. centrality, multiplicity, etg.will be necessary in order
and among directly produced particles are also resonance, Perform such investigations. o

Therefore, one has first to specify the form of the distribution Our approach must be regarded as preliminary because of
P(M/M) which will influence to some extent our results. In our choice of treatment of BEC. NOtWithStanding its obvious
particular changes in. due to the production from reso- deficiencies(already mentioned ih7]) it seems, however,
nances will shorten our cascade considerably. The possibfelly adequate for the present study which is, as mentioned
effect can be to some extent deduced from our results bgbove, of only limited scope. However, even in such form it
comparing data withl =100 GeV with those wittM =40  seems to indicate the relevance of the fact of a possible frac-
GeV andM =10 GeV. The BEC will be effective only in tal structure of the space-time of the emitting region prevent-
conjunction with precise studies of distributions in the phaseng particles from different branches to be in the same emit-
space[like P(M/w), intermittency and momentum and ra- ting cell irrespectively of the smallness of differences in their
pidity distributiond. These studies should to some extent fixpositions or momenta. This stresses the problem of the dis-
the distribution of decay parametePgk; ;). Only then one tance in the cascade and the like, recently discussg2ilin
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