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Pion electromagnetic form factor in the spacelike region andP phased1
1
„s… of pp scattering

from the value of the modulus of the form factor in the timelike region

B. V. Geshkenbein*
Institute for Theoretical and Experimental Physics, 117218 Moscow, Russia

~Received 5 November 1998; published 11 January 2000!

The problem of determining the pion electromagnetic form factorF(q2) in the spacelike region from the
value of its modulus in the timelike region is solved by form factor analyticity. IfF(q2) has no zeros in the
complex plane then the form factor in the spacelike region is determined uniquely. IfF(q2) has zeros in the
complex planeq2 it can be obtained in the spacelike region within narrow limits using experimental data from
the timelike region. The form factor phasew(s) which coincides with theP-wave phased1

1(s) of pp scatter-
ing is calculated. The value of the pion radius has been improved.

PACS number~s!: 13.40.Gp
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I. INTRODUCTION

The pion electromagnetic form factorF(q2) is calculated
theoretically only in the spacelike region. For example,
form factor has been calculated with QCD sum rules@1# and
in the lattice QCD@2#.

On the other hand, the main part of experimental data
form factors are obtained in the timelike region via the re
tion @3,4#

e1e2→p1p2. ~1!

At small spacelike momentum transfers (0,Q2

,0.253 GeV2, Q252q2) the form factor has been mea
sured by scattering of 300 GeV pions from atomic electro
@5#:

p1e2→p1e2. ~2!

Colliding-beam measurements ofs(e1e2→p1p2) and
measurements ofs(p1e2→p1e2) provide direct access to
F(q2). At large spacelike momentum transfers form fac
F(q2) was extracted from the reaction of the electroduct
of pions from nucleons@6–9#

ep→ep1n,

en→ep2p. ~3!

But the presense of the nucleons and their structure com
cates theoretical models and thus the determination of
pion form factor at largeQ2 is model dependent. Analyticity
connects values of the pion form factor in spacelike a
timelike regions.

As follows from microcausality the pion electromagne
form factorF(q2) has the following analytical properties:~1!
F(q2) is an analytical function ofq2 with a cut along posi-
tive q2 from q254mp

2 to infinity; ~2! on the real axis to the
left of q254mp

2 the function F(q2) is real, and consen
quently, takes complex conjugate values on the upper
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lower edges of the cut;~3! for complexq2 with uq2u→` the
function F(q2) grows no faster than a finite power~in QCD
form factor decreases!; ~4! the functionF(q2) is normalized
by the conditionF(0)51.

It follows from unitarity that the form factor phasew(s)
5arctan@ Im F(s)/ReF(s)# in the region 4mp

2 <s<sel must
coincide with the P phase of pp scattering d1

1(s), sel

'0.8 GeV2.
The purpose of this work is to calculate the form factor

the spacelike region from the known value of the modulus
the form factor in the timelike region measured in@3,4#. The
phase of form factorw(s) which coincides withP phase
d1

1(s) of pp scatteringd1
1(s) measured in@10–12# will be

also calculated.

II. DETERMINATION OF THE FORM FACTOR
F „s… IN THE WHOLE COMPLEX PLANE FROM
THE GIVEN VALUE OF ITS MODULUS IN THE

TIMELIKE REGION IF THE FORM FACTOR
HAS NO ZEROS IN THE COMPLEX s PLANE

We shall follow the method of the works@13#. If F(s) has
no zeros in complexs plane the function lnF(s) is an ana-
lytical function ofs with the cut@s0 ,`#, s054mp

2 and, con-
sequently, we have the formula

1

2p i EC

ln F~s8!ds8

As82s0~s82s!s8
5

ln F~s!

sAs2s0

5
1

2p i Es0

` lnuF~s8!u2ds8

As82s0s8~s82s!
,

~4!

where the contourC contains the lower and upper edges
the cut and a large circle. It follows from Eq.~4! that when
F(s) has no zeros in the complexs plane the functionF(s)
is uniquely determined

F~s!5F0~s!,
©2000 The American Physical Society09-1
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F0~s!5 expFsAs02s

2p E
s0

` lnuF~s8!u2ds8

As82s0s8~s82s!
G . ~5!

The result of the calculation ofF0(s) is given in Tables I and
II and in Fig. 1. We use foruF(s8)us0,s8,` the phenom-
enological formula for the form factor obtained in@14,15#.
This formula satisfies the following requirements:~1! the
form factor has correct analytical properties;~2! at large
Q252s the form factor has the asymptotic behavior det
mined by QCD@16–19# ~taking into account the preasymp
totic power correction@20#!; the phenomenological formul
decsribes well the experiments@3,4# x25123 fitting over 120
experimental points in the interval 0.1296 GeV2<s
<4.951 GeV2.

The phase of the form factor can be found using the
lowing formula:

1

s82s2 i«
5p id~s82s!1P

1

s82s
. ~6!

Substituting Eq.~6! into Eq. ~5! we get

F0~s!5uF~s!ueiw0(s), s.s0 , ~7!

where the phase of the form factorw0(s) is equal to

w0~s!52
sAs2s0

2p
PE

s0

` lnuF~s8!u2ds8

As82s0s8~s82s!
, s.s0 .

~8!

Let us write the integral~8! in the form more convenient fo
numerical calculation,

w0~s!52
sAs2s0

2p H E
s0

` lnuF~s8!/F~s!u2ds8

As82s0s8~s82s!

2
p

sAs0

lnuF~s!u2J . ~9!

The result of the calculations ofw0(s) is given in Table III.

III. THE CONSIDERATION OF THE FORM FACTOR
WITH ZEROS IN THE COMPLEX PLANE

Let us consider now the case when the form factorF(s)
has zeros in the complex plane ats5sk , k51,2, . . . ,F(sk)
5F(sk* )50. We introduce instead of the form factorF(s)

the functionF̃(s) by formula

F~s!5x~s!F̃~s!. ~10a!

The factorx(s) is chosen so that

~1! x~sk!50, k51,2, . . .

and consequently, the functionF̃(s) has no zeros in the com
plex s plane.
03300
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~2! The functionx(s) is an analytical function with a cu
along positives from s5s0 to infinity.

~3! On the real axis to the left froms5s0 the function
x(s) is real.

~4! The modulus of the functionx(s) is equal to unity on
the cut.

The function

x~s!5)
k

xk~s!, ~10b!

xk~s!5
As02s2As02sk

As02s1As02sk

As02s2As02sk*

As02s1As02sk*
~10c!

satisfies these requirements.
The functionx(s) is unique. In order to prove this we

conformally map the plane with the cuts inside the unit
circle W by the formula

W5
12As02s

11As02s
, Wk5

12As02sk

11As02sk

. ~10d!

We obtain

xk~W!5
W2Wk

12Wk* W

W2Wk*

12WkW
. ~10e!

The function (W2Wk)/(12Wk* W) is named by the unimo-
dular Blashcke factor@21#, which is known to be unique. The
validity of formula ~10a! for the form factor with infinite
number of complex zeros has been considered in the se
paper in Ref.@13#. If the form factor vanished somewher
like (s2sk)

m, a Blashcke factor ofxk
m would be necessary

The functionF̃(s) has no zeros in the complex plane, o
the cut its modulus equals touF(s8)u, and it is normalized by
the condition

F̃~0!5x21~0!>1 ~11!

and, consequently, we may apply the Cauchy theorem to
function @ ln F̃(s)#/sAs2s0,

1

2p i E ln F̃~s8!ds8

As82s0~s82s!s8
5

ln F̃~s!

sAs2s0

1
ln F̃~0!

i ~2s!As0

5
1

2p i Es0

` lnuF~s8!u2ds8

As82s0s8~s82s!
.

~12!

Therefore

F~s!5c~s!F0~s!,

c~s!5x~s!/@x~0!#A12s/s0, ~13!
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TABLE I. The result of the calculations of the pion form factorF(2Q2) in the spacelike region 0
<Q2<0.253 GeV2. ~1! F0(2Q2) is free from the complex zeros form factor.~2! The form factorFmin

(2Q2) has complex zeros so thatF(2Q2) is minimal. ~3! The form factorFmax(2Q2) has complex zeros
so thatF(2Q2) is maximal.~4! The form factorFmax.impr(2Q2) has complex zeros soF(2Q2) is maximal
and the phase of the form factorw(s) coincides withp-phased1

1(s) of the pp scattering~Ref. @11#!. ~5!
Fexp(2Q2) is the experimental value of the form factor from Ref.@5#. Fexp(Q

2) is measured by scatterin
300 GeV pions from the electrons of a liquid hydrogen target.

n Q2 F2(2Q2)Exp F0
2(2Q2) Fmin

2 (2Q2) Fmax
2 (2Q2) Fmax,impr.

2 (2Q2)

0 0 1 1 1 1 1
1 0.015 0.94460.007 0.943 0.943 0.966 0.944
2 0.017 0.92160.006 0.935 0.935 0.961 0.936
3 0.019 0.93360.006 0.928 0.928 0.957 0.929
4 0.021 0.92660.006 0.921 0.921 0.952 0.922
5 0.023 0.91460.007 0.914 0.914 0.948 0.915
6 0.025 0.90560.007 0.907 0.907 0.943 0.908
7 0.027 0.89860.008 0.900 0.900 0.938 0.901
8 0.029 0.88460.008 0.894 0.894 0.934 0.895
9 0.031 0.88460.009 0.887 0.887 0.929 0.888

10 0.033 0.89060.009 0.881 0.881 0.925 0.882
11 0.035 0.86660.010 0.871 0.871 0.917 0.872
12 0.037 0.87660.011 0.868 0.868 0.916 0.869
13 0.039 0.85760.011 0.861 0.861 0.911 0.862
14 0.042 0.84960.009 0.852 0.852 0.905 0.854
15 0.046 0.83760.009 0.840 0.840 0.896 0.842
16 0.050 0.83060.010 0.828 0.828 0.887 0.830
17 0.054 0.80160.011 0.816 0.816 0.878 0.818
18 0.058 0.80060.012 0.805 0.870 0.870 0.807
19 0.062 0.80960.012 0.793 0.793 0.861 0.795
20 0.066 0.78560.014 0.782 0.782 0.853 0.784
21 0.070 0.78560.015 0.772 0.772 0.844 0.775
22 0.074 0.77760.016 0.761 0.761 0.836 0.764
23 0.078 0.76960.017 0.751 0.751 0.828 0.754
24 0.083 0.75760.010 0.738 0.738 0.818 0.741
25 0.089 0.71560.016 0.724 0.724 0.806 0.727
26 0.095 0.72460.018 0.710 0.710 0.795 0.714
27 0.101 0.68060.017 0.696 0.696 0.783 0.700
28 0.107 0.69660.019 0.683 0.683 0.772 0.687
29 0.013 0.68860.020 0.670 0.670 0.761 0.674
30 0.119 0.67660.021 0.657 0.657 0.750 0.661
31 0.125 0.66560.023 0.645 0.645 0.740 0.650
32 0.131 0.65160.024 0.633 0.633 0.729 0.638
33 0.137 0.64660.027 0.621 0.621 0.719 0.626
34 0.144 0.61660.023 0.608 0.608 0.708 0.613
35 0.153 0.65460.023 0.592 0.592 0.693 0.597
36 0.163 0.56360.024 0.575 0.575 0.677 0.581
37 0.173 0.53460.038 0.558 0.558 0.662 0.564
38 0.183 0.58660.034 0.542 0.542 0.648 0.548
39 0.193 0.54460.036 0.527 0.527 0.634 0.533
40 0.203 0.52960.040 0.513 0.513 0.620 0.520
41 0.213 0.61660.048 0.499 0.499 0.607 0.506
42 0.223 0.48760.049 0.486 0.485 0.594 0.493
43 0.233 0.41760.058 0.473 0.473 0.581 0.480
44 0.243 0.59360.074 0.460 0.460 0.569 0.468
45 0.253 0.33660.073 0.449 0.448 0.558 0.457
033009-3



e

B. V. GESHKENBEIN PHYSICAL REVIEW D 61 033009
TABLE II. The results of the calculations of the pion form factorF(2Q2) in the spacelike region 0.18
<Q2<9.77 GeV2. ~1! F0(2Q2) is free from the complex zeros form factor.~2! The form factorFmin

(2Q2) has complex zeros so thatF(2Q2) is minimal. ~3! The form factorFmax(2Q2) has complex zeros
so that F(2Q2) is maximal. ~4! The form factorFmax.impr.(2Q2) has complex zeros, soF(2Q2) is
maximal and the phase ofw(s) coincides withp-phased1

1(s) of the pp scattering~Ref. @11#!. ~5! Fexp

(2Q2) is the experimental value of the form factor from Refs.@6–9#. F(2Q2)exp has been obtained from th
electroproduction of pions from nucleonsep→ep1n by extrapolation.

Ref. @6#

Q2/GeV2
„F(2Q2)…Exp F0(2Q2) Fmin(2Q2) Fmax(2Q2) Fmax.impr.(2Q2)

0.18 0.85060.044 0.740 0.740 0.807 0.744
0.29 0.63460.029 0.639 0.639 0.719 0.646
0.40 0.57060.016 0.562 0.562 0.649 0.571
0.79 0.38460.014 0.391 0.391 0.483 0.407
1.19 0.23860.017 0.295 0.295 0.383 0.315

Ref. @7#

0.62 0.44560.016 0.452 0.452 0.543 0.465
1.07 0.30960.019 0.319 0.319 0.409 0.338
1.20 0.26960.012 0.293 0.293 0.381 0.313
1.31 0.24260.015 0.274 0.274 0.361 0.295
1.20 0.26260.014 0.293 0.293 0.381 0.313
2.01 0.15460.014 0.191 0.191 0.270 0.216

Ref. @8#

1.22 0.29060.030 0.290 0.289 0.378 0.310
1.20 0.29460.019 0.293 0.293 0.381 0.313
1.71 0.23860.020 0.221 0.229 0.303 0.245
3.30 0.10260.023 0.118 0.117 0.184 0.146
1.99 0.17960.021 0.193 0.193 0.272 0.218
3.99 0.00460.678 0.096 0.095 0.157 0.124

Ref. @9#

1.18 0.25660.026 0.297 0.297 0.385 0.317
1.94 0.19360.025 0.198 0.197 0.277 0.223
3.33 0.08660.033 0.117 0.116 0.183 0.145
6.30 0.05960.030 0.056 0.055 0.105 0.083
9.77 0.07060.019 0.032 0.030 0.068 0.056
e
s
rib

-
th
e

e

e

whereF0(s) is determined by Eq.~5!. Essentially, the for-
mulas~5!, ~10a!, ~13! allow us to fill the requirements of th
analyticity ~1!–~4! for the form factor having any modulu
uF(s8)u on the cut. Five parameters are enough to desc
experimental data of@3,4# where the modulus of the form
factor is measured in 120 points (xd.o. f .

2 5123/120). Clearly
the modulus of the form factor is a smooth function.

It is clear from Eq.~10a! that the knowledge of the modu
lus of the form factor on the cut determines the value of
form factor in the entire complex plane up to within th
factor c(s).

It is easy to obtain from Eq.~13! the asymptotic formula
for the form factorF(s) for s→2`. Sincex(2s)→1 as
s→`, we have

uF~2s!u→uF~s!uexp„2@a1 ln x~0!#As/s0…, ~14!

where

a5
As0

2p E
s0

` ln uF~s!u2ds

As2s0s
. ~15!
03300
e

e

From QCD there follows the asymptotic formula atQ2

52q2→` for the pion form factor@16–19#,

F~2Q2!→ 16pas~Q2!

Q2
f p

2 , ~16!

where f p593 MeV. Therefore

a1 ln x~0!50. ~17!

If the form factorF(s) has no zeros in the complex plan
then a50 and the form factorF(s) can be determined
uniquely. If the valuea is small then the uncertainty of th
determination of the form factorF(s) due to the function
c(s) will be small. The valuea was calculated in the work
@15# from the analysis of the experiments@3,4# and was
found to be small:

a50.06960.003. ~18!
9-4
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IV. BOUNDS ON THE FORM FACTOR F „s…
IN THE SPACELIKE REGION

The form factorF(s),s,0 is determined up to the facto
c(s). To determine upper and lower bounds on the value
the form factorF(s), for s,0 we look for the maximum
and the minimum of the factorc(s), by fixing the value ofs
and changing the distribution of the zerossk so that condi-
tion ~17! is satisfied. Let us write the relation

wk5~As02As02sk!/~As01As02sk!. ~19!

Write wk in the form

wk5r ke
iwk, ~20!

wherer k,1.
Let us write the factorxk(s) in Eq. ~10a! in the form

xk~s!5
~w2wk!~w2wk* !

~12wwk!~12wwk* !
5

w222wrk coswk1r k
2

122wrk coswk1w2r k
2

,

~21!

where

w5~As02As02s!/~As01As02s! . ~22!

FIG. 1. ~1! F0(2Q2) is free from the complex zeros form fac
tor. ~2! The form factorFmin(2Q2) has complex zeros so thatF
(2Q2) is minimal. ~3! The form factorFmax(2Q2) has complex
zeros so that F(2Q2) is maximal. ~4! The form factor
Fmax.impr.(2Q2) has complex zeros soF(2Q2) is maximal and
the phase of the form factorw(s) coincides withp-phased1

1(s) of
the pp scattering~Ref. @11#!. ~5! The experimental value of the
form factor from Refs.@5–9#.
03300
f

It is obvious that the maximumxk(s) is achieved if coswk
51 and the minimumxk(s) is achieved if coswk521 and

maxxk~s!5
~w2r k!

2

~12wrk!
2

, ~23!

minxk~s!5
~w1r k!

2

~11wrk!
2

. ~24!

The valuex(0) is equal

x~0!5)
k

r k
2 . ~25!

It follows from Eq. ~17! that

x~0!5e2a. ~26!

And it follows from inequality that

uwu1r 1

11uwur 1

uwu1r 2

11uwur 2
,

uwu1r 1r 2

11uwur 1r 2
~27!

and from Eqs.~25!, ~26! that the maximumc(s) is achieved
if F(s) has one double real zero:

wmax5e2a/2, smax5
4e2a/2

~11e2a/2!2
s050.9997s0 .

Inequalitiesr 1.uwu, r 2.uwu, r 1 ,r 2.uwu,

r 12uwu
12uwur

r 22uwu
12uwur

.
r 1r 22uwu

12uwur 1r 2
, ~28!

and Eqs.~25!, ~26! prove that minimumc(s) is achieved if
F(s) has one double real zero:

wmin52e2a/2,

smin52
4e2a/2

~12e2a/2!2 s0523360.31s0 .1

V. THE CONTRIBUTION OF COMPLEX ZEROS INTO
THE PHASE OF THE PION FORM FACTOR w„s…

The contribution of complex zeros in the phase of t
form factorw(s) is defined by the formula

dw~s!5
1

2i
ln c~s!, s.s0 . ~29!

The contribution of pair complex conjugate zeros in t
phase of the functionxk can be obtained from Eq.~21! put-
ting w5(120)eiu

xk~s!5e2i (u1uk), ~30!

1Strictly speaking, minimum and maximumc(s) are achieved at
simple real zero, but practically it does not change all the resul
9-5
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where

u52 i ln
11 iAs/s021

12 iAs/s021
52 arcsinA12s0 /s, ~31!

uk5
1

2i
ln

122r ke
2 iu coswk1r k

2e22iu

122r ke
iu coswk1r k

2e2iu
. ~32!

Maximum and minimum of the functionuk by wk are
achieved if coswk561:

uk
65

1

i
ln

17r ke
2 iu

17r ke
iu

562 arcsin
r k sinu

A172r k cosu1r k
2

.

~33!

The contribution of the pair complex conjugate zeros sa
fying the condition~26! has the form

dw (6)~s!52~u1u2
(6)1d0!, ~34!

whereu2 follows from Eq. ~33! by changingr k→r 5e2a/2

andd052(a/2)As/s021.
In Table II we give the values ofw0 , dw (1), dw (2) and

the values of theP-phasepp-scatteringd1
1(s) from @11#. It

is seen from Table III that there is a very good lower bou
on the phasew(s). Upper bound on the phasew(s) is prac-
tically absent.

TABLE III. The results of the calculations of the phasew(s) of
the pion form factor.~1! w0(s) is phase of the pion form factor fre
from complex zeros.~2! dw1(s) is the maximal contribution of
complex zeros in the phase of the pion form factor.~3! dw2(s) is
the minimal contribution of complex zeros in the phase of the p
form factor. ~4! d1

1~s! is the P phase of thepp scattering~Ref.
@11#!.

As/GeV w0(s)/deg. dw (1)(s)/deg. dw (2)(s)/deg. d1
1(s)/deg.

0.51 9.86 351.35 20.0020 9.360.7
0.53 11.31 351.15 20.0023 10.460.6
0.55 12.95 350.94 20.0026 13.160.8
0.57 14.83 350.72 20.0029 13.560.7
0.59 17.02 350.49 20.0033 17.660.8
0.61 19.64 350.26 20.0037 19.460.8
0.63 22.84 350.02 20.0041 20.960.8
0.65 26.70 349.78 20.0045 25.560.7
0.67 31.71 349.53 20.0050 32.160.7
0.69 38.31 349.28 20.0055 37.560.5
0.71 47.07 349.03 20.0060 46.160.9
0.73 58.65 348.52 20.0071 73.062.3
0.75 73.28 348.52 20.0071 73.062.3
0.79 106.12 348 20.0084 113.361.9
0.81 117.09 347.74 20.0091 118.161.1
03300
-
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VI. IMPROVED DETERMINATION OF THE UPPER
BOUND OF THE FORM FACTOR IN THE SPACELIKE

REGION

It can be seen from Table III thatw0(s) within the limits
of experimental errors coincides withd1

1(s). This means that
the valuedw1(s) has the order of the experimental error
d1

1(s). Thus we changeuk
(1) on uk and coswk51 on coswk

520.96. If 21< coswk<20.96 the phasew(s) coincides
with d1

1(s) to within the experimental errors. Improved upp
bound of the form factor in the spacelike region is obtain
from Eq. ~21! if (coswk)max.impr.520.96.

The results of the calculation o
F0 ,Fmin ,Fmax,Fmax.impr. and the experimental data from
Refs. @5–9# are shown in Tables I and II and Fig. 1. Th
curvesF0(s) andFmin(s) merge together.

VII. IMPROVED CALCULATION OF THE PION RADIUS

The formulas for the bounds on the pion radius were
tained in@13,21–23#,

~r p
2 !max5

3

2mp
2 Fb1

1

2
~sha2a!G , ~35!

~r p
2 !min5

3

2mp
2 Fb2

1

2
~sha1a!G , ~36!

where

b5
s0

3/2

2pEs0

` lnuF~s!u2ds

s2As2s0

. ~37!

The valueb was calculated in@15#,

b50.154460.0016. ~38!

Formulas~35!, ~36! were obtained from the derivative of th
form factorF(s) with respect tos at s50,

F8~0!5S b2(
k

12wk

4wk
1

1

2
lnU)

k
wkU D /s0 , ~39!

and, by definition,

r p
2 56F8~0!. ~40!

The maximum value ofF8(0) is reached when the functio
F(s) has one negative zero (s1)max, so that (w1)max

52e2a and then (s1)max52839.8s0 , (r p
2 )max5(0.463

60.005) fm2. The minimum value ofF8(0) is reached
when the functionF(s) has one positive zero (s1)min , so
that (w1)min5e2a and then (s1)min50.9988s0 , (r p

2 )min

50.256 fm2. This zero gives in the phasew(s) the addi-
tional term;180° what is inconsistent with the experime
tal data ond1

1(s) @11#. The minimum ofF8(0) which is
consistent with the experimental data ofd1

1(s) is reached
when form factorF(s) has two complex conjugate zero

n
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(w1)min.impr5r 1eiw1, (w1* )min.impr.5r 1e2 iw1, and
(r 1)min.impr.5e2a/2, (cosw1)min.impr.520.96, (s1)min.impr.
5(46.23111.33i )s0.

We have obtained

Fmin.impr.8 ~0!5b2
a

2
10.96sh

a

2
50.153060.0016

~41!

and

~r p
2 !min.impr.5~0.462360.0048! fm2. ~42!

Taking into account the closeness of (r p
2 )max and

(r p
2 )min.impr. we have obtained

r p
2 5~0.46360.005! fm2. ~43!

This value of r p
2 is slightly larger than those obtained

@3,5#,

r p
2 5~0.42260.00360.013! fm2 @3#

5~0.43960.008! fm2 @5#. ~44!
03300
This disagreement is due to the fact that the authors of@3,5#
used models which give the underestimated value ofr p

2 @15#.
In a recent paper@24# Buck and Lebed have solved th

same problem and obtained results opposite to the resul
the present paper. Buck and Lebed claimed that the exis
world sample of the timelike data for the form factor giv
only loose bounds on the form factor in the spacelike reg
in contrast with the results of this paper. Despite the fact t
61 fitting parameters were used in@24#, the fit of the data in
the timelike region is not satisfactory,x2/DOF53.2 for 145
data points. In this aspect it is worth mentioning the pap
in Refs.@14,15#, where the pion form factor model was ob
tained, which has correct analytical properties, the asymp
ics of QCD and describes well the experiments@3,4#. The
model of @14,15# has only 5 parameters and givesx2/DOF
'1 for 120 data points in the timelike region 0.13 GeV2

<s<4.95 GeV2 @3,4#.
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