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Probing the partially localized supergravity background of the fundamental string ending
on the Dp-brane
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Theory Division, CERN, CH-1211, Geneva 23, Switzerland
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We study the dynamics of the probe fundamental string in the field background of the partially localized
supergravity solution for the fundamental string ending on the Dp-brane. We separately analyze the probe
dynamics for its motion along the world volume direction and the transverse direction of the source Dp-brane.
We compare the dynamics of the probe along the Dp-brane world volume direction to the bion dynamics.

PACS number~s!: 11.15.Tk, 04.50.1h, 11.25.Sq, 11.27.1d
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I. INTRODUCTION

The source and probe method has been useful for st
ing the bound states of branes. In this method, it is assu
that the source brane is much heavier than the probe br
Thus, although the probe is under the influence of the fie
produced by the source, the probe has no influence on
source field configuration. So, the source and probe syste
described by the Dirac-Born-Infeld~DBI! or the Nambu-
Goto ~NB! action of the probe brane in the ‘‘static’’ field
background of the source brane. Such a method has
successful in reproducing the brane intersection rules@1# and
in studying some dynamics or statistical mechanics
branes, e.g., Refs.@2–6#.

The source and probe method is useful especially w
one wants to study intersecting brane configuration, si
completely localized supergravity solutions for intersect
branes are not yet available. Note, for delocalized superg
ity solutions, a constituent brane is not localized on the wo
volume of the other constituent. So, delocalized solutions
not useful for studying, for example, the dynamics of a bra
constituent within the world volume of another brane co
stituent. For such a study, one lets one constituent be
probe and another constituent be the ‘‘static’’ background
which the probe moves. However, this method cannot
applied if one also wants to study the interaction amo
branes of the same type while these branes move in the b
ground of brane of another type. It is the purpose of t
paper to study such a case.

In Refs.@7–10#, various types of~partially! localized su-
pergravity solutions for intersecting branes in the core reg
of one constituent brane are constructed. For such soluti
one constituent is localized on the world volume of the ot
constituent ~while the latter brane is delocalized on th
former brane!, provided that some of the overall transver
directions are delocalized in some cases. In this paper,
study the dynamics of the~localized! former type of brane
~brane 1!, which not only interacts with the~delocalized!
other type of brane~brane 2! but also interacts with anothe
brane 1. One can describe such dynamics with the DBI or

*Email address: Donam.Youm@cern.ch
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NG action of the brane 1 in the background field configu
tion of partially localized intersecting brane 1 and brane
where brane 1 is localized on brane 2.

One can apply this method to study the dynamics for a
type of intersecting brane configurations by using the p
tially localized intersecting brane solutions and applying
similar procedure as the work of this paper. But we w
restrict our study to the case of the fundamental strings e
ing on the Dp-brane, because for this case the dynamics
the corresponding world volume solitons, i.e., the bio
@11,12#, is relatively well understood, e.g., Refs.@13–15#. As
we will see in the following section, we however find di
agreement in dynamics of the probe fundamental string w
the dynamics of bions. This seems to be due to the fact
the supergravity solutions for intersecting branes used in
paper are not fully localized ones. Namely, for the partia
localized intersecting brane solutions used in this paper,
location of the Dp-brane along the longitudinal direction o
the fundamental string is not specified, whereas the sc
field of the bion solution specifies such location. Also,
might be due to the difference in approximations used in
calculation of brane dynamics in the source-probe met
and the world volume soliton method. However, the co
parison of supergravity and world volume aspects of bra
dynamics discussed in this paper may turn out to be usefu
other relevant studies and when fully localized solutions
available.

The paper is organized as follows. In Sec. II, we summ
rize the partially localized supergravity solution for the fu
damental string ending on the Dp-brane. In Sec. III, we
study the dynamics of the probe fundamental string in t
supergravity background, closely following the previo
works @2,5# on the dynamics of the probe branes. We co
sider the cases where probe fundamental string moves a
the longitudinal direction and the transverse direction of
source Dp-brane, separately.

II. PARTIALLY LOCALIZED SUPERGRAVITY
SOLUTION FOR THE FUNDAMENTAL STRING

ENDING ON THE D p-BRANE

In this section, we summarize the partially localized s
pergravity solution for the fundamental string ending on t
©1999 The American Physical Society18-1
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Dp-brane1 constructed in Ref.@8#. The string-frame effective
supergravity action for such configuration is given by

S5
1

16pG10
E d10xA2GFe22fS R14]Mf]Mf2

1

12
uH3u3D

2
1

2~p12!!
uFp12u2G , ~1!

where G and R are respectively the determinant and t
Ricci scalar of the spacetime metricGMN (M ,N
50,1, . . . ,9) in thestring frame,f is the dilaton,H3 is the
field strength for the the 2-form potentialBMN in the Neveu-
Schwarz–Neveu-Schwarz~NS-NS! sector, andFp12 is the
field strength for the (p11)-form potentialAM1•••M p11

in

the Ramond-Ramond~R-R! sector. For thep52 case, there
d
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n

n
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02501
is an additional Chern-Simon term
;eM1•••M10BM1M2

]M3
AM4M5M6

]M7
AM8M9M10

in the action.
The supergravity solution has the following form:2

GMNdxMdxN52HF
21Hp

21/2dt21Hp
21/2~dx1

21•••1dxp
2!

3HF
21Hp

1/2dy21Hp
1/2~dz1

21•••1dz82p
2 !,

ef5HF
21/2Hp

(32p)/4 , Bty52HF
21 ,

Atx1•••xp
52Hp

21 , ~2!

where the harmonic functions for the fundamental string a
the Dp-brane in the near horizon region (uzW2zW0u'0) of the
Dp-brane are respectively given by
HF511(
i

Qi

F uxW2xW0 i u21
4Qp

~p24!2uzW2zW0up24G [( p23)213]/2(p24)
, Hp5

Qp

uzW2zW0u62p
. ~3!
n-
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Note, these harmonic functions describe the localized fun
mental strings on the Dp-brane only for thep55 case.
~When p56, the harmonic functionHp is logarithmic and
therefore this supergravity solution is not valid. For thep
57 case, the spacetime is not asymptotically flat.! For the
p,5 case, one has to delocalize 52p of the overall trans-
verse directions in order to localize the fundamental stri
on the Dp-brane. Harmonic functions for this case are giv
by

HF511(
i

Qi

@ uxW2xW0i u214QpuzW2zW0u#3
, Hp5

Qp

uzW2zW0u
.

~4!

Note, in the expressions for harmonic functions in Eq.~4!, zW
is the part of overall transverse coordinates where the bra
are localized. Namely,zW in Eq. ~4! is three-dimensional.

In this paper, we consider the case in which all the fu
damental strings coincide at the origin of the Dp-brane world
volume space~i.e., xW0 i50W , for all i ) and the fundamenta
strings and the Dp-brane meet at the origin of the overa
transverse space~i.e., zW050W ). The harmonic functions~3! in
this case take the following forms:

1Of course, this supergravity solution does not strictly corresp
to the fundamental string ‘‘ending’’ on Dp-brane, but rather corre
sponds to the fundamental string ‘‘piercing’’ through Dp-brane. But
at this moment, this supergravity solution is the closest that
have.
a-

s

es

-

HF5H 11
QF

@x214Qpz#3 , p,5,

11
QF

@x214Q5z#7/2, p55,

Hp5
Qp

z
, ~5!

wherex[uxW u andz[uzWu.

III. DYNAMICS OF THE PROBE FUNDAMENTAL
STRING

In this section, we study the dynamics of the probe fu
damental string that moves in the background of the sou
fundamental string ending on the source Dp-brane with the
field configuration given by Eq.~2!. We will assume that~i!
the source brane is much heavier than the probe brane,
there are large numbers of coinciding source fundame
strings and source Dp-branes, and~ii ! the velocity of the
probe fundamental string is very small and changes v
slowly. Based on the first assumption, we neglect the b
reaction on the source due to the moving probe. The sec
assumption implies that the radiation will be negligible, a
lowing quasistatic evolution of the system which is describ
by the geodesic motion in the moduli space.

The action for the probe fundamental string with the te
sion Tf moving in the curved background is given by th
following Nambu-Goto action:d

e
2Similar class of solutions was first constructed in Ref.@7#.
8-2
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S5E dtdsL52TfE dtdsFA2det Ĝab1
1

2!
eabB̂abG ,

~6!

where Ĝab and B̂ab (a,b5t,s) are respectively the pull
backs of the spacetime metricGMN and the NS-NS 2-form
potentialBMN to the world volume of the fundamental strin
namely,

Ĝab[GMN]aXM]bXN, B̂ab[BMN]aXM]bXN. ~7!

In the static gauge (X05t and X15s with X1 being the
longitudinal coordinate of the fundamental string!, the pull-
backs take the following forms:
be

o

-
-
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02501
Ĝab5Gab1Gi j ]aXi]bXj , B̂ab5Bab1Ba j]bXj1Bib]aXi ,

~8!

where scalarsXi are the target space coordinates for t
transverse space of the fundamental string.

Note, the above action~6! describes the probe fundame
tal string moving in the background of fields produced by t
source brane configuration. Namely,GMN and BMN in Eqs.
~6! and ~7! are the fields in Eq.~2! produced by the source
Also, in the supergravity solution~2!, the coordinatesxW , y,
and zW correspond to the target space coordinatesXW of the
probe fundamental string and are assumed to be function
time t5X0 only, i.e., xW5xW (t). Namely, the probe funda
mental string moves in the source background without os
lating. Therefore, the probe action~6! takes the following
form:
S52TfE dtds@A2~2HF
21Hp

21/21Hp
21/2v i

21Hp
1/2v'

2 !HF
21Hp

1/22HF
21#

52TfE dtds HF
21@A12HFv i

22HpHFv'
2 21#

52mfE dt HF
21@A12HFv i

22HpHFv'
2 21#, ~9!
ura-

are
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where v i and v' are respectively the speeds of the pro
fundamental string in the longitudinal directionxW and the
transverse directionzW of the Dp-brane:

v i[A(
i 51

p S dxi

dt D 2

, v'[A(
k51

82p S dzk

dt D 2

. ~10!

Since the configuration under consideration is assumed t
independent of the longitudinal coordinateX15s of the fun-
damental string, the integration~with the possible regulariza
tion! with respect tos in Eq. ~9! just gives the volume fac
tor, which combines with the tensionTf of the probe
fundamental string to give the massmf of the probe funda-
mental string in the third line in Eq.~9!. So, the above probe
actionS effectively describes the dynamics of a test parti
with massmf moving in the background fields.

In the core region of the fundamental string and t
Dp-brane (x'0 and z'0) or in the large source charg
limit ( QF@1 and Qp@1), the harmonic functions in the
action ~9! have the following forms:

HF55
QF

~x214Qpz!3 , p,5,

QF

~x214Q5z!7/2, p55,

Hp5
Qp

z
. ~11!
be

In the case of the delocalized intersecting source config
tion, the harmonic functions have the following forms:

HF511
QF

z62p, Hp511
Qp

z62p, ~12!

where the constant terms 1 in the harmonic functions
absent in the near horizon region (z'0). Note, in the par-
tially localized case with the harmonic functions given
Eq. ~11!, unlike the delocalized case with the harmonic fun
tions ~12!, the background geometry has the explicit depe
dence on the radial coordinatex of the world volume space
of the Dp-brane. This makes the study of nontrivial dynam
ics of the probe fundamental string in the relative transve
space possible.

So, explicitly in terms of the parameters of the sour
supergravity solution, the probe action~9! in the core region
of the constituent source branes takes the following form

S52mfE dt
~x214Qpz!n/2

QF

3FA12
QFv i

2

~x214Qpz!n/2 2
QpQFv'

2

z~x214Qpz!n/221G ,

~13!

wheren56 @n57# for p,5 @p55#, and
8-3
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S52mfE dt
z62p

QF
FA12

QFv i
2

z62p 2
QpQFv'

2

z1222p 21G ,

~14!

for the delocalized case.
These actions for the probe fundamental string effectiv

describe the dynamics of a particle with massmf moving in
a velocity dependent potential. When the motion of the pro
is restricted either to the relative transverse space~with the
coordinatesxW ) or to the overall transverse space~with the
coordinateszW) of the source brane configuration, the force
the particle becomes central, as well.

For the purpose of analyzing this motion, we set all t
angular momenta of the probe except one in each spaceJi
Þ0 in the relative transverse space andJ'Þ0 in the overall
transverse space! equal to zero. And one introduces the po
coordinates (x,u i) and (z,u') in the rotation planes respec
tively associated with the angular momentaJi andJ' . Then,
the velocitiesv i andv' in the relative transverse space a
the overall transverse space, defined in Eq.~10!, are decom-
posed as

v i
25 ẋ21x2u̇ i

2 , v'
2 5 ż21z2u̇'

2 , ~15!

where the dot denotes the differentiation with respect to
time coordinatet.

Then, in general, the angular momentaJi andJ' and the
energyE of the probe are given by

Ji5pu i
5

]L

]u̇ i

5
mfx

2u̇ i

A12HFv i
22HpHFv'

2
,

J'5pu'
5

]L

]u̇'

5
mfHpz2u̇'

A12HFv i
22HpHFv'

2
,

E5H5
]L

]v i
v i1

]L

]v'

v'2L

5
mf

HF
F 1

A12HFv i
22HpHFv'

2
21G . ~16!

So, explicitly the expressions for the angular mome
and the energy of the probe fundamental string in each c
are as follows:

Ji5
mfx

2u̇ i

A12
QFv i

2

~x214Qpz!n/22
QpQFv'

2

z~x214Qpz!n/2

,

J'5
mfQpzu̇'

A12
QFv i

2

~x214Qpz!n/22
QpQFv'

2

z~x214Qpz!n/2

,

02501
y

e

e
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E5
mf~x214Qpz!n/2

QF

3F 1

A12
QFv i

2

~x214Qpz!n/22
QpQFv'

2

z~x214Qpz!n/2

21G ,

~17!

wheren56 @n57# for p,5 @p55#, and

Ji5
mfx

2u̇ i

A12
QFv i

2

z62p 2
QpQFv'

2

z1222p

,

J'5
mfQpzp24u̇'

A12
QFv i

2

z62p 2
QpQFv'

2

z1222p

,

E5
mfz

62p

QF F 1

A12
QFv i

2

z62p 2
QpQFv'

2

z1222p

21G , ~18!

for the delocalized case.

A. The motion of the probe fundamental string
in the relative transverse space

In this subsection, we study the dynamics of the pro
fundamental string whose motion is restricted to the relat
transverse space of the source brane configuration. In
case,v'50 and the coordinatez is constant in time. Gener
ally, the angular momentumJi in the relative transverse
space and the energyE of the probe fundamental string hav
the following forms:

Ji5
mfx

2u̇ i

A12HFv i
2

, E5
mf

HF
F 1

A12HFv i
2

21G . ~19!

So, explicitly the angular momentum and the energy for e
case are as follows:

Ji5
mfx

2u̇ i

A12
QFv i

2

~x214Qpz!n/2

,

E5
mf~x214Qpz!n/2

QF F 1

A12
QFv i

2

~x214Qpz!n/2

21G ,

~20!
8-4
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PROBING THE PARTIALLY LOCALIZED . . . PHYSICAL REVIEW D61 025018
wheren56 @n57# for p,5 @p55#, and

Ji5
mfx

2u̇ i

A12
QFv i

2

z62p

,

E5
mfz

62p

QF F 1

A12
QFv i

2

z62p

21G , ~21!

for the delocalized case.
From the above expression for the energyE of the probe

fundamental string, one obtains the following kinetic re
tion:

E5
1

2
mfv i

21W~x!, W~x!5EF 12

11
E

2mf
HF

S 11
E

mf
HFD 2G ,

~22!

where the harmonic functionHF is given by Eq.~11! or Eq.
~12!. By further using the expression for the angular mom
tum Ji in Eq. ~19!, one obtains the following kinetic relatio
for the radial motion of the probe:

E5
1

2
mfẋ

21V~x!;

V~x!5EF 12

11
E

2mf
HF

S 11
E

mf
HFD 2G1

Ji
2

2mfx
2

1

S 11
E

mf
HFD 2 .

~23!

So, the radial motion~along thex direction! of the probe is
that of the test particle with massmf moving in a velocity-
independent central force potentialV(x).

In the partially localized case, the effective potentialV(x)
is explicitly given by

V~x!5EF 12

11
bn

2~x214Qpz!n/2

S 11
bn

~x214Qpz!n/2D 2G
1

Ji
2

2mfx
2

1

S 11
bn

~x214Qpz!n/2D 2 , ~24!

whereb is the characteristic scale given by

b5S EQF

mf
D 1/n

, ~25!
02501
-

-

wheren56 @n57# for p,5 @p55#.
The dynamics of the probe fundamental string along

radial directionx can be studied by analyzing an effectiv
velocity-dependent central force potentialV(x) in Eq. ~23!.
In the ‘‘delocalized’’ source background with the harmon
function HF in Eq. ~12! being independent of the radial co
ordinatex, the dynamics of the probe fundamental string
the world volume space of the Dp-brane is trivial: the only
force on the probe is the repulsive centrifugal force due
nonzero angular momentumJi of the probe. However, with
the partially localized source background, one can study n
trivial dynamics of the probe fundamental string since t
source fundamental string is now localized on the sou
Dp-brane and therefore the effective potentialV(x) in Eq.
~24! has explicit dependence onx.

At large distancex@b from the source fundamenta
string, the effective potential in Eq.~24! takes the following
form:

Vx@b→
3E2QF

2mf~x214Qpz!n/21
Ji

2

2mfx
2 . ~26!

So, the motion of the probe fundamental string is quali
tively similar to the motion in the background of the sour
fundamental string only, except that the strength of the
pulsive potential@the first term in Eq.~26!# is decreased due
to the presence of the source Dp-brane. This contribution
from the source Dp-brane gets enhanced for the larg
Dp-brane chargeQp and at larger distancez from the source
Dp-brane. However, the centrifugal potential~the second
term! remains the same regardless of the presence of
source Dp-brane.

At short distancex!b from the source fundamental strin
and very close to the source Dp-brane (z!b2/Qp), the ef-
fective potential is approximated to

Vx!b, z!b2/Qp
→E2

mf

2QF
~x214Qpz!n/2

1
mfJi

2

2E2QF
2

~x214Qpz!n

x2 . ~27!

The ~energyE independent! repulsive potential term is en
hanced again due to the presence of the source Dp-brane: for
largerQp andz, the repulsive force becomes stronger. Unli
the case of the long distance region, the probe fundame
string now feels the effect of the source Dp-brane on the
centrifugal potential when the probe fundamental string g
very close to the source.

We now discuss the motion of the probe fundamen
string in the source background. The turning points, wh
the radial velocityẋ of the probe becomes zero, are locat
at the values ofx whereE5V(x) @cf. Eq. ~23!# and therefore
are the roots of the following equation:

11
bn

2~x214Qpz!n/25
b
*
2

x2 , ~28!
8-5
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DONAM YOUM PHYSICAL REVIEW D 61 025018
whereb is given in Eq.~25!, b* [Ji /A2mfE and againn
56 @n57# for p,5 @p55#. This equation always has on
positive root x for nonzero angular momentumJi of the
probe. And whenJi50, there is no rootx for this equation.
Furthermore, the radial forceF(x)52dV(x)/dx on the
probe diverges asx→0, when JiÞ0. On the other hand
when the angular momentumJi is zero, the force vanishes a
x50. So, the motion of the probe fundamental string can
summarized as follows. When the probe has nonzero ang
momentum, the probe will always be scattered away whe
reaches the source fundamental string. When the probe
no angular momentum, it will eventually be absorbed by
source.

In the following, we compare the dynamics of the bion
which was previously studied in Refs.@13–15#, to the dy-
namics of the probe fundamental string along the world v
ume direction of the D-brane studied in the above pa
graphs. It is natural to expect that these two systems have
same dynamics, since the bions in the (p11)-dimensional
DBI theory are interpreted as the ends of fundamental str
on the Dp-brane in the very weak string coupling limit (gs
→0). Namely, the motion of the ends of the fundamen
strings on the D-brane along the D-brane world volume
rection is essentially the motion of the bions. However,
we shall see in the following, our description of dynamics
the probe fundamental string studied in the above is too s
plified to reproduce the dynamics of the world volume so
tons, i.e., bions.

In the following, we summarize the dynamics of th
bions, studied in Refs.@13–15#, for the purpose of compar
ing the dynamics of bions to the dynamics of the probe a
for the purpose of fixing the notations. Th
(p11)-dimensional DBI action has the following form:

SDBI52E dp11sA2det~hMN]mXM]nXN1Fmn!,

~29!

where hMN (M ,N50,1, . . . ,9) is the metric for the
Minkowskian target space andFmn5]mAn2]nAm (m,n
50,1, . . . ,p) is the field strength of the world volumeU(1)
gauge fieldAm . In the ‘‘static’’ gauge, in which the world
volume coordinatessm are identified with the target spac
coordinates as sm5Xm @(XM)5(Xm,Xm) with m5p
11, . . . ,9], the DBIaction ~29! takes the following form:

SDBI52E dp11sA2det~hmn1]mXm]nXm1Fmn!.

~30!

The ends of the fundamental strings on the Dp-brane
world volume correspond to the bions which carry the el
tric charge of the world volumeU(1) gauge fieldAm . One
scalar, sayXªXp11, associated with the longitudinal direc
tion of the fundamental string in the target space is n
trivial. In general, the bion solution has the following for
@11,12#:
02501
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A052H, X5H; H5(
k

qk

usW 2xW kup22
, ~31!

where sW 5(s1, . . . ,sp) is the spatial components of th
world volume coordinates (sm)5(t,sW ) and xW k is the loca-
tion of a bion with the electric chargeqk in the world volume
space.

Since we are interested in the low velocity dynamics
bions, it is sufficient to consider the following linearized a
proximation to the DBI action~30!:

SDBI'
1

2E dp11sFdmnh
mn]mXm]nXn1

1

2
FmnFmnG

5
1

2E dp11sFhmn]mX]nX1
1

2
FmnFmnG , ~32!

where in the second line only one scalarX associated with
the longitudinal direction of the attached fundamental str
is kept.

To study the dynamics of the bions, we allow the loc
tions of the bions to change with time, i.e.,xW k5xW k(t). So,

vW k5dxW k(t)/dt is the velocity of thekth bion with the elec-
tric chargeqk . One has to also add the following source te
Ssource for the BI U(1) field Am and scalar fieldX, and the
free termSfree for the bions:

Ssource5~22p!Vp21(
k
E dtFqkXA12vk

21qkAm

]xk
m

]t G ,
Sfree52(

k
E dtmk~e!A12vk

2, ~33!

where Vp2152pp/2/G(p/2) is the volume of the unit (p
21)-sphereSp21 and mk(e) is the ‘‘regularized’’ mass of
thekth bion. Here,e is the cutoff for the radial distance from
the bions, i.e., we restrict ourselves to the regionusW 2xW ku
>e. Then,mk(e) corresponds to the mass of the fundame
tal string whose length is truncated due to the regulariza
@11#. The source term can be interpreted as being relate
the bulk supergravity configuration. Namely, the Dp-brane,
whose shape in the (x,X) plane is given byX(x), is the
source of the first term inSsource, and the end of the funda
mental string on the Dp-brane is the source of the worl
volumeU(1) gauge fieldAm ~the second term inSsourcede-
scribes such coupling!. Sfree is the action for the bions with
massesmk(e).

Note, since the bions, which carry electric charges, h
nonzero velocities, the magnetic field is induced and the
locity dependent force will also be induced. To study su
and other effects on the bion dynamics due to nonzero
locities, one perturbs the fields around the static configu
tion ~31!. Then, one substitutes the perturbed fields, wh
satisfy the equations of motion to the orderO(v2) in the
velocity v of the bions, into the actionS5SDBI1Ssource
1Sfree in order to obtain the following on-shell effective ac
tion for the bions to the orderO(v2) @13–15#:
8-6
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S'
p22

2
Vp21E dtF(

k
mk~e!vk

21~p22!Vp21

3(
k, l

qkql

uvW k2vW l u2

uxW k2xW l up22G , ~34!

for large separationsuxW k2xW l u@0 for bions.
The system of the probe fundamental string@with the ac-

tion ~6!# moving in the source background, given by Eq.~2!
with Eq. ~5!, is the bulk counterpart to the dynamic system
two bions in the (p11)-dimensional DBI theory. In this
case, the indicesk and l in Eqs.~31! and ~34! run from 1 to
2. We let the first@second# bion correspond to the probe@the
source# fundamental string. This is a two-body system und
a central force. Such system can be reduced to an equiv
one-body system by replacing the positionsxW1 andxW2 of the
bions by their center-of-mass positionRW 5(m1xW1

1m2xW2)/(m11m2) and relative positionrW5xW12xW2. The ac-
tion ~34! then transforms to the following form:

S'
p22

2
Vp21E dtFMV21mv21~p22!Vp21

q1q2v2

r p22 G ,
~35!

where M5m11m2 is the total mass,m5m1m2 /M is the
reduced mass,V5udRW /dtu is the center-of-mass velocity
and v5udrW/dtu is the relative velocity. Thus the motion o
bions is described by the geodesic motion in the mod
space with the following metric:

dsMS
2 5MdRW 21Fm1~p22!Vp21

q1q2

r p22GdrW2. ~36!

As expected, the center-of-mass moves freely but the rela
motion of the bions is under the influence of a velocity d
pendent central potential. Since the source fundame
string is assumed to be much heavier than the probe fu
mental string, the second bion is much heavier than the
bion, i.e., m1!m2. Then, the action~35! in the center-of-
mass coordinate system (VW 50W ) is approximated to3

S'
p22

2
Vp21E dtFm1v1

21~p22!Vp21

q1q2v1
2

r p22 G ,
~37!

which describes dynamics of the first bion in the backgrou
of the second bion, which is fixed in space.

In order to compare the above result for the bion dyna
ics to the bulk theory result, one has to obtain the veloc
dependent potential from the energyE of the probe funda-
mental string in Eq.~20!. In the limit of very small probe

3When m1!m2, the quantities in the center-of-mass frame a

approximated asxW15@m2 /(m11m2)#rW'rW and m5m1m2 /(m1

1m2)'m1.
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velocity (v i'0), the energyE of the probe fundamenta
string in Eq.~20! is expanded in powers of the velocity as

E5
1

2
mfv i

21
3mfQFv i

4

8~x214Qpz!n/21
5mfQF

2v i
6

16~x214Qpz!n 1•••,

~38!

and, therefore, to the leading order inv i , the velocity depen-
dent potential on the probe is

Veff'
3mfQFv i

4

8~x214Qpz!n/2 . ~39!

This expression for the effective potential on the pro
fundamental string has different dependence on the velo
v i and the radial coordinatex from the effective potential on
the light bion given in Eq.~37!. In addition, one also finds
disagreement of the probe moduli metric, which describ
the geodesic motion of the probe fundamental string, w
the moduli metric~36! of bions, as we see in the following
In the limit of very small probe velocity (v i'0 and v'

'0), the on-shell action~9! is approximated to

S'
1

2
mfE dt ~v i

21Hpv'
2 !, ~40!

to the lowest order in the velocities. The vanishing of t
static potential in this on-shell action is in accordance w
the fact that we are considering a BPS configuration. Fr
the definitions of the probe fundamental string velocit
~10!, one can see that the moduli metric of the probe fun
mental string is given by

dsF
25dxidxi1Hpdzkdzk . ~41!

This moduli metric implies that the probe moves freely alo
the world volume directions of the Dp-brane, whereas the
moduli metric~36! for the bions describes the motion und
the influence of the velocity dependent central potential.

This disagreement may be traced from the following fa
tors. First, in calculating the effective action for the pro
fundamental string, we assumed that the field configurati
are static, uninfluenced by the moving probe fundamen
string. As was done originally in Refs.@16–20#, when one
studies the motion of collection of interacting solitons~in the
low-velocity limit!, which is described by the geodesic m
tion in the moduli space, one usually takes into account
perturbation~in a slow-motion expansion! of the original
static fields due to nonzero velocities of the solitons. This
properly done in the case of the interaction of bions in
above, but not in the case of the probe fundamental st
moving in the source background. Namely, in the sour
probe method, one assumes that the source is much he
than the probe and therefore the source is uninfluenced
the probe. On the other hand, in the case of bion dynam
first we assumed that all the bions have comparable m
~therefore, the field produced by one bion is influenced
those of other bions! and at the end we let one of the bion
be much heavier than the others. Second, the supergra
8-7
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DONAM YOUM PHYSICAL REVIEW D 61 025018
background~2! in which the probe fundamental string mov
corresponds to the configuration where the source Dp-brane
is delocalized along the longitudinal direction~the y direc-
tion! of the source fundamental string. On the other hand
for the bion solution in Eq.~31!, the location of the Dp-brane
along the longitudinal direction of the fundamental string
specified by the scalarX. So, although the partially localize
supergravity solution~2! has all the parameters of the bion
i.e., the charges and the locations of the bions, it still la
one special feature of the bion solution that a scalarX of the
bion solution specifies the location or the shape of
Dp-brane along the longitudinal direction of the fundamen
string. In the fully localized supergravity solution, one wou
expect to see the shape of the Dp-brane pulled by the fun-
damental string, just like the case of the bion solution. In
case of the configurations describing one type of br
within the world volume of another type of brane, we w
not encounter this problem, since there is no relative tra
verse direction that is delocalized. If one properly takes i
account the above observations, it might be possible to
produce the moduli metric for the bion interaction by stud
ing probe fundamental string moving in the source ba
ground of the fundamental strings ending on the Dp-brane.

B. The motion of the probe fundamental string
in the overall transverse space

In this subsection, we study the dynamics of the pro
fundamental string whose motion is restricted to the ove
transverse space. In this case,v i50 and the coordinatex is
constant in time. Generally, the angular momentumJ' in the
overall transverse space and the energyE of the probe fun-
damental string have the following forms:

J'5
mfHpz2u̇'

A12HpHFv'
2

, E5
mf

HF
F 1

A12HpHFv'
2

21G .

~42!

So, the explicit expressions for the angular momentum
the energy are

J'5
mfQpzu̇'

A12
QpQFv'

2

z~x214Qpz!n/2

,

E5
mf~x214Qpz!n/2

QF F 1

A12
QpQFv'

2

z~x214Qpz!n/2

21G ,

~43!
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wheren56 @n57# for p,5 @p55#, and

J'5
mfQpzp24u̇'

A12
QpQFv'

2

z1222p

,

E5
mfz

62p

QF F 1

A12
QpQFv'

2

z1222p

21G ,

~44!

for the delocalized case.
From the above expression for the energyE of the probe

fundamental string, one obtains the following kinetic re
tion:

E5
1

2
mfv'

2 1W~z!, W~z!5EF 12
1

Hp

11
E

2mf
HF

S 11
E

mf
HFD 2G ,

~45!

where the harmonic functionsHF andHp are given in Eqs.
~11! and ~12!. Further using the expression for the angu
momentumJ' in Eq. ~42!, one obtains the following kinetic
relation for the radial motion of the probe:

E5
1

2
mfż

21V~z!,

V~z!5EF 12
1

Hp

11
E

2mf
HF

S 11
E

mf
HFD 2G

1
J'

2

2mfHp
2z2

1

S 11
E

mf
HFD 2 . ~46!

So, again the radial motion~along thez direction! of the
probe fundamental string is that of a test particle with m
mf moving in an effective velocity-independent central for
potentialV(z).

We notice the qualitative difference in the effective p
tential ~therefore, the qualitative difference in the dynami
of the probe! between this case and the case of the dynam
in the relative transverse space of the source brane con
ration with the effective potential given in Eq.~23!. Namely,
whereas the effective potential for the dynamics in the wo
volume direction of the source Dp-brane is affected by the
source Dp-brane only through the Dp-brane chargeQp in
the harmonic functionHF for the source fundamental string
in the case of the dynamics in the directions transverse to
Dp-brane the effective potential explicitly depends on t
harmonic functionHp of the Dp-brane. This is expected
8-8
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PROBING THE PARTIALLY LOCALIZED . . . PHYSICAL REVIEW D61 025018
from the fact that our supergravity field background~2! for
the source is delocalized along the longitudinal direction
the fundamental string: the probe fundamental string w
feel the uniform force field of the same strength~produced
by the source Dp-brane! as it moves along the Dp-brane
world volume direction. However, the source Dp-brane is in
fact pulled by the source fundamental string and theref
the probe fundamental string will feel the varying force fie
of the source Dp-brane and ultimately hit the Dp-brane as it
moves towards the source fundamental string along
Dp-brane world volume direction. This force on the pro
fundamental string due to the source Dp-brane is the bulk
counterpart to the force on the bion due to the scalar cha
of X in Eq. ~31!. This is one of the reasons for the mismat
of the probe dynamics in the Dp-brane world volume direc-
tion and the bion dynamics, as pointed out in the previo
section.

For the partially localized case, the effective potential
the core region is explicitly given by

V~z!5F 12
z

Qp

11
~Qpb!n/2

2~x214Qpz!n/2

S 11
~Qpb!n/2

~x214Qpz!n/2D 2G
1

J'
2

2mfQp
2

1

S 11
~Qpb!n/2

~x214Qpz!n/2D 2 , ~47!

where the characteristic scaleb has the following form:

b5S EQF

mfQp
n/2D 2/n

, ~48!

and for the delocalized case,

V~z!5EF 12
z62p

Qp

11
b62p

2z62p

S 11
b62p

z62p D 2G
1

J'
2 z1022p

2mfQp
2

1

S 11
b62p

z62p D 2 , ~49!

where the characteristic scaleb is given by

b5S EQF

mf
D 1/(62p)

. ~50!

We now analyze the dynamics of the probe fundame
string moving along the radial directionz of the overall
transverse space. The dynamics is nontrivial for both de
calized and partially localized cases. We study both of th
cases and compare the differences.

At large distancez@b from the source, the effective po
tential V(z) in Eq. ~46! takes the following form:
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f
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Vz@b→EF12
z

Qp
S 12

3EQF

2mf~x214Qpz!n/2D G
1

J'
2

2mfQp
2 F12

2EQF

mf~x214Qpz!n/2G , ~51!

for the partially localized case, and

Vz@b→EF12
z62p

Qp
S 12

3EQF

2mfz
62pD G

1
J'

2 z1022p

2mfQp
2 S 12

2EQF

mfz
62pD , ~52!

for the delocalized case. Due to the presence of
Dp-brane, the usual repulsive potential of the source fun
mental string~the part of the potential which is independe
of J') gets an additional potential contribution from th
source Dp-brane. In the delocalized case@Eq. ~52!#, the re-
pulsive force due to the probe fundamental string is co
pletely ‘‘screened’’ by the source Dp-brane and the probe
feels the repulsive force due to the Dp-brane, only. However,
when the source fundamental string is localized at the sou
Dp-brane, the probe feels some repulsive contribution in
effective potential which signals existence of the source f
damental string. The~repulsive! centrifugal potential (J' de-
pendent term! on the probe is again suppressed due to
presence of the Dp-brane and is not repulsive anymore.@The
termJ'

2 /(2mfHp
2z2) in Eq. ~46! becomes a standard centrifu

gal potential term, if the source Dp-brane is absent, i.e.
Hp51.] In the case of the partially localized case, this te
does not give rise to the force on the probe~ignoring the
subleadingQF dependent term!. However, when the sourc
fundamental string is delocalized, the probe still feels aJ'

dependent attractive force~to the leading order, ignoring the
subleadingQF dependent term!.

At short distancez!b from the source Dp-brane and very
close to the source fundamental string (x!AQpb), the effec-
tive potential is approximated to

Vz!b, x!AQpb→E2
mf

2QpQF
z~x214Qpz!n/2

1
mfJ'

2

2E2Qp
2QF

2 ~x214Qpz!n, ~53!

for the partially localized case, and

Vz!b→E2
mf

2QpQF
z1222p1

mfJ'
2

2E2Qp
2QF

2 z2224p, ~54!

for the delocalized case. The usual (J' independent! repul-
sive potential term due to the source fundamental string
suppressed by the contribution from the source Dp-brane.
Again, the repulsive centrifugal potential is completely su
pressed and becomes attractive.

We now study the motion of the probe along the rad
directionz of the overall transverse space. The turning po
8-9
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z, where the radial velocityż vanishes, of the probe’s motio
is given by the root of the following equation:

11
~Qpb!n/2

2~x214Qpz!n/25
b
*
2

Qp

1

z
, ~55!

where b is given in Eq.~48! and b* 5J' /A2mfE. In the
delocalized case, the turning pointz satisfies the following
equation:

11
b62p

2z62p 5
b
*
2

Qp
z42p, ~56!

whereb is given in Eq.~50!. In the partially localized case
there is always one turning point at positivez whenJ'Þ0,
whereas there is no turning point for theJ'50 case. In the
delocalized case, when the angular momentum is nonz
there is~i! one turning point at positivez for p,4, ~ii ! one
turning point at positivez @no turning point# for a sufficiently
large@small# value ofJ' for p54, and~iii ! one turning point
at z5b

*
2 /Qp2b/2 (b

*
2 .Qpb/2) for p55, whereas there is

no turning point for theJ'50 case. Furthermore, the forc
gy

B

’’

02501
ro,

on the probe along the radial directionz, i.e., F(z)
52dV(z)/dz, is always positive@vanishes# at z50 when
x.0 @x50# in the partially localized case. In the deloca
ized case, the force always vanishes atz50. So, the motion
of the probe fundamental string along thez direction can be
summarized as follows. In the partially localized case, aw
from the source fundamental string (x.0), the probe funda-
mental string will always bounce back as it approaches
source Dp-brane, but can be eventually absorbed by
source Dp-brane when the probe approaches the Dp-brane
inside of the world volume of the source fundamental str
(x50). In the delocalized case, the probe withJ'50 will
always be absorbed by the source Dp-brane. This seems to
be due to the fact that the source fundamental string is d
calized on the source Dp-brane, i.e., is uniformly distributed
over the world volume of the Dp-brane. When the probe ha
nonzero angular momentumJ' , the probe will bounce back
as it approaches the Dp-brane for the following cases:~i! p
,4, ~ii ! the sufficiently large value ofJ' with p54, and~iii !
b
*
2 .Qpb/2 with p55. Otherwise, the probe will always b

absorbed by the source as it approaches the Dp-brane.
n
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