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Possible space-time fractality of the emitting source
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Using a simple space-time implementation of the random cascade model we investigate numerically a
conjecture made some time ago which was to join the intermittent behavior of spectra of emitted particles with
the possible fractal structure of the emitting source. We demonstrate that such details are seen, as expected, in
the Bose-Einstein correlations between identical particles.

PACS number~s!: 13.87.Fh, 12.40.Ee, 24.10.Lx, 25.75.Gz
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I. INTRODUCTION

The multiparticle spectra of secondaries produced in h
energy collision processes are the most abundant sourc
our knowledge of the dynamics of such processes. Am
others, two features emerging from the analysis of th
spectra are of particular interest:~i! the so called intermitten
behavior observed in many experiments in the analysis
factorial moments of spectra of produced secondaries and~ii !
the Bose-Einstein correlations~BEC! observed between
identical particles. Whereas the former seems to indicate
existence of some~multi!fractal structure of the productio
process@1# the latter are established as, by now, the m
important source of our knowledge on the space-time asp
of the multiparticle production processes@2#.

Some time ago it was argued@3,4# that, in order to make
both effects compatible with each other, the emitting sou
should fluctuate in size in a scale-invariant~i.e., powerlike!
way. This can be achieved in two ways:~i! either the shape
of the interaction region is regular but its size fluctuates fr
event to event according to some power-like scaling law
~ii ! the interaction region itself is a self-similar fractal e
tending over a very large volume@3,5#.

In this work we would like to investigate in more detail
what extent the BEC is sensitive to the possible space-t
fractality of the emission source. To this end we shall us
simple self-similar cascade process@6# in which the final
particles are produced in the sequential two-body decay
some original massM. For our purpose we shall extend it b
introducing the simple~classical! space-time development o
the cascade and by adding the kind of BEC ‘‘afterburne
along the lines advocated recently in@7#.

It is widely expected that every cascade model has a
matically built in the intermittent behavior of spectra of o
served particles@8#. Although this statement is true and o
vious for the models based on random multiplicati
processes in some chosen observed variables~like energy,
rapidity or azimuthal angle! it is highly non trivial in the case
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of cascades~or multiplicative processes! proceeding in vari-
able~s! not directly measurable but nevertheless of great
namical importance~as, for example, masses of some inte
mediate objects occurring during the production process@6#!.
In the purely mathematical case, where cascade process
ceedsad infinitum, one eventually arrives at some space-tim
fractal picture of the production process. However, both
finite masses of produced secondaries and limited energy~or
massM ) stored in the emitting source prevent the full a
distinct development of such a fractal structure@9#. One must
therefore be satisfied with only some limited and mostly
direct presence or signals of such structure. If establishe
would, however, be important for our knowledge of the d
namics of the multiparticle production process.

Such a fractal structure in phase space can genera
similar structure in the space-time picture of the hadroni
tion process. Our aim here is to demonstrate to what ex
they influence BEC. In the next two sections we shall th
provide, respectively, the phase space and space-time c
acteristics of a simple cascade model used for that purp
Section IV contains our main results showing the BEC fe
tures emerging from our model. Section V contains a su
mary of our results and conclusions.

II. PHASE-SPACE CHARACTERISTIC
OF THE CASCADE MODEL USED

We shall model the emitting source of massM by the
usual (1→2) random cascade process employed alread
@6#, M→M11M2, in which the initial massM ‘‘decays’’
into two massesM1,25k1,2•M in such a way thatk11k2
,1, i.e., a part ofM equal to (12k12k2)M is transformed
to kinetic energies of the decay productsM1,2. The process
repeats itself~see Fig. 1! until M1,2>m (m being the mass
of the produced particles! with successive branchings occu
ring sequentially and independently from each other, a
with different values ofk1,2 at each branching, but with
energy-momentum conservation imposed at each step.
different choices of dimensionalityD of our cascade proces
~provided by the restrictions for the possible directions
flights of the decay products in each vertex! be it D51 or
D53 dimensional~isotropic! and for different choices of the
decay parametersk1,2 at each vertex, we are essentially co
©1999 The American Physical Society07-1
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ering an enormously vast variety of different possible p
duction schemes ranging from the essentially o
dimensional strings to thermal-like fireballs.

Of special interest is the case of a one-dimensional c
cade for which one can provide analytic formulas for t
rapiditiesY1,2 of the decay product at each vertex given
the rest frame of the parent mass in this vertex. They dep
solely on the decay parameters at this vertex,k1,2:

Y156 lnF 1

2k1
~11k1

22k2
2!1

1

2k1
ADG ,

Y257 lnF 1

2k2
~12k1

21k2
2!1

1

2k2
ADG , ~1!

whereD5(12k1
21k2

2)224k2
2 .

Two limiting cases can be distinguished here:~i! totally
symmetric and~ii ! maximally asymmetric cascades. In th
case of a totally symmetric cascade decay parameters
equal and the same for all vertices,k1,25k. In this case the
finally produced particles occur only at the very end of t
cascade process and the amount of energy allocated to
production is maximal. Because the number of poss
branchings characterizing the length of the cascade is e
to Lmax5 ln(M/m)/ln(1/k) ~where m5Am0

21^pT&2), the
multiplicity of produced secondaries is given by the follow
ing formula:

Ns52Lmax5S M

m D dF

, dF5
ln 2

ln
1

k

. ~2!

According to@6,10# the exponentdF is formally nothing but
a generalized~fractal! dimension of the fractal structure o
phase space formed by our cascade. The utility of such
tion is, however, greatly reduced because of the neces
limited length of our cascades@9#. Notice a kind of scaling in
Eq. ~2! where, for a fixed ratioM /m the observed multiplic-
ity Ns depends solely on the decay parameterk. The charac-
teristic powerlike behavior ofNs(M ) in Eq. ~2! is normally
attributed to thermal models. For example, fork5 1

4 one has
Ns;M1/2, which in thermal models would correspond to t

FIG. 1. The scheme of our cascade process.
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ideal gas equation of state with velocity of soundc051/A3
@11#. The same behavior~on average! is obtained fork1,2
chosen randomly from a triangle distributionP(k)5(1
2k)a with a.1 which will be therefore used in all our nu
merical calculations. The fact thatNsP(2,M /m) means that
decay parameters are limited tokP(m/M ,1).

For maximally asymmetric cascadesk15m/M and k2
5k, i.e., at each step one has always a single final particl
transverse massm produced against some recoil massM1
5kM: M→m1M1. The amount of kinetic energy allocate
to the produced secondaries is now maximal. The co
sponding rapiditiesY1 and Y2 are now given by Eqs.~1!
with, respectively,k15m/M andk25k. Also here the result-
ant multiplicity Na is given by the lengthLmax of the cas-
cade, which is limited by the conditionMl5kl M>m. It
means therefore thatLmax5 ln(M/m)/ln(1/k) and the corre-
sponding multiplicity is

Na511Lmax511
1

ln
1

k

ln
M

m
. ~3!

The energy dependence ofNa is now logarithmic~in thermal
models it would correspond to a one-dimensional fireb
with c0→1 @12#! but the same kind of scaling as in Eq.~2! is
present also here.

Our simple model therefore covers all possible ene
dependencies of the multiplicities of produced partic
which depend solely on decay parametersk1,2 of the cascade
and scale in the ratioM /m. This remains true for both one
and three dimensional cascades.

In Fig. 2 one can see examples of rapidity distributio
(1/N)(dN/dy) calculated for symmetric and asymmetricD
51 cascades discussed above. They are compared there
most probable distributions in one dimension obtained
means of information theory arguments@13#

f IT~y!5
1

Z
exp@2b•m coshy#, ~4!

where*dy f(y)51 ~what definesZ) andb5b(M ,N) is the
corresponding lagrange multiplier ensuring proper conse
tion of energy momentum in the case whenN particles, each
of transverse massm, are produced from the source of ma
M. Contrary to the case of production via the cascade p
cess, nothing is now said about the production mechanism
is just tacitly assumed that all produced particles occur, i
sense, instantaneously in the whole allowed phase space
the weights provided by Eq.~4!, which was obtained by the
maximalization of the suitably defined information entro
corresponding to the production process under considera
@13#. It occurs that for a wide range ofM andN the quantity
b̄5b(M /N) is ~almost! constant as a function of energy p
particle m̄5M /N, i.e., also here one encounters a kind
scaling, namely that (1/N)(dN/dy);F(z5m coshy/m̄).

The shape of the multiplicity distribution,P(N), in our
case of a source with fixed ratioM /m is given by distribution
P(k1,2) of decay parametersk1,2. We shall use a simple tri-
7-2



n-

io

-

to-
s-

it

POSSIBLE SPACE-TIME FRACTALITY OF THE . . . PHYSICAL REVIEW D 61 034007
angle form for it ~as already mentioned above! P(k)5(1
2k)a, which for a.1 provides the commonly accepted e
ergy behavior of the mean multiplicitiesN(M );M0.4–0.5as
discussed above. The example ofP(N) for D51 cascades

FIG. 2. Example of rapidity distributions of secondaries for
tally symmetric ~a! and totally asymmetric one-dimensional ca
cades with asymmetric~b! and symmetric~c! emission of particles
calculated forM540 GeV andm50.3. Histograms are for fixedk:
P(k)5d(k20.25). Open symbols display results for cascades w
k1,2 distributed randomly according toP(k)5(12k)a with a51
~in both cases multiplicities are the same:N(a).11.5 andN(b,c)

.4.5). Full lines present the most probable~one-dimensional!
thermal-like distributions given by Eq.~4! with b50.028 for ~a!
andb520.133 for~b! and ~c!, respectively~calculated as in@13#
for N(a)511.5 andN(b,c)54.5).
03400
are shown in Fig. 3@P(N) for D53 cascades are the same#.
They exemplify three different choices of the rat
M /m (10/0.3533.3, 40/0.35133.3 and 100/0.35333.3,
respectively!.

In Fig. 4, we show the behavior of scaled~‘‘horizontal’’
@14#! factorial momentsFl ~for l 52,3) calculated for a one

h

FIG. 3. Multiplicity distributions P(N) for ~one-dimensional!
cascades of massesM510, 40, 100 GeV@for m50.3 GeV and
k1,2 given by the same triangle distributionsP(k) as in Fig. 2#: ~a!
symmetric case with respective mean values^N&57.39,14.67,22.76
and dispersionss52.37,5.12,8.47;~b! asymmetric case witĥN&
53.97,4.88,5.48 ands51.07,1.27,1.41.
7-3
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dimensional cascade in rapidity space as a function of n
ber of binsnbin5Y/dy ~whereY is taken as the correspond
ing rapidity range for the corresponding massM and dy
denotes the bin size considered!:

Fl5nbin
l 21K (

i 51

nbin ni~ni21!•••~ni2 l 11!

^N& l L . ~5!

The N produced particles are distributed amongnbin bins
with ni particles in thei th bin, i.e.,( i 51

nbinni5N. The average
is over all events. It is interesting to note that our resu
although obtained for essentially the same type of cascad
discussed in@6#, apparently demonstrate much stronger
termittency signal than the experimental one shown th
However, no fit to the data was attempted in our case as
are concerned with the properties of a single elemen
source only@leaving the problem of their distribution in mas
P(M /m) aside#. On the other hand, momentsFl in @6# were
in reality not calculated but deduced from experimental d
by means of some simple formula obtained from gene
~mathematical! fractal analysis of symmetric cascade pr
cesses. The aim was to deduce from them the fractal dim
sions dF5 ln 2/ln(1/k) of cascade process considered. As
result the corresponding decay parameter in@6# turns out to

FIG. 4. Example of second and third scaled ‘‘horizontal’’ m
mentsFl as functions of the number of binsnbin5Y/dy ~whereY is
the rapidity range considered anddy the bin size! for one-
dimensional cascade ofM540 GeV andm50.3 GeV with k1

5k250.25 andk1,2 chosen randomly in the same way as in Fig.
The results forM5100 GeV are essentially identical.
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be very large,k.0.45, leading tô N(M )&.M0.8–0.9instead
of expected̂ N(M )&.M0.4–0.5as discussed above@11#.

III. SPACE-TIME CHARACTERISTIC
OF THE CASCADE MODEL USED

We shall now endow our cascade in phase space w
space-time elements~not addressed in@6#!. To this aim we
introduce some fictitious finite ‘‘lifetime’’t for each vertex
massMl , which is allowed to fluctuate according to som
prescribed distribution lawG(t). This procedure is a purely
classical one, i.e., we are not treatingMl as resonances, a
was done, for example, in@16# on another occasion. Instea
they are regarded to be real particles with masses given
the corresponding values of decay parametersk1,2 and with
the respective velocities equal tobW 5PW 1,2/E1,2 @(E1,2;PW 1,2)
are the energy momenta of the corresponding decay pro
given in the rest frame of the parent mass in each vert#.
The energy momentum and charges are strictly conserve
each vertex separately~this is another difference with the
information theory approach@13# where such conservatio
laws are imposed on the whole process instead!. As for a
decay or branching law we shall choose it in the simpl
possible exponential form:

G~ t !5
1

t
expF2

t

tG . ~6!

It is straightforward to get our cascade model in the fo
of a Monte Carlo code. The main features of a on
dimensional case has already been demonstrated above
only difference between one and three-dimensional casc
is in the fact that, whereas in the former decay products
flow only along one, chosen direction, in the latter in ea
vertex the flow direction is chosen randomly from the isot
pic angular distribution. To allow for some nonzero tran
verse momentum in the one-dimensional case we are u
the transverse massm50.3 GeV. For the three-dimensiona
cascadem is instead set simply to the pion mass,m50.14
GeV. In every case all decays are described in the rest fr
of the corresponding parent mass in a given vertex. To
the final distributions, one has to perform a number of L
entz transformations to the rest frame of the initial sou
massM. As output we are getting in each run~event! a
number Nj of secondaries of massm with both defined

energy-momenta@Ej5Am21PW j
2;PW j # j 51, . . . ,Nj

and space-

time coordinates@ t j ;rW j # j 51, . . . ,Nj
of the last branching~i.e.,

the coordinates of birth of each particle!.
Figure 5 shows densitiesr(r ) of points of production for

all cases investigated here: forD51 and 3 dimensional cas
cades with both constant and mass dependent evolution
rameter t and for three choices of the source mass,M
510, 40 and 100 GeV. As one can see the widely expec
~cf. @3,5#! powerlike behavior of cascading source

r~r !;S 1

r D L

, r .r 0 , ~7!

.
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POSSIBLE SPACE-TIME FRACTALITY OF THE . . . PHYSICAL REVIEW D 61 034007
is seen only~if at all! for r .r 0, i.e., for radii larger then
some~not sharply defined! radiusr 0, value of which depends
on all parameters present here: massM of the source, dimen-
sionalityD and evolution parametert of the cascade. Below
r 0 the r(r ) is considerably bended, remaining even alm
flat for D51 cascades. Only for rapidly developing cascad
~i.e., for t;1/M ) in D53 dimensions, the expected scalin
sets in almost from the very beginning and it practically do
not depend on the mass of the source. For the limiting c
of M5100 GeV the corresponding values of parameteL
vary from L51.89 andL51.86 fort50.2 and 1/M for one
dimensional cascades toL52.78 andL52.8 for three di-
mensional cascades.

The shapes ofr(r ) scale in the ratio (M /m) in the same
way as the multiplicity distributionsP(N) discussed before
As shown powerlike behavior@3–5# sets in~at least approxi-
mately! only for long cascades@large values of (M /m)#
and/or for fast ones~small values oft), it remains therefore
to be checked whether~and to what extent! such conditions

FIG. 5. Density distribution of the production pointsr(r ) for
one-dimensional cascades (r 5Ax2, m50.3 GeV!, left panels, and
for three-dimensional cascades (r 5Ax21y21z2, m50.14 GeV!,
right panels. Two different choices of the evolution parametert are
considered:t50.2 fm, upper panels, andt50.2/M ~in fm, the mass
M is the parent mass in a given vertex!, lower panels. Each pane
shows results for three different massesM of the source:M
510, 40, and 100 GeV. In all casesk is chosen from the sam
triangle distribution as in Fig. 2.
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are indeed met in the usual hadronic processes. This poin
however, outside of the scope of the present work.

IV. CASCADES AND BEC

Let us proceed now to our main point, namely to t
question of whether one can see in BEC some special
tures which could be attributed solely to the branchings a
to their space-time and momentum space structure. At
glance, the answer seems to be plainly negative as it is e
to check that the function

C2~Q5upi2pj u!5
dN~pi ,pj !

dN~pi !dN~pj !
~8!

does not show any structure of BEC type. It is also true if
endow our cascade process with the production of charge
the type: $0%→$1%1$2%, $1%→$1%1$0% and $2%
→$0%1$2%. In this caseC2 calculated for like charge pair
also does not show any correlations. That is, however, to
expected, because the only way to have Eq.~8! showing
‘‘primordial’’ BEC is to introduce them from the very begin
ning, for example in the way done recently in@15#. Using the
same information theory approach as in@13# but adding a
new piece of information, namely that the produced partic
are mostly bosons and as such they should be grouped
gether as much as possible in the phase space cells, th
thors of @15# indeed obtained a substantial BEC sign
namelyC2.1 for pi→pj in Eq. ~8!. No space-time structure
was discussed in@15#, however.

We cannot follow this prescription here without invokin
a kind of extremely difficult to formulate~or calculate! spe-
cial final state interactions between produced seconda
Our cascade is supposed to mimic the production proces
its development, whereas the information theory proced
of @15# makes no statements whatsoever about the deve
ment of the process as such. It only provides the least bia
and at the same time most probable distributions, limi
only by imposed constraints of the energy-momentum a
~mean! number of particles conservation@reflection of which
are the two Lagrange multipliers,b(M ,N) and m(M ,N),
representing in terminology of the usual thermal models
‘‘inverse temperature’’ and ‘‘chemical potential,’’ respec
tively#. We could, in principle, use the pseudopotent
method as, for example, advocated long ago in@17#, but this
causes changes in the particle distributions and/or dest
the energy-momentum balance which has to be later rest
in a more or lessad hocway and it does not use the infor
mation on the space-time structure of our results.

An open question is the possible existence of phase
tors in every branch point, which would endow each partic
lar branch and through it also the finally produced second
ies with some specific, possibly path dependent phases.
question is, however, left open here and it is understood
they are all set equal to unity. They would be important
BEC correlations influencing especially values ofC2(Q
50), i.e., the so called degree of coherence or chaoticityl.
We shall return to this problem elsewhere.
7-5



t
o
d
as

s

fo
io
re

n

-
e of

-
een
of
ore
no-

een
-
r-

in

e
s-

the
e-
ly
ta

t our

d
istic

os-
ion

nd
vel
e

ith
ns
it

he
ca-

in

ade

im-
e of
g

.
re
is
-

se

O. V. UTYUZH, G. WILK, AND Z. WŁODARCZYK PHYSICAL REVIEW D 61 034007
Because our aim is not data fitting but checking if, and
what extent, the BEC via itsC2 observable is sensitive t
different choices of the cascade processes provided by
ferent sets of parameters, we have decided to use the ide
the BEC ‘‘afterburners’’ advocated recently in@7#. And be-
cause we are not so much interested in particular value
the ‘‘radius’’ and ‘‘coherence’’ parametersR and l, but in
the systematics emerging from our study, we shall use
this exploratory research the most primitive, classical vers
of such ‘‘afterburner.’’ The procedure we use is therefo
very simple. After generating a set ofi 51, . . . ,Nl particles
for the l th event we choose all pairs of the same sign a
endow them with the weight factors of the form

C511cos@~r i2r j !~pi2pj !#, ~9!

wherer i5(t i ,rW i) andpi5(Ei ,pW i) for a given particle.

FIG. 6. TheC2(Q5upi2pj u) for the sources presented in Fig
5: left panels, one-dimensional cascades; right panels, th
dimensional cascades; upper panels, time evolution parameter
constant and equalt50.2 fm; lower panels, time evolution param
eter is chosen ast50.2/M ~in fm, the massM is the parent mass in
a given vertex!. Each panel shows results for three different mas
M of the source:M510, 40, and 100 GeV. In all casesk is chosen
from the same triangle distribution as in Fig. 2.
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The results obtained fromNevent550000 events are pre
sented in Fig. 6. They are displayed for the same sequenc
parametersM ~mass of the source!, D ~its dimensionality!,
andt ~the evolution parameter! as in Fig. 5. The character
istic feature to be noted is a substantial difference betw
D51 andD53 dimensional cascades both in the widths
the C2(Q) and their shapes. Whereas the former are m
exponential-like the latter are more Gaussian-like with a
ticeable tendency to flattening out at very small values ofQ.
Also values of intercepts,C2(Q50), are noticeable lower
for D53 cascades. There is also a difference betw
‘‘slow’’ ~constantt) and ‘‘fast’’ (t;1/M ) cascades, espe
cially for D51 ones. The former lead to substantially diffe
ent shapes in this case. InD53 this effect is not so visible,
although it is also present. The length of the cascade~i.e., the
radius of the production region, cf. discussion of densityr
before! dictates the width ofC2(Q). However, the (M /m)
scaling observed before in multiplicity distributions and
shapes of source functions is lost here. This is becauseC2
depends on the differences of the momentap5m coshy,
which do not scale inM /m. The flattening mentioned abov
together withC2(0),2 for D53 cascades are the most di
tinctive signature of the fractal structure combined withD
53 dimensionality of the cascade. The correlations of
position-momentum type existing here as in all flow ph
nomena are, in the case ofD53 cascades, not necessari
vanishing for very small differences in positions or momen
between particles under consideration. The reason is tha
space-time structure of the process can have inD53 a kind
of ‘‘holes,’’ i.e., regions in which the number of produce
particles is very small. This is perhaps the most character
observation for fractal~i.e., cascade! processes of the type
considered here.

V. SUMMARY AND CONCLUSIONS

In this work we have addressed the problem of the p
sible space-time fractal structure of the hadronic product
process. It is complementary to the possible~multi!fractality
leading to fluctuations in the multiparticle distributions a
to the possible fractality claimed to exist already on the le
of hadronic structure@18#. Although there is a vast literatur
concerning the possible~multi!fractality in momentum space
@19# its space-time aspects are not yet fully recognized w
@3–5# remaining so far the only representative investigatio
in this field. Our aim was to extent this investigation a b
further by essentially repeating ideas proposed in@3–5# in a
numerical form that allowed us to check in more detail t
conjectures made there, showing the limits of their appli
bility.

Our simple model possesses all features called for
@3–5#: it shows both intermittency in the phase space~dem-
onstrated in the limiting case of one-dimensional casc
explicitly in Fig. 4! and ~approximate! power law distribu-
tion of the production points in the space time~cf. Fig. 5!. As
we have more constraints on the phase space behavior
posed by the, for example, expected energy dependenc
the multiplicity ^N&, we have not much freedom in choosin
decay parametersk. Our distributionP(k) is surely not the

e-
set

s
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only possible one. However, whatever shape we choose
P(k) it should reproduce the expected energy dependenc
multiplicity, ^N(M )&;M0.4–0.5. Therefore the only really
free parameters in our study were the time evolution par
eter t and dimensionality of the cascade,D. Here only two
extreme values ofD51 and D53 were studied and two
also, in a sense, extreme behaviors oft5const andt
;1/M were used. All three:M , D, and t were found to
influence theC2(Q) observable characterizing BEC; cf. Fi
6.

We therefore conclude that BEC are, indeed, substant
influenced by the fact that our process is of the cascade
as was anticipated in@3–5#, although probably not to the
extent expected there~which, however, has not been quan
fied there!. However, in practical applications, i.e., in th
eventual fitting of experimental data, there are many po
which need further clarification. The most important is t
fact that data are usually collected for a range of masseM
and among directly produced particles are also resonan
Therefore, one has first to specify the form of the distribut
P(M /m) which will influence to some extent our results.
particular changes inm due to the production from reso
nances will shorten our cascade considerably. The poss
effect can be to some extent deduced from our results
comparing data withM5100 GeV with those withM540
GeV andM510 GeV. The BEC will be effective only in
conjunction with precise studies of distributions in the pha
space@like P(M /m), intermittency and momentum and ra
pidity distributions#. These studies should to some extent
the distribution of decay parametersP(ki , j ). Only then one
.
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can fit data to different parameterst characterizing the
space-time structure of the source.

One should realize at this point that there were alrea
attempts to study the BEC with powerlike~Lorenzian type!
shape of source function: r(j)5(3/4p2R4)@1/(1
1j2/R2)5/2# which leads toC2511exp(22RQ) @with j2

5(x21y21z2)1(ct)2 and Q defined as in our case# @20#.
Such a form is nearest to ourr(r ) and, as it turns out, gives
the best fit~in terms of thex2 values! to data considered in
@20#. However, differences between this fit and other mo
conventional ones~i.e., based on Gaussian or exponent
shapes of the source! were not dramatic. This means that
reality it will be very difficult to establish by means of BEC
the possible existence of fractal structure of the emitt
source. Perhaps the event-by-event analysis of data
some preselection of the initial conditions~in terms of en-
ergy, centrality, multiplicity, etc.! will be necessary in orde
to perform such investigations.

Our approach must be regarded as preliminary becaus
our choice of treatment of BEC. Notwithstanding its obvio
deficiencies~already mentioned in@7#! it seems, however
fully adequate for the present study which is, as mention
above, of only limited scope. However, even in such form
seems to indicate the relevance of the fact of a possible f
tal structure of the space-time of the emitting region preve
ing particles from different branches to be in the same em
ting cell irrespectively of the smallness of differences in th
positions or momenta. This stresses the problem of the
tance in the cascade and the like, recently discussed in@21#.
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