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Solitons in a gauged Landau-Lifshitz model
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We study the gauged Landau-Lifshitz model with the aim of obtaining self-dual solitonic configurations. It
is shown that with the introduction of a suitably chosen triplet of background scalar fields, this model admits
topological solitons.

PACS numbgs): 03.65.Ge, 11.10.Ef, 11.15.Tk

Topologically nontrivial localized structures such as vor- It has been shown by Nardelli, Cho, and Kinj® that
tices are possible candidates of anyonic objects in quasipldhe relativistic gauged CAmodel admits a new kind of soli-
nar condensed matter physics. In the case of charged matt@nic configuration which cannot always be characterized by
fields coupled to Chern-Simon&€S) terms, the vortex is the second homotopy grouprf) of the configuration space,
electrically charged and behaves as an anjbn In this  unlike the case with the pure &model. A partially[U(1)]
context, self-dual CS models are all the more relevant sincgauged LL model with both the CS and Maxwell terms has
the equations of motion for the gauge fields in CS models areen considered by Tchrakian and Tomafd®] who
of the first order form to begin with, unlike the ones involv- Showed that their model admits topologically stable self-dual
ing Maxwell terms, and hence these equations can be usé’éP”'CE?- It is therefore _deswable to analyze the case where
directly as a part of self-duality equatiof&). f[he entire SU_(2) group is gauged. The purpose of thlg paper

The first nonrelativistic Abelian CS model to admit self- 'S 1© study this model and look for any solitonic configura-
dual solitonic configurations was constructed by Jackiw and©M . .
Pi [3]. This is a planar gauged Schiinger model with a To this end, we consider the model given by
quartic potential term. It was generalized subsequently to

. . X i
models involving the Maxwell terrf2,4] also, which makes L= E[(DOZ)TZ—ZT(DOZ)]—|DiZ|2—aO(ZTZ— 1)
the gauge field acquire a physical propagating massive mode.
The CS system still admits a self-dual formulation, a sign of g . g
its robustness, provided one includes additional real scalar + 0™ A% 9, AR+ §EabCAZA,,A§ + EAS&‘. («h

fields of mass equal to the mass of the propagating gauge

mode. Alternatively, as shown by Barashenketval. [S],  pjere we have introduced a triplet of real scalaackground
self-dual solitons can be obtained also by introducing a suitfjg|qs 42, for reasons that will become clear later, arid

able background charge density. This latter model can acz. 21y is 4 complex doublet satisfying’Z=1. 6 represents
commodate the case of repulsive gases as well, with an "% i o ]
asymptotically nonvanishing matter field. the CS parameter. The covariant derivatives are given by
Here it is pertinent to note that the ScHilmger model has
to be gauged, along with dynamical terms such as the CS
term, in order to obtain self-dual solutions. This is in contrast
to the case of the Landau-LifshitzL) model, or the non- Di=d,—ia;—igA’T® 2
relativisticO(3) nonlinear sigma modéNLSM) involving a
triplet of spin fields[6,7], which admits self-dual solitonic with T#=c?2. Herea; andA} represent the (1) and SU2)
configurations even at the ungauged level, just as its relativgauge fields, respectively. Note that since we are considering
istic counterpar{8]. However, this model has certain coor- a nonrelativistic model, we have the freedom to introduce
dinate singularities which can be got rid of by rewriting it in different temporal and spatial “covariant” derivatives in Eq.
terms of the CP variables[7]. This LL model describes a (2) without violating any principles. Note here that whereas
Heisenberg ferromagnetic system in the long wavelengtithe Jackiw-Pi mod€]3] involved a single component Schro-
limit. In the CP* formulation this model becomes a nonrela- dinger field with a potential term, the present model involves
tivistic U(1) gauge theory without any dynamical terms sucha doublet of scalar fields subject to the conditidiz=1.
as CS or Maxwell terms. The model also hagi@bal SU(2) The Legendre transformed Hamiltonian density which is
invariance. The question naturally arises whether the gaugegiven by
CP' model obtained by gauging the global SU(2) group and
adding a corresponding CS term also admits solitonic con-

DOZ 070_ |gA8Ta,

H=|DZ|*+ay(Z'Z— 1)+ A2 Ima— g2 — 2082,

figurations. 2
©)
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0556-2821/99/6(2)/0277024)/$15.00 61027702-1 ©1999 The American Physical Society



BRIEF REPORTS PHYSICAL REVIEW D 61 027702

Mi=Z"g,Z (4) One can show tha®$ satisfy an algebra isomorphic to the
SU(2) algebra
is a unit vector obtained by using the Hopf map.
Clearly,ay andAj are the Lagrange multipliers enforcing {Gg(x),Gg(y)}mzeabCGg(x)é(x—y). (11
the constraints
+ Following the group theoretical arguments, as in R&@],
G,=(Z2'2-1)~0, one can show that the following relations between the Gauss
g constraints are expected:
a__ a a a
G5 2(M ¢*)—26B%~0. (5) 4G, = M3G2, (12
As this nonrelativistic model is first order in time derivative, This can be verified usiny1®M23=(2'2)2~1. This shows

the symplectic_ structure can reqdily be obtain_ed by using thg, ot G, is not an independent constraint, and, this model
Faddeev-Jackiwl2] method to yield the following brackets: therefore, has only S@) gauge invariance. This is again

similar to the case of the relativistic version of the gauged

* —1 J—
{2a(X),Z5(¥)}=100p0(x =), CP' model coupled to the Hopf terfri0].
. We are now equipped to address the question of solitonic
{A?(x),Af’(y)}= 2_'(195ab5(x_y). (6)  configurationd8] in this model. To investigate the existence

of solitons, consider the energy functional obtained from the
Hamiltonian density(3) [on the constraint surfacé5)],

G, andG? are the first class Gauss constraints of this modelynich is given by

and it can be shown th&, andGi generate the appropriate

U(1) and SU2) transformations, respectively: i.e.,
Ezf d’x(D;2)"(D,2) (13

SZ(x)= | d?yf(y){Z(x),G =if(x)Z(x),
) J YIYNHZ00,G1 ()} =100 Z(x) which can be rewritten as

5Z(x)=J dzyfa(y){Z(x),GS(y)}=%fa(oaz), E=f d?x|(D,£iD)Z|2= 27N, (14)
A% = [ Y HAL0.Guy) =0, where
N=if d°xe;(D;2)"(D.2). (15)
27i i i

SAZ(X) = f APy (y) [AR(X),GE(y)}

In order for topological solitons to exist, the corresponding
static configurations must satisfy the following self-dual or
anti-self-dual saturation condition:

= 9,f3(x) + ge?P°APFe(X). 7)

The momentum variabler; conjugate tog; vanishes:
oL (D;%iD2)Z=0 (16)
=——=0. (8)
a; andN should be given by some number of topological origin.
) . o _ This provides the lower Bogomol'nyi bound for the energy
Preservation of_thls primary constraint in time yields the secs,nctional (14). Since the energy is minimized by this self-
ondary constraint dual static solutior{16), it must also correspond to the static
solution of the Euler-Lagrange equation. Note tN&15) is
a~—iz'9,2— gA?M a (9 SU(2) gauge inve_lriant, aqd SO we can evaludten any
2 gauge of our choice. At this stage we rewiNeas

T

Clearly, Egs.(8) and (9) form a pair of second class con- 1
straints, and therefore are “strongly” implemented by the N= 4_f dZXGij
a

—2i9,2"9,Z+gA}
Dirac brackets

{ai,Trj}=0. (10) X

M3+ geabCA}’MCH. (17)

With this, a; ceases to be an independent degree of freedom.

It may be mentioned here that the same thing happens to tHgy making use of the local SIQ) gauge invariance of the
U(1) gauge field for the case of the gauged'QRodel model, we can go to a configuration wheZgx) = const.
coupled to the CS term in its relativistic avatar which wasCorrespondinglyM®'s are also constant, so that quantities
studied in Refs[9,10]. such asg;Z and 9;M? vanish, andN (17) reduces to
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2
N= f—w J d?xe?P°M2APAS . (18

On the other hand, the invariance under(3Uglobal)

transformation of the modéll) implies the existence of the

following triplet of conserved S(2) charges

Q3=2¢ f d2X(9,A5— 3,A3) (19

as follows from Noether’s theorem. In terms of the corre-

sponding charge densit}Pazze(eijaiAf), N becomes

g JOa
— > na 2 a_ _
N 477_M jdx(B 20). (20
Making use of the Gauss constrai®@j (5), one can write

g2
16760

fdzx(l—M%a)—%MaQa. (22)

N=

Now if the background fieldp? satisfies the condition

M2ag2=1 (22
then using Eqgs(21) and(5) one gets
N=— iMaQa, (23
8o
M2B2=0. (24)

Note that all M2¢?), (M2B?), and M23Q?) are SU2) sca-
lars.

At this point we make a particular gauge ch&icZe:(({).
CorrespondinglyM?3= — 53, and it follows from Eq.(24)
that

B3=0,A3— 9,A3+ ge“PA{AE=0 (25)

(a,=1,2). With thisQ?® (19) can be reexpressed as

Q3=-24g J d?x(ATAZ—AJAZ). (26)
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AJ=A%. (27)

Using Eqgs.(26) and(27) one finds
Q*=26g f d*x[(AD?+(A)?]

=2ng d?x[(A2)%+(A)?]>0 (29

and consequentljusing Eq.(23)],

N= -3 Q>0

~ 80 (29

and the minimum value of energy is
g , ¢
E(min)zszzﬁq?':?f d?X[(A1)*+(A3)?]>0.

(30

One can easily check that the other saturation condition
[(D,;—iD,)Z=0] yields

AT=A3,
Az=—AL (3
and Q3 (26) becomes
Q3=—209f d?x[ (AD)2+(A3)?]<0. (32)
With this, N is given as
N= iQ3<o. (33
8w

But now, E i, is given by

2
Emin=—2mN=— %Q3=%J d?x[(Ah)2+(A2)?]>0.
(34)

Thus, either of the saturation conditiofi) yields the same
(positive definit¢ value forE,,;, as desired. The only differ-

(Just to remind the reader, the subscripts and superscripts ghce is that the two conditions in E(.6) correspond to the

A stand for spatial and group indices, respectiyeijote that
in this gauge, one has only a survivingly symmetry. This
corresponds to an S@) rotation around thévi® axis. Q% is
the corresponding conservéNoethej charge. Making use
of Egs. (2) and (9), one of the saturation conditior(46),
[i.e., (D;+iD,)Z=0] in the gaugez:(g), can be shown to
yield

positive and negative values for the numbér

Thus we must have either of the saturation conditions
corresponding to the configurati@h= ((1’). Also note that for
E(min) to be finite, A' and A> must vanish asymptotically.
Thus asymptoticallyB® (25) becomes a (1) magnetic field
with Ai3 as the Abelian gauge field. The points at infinity can
be identified, so that the two-dimensional plane gets effec-
tively compactified ta5?. From Eq.(19), it then follows that
Q?® represents a topological index, which is nothing but the
first Chern class. Clearhg i, [Egs.(30) and(34)] is given
by a topological index. Thus these field configurations satis-

IAlthough the presence of the CS term allows for only thosefying either of the saturation conditior(@7) or (31) corre-

gauge transformations which tend to a constant at infirity13)
andN (15) are invariant under arbitrary gauge transformations.

spond to topological solitons, with positive or negative
“winding numbers” (N). The same holds for all other con-
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figurations obtained by gauge transformations. For examplehe topological indeXChern classand we have a topologi-
for any other configuration witiZ(x) = const, theE;, will ~ cal soliton. _ _ _
be given by an appropria®? obtained by making a suitable _Finally, note that for¢"=0, the first term inN (21) di-
SQ3) rotation corresponding to the $2) transformation verges, and there does not exist any so_lltonlc configuration.
. ) . 0 It was thus necessary to introduce a triplet of background
required to geZ = const configuration fronZ =(3). Butthe  gcajar fieldsg? in Eq. (1), satisfying Eq.(22) in order to
value of E, will remain the same. It is important to note gptain solitonic configurations. This is somewhat similar to
that we had to choose a convenient gauge here to identifthe model[5] where a uniform background charge density
Ein With a topological indexup to a constant It is rather ~ was introduced. The difference is that here we have a triplet
nontrivial to make this identification in an arbitrary gauge. ©f background scalar fields instead of a dynamical one. How-
Note further, that f in aditiong*~I*, thenB*=0 (5 Be8 &0 e modée] and s reduced
a B r
andAj are pure gauges. In this case we can go to a gang%ase space versidi1l]. On the other hand, in the model

" - : o
whereA'=0 andD|x -o=D; (the covariant derivative op- 4] it was required to introduce a dynamical scalar field of

erator of the pureCP! mode). Here alsoN corresponds to

appropriate mass.
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