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Pion electromagnetic form factor in the spacelike region and® phase 6}(s) of = scattering
from the value of the modulus of the form factor in the timelike region
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The problem of determining the pion electromagnetic form fagttg?) in the spacelike region from the
value of its modulus in the timelike region is solved by form factor analyticity (6%) has no zeros in the
complex plane then the form factor in the spacelike region is determined uniquélggdj has zeros in the
complex planey? it can be obtained in the spacelike region within narrow limits using experimental data from
the timelike region. The form factor phagé€s) which coincides with thé>-wave phaseﬁ(s) of 7rar scatter-
ing is calculated. The value of the pion radius has been improved.

PACS numbes): 13.40.Gp

I. INTRODUCTION lower edges of the cut3) for complexg? with |q?|—« the
function F(g?) grows no faster than a finite powén QCD
The pion electromagnetic form factbi(q?) is calculated  form factor decreasgs(4) the functionF(g?) is normalized
theoretically only in the spacelike region. For example, theby the conditionF(0)=1.
form factor has been calculated with QCD sum rilEsand It follows from unitarity that the form factor phasg(s)
in the lattice QCD2]. =arctafilm F(s)/ReF(s)] in the region 4n?<s<s,, must
On the other hand, the main part of experimental data ogoincide with theP phase of wm scattering 81(s), Se|
form factors are obtained in the timelike region via the reac-~ (0.8 Ge\2.
tion [3,4] The purpose of this work is to calculate the form factor in
the spacelike region from the known value of the modulus of
the form factor in the timelike region measured 84]. The
phase of form factorp(s) which coincides withP phase

At small spacelike momentum transfers <(@?2 1 N e .
<0.253 GeV, Q?=—@?) the form factor has been mea- glls(g)cgrcglgt:gattenngél(s) measured if10-13 will be

sured by scattering of 300 GeV pions from atomic electrons

[5]:

ete —nmtw . (1

Il. DETERMINATION OF THE FORM FACTOR

F(s) IN THE WHOLE COMPLEX PLANE FROM

THE GIVEN VALUE OF ITS MODULUS IN THE
TIMELIKE REGION IF THE FORM FACTOR
HAS NO ZEROS IN THE COMPLEX s PLANE

mte —xwte . (2

Colliding-beam measurements af(ete” —#"7~) and
measurements af(7 e~ — 7" e”) provide direct access to
F(g?). At large spacelike momentum transfers form factor
F(q?) was extracted from the reaction of the electroduction We shall follow the method of the work&3]. If F(s) has

of pions from nucleon$6—9 no zeros in complexs plane the function Iir(s) is an ana-
. lytical function of s with the cut[ sy,%], so=4mf, and, con-
ep—em n, sequently, we have the formula
en—em p. (©))
1 InF(s’)ds _InF(s)

But the presense of the nucleons and their structure compli- 2 i c\/ﬂ(s’—s)s’ T sys—s
cates theoretical models and thus the determination of the 0 0

pion form factor at larg&? is model dependent. Analyticity 1 (= In|F(s")|3ds’
connects values of the pion form factor in spacelike and =5 T ,
timelike regions. 27 Jso\'s' =58’ (5" =)

As follows from microcausality the pion electromagnetic (4)

form factorF(g?) has the following analytical propertie)
F(g?) is an analytical function ofj?> with a cut along posi-
tive g? from g?=4m? to infinity; (2) on the real axis to the
left of q?=4m? the function F(g?) is real, and consen-
quently, takes complex conjugate values on the upper an

where the contou€ contains the lower and upper edges of
the cut and a large circle. It follows from E}) that when
F(s) has no zeros in the complesplane the functior-(s)

IS uniquely determined

*Email address: geshken@uvxitep.itep.ru F(s)=Fq(s),
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Eo(s) SVsp—s (= In|F(s")|?ds’
s)= ex
0 2 Jsy\s'—sp8' (8" —9)

The result of the calculation &f,(s) is given in Tables | and
Il and in Fig. 1. We use fofF(s’)|sy<s’' <« the phenom-
enological formula for the form factor obtained [ih4,15.
This formula satisfies the following requirementd) the
form factor has correct analytical propertig®) at large

. (5

Q2= —s the form factor has the asymptotic behavior deter-
mined by QCD[16-19 (taking into account the preasymp-
totic power correctiorj20]); the phenomenological formula

decsribes well the experimerj 4] x>= 123 fitting over 120
experimental points in the interval 0.1296 Ge¥s
<4.951 GeV.
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(2) The functiony(s) is an analytical function with a cut
along positives from s=s; to infinity.

(3) On the real axis to the left frols=s, the function
x(s) is real.

(4) The modulus of the functioi(s) is equal to unity on
the cut.

The function

x©=11 xs). (10b)
Vso— 5= So— Sk VSo— 5~ So— St
Xk(s)= .
Vso— s+ /so— Sk VSo— S+ Vso—Sf

(109

The phase of the form factor can be found using the fol-

lowing formula:

1
,—_Zwiﬁ(S’—S)-FP,—. (6)
s'—s—ie s'—s
Substituting Eq(6) into Eq. (5) we get
Fo(s)=|F(s)|e'®®, s>5,, (7)
where the phase of the form facteg(s) is equal to
© SVs—Sg o[ In|F(s")|?ds’ -
s)=— , S.
®o 2 S /S;_sos/(sr_s) 0
tS)

Let us write the integral8) in the form more convenient for
numerical calculation,

(S)__s\/s—so = In|F(s")/F(s)|?ds’
Pols)= 2 % /S,—SOS/(S,_S)
S In|F(s)|2]. 9)
sv/sp

The result of the calculations a@fy(s) is given in Table IIl.

Ill. THE CONSIDERATION OF THE FORM FACTOR
WITH ZEROS IN THE COMPLEX PLANE

Let us consider now the case when the form fa&tfs)
has zeros in the complex planests,, k=1,2,... F(sy)
=F(s§)=0. We introduce instead of the form factb(s)

the functionF(s) by formula

F(s)=x(s)F(s). (10
The factory(s) is chosen so that

(1) x(sp)=0, k=1.2,...

and consequently, the functif(s) has no zeros in the com-
plex s plane.

satisfies these requirements.

The function x(s) is unique. In order to prove this we
conformally map the plane with the catinside the unit
circle W by the formula

We 1-+sp—s W 1—+/Sp— Sk (100
1+Vso—s © 1+yso—s¢
We obtain
W-W, W-Wg
Xk(W)= (10¢)

1-Wrw 1-WW-

The function W—W,)/(1—W; W) is named by the unimo-
dular Blashcke factdr21], which is known to be unique. The
validity of formula (109 for the form factor with infinite
number of complex zeros has been considered in the second
paper in Ref[13]. If the form factor vanished somewhere
like (s—s,)™, a Blashcke factor ofy' would be necessary.

The functionF (s) has no zeros in the complex plane, on
the cut its modulus equals t6(s’)|, and it is normalized by
the condition

F(0)=x""0)=1 (1D

and, consequently, we may apply the Cauchy theorem to the

function[In F(s)]/s\s—so,

1 [ InF(shds'  InF(s) . InF(0)
27 ] [ —sy(s'—s)S' sVs—sg i(—S)\sg
_ 1o In|F(s")|?ds’
2 So \/s’—sos’(s’—s)'
(12
Therefore
F(s)=y¢(s)Fo(s),
¥(s) = x(8)/[ x(0) ]V~ %0, (13
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TABLE |. The result of the calculations of the pion form factef —Q?) in the spacelike region 0
<Q2%=<0.253 GeV. (1) Fo(—Q?) is free from the complex zeros form factdq®) The form factorF n;,
(—Q?) has complex zeros so tha{ —Q?) is minimal. (3) The form factorF 5 — Q%) has complex zeros
so thatF (— Q?) is maximal.(4) The form factor ,ximpr(— Q%) has complex zeros $8(—Q?) is maximal
and the phase of the form factei(s) coincides Withp—phaseéi(s) of the & scattering(Ref. [11]). (5)
Fexp(—Qz) is the experimental value of the form factor from Ri&]. Fexp(Qz) is measured by scattering

300 GeV pions from the electrons of a liquid hydrogen target.

5

Q? FA-Qexp  Fa(—Q)  FZ(—Q)  F2(—Q)  Flaximpr(—Q?)

0 0 1 1 1 1 1
1 0.015 0.944:0.007 0.943 0.943 0.966 0.944
2 0.017 0.92%0.006 0.935 0.935 0.961 0.936
3 0.019 0.9330.006 0.928 0.928 0.957 0.929
4 0.021 0.926:0.006 0.921 0.921 0.952 0.922
5 0.023 0.9140.007 0.914 0.914 0.948 0.915
6 0.025 0.9050.007 0.907 0.907 0.943 0.908
7 0.027 0.8980.008 0.900 0.900 0.938 0.901
8 0.029 0.884:0.008 0.894 0.894 0.934 0.895
9 0.031 0.884:0.009 0.887 0.887 0.929 0.888
10 0.033 0.896:0.009 0.881 0.881 0.925 0.882
11 0.035 0.866:0.010 0.871 0.871 0.917 0.872
12 0.037 0.876:0.011 0.868 0.868 0.916 0.869
13 0.039 0.85%0.011 0.861 0.861 0.911 0.862
14 0.042 0.842:0.009 0.852 0.852 0.905 0.854
15 0.046 0.83%0.009 0.840 0.840 0.896 0.842
16 0.050 0.836:0.010 0.828 0.828 0.887 0.830
17 0.054 0.80%0.011 0.816 0.816 0.878 0.818
18 0.058 0.80€:0.012 0.805 0.870 0.870 0.807
19 0.062 0.8020.012 0.793 0.793 0.861 0.795
20 0.066 0.78%0.014 0.782 0.782 0.853 0.784
21 0.070 0.78%0.015 0.772 0.772 0.844 0.775
22 0.074 0.77%0.016 0.761 0.761 0.836 0.764
23 0.078 0.7620.017 0.751 0.751 0.828 0.754
24 0.083 0.75Z0.010 0.738 0.738 0.818 0.741
25 0.089 0.71%0.016 0.724 0.724 0.806 0.727
26 0.095 0.7240.018 0.710 0.710 0.795 0.714
27 0.101 0.686:0.017 0.696 0.696 0.783 0.700
28 0.107 0.696:0.019 0.683 0.683 0.772 0.687
29 0.013 0.6880.020 0.670 0.670 0.761 0.674
30 0.119 0.676:0.021 0.657 0.657 0.750 0.661
31 0.125 0.66%0.023 0.645 0.645 0.740 0.650
32 0.131 0.65%0.024 0.633 0.633 0.729 0.638
33 0.137 0.646:0.027 0.621 0.621 0.719 0.626
34 0.144 0.616:0.023 0.608 0.608 0.708 0.613
35 0.153 0.6540.023 0.592 0.592 0.693 0.597
36 0.163 0.5630.024 0.575 0.575 0.677 0.581
37 0.173 0.5340.038 0.558 0.558 0.662 0.564
38 0.183 0.586:0.034 0.542 0.542 0.648 0.548
39 0.193 0.544:0.036 0.527 0.527 0.634 0.533
40 0.203 0.5290.040 0.513 0.513 0.620 0.520
41 0.213 0.616:0.048 0.499 0.499 0.607 0.506
42 0.223 0.48%0.049 0.486 0.485 0.594 0.493
43 0.233 0.41%0.058 0.473 0.473 0.581 0.480
44 0.243 0.5930.074 0.460 0.460 0.569 0.468
45 0.253 0.3360.073 0.449 0.448 0.558 0.457
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TABLE Il. The results of the calculations of the pion form faci®f— Q?) in the spacelike region 0.18
<Q2%<9.77 GeV. (1) Fo(—Q?) is free from the complex zeros form factd®) The form factorF n;,
(—Q?) has complex zeros so tha{ —Q?) is minimal. (3) The form factorF 5 — Q%) has complex zeros
so thatF(—Q?) is maximal.(4) The form factorFmax,mpr( Q?) has complex zeros, sB(—Q?) is
maximal and the phase af(s) coincides withp-phasesi(s) of the 7w scattering(Ref. [11]). (5) Fexp
(—Q?) is the experimental value of the form factor from R¢6-9]. F(— Qz)exphas been obtained from the
electroproduction of pions from nucleorp—en*n by extrapolation.

Ref. [6]

QZ/GeVZ (F(_QZ))Exp FO(_QZ) Fmin(_Qz) Fmax(_Qz) Fmaximpr.(_Qz)
0.18 0.85@-0.044 0.740 0.740 0.807 0.744
0.29 0.634-0.029 0.639 0.639 0.719 0.646
0.40 0.57@¢0.016 0.562 0.562 0.649 0.571
0.79 0.384-0.014 0.391 0.391 0.483 0.407
1.19 0.2380.017 0.295 0.295 0.383 0.315

Ref.[7]
0.62 0.4450.016 0.452 0.452 0.543 0.465
1.07 0.30%0.019 0.319 0.319 0.409 0.338
1.20 0.26%0.012 0.293 0.293 0.381 0.313
1.31 0.242-0.015 0.274 0.274 0.361 0.295
1.20 0.262-0.014 0.293 0.293 0.381 0.313
2.01 0.154-0.014 0.191 0.191 0.270 0.216

Ref.[8]
1.22 0.293-0.030 0.290 0.289 0.378 0.310
1.20 0.294-0.019 0.293 0.293 0.381 0.313
1.71 0.238-0.020 0.221 0.229 0.303 0.245
3.30 0.102:0.023 0.118 0.117 0.184 0.146
1.99 0.17%0.021 0.193 0.193 0.272 0.218
3.99 0.004:-0.678 0.096 0.095 0.157 0.124

Ref.[9]
1.18 0.256-0.026 0.297 0.297 0.385 0.317
1.94 0.1930.025 0.198 0.197 0.277 0.223
3.33 0.086:0.033 0.117 0.116 0.183 0.145
6.30 0.05%0.030 0.056 0.055 0.105 0.083
9.77 0.07@0.019 0.032 0.030 0.068 0.056

whereFo(s) is determined by Eq(5). Essentially, the for- From QCD there follows the asymptotic formula &?
mulas(5), (108, (13) allow us to fill the requirements of the = —qg?— for the pion form factof16—19,

analyticity (1)—(4) for the form factor having any modulus

|[F(s')| on the cut. Five parameters are enough to describe 167y Q?)

experimental data off3,4] where the modulus of the form F(_QZ)*}—stﬂ (16)
factor is measured in 120 pointg{, ; = 123/120). Clearly Q?

the modulus of the form factor is a smooth function.

Itis clear from Eq/(103 that the knowledge of the modu- wheref_=93 MeV. Therefore
lus of the form factor on the cut determines the value of the
form factor in the entire complex plane up to within the
factor y(s).

It is easy to obtain from Eq.13) the asymptotic formula )
for the form factorF(s) for s——o. Sincey(—s)—1 as If the form factorF(s) has no zeros in the complex plane
s—o, we have then a=0 and the form factor=(s) can be determined

uniquely. If the valuea is small then the uncertainty of the
|[F(—s)|—|F(s)|lexp(—[a+ In x(0)]Vs/sp), (14) determination of the form factofF (s) due to the function
(s) will be small. The valuea was calculated in the work

a+In x(0)=0. 17

where [15] from the analysis of the experimenf8,4] and was
\/_ | 2 found to be small:
So fw In|F(s)| ds
15
VS—5¢S 13 a=0.062+0.003. (18
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Pion Formfactor

10
Q’/GeV?

FIG. 1. (1) Fo(— Q?) is free from the complex zeros form fac-
tor. (2) The form factorF ,;,(— Q?) has complex zeros so thht
(—Q?) is minimal. (3) The form factorF ,{ — Q%) has complex
zeros so thatF(—Q?) is maximal. (4 The form factor
Fmaximpr.(—Q?) has complex zeros sB(—Q?) is maximal and
the phase of the form factas(s) coincides withp-phasesi(s) of
the 77 scattering(Ref. [11]). (5) The experimental value of the
form factor from Refs[5-9].

IV. BOUNDS ON THE FORM FACTOR F(s)
IN THE SPACELIKE REGION

PHYSICAL REVIEW D 61 033009

It is obvious that the maximuny,(s) is achieved if cog,
=1 and the minimumny(s) is achieved if cog,=—1 and

(5= W0 23
maxyy(s)= ————,
X 1 —wry)?
in x\(5) (WHry)? (24)
min x,(s) = —.
Ak (1+wr)?
The valuey(0) is equal
x(©@=11 r&. (25)
It follows from Eq.(17) that
x(0)=e 2 (26)
And it follows from inequality that
W[ +ry |wl+r,  |wl+rar, 27

1+|wlry 1+|w|r, 14+|w|rqr,

and from Eqgs(25), (26) that the maximumy(s) is achieved
if F(s) has one double real zero:
4e 32

—a—al2 —
Wmax_ € a 1 Smax_
(1 + efa/Z)Z

SO: Ogggéo .

Inequalitiesr ;> |w|, ry>|w|, rq,r>|w|,

rro—|w|
1—|wlrqry’

ri=(wl ro—{wl

1—|wlr 1—|wlr (28)

and Eqs.(25), (26) prove that minimumy(s) is achieved if

The form factorF(s),s<0 is determined up to the factor F(S) has one double real zero:

(s). To determine upper and lower bounds on the value of

the form factorF(s), for s<0 we look for the maximum
and the minimum of the factaf(s), by fixing the value o
and changing the distribution of the zergsso that condi-
tion (17) is satisfied. Let us write the relation

W= (VSo— V/so— S0/ (V/So+ So— Sy). (19
Write w, in the form
W= rkei¢k! (20)

wherer, <1.
Let us write the factom(s) in Eqg. (109 in the form

(W—W)(W—W})  W?—2wr, cosgy+rE

X($)= (T—ww) (1—wwi) B 1-2wr, cosgy+wr2’
(21)
where
W= (V/So— \'So— S)/(V/So+ VSp—S) . (22

— —al2
Wmin=—¢€ ’

4e—a/2 .
Smin= — mz)—zs(): —3360.35,.

V. THE CONTRIBUTION OF COMPLEX ZEROS INTO
THE PHASE OF THE PION FORM FACTOR ¢(s)

The contribution of complex zeros in the phase of the
form factor ¢(s) is defined by the formula

1
5<p(s)=zln P(s), s>sg. (29
The contribution of pair complex conjugate zeros in the
phase of the functiony, can be obtained from E¢21) put-
ting w=(1—0)e'’
2i(0+ 6

xk(s)=e (30

Istrictly speaking, minimum and maximur(s) are achieved at
simple real zero, but practically it does not change all the results.
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TABLE Ill. The results of the calculations of the phagés) of VI. IMPROVED DETERMINATION OF THE UPPER
the pion form factor(1) ¢q(s) is phase of the pion form factor free  BOUND OF THE FORM FACTOR IN THE SPACELIKE
from complex zeros(2) s¢(s) is the maximal contribution of REGION

complex zeros in the phase of the pion form fact8y. 5¢ ™~ (s) is o o
the minimal contribution of complex zeros in the phase of the pion It can be seen from Table Il thaty(s) within the limits
form factor. (4) 5(s) is the P phase of therr scattering(Ref. ~ Of experimental errors coincides Wlﬁ‘i(s). This means that

[11]). the valuese™ (s) has the order of the experimental error in
51(s). Thus we chang@!") on ¢, and cosp=1 on cosg,
JsIGeV ¢o(s)/deg. S¢*)(s)/deg. 5¢(7)(s)/deg. Si(s)/deg.  =-0.96. If — 1< cosg,=—0.96 the phase(s) coincides
051 986 351.35 —0.0020 9307 \t/)wth zl(sf) tho v¥|th|nfthe exper:nental e;r;rs. Irr_1pro_\/edbup_perd
0.53 1131 35115 00023 10.40.6 founEo (t21<§ .form actor in t E_s%aé:gl e region is obtaine
0.55 12.95 350.94 00026 13.r08 ro[]Ijheq. reISL(Jﬁ'cs)SQDk)m?));‘impr'_the. . calculation of
0.57 14.83 350.72 —0.0029 13507 Fo.F F F and the experimental data from
_ 0" mins" max:™ maximpr.
822 ggi 228;2 88823 i;‘ig'g Refs.[5-9] are shown in Tables | and Il and Fig. 1. The
: : : g e curvesFq(s) andF,,,(s) merge together.
0.63 22.84 350.02 —0.0041 20.90.8
0.65 26.70 349.78 —0.0045 25.50.7
067 31.71 349.53 —0.0050 32,407 VII. IMPROVED CALCULATION OF THE PION RADIUS
0.69 38.31 349.28 —0.0055 37.50.5 The formulas for the bounds on the pion radius were ob-
0.71 47.07 349.03 —0.0060 46.10.9 tained in[13,21-23,
0.73 58.65 348.52 —0.0071 73.62.3
0.75 73.28 348.52 —0.0071 73.62.3 9 _ 3 1
079  106.12 348 ~0.0084 113319 (a5 | b+ 5(sha-a), (39
0.81 117.09 347.74 —0.0091 118.+1.1 m
) 3 1
(rmin=>—| b= 5 (shata)/, (36)
where 2m:,
e m where
+ivs/sy—
0=—i In_—o =2 arcsin/1—sy/s, (31 312 2
1-iys/sp—1 b:si xw (37)
2m)sy ?s—sy
_ -0 2,-2i0 .
0k=iln 1-2re 'cosgy+rie (39  The valueb was calculated if15],
2i " 1-2re'?cospy+rie?’?
b=0.1544+0.0016. (38)
Maximum and minimum of the functiory, by ¢, are  Formulas(35), (36) were obtained from the derivative of the
achieved if cosp=*+1: form factorF(s) with respect tes at s=0,
; 1-w, 1
L1 1Fre '’ rsing F'(0)=|b— “+ 2| TT wl |7s 39
O =—In———— =+ 2 arcsin x . © ; 4w, 2 l_k[ K |/S0 (39
I 15r,el? V1T 2r cosf+ri
(33 and, by definition,
The contribution of the pair complex conjugate zeros satis- r2=6F'(0). (40

fying the condition(26) has the form ) ) )
The maximum value oF’(0) is reached when the function

. N F(s) has one negative zeroSi)max, SO that q)max

3¢ (s)=2(6+ 657+ &), B4 —_ea and then €)mac —839.8, (r2)mac (0.463

+0.005) fnf. The minimum value ofF’(0) is reached

where 6, follows from Eq.(33) by changingr,—r=e 2  when the functionF(s) has one positive zeros() i, SO

and 8y= — (a/2)\/SIsg— 1. that Wy)min=e 2 and then $;)min=0.9988, (r%)min

In Table Il we give the values af,, S¢(*), 5¢(™) and  =0.256 fnf. This zero gives in the phase(s) the addi-
the values of th(P—phaseww—scatteringéi(s) from [11]. It tional term~180° what is inconsistent with the experimen-

is seen from Table Il that there is a very good lower boundtal data onéi(s) [11]. The minimum of F’(0) which is

on the phase(s). Upper bound on the phasgs) is prac- consistent with the experimental data ﬁf(s) is reached
tically absent. when form factorF(s) has two complex conjugate zeros
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(Wl)min.impr:r{eilzla (WI)min.impr.:rleiwl, and
(" Dminimpr. =€~ ¥2 (€OS@Dminimpr.=—0.96, 1) minimpr.
=(46.23+11.33)sy.
We have obtained
a a
F vinimpr(0)=b— 5 +0.968h =0.1530~0.0016
(41)
and
(r2) min.impr.= (0.4623:0.0048 fm?. (42)

Taking into account the closeness off2),. and
(r2) min.impr. We have obtained

r2=(0.463+0.009 fm?. (43

This value ofrf, is slightly larger than those obtained in
[3.5],

(0.422+0.003+0.013 fm? [3]
(0.439£0.008 fm? [5]. (44)

2
r’JT

PHYSICAL REVIEW D 61 033009

This disagreement is due to the fact that the authofS &f
used models which give the underestimated valueic[tls].

In a recent papel24] Buck and Lebed have solved the
same problem and obtained results opposite to the results of
the present paper. Buck and Lebed claimed that the existing
world sample of the timelike data for the form factor gives
only loose bounds on the form factor in the spacelike region
in contrast with the results of this paper. Despite the fact that
61 fitting parameters were used[i24], the fit of the data in
the timelike region is not satisfactory?/DOF= 3.2 for 145
data points. In this aspect it is worth mentioning the papers
in Refs.[14,15, where the pion form factor model was ob-
tained, which has correct analytical properties, the asymptot-
ics of QCD and describes well the experimef@s4]. The
model of[14,15 has only 5 parameters and givg&/DOF
~1 for 120 data points in the timelike region 0.13 GeV
<s<4.95 Ge\f [3,4].
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