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Solitons in a gauged Landau-Lifshitz model
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We study the gauged Landau-Lifshitz model with the aim of obtaining self-dual solitonic configurations. It
is shown that with the introduction of a suitably chosen triplet of background scalar fields, this model admits
topological solitons.

PACS number~s!: 03.65.Ge, 11.10.Ef, 11.15.Tk
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Topologically nontrivial localized structures such as vo
tices are possible candidates of anyonic objects in quas
nar condensed matter physics. In the case of charged m
fields coupled to Chern-Simons~CS! terms, the vortex is
electrically charged and behaves as an anyon@1#. In this
context, self-dual CS models are all the more relevant si
the equations of motion for the gauge fields in CS models
of the first order form to begin with, unlike the ones invol
ing Maxwell terms, and hence these equations can be u
directly as a part of self-duality equations@2#.

The first nonrelativistic Abelian CS model to admit se
dual solitonic configurations was constructed by Jackiw a
Pi @3#. This is a planar gauged Schro¨dinger model with a
quartic potential term. It was generalized subsequently
models involving the Maxwell term@2,4# also, which makes
the gauge field acquire a physical propagating massive m
The CS system still admits a self-dual formulation, a sign
its robustness, provided one includes additional real sc
fields of mass equal to the mass of the propagating ga
mode. Alternatively, as shown by Barashenkovet al. @5#,
self-dual solitons can be obtained also by introducing a s
able background charge density. This latter model can
commodate the case of repulsive gases as well, with
asymptotically nonvanishing matter field.

Here it is pertinent to note that the Schro¨dinger model has
to be gauged, along with dynamical terms such as the
term, in order to obtain self-dual solutions. This is in contr
to the case of the Landau-Lifshitz~LL ! model, or the non-
relativisticO(3) nonlinear sigma model~NLSM! involving a
triplet of spin fields@6,7#, which admits self-dual solitonic
configurations even at the ungauged level, just as its rela
istic counterpart@8#. However, this model has certain coo
dinate singularities which can be got rid of by rewriting it
terms of the CP1 variables@7#. This LL model describes a
Heisenberg ferromagnetic system in the long wavelen
limit. In the CP1 formulation this model becomes a nonrel
tivistic U(1) gauge theory without any dynamical terms su
as CS or Maxwell terms. The model also has aglobal SU(2)
invariance. The question naturally arises whether the gau
CP1 model obtained by gauging the global SU(2) group a
adding a corresponding CS term also admits solitonic c
figurations.
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It has been shown by Nardelli, Cho, and Kimm@9# that
the relativistic gauged CP1 model admits a new kind of soli
tonic configuration which cannot always be characterized
the second homotopy group (p2) of the configuration space
unlike the case with the pure CP1 model. A partially@U(1)#
gauged LL model with both the CS and Maxwell terms h
been considered by Tchrakian and Tomaras@10# who
showed that their model admits topologically stable self-d
vortices. It is therefore desirable to analyze the case wh
the entire SU(2) group is gauged. The purpose of this pa
is to study this model and look for any solitonic configur
tion.

To this end, we consider the model given by

L5
i

2
@~D0Z!†Z2Z†~D0Z!#2uDiZu22a0~Z†Z21!

1uemnlS Am
a ]nAl

a1
g

3
eabcAm

a An
bAl

c D1
g

2
A0

afa. ~1!

Here we have introduced a triplet of real scalar~background!
fields fa, for reasons that will become clear later, andZ
5(z2

z1) is a complex doublet satisfyingZ†Z51. u represents

the CS parameter. The covariant derivatives are given b

D05]02 igA0
aTa,

Di5] i2 iai2 igAi
aTa ~2!

with Ta5sa/2. Hereai andAi
a represent the U~1! and SU~2!

gauge fields, respectively. Note that since we are conside
a nonrelativistic model, we have the freedom to introdu
different temporal and spatial ‘‘covariant’’ derivatives in E
~2! without violating any principles. Note here that where
the Jackiw-Pi model@3# involved a single component Schro
dinger field with a potential term, the present model involv
a doublet of scalar fields subject to the conditionZ†Z51.

The Legendre transformed Hamiltonian density which
given by

H5uDiZu21a0~Z†Z21!1A0
aS g

2
~Ma2fa!22uBaD ,

~3!

where Ba5(]1A2
a2]2A1

a1geabcA1
bA2

c) is the non-Abelian
SU~2! magnetic field, and
©1999 The American Physical Society02-1
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Ma5Z†saZ ~4!

is a unit vector obtained by using the Hopf map.
Clearly,a0 andA0

a are the Lagrange multipliers enforcin
the constraints

G15~Z†Z21!'0,

G2
a5

g

2
~Ma2fa!22uBa'0. ~5!

As this nonrelativistic model is first order in time derivativ
the symplectic structure can readily be obtained by using
Faddeev-Jackiw@12# method to yield the following brackets

$za~x!,zb* ~y!%5 idabd~x2y!,

$Ai
a~x!,Aj

b~y!%5
e i j

2u
dabd~x2y!. ~6!

G1 andGa
2 are the first class Gauss constraints of this mod

and it can be shown thatG1 andGa
2 generate the appropriat

U~1! and SU~2! transformations, respectively: i.e.,

dZ~x!5E d2y f~y!$Z~x!,G1~y!%5 i f ~x!Z~x!,

dZ~x!5E d2y fa~y!$Z~x!,G2
a~y!%5

ig

2
f a~saZ!,

dAm
a ~x!5E d2y f~y!$Am

a ~x!,G1~y!%50,

dAi
a~x!5E d2y fb~y!$Ai

a~x!,G2
b~y!%

5] i f
a~x!1geabcAi

bf c~x!. ~7!

The momentum variablep i conjugate toai vanishes:

p i5
dL
dȧi

50. ~8!

Preservation of this primary constraint in time yields the s
ondary constraint

ai'2 iZ†] iZ2
g

2
Ai

aMa. ~9!

Clearly, Eqs.~8! and ~9! form a pair of second class con
straints, and therefore are ‘‘strongly’’ implemented by t
Dirac brackets

$ai ,p j%50. ~10!

With this, ai ceases to be an independent degree of freed
It may be mentioned here that the same thing happens to
U~1! gauge field for the case of the gauged CP1 model
coupled to the CS term in its relativistic avatar which w
studied in Refs.@9,10#.
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One can show thatG2
a satisfy an algebra isomorphic to th

SU~2! algebra

$G2
a~x!,G2

b~y!%'2eabcG2
c~x!d~x2y!. ~11!

Following the group theoretical arguments, as in Ref.@10#,
one can show that the following relations between the Ga
constraints are expected:

gG15MaG2
a . ~12!

This can be verified usingMaMa5(Z†Z)2'1. This shows
that G1 is not an independent constraint, and, this mo
therefore, has only SU~2! gauge invariance. This is agai
similar to the case of the relativistic version of the gaug
CP1 model coupled to the Hopf term@10#.

We are now equipped to address the question of solito
configurations@8# in this model. To investigate the existenc
of solitons, consider the energy functional obtained from
Hamiltonian density~3! @on the constraint surface~5!#,
which is given by

E5E d2x~DiZ!†~DiZ! ~13!

which can be rewritten as

E5E d2xu~D16 iD 2!Zu262pN, ~14!

where

N5
1

2p i E d2xe i j ~DiZ!†~D jZ!. ~15!

In order for topological solitons to exist, the correspondi
static configurations must satisfy the following self-dual
anti-self-dual saturation condition:

~D16 iD 2!Z50 ~16!

andN should be given by some number of topological orig
This provides the lower Bogomol’nyi bound for the ener
functional ~14!. Since the energy is minimized by this sel
dual static solution~16!, it must also correspond to the stat
solution of the Euler-Lagrange equation. Note thatN(15) is
SU~2! gauge invariant, and so we can evaluateN in any
gauge of our choice. At this stage we rewriteN as

N5
1

4pE d2xe i j F22i ] iZ
†] jZ1gAi

a

3S ] jM
a1

g

2
eabcAj

bMcD G . ~17!

By making use of the local SU~2! gauge invariance of the
model, we can go to a configuration whereZ(x)5const.
Correspondingly,Ma’s are also constant, so that quantiti
such as] jZ and] jM

a vanish, andN ~17! reduces to
2-2
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N5
g2

4pE d2xeabcMaA1
bA2

c . ~18!

On the other hand, the invariance under SU~2! ~global!
transformation of the model~1! implies the existence of the
following triplet of conserved SU~2! charges

Qa52uE d2x~]1A2
a2]2A1

a! ~19!

as follows from Noether’s theorem. In terms of the cor
sponding charge densityJ0a52u(e i j ] iAj

a), N becomes

N5
g

4p
MaE d2xS Ba2

J0a

2u D . ~20!

Making use of the Gauss constraintG2 ~5!, one can write

N5
g2

16puE d2x~12Mafa!2
g

8pu
MaQa. ~21!

Now if the background fieldfa satisfies the condition

Mafa51 ~22!

then using Eqs.~21! and ~5! one gets

N52
g

8pu
MaQa, ~23!

MaBa50. ~24!

Note that all (Mafa), (MaBa), and (MaQa) are SU~2! sca-
lars.

At this point we make a particular gauge choice1 Z5(1
0).

Correspondingly,Ma52da3, and it follows from Eq.~24!
that

B35]1A2
32]2A1

31geabA1
aA2

b50 ~25!

(a,b51,2). With thisQ3 ~19! can be reexpressed as

Q3522ugE d2x~A1
1A2

22A2
1A1

2!. ~26!

~Just to remind the reader, the subscripts and superscrip
A stand for spatial and group indices, respectively.! Note that
in this gauge, one has only a surviving U~1! symmetry. This
corresponds to an SO~2! rotation around theM3 axis. Q3 is
the corresponding conserved~Noether! charge. Making use
of Eqs. ~2! and ~9!, one of the saturation conditions~16!,
@i.e., (D11 iD 2)Z50] in the gaugeZ5(1

0), can be shown to
yield

A1
152A2

2 ,

1Although the presence of the CS term allows for only tho
gauge transformations which tend to a constant at infinity,E ~13!
andN ~15! are invariant under arbitrary gauge transformations.
02770
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A2
15A1

2 . ~27!

Using Eqs.~26! and ~27! one finds

Q352ugE d2x@~A1
1!21~A2

1!2#

52ugE d2x@~A2
2!21~A1

2!2#.0 ~28!

and consequently@using Eq.~23!#,

N5
g

8pu
Q3.0 ~29!

and the minimum value of energy is

E(min)52pN5
g

4u
Q35

g2

2 E d2x@~A1
1!21~A2

1!2#.0.

~30!

One can easily check that the other saturation condi
@(D12 iD 2)Z50# yields

A1
15A2

2 ,

A2
152A1

2 , ~31!

andQ3 ~26! becomes

Q3522ugE d2x@~A1
1!21~A2

1!2#,0. ~32!

With this, N is given as

N5
g

8pu
Q3,0. ~33!

But now,Emin is given by

Emin522pN52
g

4u
Q35

g2

2 E d2x@~A1
1!21~A2

1!2#.0.

~34!

Thus, either of the saturation conditions~16! yields the same
~positive definite! value forEmin as desired. The only differ-
ence is that the two conditions in Eq.~16! correspond to the
positive and negative values for the numberN.

Thus we must have either of the saturation conditio
corresponding to the configurationZ5(1

0). Also note that for
E(min) to be finite,A1 and A2 must vanish asymptotically
Thus asymptotically,B3 ~25! becomes a U~1! magnetic field
with Ai

3 as the Abelian gauge field. The points at infinity c
be identified, so that the two-dimensional plane gets eff
tively compactified toS2. From Eq.~19!, it then follows that
Q3 represents a topological index, which is nothing but t
first Chern class. Clearly,Emin @Eqs.~30! and ~34!# is given
by a topological index. Thus these field configurations sa
fying either of the saturation conditions~27! or ~31! corre-
spond to topological solitons, with positive or negati
‘‘winding numbers’’ (N). The same holds for all other con

e

2-3
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figurations obtained by gauge transformations. For exam
for any other configuration withZ(x)5const, theEmin will
be given by an appropriateQa obtained by making a suitabl
SO~3! rotation corresponding to the SU~2! transformation
required to getZ5const configuration fromZ5(1

0). But the
value of Emin will remain the same. It is important to not
that we had to choose a convenient gauge here to ide
Emin with a topological index~up to a constant!. It is rather
nontrivial to make this identification in an arbitrary gauge

Note further, that if in adition,fa5Ma, thenBa50 ~5!
and Ai

a are pure gauges. In this case we can go to a ga
whereAi

a50 andDi uAi505Di ~the covariant derivative op

erator of the pureCP1 model!. Here alsoN corresponds to
02770
e,

ify

ge

the topological index~Chern class! and we have a topologi
cal soliton.

Finally, note that forfa50, the first term inN ~21! di-
verges, and there does not exist any solitonic configurat
It was thus necessary to introduce a triplet of backgrou
scalar fieldsfa in Eq. ~1!, satisfying Eq.~22! in order to
obtain solitonic configurations. This is somewhat similar
the model@5# where a uniform background charge dens
was introduced. The difference is that here we have a tri
of background scalar fields instead of a dynamical one. Ho
ever, such additional fields or charge density are not requ
for the case of the relativistic model@9# and its reduced
phase space version@11#. On the other hand, in the mode
@4#, it was required to introduce a dynamical scalar field
appropriate mass.
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